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A. Problem statement 

Direction of Arrival (DOA) estimation is an important branch of array signal processing. DOA estimation aims to 

determine the location of one or multiple signals in a space at the same time. More specifically, it aims to find the 

direction (angle) of signals arrived to the array sensors. The automotive radar is widely used nowadays as a driving 

assistance system device and currently attracts much attention and has been widely concerned. The automotive 

radar depends on DOA estimation technique to determine the direction of the target vehicles. Therefore it is 

meaningful to investigate the different methods of DOA estimation and evaluate how each method performs on 

automotive radar system. 

 

B. Objective 

Do literature survey at first. Understand the theory of DOA estimation. Understand the mathematical signal model 

expressions. Then search different typical methods that used, such as conventional FFT-based approach, MUSIC 

algorithm, Capon beamforming, Maximum Likelihood method. Finally based on one specific existing method, 

investigate an improved algorithm which could significantly reduce the computational complexity but get a good 

performance of accuracy. 

 

C. My solution 

Capon beamforming method simulation implementation 

Conventional FFT-based estimation simulation implementation 

MUSIC algorithm simulation implementation 

Proposed algorithm simulation implementation 

 

 

 

D. Contributions (at most one per line, most important first) 

Compare the proposed algorithm with conventional FFT in terms of SNR vs. RMSE 

Compare the proposed algorithm with conventional FFT in terms of M vs. RMSE 

Compare computational times reduced in the proposed algorithm 

Show the pros and cons of conventional FFT-based method 

Show the pros and cons of MUSIC algorithm 

Show the pros and cons of Capon beamforming 

 

 

 

 

E. Suggestions for future work 

Correctly get the comparison results in terms of multiple source signals case. 

If possible, do hardware implementation by using microprocessor. 

 

 

While I may have benefited from discussion with other people, I certify that this report is entirely my own work, 

except where appropriately documented acknowledgements are included. 
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Abstract 

Array signal processing is an important branch of signal processing, and has a rapid 

development in recent years [1, 2]. One of the main aspects of array signal processing is to 

investigate the spatial spectrum estimation [3, 4]. If spatial spectrum is known, the Direction 

of Arrival (DOA) of the signal could be known. So, generally spatial spectrum estimation is 

also known as DOA estimation [3]. DOA estimation aims to determine the location of one or 

multiple signals in a space at the same time. More specifically, it aims to find the direction 

(angle) of signals arrived to the array sensors [3]. The automotive radar is widely used 

nowadays as a driving assistance system device and currently attracts much attention and has 

been widely concerned [5]. The automotive radar depends on DOA estimation technique to 

determine the direction of the target vehicles. Therefore it is meaningful to investigate the 

different methods of DOA estimation and evaluate how each method performs on automotive 

radar system.  

Keywords: DOA estimation, automotive radar, Conventional FFT-based method, MUSIC 

algorithm, a proposed algorithm.  
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Abbreviations 

DOA  Direction of Arrival 

ULA              Uniform Linear Array 

FFT              Fast Fourier Transform 

BF  Beamforming 

DBF  Digital Beamforming 

CRB  Cramer-Rao Bound 

CB  Capon Beamforming 

ML  Maximum Likelihood 

MUSIC Multiple Signal Classification 

SNR  Signal to Noise Ratio 

RMSE  Root Mean Square Error 
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Chapter 1 

 

Introduction 
My report is organized as follows. In section 1, an introduction of DOA estimation and 

automotive radar is given. Section 2 is the literature survey which describes the aspects of 

beamforming technique [6], automotive radar model [7], signal model [8], CRB [9], Capon 

beamforming method [6, 10], FFT-based linear spectrum estimation [11], ML estimation and 

MUSIC algorithm [3, 12]. In section 3, a proposed algorithm based on conventional FFT 

method is demonstrated, in terms of improving the performance and reducing computational 

complexity. In section 4, a simulation result about my work is shown. Finally, the reference is 

given. 

 

 

1.1 DOA estimation 

Array signal processing is an important branch of Signal Processing, and has a rapid 

development in recent years. There are lots of applications of this technique which involves 

the fields of Radar, Sonar, Astronomy, Seismology, Satellite Navigation, Medicine and so on. 

The aim of array signal processing is to process the signal received by the array sensors, 

enhance the strength of the desired signal and restrain the strength of the undesired signal and 

noise, finally extract the useful information of the desired signal. By comparison with 

traditional single sensor, array sensor has the advantages of flexible beam direction control, 

high signal gain, good performance of high resolution [3]. 

One of the main aspects of array signal processing is to investigate the spatial spectrum 

estimation. Spatial spectrum estimation focuses on how array signal system could get the 

spatial signal parameters as accurate as possible, and its main task is to estimate the location 

of the source signal and spatial parameters. This is also the main task in the field of Radar, 

Sonar and Telecommunication [1, 2]. 

A spatial spectrum shows signal energy distribution in different directions in space. Therefore, 

if spatial spectrum is known, the Direction of Arrival (DOA) of the signal could be known. 

So, generally spatial spectrum estimation is also known as DOA estimation. In some 

references, DOA estimation is also called bearing estimation, angle estimation or direction 

finding. Actually, they are the synonyms [3]. 

As an important and popular topic in array signal processing, DOA estimation aims to 

determine the location of one or multiple signals in a space at the same time. More 

specifically, it aims to find the direction (angle) of signal arrived to the array antenna. In 

practice, the signal is corrupted by the added noise. Therefore, it is required to extract the 

direction information of desired signal from noise. 

In my report, there are several methods listed, for instance, Capon beamforming method, 
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conventional FFT-based estimation, Maximum Likelihood estimation, Multiple Signal 

Classification (MUSIC) algorithm. It is hard to simply say which method is absolutely 

effective by comparison with others, since each method could be effective under a specific 

condition and dose not perform well when the condition changes. Also, there are many factors 

need to be considered when evaluating a specific method. For example, it is important to 

make a trade-off between the computational complexity and required performance depending 

on specific situation. 

 

 

1.2 Automotive Radar 

The automotive radar is widely used nowadays as a driving assistance system device. Based 

on acquiring the information (relative velocity, relative range, direction of arrival) from the 

vehicles in front and analyzing the probability of collision, the driver can receive suggestions 

from the alarm system and make any reaction in time. Or even the case, if the system finds 

that the collision is definitely to be happened, it will automatically interfere the action to 

brake the car at once to make sure the security. Therefore, the automotive radar currently 

attracts much attention and has been widely concerned [5]. 

Automotive Radar largely depends on DOA estimation to get correct information of direction 

of the targets. A good DOA estimation result could provide sufficiently accurate information 

in real time. So both accuracy and processing speed should be taken as important factors 

when evaluating each DOA estimation method.   

 

 

1.3 Pre-requisite knowledge 

Random Process [14] 

Mean (expectation) 

𝜇𝑥[𝑛]
= 𝐸[𝑥[𝑛]] = ∫ 𝛼

∞

−∞

𝑝𝑥[𝑛]
(𝛼)𝑑𝛼 

Mean square value 

𝐸[𝑥[𝑛]2] = ∫ 𝛼2

∞

−∞

𝑝𝑥[𝑛]
(𝛼)𝑑𝛼 

Variance  

𝜎𝑥[𝑛]
2 = 𝐸 [(𝑥[𝑛] − 𝜇𝑥[𝑛]

)
2
] = ∫(𝛼 − 𝜇𝑥[𝑛]

)2

∞

−∞

𝑝𝑥[𝑛]
(𝛼)𝑑𝛼 

Autocorrelation  

𝜑𝑥𝑥[𝑛,𝑚] = 𝐸[𝑥[𝑛]𝑥[𝑚]∗] = ∫ ∫ 𝛼𝛽∗𝑝𝑥[𝑛],𝑥[𝑚](𝛼, 𝛽)𝑑𝛼𝑑𝛽

∞

−∞

∞

−∞

 

Auto covariance  
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𝛾𝑥𝑥[𝑛,𝑚] = 𝐸[(𝑥[𝑛] − 𝜇𝑥[𝑛])(𝑥[𝑚] − 𝜇𝑥[𝑚])
∗
]    

𝛾𝑥𝑥[𝑛,𝑚] = ∫ ∫(𝛼 − 𝜇𝑥[𝑛]
)(𝛽 − 𝜇𝑥[𝑚]

)∗𝑝𝑥[𝑛],𝑥[𝑚](𝛼, 𝛽)𝑑𝛼𝑑𝛽

∞

−∞

∞

−∞

 

Cross correlation 

𝜑𝑥𝑦[𝑛,𝑚] = 𝐸[𝑥[𝑛]𝑦[𝑚]∗] = ∫ ∫ 𝛼𝛽∗𝑝𝑥[𝑛],𝑦[𝑚](𝛼, 𝛽)𝑑𝛼𝑑𝛽

∞

−∞

∞

−∞

 

Cross covariance  

𝛾𝑥𝑦[𝑛,𝑚] = 𝐸[(𝑥[𝑛] − 𝜇𝑥[𝑛])(𝑦[𝑚] − 𝜇𝑦[𝑚])
∗
] 

𝛾𝑥𝑦[𝑛,𝑚] = ∫ ∫(𝛼 − 𝜇𝑥[𝑛]
)(𝛽 − 𝜇𝑦[𝑚]

)∗𝑝𝑥[𝑛],𝑦[𝑚](𝛼, 𝛽)𝑑𝛼𝑑𝛽

∞

−∞

∞

−∞

 

If 𝒗 refers to a n-th order random vector, 𝒗 = [𝑋1, 𝑋1, … , 𝑋𝑛] 

𝑐𝑖𝑗 = 𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗) = 𝐸 [(𝑋𝑖 − 𝐸(𝑋𝑖)) (𝑋𝑗 − 𝐸(𝑋𝑗))]    𝑖, 𝑗 = 1,2,… , 𝑛 

𝑪 = {𝑐𝑖𝑗}  is defined as the covariance matrix of vector 𝒗. 

Covariance matrix 𝑪 has the characteristics that it is positive definite and symmetric, which 

means 𝑪𝑇 = 𝑪. 

 

Hermite Matrix [15] 

A Hermite Matrix (also called self-adjoint matrix) is a square matrix with complex entries that 

is equal to its own conjugate transpose[wiki]. The element in the i-th row and j-th column is 

equal to the complex conjugate of the element in the j-th row and i-th column, which can be 

expressed as: 

𝑎𝑖𝑗̅̅ ̅̅ = 𝑎𝑗𝑖   (𝑖, 𝑗 = 1,2, … , 𝑛) 

From the above equation, we can see that diagonal elements of Hermite Matrix are all real 

values. 

Assume 𝑨𝑻 and �̅� are transpose and conjugate matrix of matrix A, respectively. The sufficient 

and necessary condition for matrix 𝑨 = [𝑎𝑖𝑗] to be a Hermite Matrix is： 

𝑨𝑻 = �̅� 

There are several characteristics of Hermite Matrix: 

(1) If matrix A is Hermite Matrix, then |𝑨| is real valued. 

(2) If matrix A is Hermite Matrix, k is any real valued number, 𝑘𝑨 is still Hermite Matrix. 

(3) If matrix A and matrix B are both Hermite Matrices, 𝑨 + 𝑩 is Hermite Matrix. 

(4) If matrix A is Hermite Matrix, 𝑨𝑻, �̅�, 𝑨𝑯 are all Hermite Matrices. If A is invertible, 𝑨−1 

is also Hermite Matrix. 
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Chapter 2 

 

Literature Survey 

 

2.1 Beamforming Technique 

Beamforming technique is to reconstruct the source signal from the array sensors. This could 

be done by considering two important aspects.  

(1) The first aspect is to increase the contribution of the expected source signal. 

(2) The other aspect is to restrain the interference signal, such as noise. 

The basic idea of beamforming is multiplying each sensor by a different weighting vector and 

thus steer the beam of the array sensors to a specific direction. DOA estimation is to get the 

direction of the maximum power of the desired signal. 

Though the direction of the array sensors could reach 360-degree angles, once add the 

weighting on each array sensor and get sum of every sensor, the gain of the received signal 

could be adjusted and focused on one specific direction only. It is just like formulating a 

“beam”. So this is the physical meaning of beamforming technology. 

The advantage of using beamforming technology in DOA estimation is to significantly 

increase signal to noise ratio (SNR) and effectively improve the quality of received signal 

information.   

 

Figure2.1.1 Beamforming technic 

The optimal weighting vector 𝒘 is determined by the array sensor steering vector 𝒔(𝜙𝑚). 

Before calculating the optimal weighting vector, it is necessary to know the geometric 

configuration of the array sensors. Then next step is to do DOA estimation of the desired 

signal.  
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2.2 Automotive Radar Model 

Figure2.2.1 shows the model that how DOA estimation works for automotive radar. An 

automotive radar system with an array of antennas can be used to determine the DOA of 

signals which corresponding to different vehicles in front.  

The configuration of the radar antenna is Uniform Linear Array (ULA). Though it is not 

always the case that requires the geometric of the radar antenna to be ULA (for some specific 

DOA estimation method, such as ESPRIT), here we just assume that the array antenna used in 

automotive is ULA. 

By using beamforming technology, we can adjust the weighting coefficients of each antenna, 

and excited the signal in the specific direction. Also, the array of antenna could receive the 

steering vector which is related to the signal. Based on the relationship between the excitation 

and received steering vector, by doing Fourier Transform, we can estimate the spectrum and 

get the direction information 𝜙. 

Here, we define 𝑑 as the equivalent space between each array of antennas. The number of 

antenna is defined as M.  

 

Figure2.2.1 ULA antenna model and steering vector with different direction 

 

 

2.3 Signal Model 

 

Figure2.3.1 DOA signal model 

There are several assumptions made when doing DOA estimation: 

(1) It is assumed that all the source signals are single points, there is no spread angle when 

looking back from the antennas to the source signal. The direction of the signal is unique. 

(2) Each of the source signals is uncorrelated with other source signals. The source signal is 

considered to be narrow band, and has the same center frequency  

𝜔0 = 2𝜋𝑓0 
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(3) The equivalent space 𝑑 between each antenna is no more than half length of the highest 

frequency signal. 

(4) The array of antennas is in the far field from the signal sources. Therefore, the signal 

received by the antennas could be seen as parallel.  

(5) There is added noise in each array of antennas. The noises are uncorrelated with each 

other, also uncorrelated with each source signals. 

(6) The characteristic of each antenna is exactly the same. 

There exists a difference of received wave-path between each antenna, and could be 

expressed as: 

𝜏 =
𝑑𝑐𝑜𝑠𝜙𝑖

𝑐
 

Then the difference of phase between each antenna is: 

𝜃 = 𝑒−𝑗𝜔𝜏 = 𝑒−𝑗𝜔
𝑑𝑐𝑜𝑠𝜙𝑖

𝑐 = 𝑒
−𝑗2𝜋

𝑑𝑐𝑜𝑠𝜙𝑖
𝜆𝑓0

𝑓
 

For narrow band signal as assumed, 𝑓 = 𝑓0, so 

𝜃 = 𝑒
−𝑗2𝜋

𝑑𝑐𝑜𝑠𝜙𝑖
𝜆  

Consequently, if phase difference is known, according to the equation above, the DOA of the 

signal 𝜙𝑖 is known. 

Generally, the received signal model can be defined as followed: 

𝐱 = ∑𝛼𝑖𝒔(𝜙𝑖)

𝐼

𝑖=1

+ 𝒏 

And 

𝒔(𝜙𝑖) =
1

√𝑀
[1, 𝑒𝑗𝜙𝑖 , … ,  𝑒𝑗(𝑀−1)𝜙𝑖] 

Here 𝑖 stands for the i-th received signal and the total number of signals is I. 𝛼𝑖 and 𝜙𝑖 stand 

for the amplitude and direction parameters of i-th signal, respectively. 𝒔(𝜙𝑖) refers to the i-th 

steering vector. 𝒏 refers to the noise vector, which is a zero-mean Gaussian with covariance 

𝜎2𝑰.  

Usually, we are interested in single (𝐼 = 1) or double target (𝐼 = 2) situations, so the signal 

model could be expressed as: 

𝐼 = 𝟏 ：𝐱 = 𝛼1𝒔(𝜙1) + 𝒏 

𝐼 = 𝟐 ：𝐱 = 𝛼1𝒔(𝜙1) + 𝛼2𝒔(𝜙2) + 𝒏 

 

 

2.4 Cramer-Rao Bound 

Before looking at different methods, it is necessary to know the Cramer-Rao Bound (CRB). 

No matter which method is used, the minimum variance of any unbiased estimation method 

could not be less than CRB. 

For a steering array, we can express the elements as: 
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𝒔(𝜙) = [𝑧−
𝑁−1

2 ,  𝑧−
𝑁−3

2 , … ,  𝑧−1, 1, 𝑧,  𝑧
𝑁−3

2 ,  𝑧
𝑁−1

2   ] 

Where 

z = 𝑒𝑗𝑘𝑑𝑐𝑜𝑠𝜙 

 

By constructing function and doing first and second order differentiation, finally got: 

𝑣𝑎𝑟(𝜙) ≥
6𝜎2

|𝛼|2𝑁(𝑁2 − 1)(𝑘𝑑)2𝑠𝑖𝑛2𝜙
 

 

It can be seen from the equation that CRB sets the best possible estimation. Also, with the 

increasing of the SNR, 
𝜎2

|𝛼|2
 decreases, leading to a reduced CRB. 

 

 

2.5 Capon Beamforming 

The conventional (Bartlett) beamforming method suffers a significant problem that if there 

are multiple signal sources from different directions, especially the case the sources are 

closely, the resolution of the spectrum could be rather low, it could even fail to detect the right 

direction of each signal. 

Compared with conventional beamforming, the Capon beamforming method provides better 

performance on resolution. The algorithm of Capon Beamforming is simple, it aims to 

minimize the output power of the array signal. By doing this, the contribution of undesired 

signal (noise) could be minimized as well. At the same time, it maintains the power in the 

direction of desired source signal, which means to keep the gain in the direction of desired 

source signal as a constant (The gain value is generally to be selected as 1). Capon 

beamforming algorithm could be expressed as followed: 

{
min𝐸[|𝑦(𝑘)|2] = min𝒘𝑇𝑹𝐱𝐱𝒘

𝑠𝑡 ∶  𝒘𝑇𝒔(𝜙𝑖) = 1
 

This is a constrained optimization question that could be transferred to a non-constrained 

question by using Lagrange operator: 

𝒘 =
𝑹𝐱𝐱

−1𝒔(𝜙𝑖)

𝒔𝐻(𝜙𝑖)𝑹𝐱𝐱
−1𝒔(𝜙𝑖)

 

By using Capon beamforming method, the function of DOA could be expressed by Capon 

spatial spectrum: 

𝑃𝐶𝑎𝑝𝑜𝑛(𝜙𝑖) =
𝟏

𝒔𝐻(𝜙𝑖)𝑹𝐱𝐱
−1𝒔(𝜙𝑖)

 

When get all values and get the Capon spectrum, the DOA of each signal could be known as 

the peak value appears in the spectrum. 

Here, |𝑦(𝑘)|2 is the output power. 𝒘 is the weighting vector as mentioned in 2.1. 𝑹𝐱𝐱 is the 

correlation matrix of the received signal. 

However, there are still shortcomings in Capon beamforming method. Firstly, in terms of 

computational complexity, Capon beamforming requires to calculate the inverse of correlation 

matrix, which might be quite computationally complex when the correlation matrix is large. 
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Additionally, Capon beamforming is lack of the ability to distinguish the desired signal from 

other correlated undesired signal. This is because when minimizing the output power, it 

required the correlated relationship between desired signal and undesired signal. Finally, if 

there are too close source signals, Capon beamforming still could not resolve them and some 

high resolution methods might be required. 

 

 

2.6 Conventional FFT-based DOA Estimation 

Conventional FFT-based estimation is the most commonly known method in DOA 

estimation. It has the advantage of really simple algorithm and easy to implement.  

Recall the signal model in 2.3: 

𝐱 = ∑𝛼𝑖𝒔(𝜙𝑖)

𝐼

𝑖=1

+ 𝒏 

Once the received signal vector 𝐱 is obtained, do Fast Fourier Transform of received signal by 

a proper number of zero-tapping at first. This is expressed as: 

𝑋[𝑛] = ∑ 𝐱[𝑘]𝑒−𝑗2𝜋𝑘
𝑛
𝐿

𝐿−1

𝑘=0

 

Where L is the total FFT points which equal: 

𝐿 = 𝑧 × 𝑀,    𝑧 = 1,2,⋯ 

Where 𝑧 is the integer multiple of zero-tapping. 

Once got the FFT of signal vector 𝐱, further calculate the power spectrum of signal vector 𝐱: 

 

𝑃[𝑛] = 𝑐𝑜𝑛𝑗(𝑋[𝑛]) × 𝑋[𝑛] = |𝑋[𝑛]|2 

 

By searching the peak value appear in the spectrum, the desired source signals’ DOA could be 

found. 

However, there is a significant problem in this approach, which is undesirable sidelobe 

leakage in the spectrum. There is countermeasure to alleviate this problem: 

For reducing the size of sidelobe leakage, a windowing function can be added: 

𝑋𝑊[𝑛] = ∑ 𝑤[𝑘]𝒙[𝑘]𝑒−𝑗2𝜋𝑘
𝑛
𝐿

𝐿−1

𝑘=0

 

And the new spectrum could be calculated: 

𝑃𝑊[𝑛] = 𝑐𝑜𝑛𝑗(𝑋𝑊[𝑛]) × 𝑋𝑊[𝑛] = |𝑋𝑊[𝑛]|2 

Here 𝑤[𝑘] is the windowing function.  

Generally, 𝑤[𝑘] can be selected as rectangular window 𝑤𝑅[k] or hamming window 𝑤𝐻[k]: 

𝑤𝑅[𝑘] = {
1    |𝑘| < 𝑀
0    |𝑘| ≥ 𝑀

 

and 
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𝑤𝐻[𝑘] = {
0.54 + 0.46𝑐𝑜𝑠

𝜋

𝑀
𝑘    |𝑘| < 𝑀

                    0                   |𝑘| ≥ 𝑀
 

 

It can be seen that the new power spectrum 𝑃𝑊[𝑛] is the convolution of windowing function 

𝑤[𝑘] and previous power spectrum 𝑃[𝑛].  

For conventional FFT-based method, adding the windowing function can effectively reduce 

the size of sidelobes and increase the size of mainlobe. However, increasing mainlobe means 

to reduce the resolution in the spectrum. This is a contradiction inside FFT-based linear 

spectrum estimation method. Moreover, if there are multiple closely targets, FFT-based linear 

spectrum estimation method will lose the ability to resolve the closely signal due to spectral 

leakage. Spectrum leakage problem is always a significant problem by comparison with other 

more effective methods. 

Besides, in terms of computational times, as doing zero-tapping with a sufficiently large 

multiple requires to increase computational times accordingly, this method could get a 

reasonable accuracy with efficient computational cost. 

 

 

2.7 Maximum Likelihood Estimation 

The Maximum Likelihood method is to maximize the likelihood that the received signal 

coming from the particular direction. It is possible to implement this method to solve single or 

even multiple target problems. Here just take single target as example. 

The Maximum Likelihood Estimator is given as: 

�̂�, �̂� = 𝑚𝑎𝑥
𝜙,𝛼

[𝑓𝐱/𝜙,𝛼
(𝐱)] 

Where fx/ϕ,α
(x) is the pdf of the data vector x with the given parameters 𝛼, 𝜙. Assuming that 

the noise vector is complex Gaussian, 

𝑓𝐱/𝜙,𝛼
(𝐱) =

1

𝜋𝑁𝑑𝑒𝑡 (𝑹𝑛)
𝑒−(𝐱−𝛼𝒔)𝐻𝑹𝑛

−1(𝐱−𝛼𝒔) 

So equivalently, we need to get 

�̂�, �̂� = 𝑚𝑖𝑛
𝜙,𝛼

[(𝐱 − 𝛼𝐬)𝐻𝑹𝑛
−1(𝐱 − 𝛼𝐬)] 

Using differentiation, finally we can get 

�̂� =
𝒔𝐻𝑹𝑛

−1𝐱

𝒔𝐻𝑹𝑛
−1𝒔

 

Using this value of α̂, we can get 

�̂� = 𝑚𝑎𝑥
𝜙

[
|𝒔𝐻𝑹𝑛

−1𝐱|
2

𝒔𝐻𝑹𝑛
−1𝒔

] 

The DOA estimate is the point where this function takes its maximum. 

 

However, for more than one target case, such as two targets, the BF technology could cause 
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undesirable spectrum leakage. Particularly, for multiple target case, there is a method called 

RELAX algorithm which could eliminate the leakage. 

 

RELAX Algorithm for DOA Estimation [13] 

For the case with two targets, using RELAX algorithm aims to minimize the function: 

‖𝐱 − 𝛼1𝒔(𝜙1) − 𝛼2𝒔(𝜙2)‖
2 

The minimization function above can be simplified to: 

�̂�𝑖 = argmax|𝒔(𝜙i)
H𝐱i|

2
 

�̂�𝑖 =  𝒔(𝜙i)
𝐻𝐱i      i = 1,2 

The RELAX algorithm, for the case of two targets, is summarized as; 

(1) Assume a single target present, estimate parameters �̂�1 & �̂�1 from 𝐱. 

(2) Assume two targets present, compute  

𝐱2 = 𝐱 − �̂�1𝒔(�̂�1) 

(3) Using the previous estimates, get the estimated value of �̂�2 & �̂�2. 

(4) Re compute the function 

𝐱1 = 𝐱 − �̂�2𝒔(�̂�2) 

(5) get the estimated value of  �̂�1 & �̂�1 from 𝐱1. 

(6) Do the iteration for several loops, when the difference between two iterations are smaller 

than the expected threshold ϵ, stop the iteration and get the results. Otherwise, continue the 

steps above. 

It can be seen that the RELAX algorithm can be effectively used to solve multi-targets signal 

problem. The advantage of this method is it could eliminate the spectrum leakage. However, 

because of a iterative implementation, the threshold needs to be determined suitable, because 

a smaller convergence requires more computation, while lower computational cost reduce the 

accuracy of the result. 

 

 

2.8 Multiple Signal Classification (MUSIC algorithm) 

Music algorithm is a popular method which belonging to spatial spectrum estimation. MUSIC 

algorithm aims to decompose the eigenvectors of the covariance matrix of the array signal, 

and get the related signal subspace and noise subspace, which are orthogonal. Base on this 

orthogonal characteristic, the spectrum function could be constructed, and the DOA of the 

signal could be got by searching the peak value in the spectrum. 

There are many advantages of MUSIC algorithm: 

(1) It has the ability to detect the DOA of multiple signals at the same time. 

(2) High accuracy and resolution. 

(3) When using high speed processing technology, it is possible to process the signal in real-

time. 

Recall the FFT-based method, it suffers the significant problem of spectrum leakage. 

However, MUSIC algorithm dose not suffer this problem and provide high resolution and 

accuracy. 
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Recall the signal model in 2.3, 

𝐱 = ∑𝛼𝑖𝒔(𝜙𝑖)

𝐼

𝑖=1

+ 𝒏 

Using definition of matrix, the expression could be simplified as: 

𝑿 =  𝑺𝜶 + 𝑵 

Here 

𝑿 = [x1, x2, … , x𝑁]𝑇 

𝑺 = [𝒔(𝜙1), 𝒔(𝜙2),… , 𝒔(𝜙𝑀)] 

= [

1 1    ⋯ 1
𝑒𝑗𝜙1 𝑒𝑗𝜙2 ⋯ 𝑒𝑗𝜙𝐼

⋮
𝑒𝑗(𝑀−1)𝜙1

⋮
𝑒𝑗(𝑀−1)𝜙2

⋱
⋯

⋮
𝑒𝑗(𝑀−1)𝜙𝐼

] 

𝜶 = [𝛼1,  𝛼2, … ,  𝛼𝐼]
𝑇 

𝑵 = [𝑛1, 𝑛2, … , 𝑛𝑀]𝑇 

 

Here 𝑺 is a 𝑀 × 𝐼 matrix.  

The signal covariance matrix of 𝐱 can be written as: 

𝑹 = 𝐸[𝑿𝑿𝐻] 

Here assuming the different signals are uncorrelated, then 

𝑹 = 𝐸[𝑿𝑿𝐻] = 𝐸[ (𝑺𝜶 + 𝑵)(𝑺𝜶 + 𝑵)𝐻] 

= 𝑺𝐸[𝜶𝜶𝐻]𝑺𝐻 + 𝐸[𝑵𝑵𝐻] 

= 𝑺𝑹𝑠𝑺
𝐻 + 𝜎2𝑰 

= 𝑺𝑹𝑠𝑺
𝐻 + 𝑹𝑛 

Here 

𝑹𝑠 = [𝜶𝜶𝐻] 

is the correlation matrix of signal, it is a diagonal matrix and can be expressed as: 

𝑹𝑠 = [
𝐸[|𝛼1|

2] ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝐸[|𝛼𝐼|

2]
] 

And 

𝑹𝑛 = 𝜎2𝑰 

Is the correlation matrix of noise. 

In practice, the matrix 𝑹 is unknown, it can only estimate the covariance matrix �̂� from the 

received signal: 

�̂� =
1

𝐾
∑ 𝐱𝑘

𝐾

𝑘=1

𝐱𝑘
𝐻 

�̂� is the maximum likelihood estimation of 𝑹, when sampling numbers 𝐾 → ∞, �̂� is identical 

to 𝑹 . Practically, due to the limitation of sampling numbers, it will lead to estimation 

deviation. 

Considering ideal situation at first, which means there is no noise added. Do 

eigendecomposition of signal covariance matrix: 

𝑹 =  𝑺𝑹𝑠𝑺
𝐻 
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As ULA, 𝑺 has the characteristic that: 

𝜙𝑖 ≠ 𝜙𝑗     𝑖 ≠ 𝑗 

So each column of matrix 𝑺  is independent. Because it is assumed the signals are 

uncorrelated, the rank of matrix 𝑹𝑠  

𝑅𝑎𝑛𝑘(𝑹𝑠) = 𝑀 

So 

𝑅𝑎𝑛𝑘(𝑹) = 𝑅𝑎𝑛𝑘(𝑺𝑹𝑠𝑺
𝐻) = 𝑀 

Since  

𝑹 = 𝐸[𝑿𝑿𝐻] 

So 

𝑹𝐻 = 𝑹 

Which means 𝑹 is a Hermite matrix and all its eigenvalues are real valued. Also, matrix 𝑹𝑠 is 

positive definite, therefore matrix 𝑺𝑹𝑠𝑺
𝐻 is positive semidefinite, it has I positive eigenvalues 

and 𝑀 − 𝐼 zero eigen values. 

Now considering the situation with noise added: 

𝑹 =  𝑺𝑹𝑠𝑺
𝐻 + 𝜎2𝑰 

Because 𝜎2 > 0, and 𝑹 is full rank, there are M eigenvalues [𝜆1, 𝜆2, … , 𝜆𝑀] corresponding to 

M eigenvectors [𝒗1, 𝒗2, … , 𝒗𝑀]. As 𝑹 is Hermite matrix, all eigenvectors are orthogonal:   

𝒗𝑖
𝐻𝒗𝑗 = 0       𝑖 ≠ 𝑗 

Here there are M eigenvalues corresponding to the eigenvalues of matrix 𝑺𝑹𝑠𝑺
𝐻 

[𝜆1
′, 𝜆2

′, … , 𝜆𝑁
′] plus 𝜎2, and the rest 𝑁 − 𝑀 eigenvectors are all 𝜎2. 

[𝜆1, 𝜆2, … , 𝜆𝑀]𝑰 =

[
 
 
 
 
 
𝜆1

′ + 𝜎2 … 0
⋮ ⋱ ⋮
0 … 𝜆𝐼

′ + 𝜎2

0 … 0
⋮ ⋱ ⋮
0 … 0

0 … 0
⋮ ⋱ ⋮
0 … 0

𝜎2 … 0
⋮ ⋱ ⋮
0 … 𝜎2]

 
 
 
 
 

= [
𝑬𝒔 0
0 𝑬𝒏

] 

 

It can be seen that 𝜎2  is the minimum value of eigenvalues in matrix 𝑹. Sequencing the 

values of eigenvectors in descending order: 

𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑀 > 0 

Here, former M bigger eigenvalues correspond to signal, latter 𝑁 − 𝑀 smaller eigenvalues 

correspond to noise. Therefore, it is possible to separate the eigenvalues (eigenvectors) of 

matrix 𝑹  to signal eigenvalues (eigenvectors in matrix 𝑬𝒔 ) and noise eigenvalues 

(eigenvectors in matrix 𝑬𝒏). 

Assume 𝜆𝑖 is the i-th eigenvalue of matrix 𝑹, and 𝒗𝑖 is the eigenvector corresponding to 𝜆𝑖: 

𝑹𝒗𝑖 = 𝜆𝑖𝒗𝑖 

Let 𝜆𝑖 = 𝜎2 

𝑹𝒗𝑖 = 𝜎2𝒗𝑖       𝑖 = 𝐼 + 1, 𝐼 + 2,… ,𝑀 

Recall  

𝑹 =  𝑺𝑹𝑠𝑺
𝐻 + 𝜎2𝑰 

So 

(𝑺𝑹𝑠𝑺
𝐻 + 𝜎2𝑰)𝒗𝑖 = 𝜎2𝒗𝑖 

Simplify 

𝒄𝑹𝑠𝑺
𝐻𝒗𝑖 = 𝟎 
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[𝑹𝑠
−1(𝑺𝐻𝑺)−1𝑺𝐻]𝑺𝑹𝑠𝑺

𝐻𝒗𝑖 = [𝑹𝑠
−1(𝑺𝐻𝑺)−1𝑺𝐻] × 𝟎 = 𝟎 

 

𝑺𝐻𝒗𝑖 = 𝟎       𝑖 = 𝐼 + 1, 𝐼 + 2,… ,𝑀 

 

It can be shown that noise eigenvector 𝒗𝑖 is orthogonal to the column vectors of matrix 𝑺. 

Each column vectors of matrix 𝑺 corresponds to the direction of signal. It shows the idea that 

to get the DOA of the signal from noise eigenvectors. 

In terms of noise eigenvector matrix 𝑬𝒏: 

𝑬𝒏 = [𝒗𝐼 , 𝒗𝐼+1, … , 𝒗𝑀] 

Here define MUSIC spatial spectrum: 

𝑃𝑀𝑈𝑆𝐼𝐶(𝜙) =
1

𝒔𝐻(𝜙)𝑸𝒏𝑸𝒏
𝐻𝒔(𝜙)

=
1

‖𝑬𝒏
𝐻𝒔(𝜙)‖

2 

In the expression, the denominator is the square of inner product of noise matrix 𝑬𝒏  and 

signal vectors 𝒔(𝜙) . Ideally, when 𝑬𝒏  and 𝒔(𝜙)  are orthogonal, denominator equal zero. 

Practically, due to the existence of noise, denominator reaches minimum value but not zero. 

So under this condition, 𝑃𝑀𝑈𝑆𝐼𝐶(𝜙) reaches peak value. Therefore, by searching different 

value of 𝜙, the DOA of signals could be found by searching where peak values appear in the 

spectrum. 

In summary, the steps to implement MUSIC algorithm are: 

(1) Base on the number of samples of received signals to estimate the covariance matrix 

𝑹 =
1

𝐾
∑ 𝐱𝑘

𝐾

𝑘=1

𝐱𝑘
𝐻 

Do eigendecomposition of covariance matrix 𝑹: 

𝑹 = 𝑺𝑹𝑠𝑺
𝐻 + 𝜎2𝑰 

(2) Sequencing the values of eigenvectors in descending order, take the M bigger eigenvalues 

and eigenvectors as signal subspace 𝑬𝒔  and take the 𝑁 − 𝑀  smaller eigenvalues and 

eigenvectors as noise subspace 𝑬𝒏: 

𝑺𝐻𝒗𝑖 = 𝟎       𝑖 = 𝐼 + 1, 𝐼 + 2,… ,𝑀 

𝑬𝒏 = [𝒗𝐼 , 𝒗𝐼+1, … , 𝒗𝑀] 

(3) Construct MUSIC spatial spectrum function: 

𝑃𝑀𝑈𝑆𝐼𝐶(𝜙) =
1

𝒔𝐻(𝜙)𝑬𝒏𝑬𝒏
𝐻𝒔(𝜙)

=
1

‖𝑬𝒏
𝐻𝒔(𝜙)‖

2 

Calculate the spectrum function 𝑃𝑀𝑈𝑆𝐼𝐶(𝜙) and search peak values in the spectrum which 

corresponding to DOA estimation of the signals. 

 

Though MUSIC algorithm has many advantages, there are still shortcomings of this method. 

One problem is that if using estimated correlation matrix, the noise eigenvectors are no longer 

the same as the exact ones. Under this circumstance, the noise matrix is no longer strictly 

orthogonal to the signal matrix and leads to deviation, which has already mentioned above. 

A significant problem by using MUSIC algorithm is the assumption that the signals are 
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uncorrelated to each other. In practice, signals could be correlated or sufficiently close, thus 

the performance of MUSIC algorithm would deteriorate or even become invalid. Under such 

condition, some improvement methods must be made, such as reconstructing a conjugate 

matrix of matrix 𝑿 and construct a noise subspace. 

Another problem is the assumption made that the number of signal sources M must less than 

the number of array antennas N. This is necessary because MUSIC algorithm depends the 

noise subspace to estimate DOA of signals. Therefore there is always the restriction that 

𝑀 < 𝑁 when using MUSIC algorithm. 

In terms of accuracy, MUSIC proved accurate DOA estimation. However, these are due to the 

fact that the number of snapshots is sufficient. The performance could also deteriorate when 

the signal observation period is limited. 
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Chapter 3 

 

Proposed algorithm 
Up to now, there are several methods that have been introduced in Literature Survey. It can 

be seen that different method has its advantages as well as disadvantages.  

The most commonly concerned method should be conventional FFT-based method, due to its 

simple logic and high level of maturity.  

Conventional FFT-based method would provide an accurate DOA estimation result under the 

condition that there is only one single signal source. For single source signal, even there is 

only one snapshot, the DOA estimator would still get an unbiased estimated result. However, 

to get such unbiased result, a very large value of zero-tapping multiple is required. Otherwise, 

there is no possibility to get the unbiased value. 

In terms of the computational complexity of FFT operation, it could be shown that for an L 

points FFT, the total number of FFT operations is: 

𝐶𝐹𝐹𝑇 = 𝐿 × log2 𝐿 

Where L is determined by the multiplication of number of array antennas M and zero-tapping 

multiple z: 

𝐿 = 𝑧 × 𝑀 

Therefore, it can be seen that with the increasing of the zero-tapping multiple z in order to get 

a sufficiently accurate result, the computational times is also increasing significantly, which 

would cost large CPU memories and processing time. 

Therefore, to avoid this disadvantage under such condition, a more computational efficient 

algorithm could be valuable. The new algorithm should have at least the same accuracy as 

conventional method but cost less computational times. Higher accuracy is more desirable.  

 

Besides, in terms of conventional FFT method, if there are more than two source signals, it 

will suffer the problem of hard or even fail to resolve the DOA of each source signal. This is 

because the significant sidelobe leakage in the spectrum. To abbreviate this problem, adding 

windowing function could be a solution, but this will lead a higher computational cost.  

Therefore, a more efficient algorithm that could significantly reduce or remove the bias 

caused by spectral leakage but does not require higher computational cost is required. 

 

In this section, a proposed algorithm[16] that suits for both single and multiple source signals 

which could effectively abbreviate the disadvantages above is introduced. 

 

 

3.1 Single source Interpolator 

For a single source signal, its spatial frequency ν could be expressed as following: 
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ν =
m + σ

M
 

Here, m is an integer number which ranges from  

𝑚 ∈ [−
𝑀

2
,
𝑀

2
− 1] 

And σ is the residual number which ranges from 

𝜎 ∈ [−0.5,+0.5] 

Once the estimated spatial frequency value �̂� is got, the estimated value of DOA could be got 

by equation: 

�̂� = 𝑠𝑖𝑛−1(
𝜆

𝑑
�̂�) 

To get the estimated value of spatial frequency �̂�, there are two stages that needs to be done: 

(1) A first coarse stage is to do an M-point FFT and get its spatial spectrum without any zero-

padding. This means the value of zero-tapping multiple z equals 1.  

Once searching the M-point FFT spectrum, the coarse estimated value could be get from 

finding the integer index �̂� which corresponds to peak value of the spectrum: 

�̂� = �̂�, �̂� ∈ [−
𝑀

2
,
𝑀

2
− 1] 

(2) The second step is to do an iterative calculation that to have a fine search, at the two points 

which one is positive 0.5 larger than integer index �̂� and the other one is negative 0.5 smaller 

than integer index  �̂�. Then doing the single point FFT at these two points and using these two 

frequency values to update the value of estimated value �̂� iteratively. The equations of the 

iteration step could be expressed as followed: 

 Calculate two points FFT value: 

𝑋[�̂� + 𝑟] = ∑ 𝑥[𝑘]𝑒−𝑗2𝜋𝑘
�̂�+𝑟
𝑀

𝑀

𝑘=0

,      𝑟 = ±0.5  

 Calculate the coefficient h: 

ℎ =
1

2
𝑅𝑒[

𝑋[�̂� + 0.5] + 𝑋[�̂� − 0.5]

𝑋[�̂� + 0.5] − 𝑋[�̂� − 0.5]
] 

 Update the value of  �̂� 

�̂� = �̂� +
sin (𝜋/𝑀)

𝜋/𝑀
ℎ 

By using this proposed algorithm, when doing the iterations for a sufficient times, the final 

estimated DOA of the source signal could provide a reasonable result. 

 

 

3.2 Fast Iterative Estimator for multiple sources 

As mentioned above, there should be an efficient algorithm that could significantly reduce or 

remove the bias caused by spectral leakage under multiple sources signals condition.  

Here, similarly, an iterative algorithm is used to subtract and remove the spectral leakage 

terms produced in previous iteration. 

For multiple source case, single snapshot circumstance, the total source number is I. Here 
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there are also two main steps of this algorithm: 

(1) The first step is also to do a coarse M-point FFT and get its spectrum without zero-tapping 

(zero-tapping multiple z equals 1). 

During this stage, for each source signal, just simply assume the estimated values of 

amplitude �̂�𝑖 and frequency �̂�𝑖 all equal 0: 

�̂�𝑖 = 0,    𝑖 = 0,1⋯ , 𝐼 

�̂�𝑖 = 0,    𝑖 = 0,1⋯ , 𝐼 

(2) The second step is to do the iterative calculation which is also similar as single source 

case: 

At the begging of the iteration loop, there is a initialization operation which is only done 

once: 

�̂�𝑙[𝑛] = 𝑋𝑙[𝑛] − ∑ �̂�𝑖�̂�𝑖[𝑛]

𝐼

𝑖=1,𝑖≠𝑙

,    𝑛 = 0,1⋯ ,𝑀 − 1 

�̂�𝑙 =
1

𝑟
𝑎𝑟𝑔 𝑚𝑎𝑥

𝑛
|�̂�𝑙[𝑛]|

2
 

Here 𝑙 = 1,2⋯ , 𝐼, which means to calculate each source signal one by one. 

After finishing the initialization, the following step should be calculated iteratively.  

�̂�𝑙[𝑟] = 𝑋𝑙[𝑟] − ∑ �̂�𝑖�̂�𝑖[�̂�𝑙 + 𝑟]

𝐼

𝑖=1,𝑖≠𝑙

,    𝑟 = ±0.5 

Here �̂�𝑖[�̂�𝑙 + 𝑟] is the leakage DFT term and it can be calculated as: 

�̂�𝑖[�̂�𝑙 + 𝑟] = ∑ 𝑠𝑖[𝑘]

𝑀−1

𝑘=0

𝑒−𝑗2𝜋𝑘
�̂�𝑙+𝑟
𝑀 =

1 + 𝑒𝑗2𝜋(�̂�𝑖−�̂�𝑙)

1 + 𝑒𝑗2𝜋(�̂�𝑖−�̂�𝑙+𝑟)
 

Using the calculated two points value above: 

ℎ𝑙 =
1

2
𝑅𝑒[

𝑋[0.5] + 𝑋[−0.5]

𝑋[0.5] − 𝑋[−0.5]
] 

Update �̂�𝑙: 

�̂�𝑙 = �̂�𝑙 +
sin (𝜋/𝑀)

𝜋/𝑀
ℎ𝑙 

Finally update �̂�𝑙 

�̂�𝑙 =
1

𝑀
{∑ 𝑥[𝑘]𝑒−𝑗2𝜋

�̂�𝑙
𝑀

𝑀

𝑘=0

− ∑ �̂�𝑖�̂�𝑖[�̂�𝑙]

𝐼

𝑖=1,𝑖≠𝑙

} 

The whole procedure will stop after the specified number of iterations. 

 

 

3.3 Computational complexity  

As mentioned above, the proposed algorithm should provide a more efficient way to do the 

iterative calculation. The following is the theoretical comparison in terms of the 

computational times required between proposed algorithm and conventional method. 

 In terms of conventional FFT-based method, to get a reasonable accurate result, it is 
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required to a zero-padding and the total computational cost of L-points FFT 

multiplication is: 

𝐶𝐹𝐹𝑇 = 𝐿 × log2 𝐿 = 𝑧𝑀 × log2(𝑧𝑀) 

 In terms of the proposed algorithm, because in the first step, there is no requirement to do 

the zero-padding before doing FFT, therefore the computational cost for the M-points 

coarse step calculation is:  

𝐶𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑_1 = 𝑀 × log2 𝑀 

Additionally, during each iteration loop, for each single source , it is required to do an 

additional two points’ FFT calculation. For each spatial frequency point, doing M-points 

FFT calculation will require M times FFT multiplication. Therefore, to do each iteration 

calculation, it requires total additional computational time which is: 

𝐶𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑_2 = 2 × 𝑀 

Overall, the required FFT multiplication times of proposed algorithm is: 

𝐶𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 = 𝐶𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑1
+ 𝐶𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑2

= 𝑀 × (2 + log2 𝑀) = 𝑀 × log2(4𝑀) 

Compared the result with the computational times required for conventional method: 

𝐶𝐹𝐹𝑇 = 𝑀 × 𝑧 log2(𝑧𝑀) 

As long as the zero-padding multiple value 𝑧 ≥ 4, the proposed algorithm will always provide 

less computational cost compared to conventional method. And generally, the number of 

antennas M  in the automotive is limited, to get a reasonable high accuracy by using 

conventional method, sufficiently large value of zero-padding multiple is needed, which is 

significantly larger than 4. Therefore, the proposed algorithm would has a significantly lower 

computational cost. This advantage becomes more obvious with the increasing of the zero-

padding multiple 𝑧. 
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Chapter 4 

 

Implementation Result 

 

4.1 Capon Beamforming 

Capon Beamforming implementation is the work I did in Thesis A. The advantage of this 

method is, it has a simple logic and easy to be implemented in simulation. It is a good start to 

investigate this method and have an initial understanding of what DOA estimation is doing 

and how the angle value could be obtained by searching the peak value of spatial spectrum. 

 

 

Figure 4.1.1 𝑰 = 𝟑,𝑴 = 𝟑𝟐, 𝑺𝑵𝑹 = 𝟐𝟎,𝝓𝟏 = −𝟑𝟎°,𝝓𝟐 = 𝟎°,𝝓𝟑 = 𝟔𝟎° 

 

 

Figure 4.1.2 𝑰 = 𝟑,𝑴 = 𝟑𝟐, 𝑺𝑵𝑹 = 𝟎,𝝓𝟏 = −𝟑𝟎°,𝝓𝟐 = 𝟎°,𝝓𝟑 = 𝟔𝟎° 
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Figure 4.1.3 𝑰 = 𝟑,𝑴 = 𝟒, 𝑺𝑵𝑹 = 𝟐𝟎,𝝓𝟏 = −𝟑𝟎°,𝝓𝟐 = 𝟎°,𝝓𝟑 = 𝟔𝟎° 

 

 

Figure 4.1.4 𝑰 = 𝟑,𝑴 = 𝟑𝟐, 𝑺𝑵𝑹 = 𝟐𝟎,𝝓𝟏 = 𝟓𝟖°,𝝓𝟐 = 𝟔𝟎°,𝝓𝟑 = 𝟔𝟐° 

 

 

Figure 4.1.5 𝑰 = 𝟏,𝑴 = 𝟑𝟐, 𝑺𝑵𝑹 = 𝟐𝟎,𝝓𝟏 = 𝟔𝟎° 
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Figure 4.1.6 𝑰 = 𝟏,𝑴 = 𝟑𝟐, 𝑺𝑵𝑹 = 𝟎,𝝓𝟏 = 𝟔𝟎° 

 

Figure 4.1.7 𝑰 = 𝟏,𝑴 = 𝟒, 𝑺𝑵𝑹 = 𝟐𝟎,𝝓𝟏 = 𝟔𝟎° 

 

During simulation, I tested different conditions by modifying the parameters of: 

(1) SNR value 

(2) Number of array antennas M 

(3) Direction angle of source signals 𝜙 

(4) Number of source signals I 

Figure 4.1.1 shows the condition that there are 𝐼 = 3 source signals, with direction angles 

𝜙1 = −30°,𝜙2 = 0°,𝜙3 = 60°, respectively. SNR for each signal is 20. The number of array 

antennas 𝑀 = 32.  

It can be seen that under such condition, the DOA of the desired three signals could be clearly 

identified by searching the three peak values from spectrum. And the angle of the three peak 

values match the actual directions. 

Figure 4.1.2 shows the condition that reducing the SNR from 20 to 0, all the other parameters 

remain unchanged. It can be seen under such condition, spectrum performance deteriorate and  

it becomes harder to identify the DOA of signal in the spectrum because of the noise 

interference. 
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Figure 4.1.3 shows the condition that reducing the antenna number from 𝑀 = 32 to 𝑀 = 4. 

All the other parameters remain the same as Figure 4.1.1. Under such condition, it can be 

seen that it fails to resolve the signals and only one peak value appears at 0.  

Figure 4.1.4 shows the condition that setting three signals as close targets. The direction 

angles of them are 𝜙1 = 58°,𝜙2 = 60°,𝜙3 = 62°. All the other parameters remain the same 

as Figure 4.1.1. Under such condition, it can be seen that there is only one peak appears at 

around 60°. Theoretically, there should be three close peak values appeared. Practically, it 

fails to resolve the targets because they are too close. 

Figure 4.1.5 is the single target situation. I set signal number 𝐼 = 1 and direction angle 

𝜙1 = 60°. Other parameters remain the same as Figure 4.1.1. Under such condition, it is 

clearly to detect the DOA of the target signal in the spectrum. 

Figure 4.1.6 shows the condition that reducing SNR from 20 to 0. Other parameters remain 

the same as Figure 4.1.5. Under such condition, it can be seen that the DOA of the signal 

could not be clearly identified in the spectrum because of significant noise. 

Figure 4.1.7 shows the condition that reducing the number of antennas from 𝑀 = 32 to 

𝑀 = 4. Other parameters remain the same as Figure 4.1.5. Under such condition, because 

there is only one signal source, it is still capable to detect the correct DOA of that signal. 

In conclusion of Capon beamforming method: 

(1) SNR is an important factor to determine the result. The higher the SNR, the easier to 

detect the DOA of the signal. 

(2) Number of antennas is another important factor. The more antennas, the better result.  

(3) Whether source signals are close or not could be a factor need to be considered. Too close 

targets may not be resolved by this method. 

(4) Only one single target is more easier to be detected by comparison with multiple targets 

situation.  

Actually, what I got from my conclusion matches the conclusion in the Literature Survey, 

2.5 Capon Beamforming. 

 

 

4.2 Conventional FFT-based method 

In this section, I tried to implement the conventional FFT-basad method. 

The reason I implement this method is: 

1. Conventional FFT-based method is a quite typical approach in DOA estimation, it has 

specific advantages as well as disadvantages. It provides the basic concept of how DOA 

estimation works. Additionally, conventional FFT method is relatively easier to understand 

and coding in program. By implementing this method, I could have a better understanding of 

DOA estimation.  

2. Finishing implement conventional FFT-based method could give me a result which is 

useful when I implement the proposed algorithm later on. The result could be seen as 

reference when I compare the performance between conventional FFT and proposed method. 

 

Single source estimation 

The following figures show the simulation result for single source case: 
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Figure 4.2.1 Single source conventional FFT method with z=1 

 

Figure 4.2.2 Single source conventional FFT method with z=1024 

 

Figure 4.2.1 and Figure 4.2.2 shows the comparison of different values of zero-tapping 

multiple used, under the single source condition.  

It can be seen from Figure 4.2.1, there is only 𝑀 = 8 points FFT in the spectrum. So the 

resolution of the spectrum could no more than 2𝜋/𝑀 under this condition. Once found the 

peak value in the spectrum, the corresponded spatial frequency is the estimated frequency 

value. Without any zero-tapping, the result could be biased and the maximum deviation could 

be as high as 𝜋/𝑀, which is very significant when 𝑀 is small. Therefore, sufficient zero-

tapping is needed to reduce the bias. Figure 4.2.2 has the zero-tapping multiple z=1024, which 

provide a significant better estimation result.  

By comparing the calculate result with the pre-set true DOA value: 

For Figure 4.2.1, the final result caused a deviation which is 11.3096° 

For Figure 4.2.2, the final result caused a deviation which is 0.1019° 

The calculation is based on 𝑀 = 8 antenna arrays and the signal to noise ratio 𝑆𝑁𝑅 = 20 𝑑𝐵. 

It is worth pointed out that with the increasing of SNR, the deviation would drop accordingly. 

But it is not practical for the real case, because the SNR is determined by the environment and 

could not been changed by human being. 

 

Multiple sources estimation 

The following figures show the simulation results for multiple sources case: 
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Figure 4.2.3 Two sources conventional FFT method with sufficiently far direction angle 

 

 
Figure 4.2.4 Two sources conventional FFT method with close direction angle 

 

Figure 4.2.3 and Figure 4.2.4 shows the performance by comparison of different direction 

between two signal sources. The zero-tapping multiple used here is always z=1024. The 

number of antennas is 𝑀 = 10 antenna arrays and the signal to noise ratio 𝑆𝑁𝑅 = 20 𝑑𝐵 for all 

source signals.  

In Figure 4.2.3, the difference of direction angle between the two source signals is set to 30°, 

which is larger than 𝜋/𝑀 = 18°. Under such situation, the estimator still has the ability to 

resolve the two targets. It could be clearly seen the two peak values in the spectrum, which 

represents the two signal sources’ spatial frequency, respectively. 

In Figure 4.2.4, the difference of direction angle between the two source signals is set to 

16.5°, which is less than π/M = 18°. Under such situation, the estimator almost fails to 

resolve the two targets. It could be seen from the spectrum that the two peak values are 

merged together and it is hard to find the two peak values already. With further reducing the 

direction difference, the final spectrum would fall into only one peak, which means totally fail 

to estimate the correct DOA of source signals. 

 

Brief Conclusion 

From the conventional FFT-based method implementation, it can be shown that this method 

is more effective for the single source case, which would provide an unbiased estimation, but 
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at the cost of high computational cost due to large multiple of zero-padding. For multiple 

source case, it suffers the problem of significant spectral leakage which could cause biased 

estimation. These conclusions match the conclusions mentioned in Literature Survey, 2.6 

Conventional FFT-based DOA Estimation. 

 

4.3 MUSIC algorithm 

MUSIC algorithm is also a quite typical and famous algorithm in the field of subspace 

method. It is worth to investigate the details of this algorithm to have a better understanding 

of the differences between subspace methods compared to conventional DOA methods. 

The following figure gives a spectrum analysis of MUSIC algorithm 

 

Figure 4.3.1 Two source signals MUSIC algorithm 

Figure 4.3.1 shows the situation for two source signals DOA estimation by using MUSIC 

algorithm. From the spectrum, there are two distinctive peak values, which correspond to two 

sources DOA, respectively.  It could be shown that MUSIC algorithm does not have the 

problem of spectral leakage and provides  an accurate estimated result.   

The following work is to further analyse how different parameters could affect the 

performance of MUSIC algorithm, finding the characteristics as well as the limitation. If not 

specified, the default value of: Antennas number 𝑀 = 10, Signal to Noise Ratio 𝑆𝑁𝑅 =

20 𝑑𝐵, Number of snapshots 𝑁 = 200. 

 

Different Number of snapshots 𝑵 

 

Figure 4.3.2 Relationship of Number of snapshots 𝑵 in MUSIC  
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Figure 4.3.2 shows the relationship between spectrum performance and different number of 

snapshot 𝑁. For the red line, which is the situation that there is only one single snapshots of 

the received signal, it can be seen that the estimated spectrum is quite flat and therefore hard 

to detect the correct peak value from spectrum. With the increasing of the number of snapshot 

𝑁, the estimated result is becoming more reliable, accordingly. This proves the fact that 

MUSIC algorithm is largely depending on the sufficient number of snapshot to get a good 

estimation result.  

 

Different Number of antennas 𝑴 

 
Figure 4.3.3 Relationship of Number of antennas 𝑴 in MUSIC  

Figure 4.3.3 shows the relationship between spectrum performance and different number of 

antennas 𝑀. It should be pointed out that during the simulation, there are three signals sources 

used in my model. So based on the theory that the number of antennas 𝑀 must be no less than 

the number of signal sources I in order to get noise subspace vectors. Therefore, the least 

tested array antenna numbers is 𝑀 = 3. It could be seen even under the condition that there 

are only minimum number of antennas, the MUSIC algorithm still could get an accurate 

estimation of desired signals’ DOA. 

 

Different value of 𝑺𝑵𝑹 

 

Figure 4.3.4 Relationship of value of 𝑺𝑵𝑹 in MUSIC  
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Figure 4.3.4 shows the relationship between spectrum performance and different value of 

𝑆𝑁𝑅. It can be seen that even under the condition 𝑆𝑁𝑅 = −20 𝑑𝐵 (which means the energy 

of desired source signal is only 1% of the noise energy), MUSIC algorithm still has the ability 

to detect the peak value in the spatial spectrum, which means it has a strong advantage when 

working in noisy environment. However, from the red line, it could be seen a small bias on 

the left peak of the line. This means the estimated value is actually biased. With the increasing 

of the 𝑆𝑁𝑅, the estimated value become accurate and unbiased. 

 

Different value of direction angle difference 

 

Figure 4.3.5 Relationship of direction angle difference in MUSIC  

Figure 4.3.5 shows the relationship between spectrum performance and the difference 

between two signal direction angle. It can be seen under the situation that the 𝜋/𝑀 = 18°, 

even when the angle difference is only 2°, MUSIC algorithm could still successfully resolve 

these two close targets.  

 

Brief Conclusion 

From all the results above, it could be seen that MUSIC is a very accurate algorithm which 

does not suffer the problem of spectral leakage. In comparison with conventional FFT-based 

method, MUSIC provides good estimation result even under the condition that the direction 

difference between two targets is less than 𝜋/𝑀.  

However, the MUSIC algorithm will not work well when the snapshot number is reduced to a 

small value. The dependence on large number of snapshot would cause a increasing of 

computational complexity.  

 

4.4 Proposed algorithm 

In this section, I implement the proposed algorithm as mentioned in Chapter 3. To compare 

the improvement of proposed algorithm with conventional FFT method, there are three 

different aspects I specifically looked at: 

1. Relationship between SNR value and final estimated accuracy. 

2. Relationship between number of antennas M and final estimated accuracy. 

3. Relationship between number of antennas M and required computation times. 
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If not specified, the default values used in this simulation are: 

Antennas number 𝑀 = 10. 

Signal to Noise Ratio 𝑆𝑁𝑅 = 20 𝑑𝐵. 

Zero-tapping multiple of conventional FFT method 𝑧 = 4 

 

Relationship between SNR value and final estimated accuracy 

The simulation runs 5000 times independently.  

 
Figure 4.4.1 SNR vs. RMSE for proposed algorithm and conventional FFT 

Figure 4.4.1 shows the comparison of different value of SNR versus final RMSE in degree. 

From the figure, it can be shown that when the SNR is low, usually below 15dB, the RMSE of 

conventional FFT method is slightly less than the RMSE of proposed algorithm. With the 

increasing of the SNR, the RMSE of proposed algorithm becomes less than the RMSE of 

conventional FFT method. This difference becomes significant when the SNR becomes 

reasonably high.  

It needs to be pointed out that the actual plot I got is not the same as Figure 4.4.1. There 

contains a lot of ripples in the original plot. I used a smooth filter to process the data and then 

print the figure out. In the original plot, the noise dominates the ripple in low SNR, therefore, 

the value of RMSE in low SNR is not reliable. When using smooth filter, there would be some 

negative effect that change the origin relationship between proposed algorithm and 

conventional FFT method in low SNR band. 

 

Relationship between number of antennas M and final estimated accuracy 

The simulation runs 2000 times independently.  

 

Figure 4.4.2 Antenna number M vs. RMSE for proposed algorithm and conventional FFT 
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Figure 4.4.2 shows the comparison of different number of antennas M versus final RMSE in 

degree. The antenna number ranges from 1 to 1000. From the figure, it can be seen that for 

the same number of antenna number, the final RMSE of proposed algorithm is always lower 

than that of conventional FFT method. This indicates that the proposed solution has a better 

accuracy for estimating the source signal DOA. 

 

Relationship between number of antennas M and required computation times 

The simulation runs 5000 times independently for both 𝑧 = 4 and 𝑧 = 1024. 

 

Figure 4.4.3 Antenna number M vs. Computational times when 𝒛 = 𝟒 

 

 

Figure 4.4.4 Antenna number M vs. Computational times when 𝒛 = 𝟏𝟎𝟐𝟒 

Figure 4.4.3 and Figure 4.4.4 show the comparison of different number of antennas M versus 

required computational times under the conditions that 𝑧 = 4 and 𝑧 = 1024, respectively. 

From Figure 4.4.3, it could be seen that the computational times of proposed solution is less 

than the computational times of conventional FFT method. This difference increases as the 

number of antennas increases. Figure 4.4.4 further shows how proposed algorithm 

significantly reduce computational cost with increasing the value of zero-padding multiple 𝑧. 

 

Brief Conclusion 

The proposed solution is based on the conventional FFT method, but by doing the coarse FFT 
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at first step without zero-tapping and doing a fine and iterative searching at second step, the 

final accuracy is improved by comparison with conventional FFT method. Moreover, the 

computational times is significantly reduced by comparison with conventional FFT method, 

especially under the case that the zero-padding multiple 𝑧 is sufficiently large. 

Therefore, it is a successful improvement of DOA estimation conventional FFT method. 
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Chapter 5 
 

 

Conclusions 
This paper shows the most typically used methods in the field of DOA estimation. Among 

those methods, the most commonly concerned methods are conventional FFT-based DOA 

estimation and MUSIC algorithm. Some implementations of these two methods are done and 

the results are shown. Based on the conventional FFT-based method, a proposed algorithm is 

shown after, which aims to reduce the computational complexity under the same condition 

and provides better DOA estimation performance. Simulation results of the proposed solution 

are shown and the comparison is made between the proposed solution and conventional FFT 

method.  
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Appendix A- code for conventional-FFT 

%% FFT based DOA estimation 

%% single source, no window function 

clc 

close all 

clear all 

  

lamda=1; 

d=lamda/2; 

  

N=8; % array number 

M=1; % number of sources 

rad=pi/180; 

theta_1=30.1; % DOA of source 1 

theta_1=theta_1*rad; 

phi_1=2*pi*(d*cos(theta_1)/lamda); 

n=0:1:(N-1); 

n=n'; 

s_1=exp(1i*n*phi_1); 

SNR=20; 

Ps=s_1'*s_1; 

Pn=Ps*10^(-SNR/10); 

sigma=sqrt(Pn/(2*N)); 

x=s_1+sigma*(randn(N,1)+1j*rand(N,1)); 

  

figure(1) 

subplot(2,1,1) 

plot(abs(s_1)) 

subplot(2,1,2) 

plot(abs(x)) 

  

z=1024; 

L=z*N; 

  

X=fft(x,L); 

Y=fftshift(abs(X).^2); 

phi_axis=-180:360/L:180-360/L; 

theta_axis=acosd(phi_axis/360*lamda/d); 

[A,m]=max(Y); 

  

figure(2) 
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plot(phi_axis,10*log10(fftshift(Y)),'LineWidth',2); 

axis([-180 180 -20 1.1*max(10*log10(fftshift(Y)))]) 

xlabel('DOA \theta/degree') 

ylabel('Power Spectrum/dB') 

title('Single Source DOA Estimation') 

grid on 

phi_0=phi_axis(m) 

  

figure(3) 

plot(theta_axis,10*log10(fftshift(Y)),'LineWidth',2); 

axis([0 180 -20 1.1*max(10*log10(fftshift(Y)))]) 

xlabel('DOA \theta/degree') 

ylabel('Power Spectrum/dB') 

title('Single Source DOA Estimation') 

grid on 

theta_0=theta_axis(m) 

  

% X_axis=acos(x_axis*rad/(2*pi)*lamda/d)/rad 

% figure(2) 

% plot(spec) 

% axis([0 360 min(spec) 1.2*max(spec)]) 

% grid on 

  

%% Multiple targets 

clc 

close all 

clear all 

  

lamda=1; 

d=lamda/2; 

  

M=10; % array number 

Source=[1 ; exp(1i*pi/4)]; % number of sources 

rad=pi/180; 

  

theta_1=30; % DOA of source 1 

theta_1=theta_1*rad; 

phi_1=2*pi*(d*cos(theta_1)/lamda); 

theta_2=46.5; % DOA of source 2 

theta_2=theta_2*rad; 

phi_2=2*pi*(d*cos(theta_2)/lamda); 

  

M_array=0:1:(M-1); 

M_array=M_array'; 
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s_1=exp(1i*M_array*phi_1); 

s_2=exp(1i*M_array*phi_2); 

s=[s_1 s_2]; 

  

ss=s*Source; 

  

SNR=20; 

  

x=ss+awgn(ss,SNR); 

  

z=1024; 

L=z*M; 

  

X=fft(x,L); 

Y=fftshift(abs(X).^2); 

phi_axis=-180:360/L:180-360/L; 

theta_axis=acosd(phi_axis/360*lamda/d); 

[A,m]=max(Y); 

  

figure(2) 

plot(phi_axis,10*log10(fftshift(Y))); 

axis([-180 180 min(10*log10(fftshift(Y))) 

1.1*max(10*log10(fftshift(Y)))]) 

xlabel('DOA \theta/degree') 

ylabel('Power Spectrum/dB') 

title('Multiple Sources DOA Estimation') 

grid on 

phi_0=phi_axis(m) 

  

figure(3) 

plot(theta_axis,10*log10(fftshift(Y))); 

axis([0 180 min(10*log10(fftshift(Y))) 

1.1*max(10*log10(fftshift(Y)))]) 

xlabel('DOA \theta/degree') 

ylabel('Power Spectrum/dB') 

title('Multiple Sources DOA Estimation') 

grid on 

theta_0=theta_axis(m) 
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Appendix B- code for conventional-MUSIC 

%% MUSIC Algorithm 

%% General  

clc 

close all 

clear all 

  

N=200;%Snapshot 

doa=[30 -60]/180*pi;%DOA 

w=[pi/4 pi/3]';%frequency 

M=10;%Arrary Numbers 

P=length(w); 

lambda=150; 

d=lambda/2;%array element space 

snr=20; 

B=zeros(P,M);  

for k=1:1:P 

    B(k,:)=exp(-j*2*pi*d*sin(doa(k))/lambda*[0:M-1]); 

end 

B=B'; 

xx=2*exp(j*(w*[1:N])); 

x=B*xx; 

x=x+awgn(x,snr);%Gaussin noise 

R=x*x'; 

[U,V]=eig(R); 

UU=U(:,1:M-P);%noise sub space 

theta=-90:0.5:90; 

for ii=1:length(theta) 

    AA=zeros(1,length(M)); 

    for jj=0:M-1 

        AA(1+jj)=exp(-j*2*jj*pi*d*sin(theta(ii)/180*pi)/lambda); 

    end 

    WW=AA*UU*UU'*AA'; 

    Pmusic(ii)=abs(1/WW); 

end 

Pmusic=10*log10(Pmusic/max(Pmusic));%spatial spectrum 

plot(theta,Pmusic,'-k','linewidth',2.0) 

xlabel('DOA \theta/degree') 

ylabel('Power Spectrum/dB') 

title('MUSIC algorithm for multiple sources') 

grid on 
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Appendix C- code for proposed algorithm 

close all 

clear all 

clc 

  

lamda=1; 

d=lamda/2; 

  

M=8; % array number 

rad=pi/180; 

theta_1=30.1; % DOA of source 1 

theta_1=theta_1*rad; 

phi_1=2*pi*(d*cos(theta_1)/lamda); 

n=0:1:(M-1); 

n=n'; 

s_1=exp(1i*n*phi_1); 

SNR=20; 

Ps=s_1'*s_1; 

Pn=Ps*10^(-SNR/10); 

sigma=sqrt(Pn/(2*M)); 

x=s_1+sigma*(randn(M,1)+1j*rand(M,1)); 

  

figure(1) 

subplot(2,1,1) 

plot(abs(s_1)) 

subplot(2,1,2) 

plot(abs(x)) 

  

% z=1024; 

% L=z*M; 

L=M; 

  

X=fft(x,L); 

Y=fftshift(abs(X).^2); 

phi_axis=-180:360/L:180-360/L; 

theta_axis=acosd(phi_axis/360*lamda/d); 

[A,m]=max(Y); 

  

figure(2) 

plot(phi_axis,10*log10(fftshift(Y))); 

phi_0=phi_axis(m) 
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figure(3) 

plot(theta_axis,10*log10(fftshift(Y))); 

theta_0=theta_axis(m) 

  

%%%%% iteration %%%%%%% 

p=0.5; 

h=0; 

u=m-1/2*M-1; 

X_p_pos=0; 

X_p_neg=0; 

Q=5; 

for q=1:1:Q 

  for k=0:1:M-1 

      X_p_pos=X_p_pos+x(k+1)*exp(-1j*2*pi*k*(u+p)/M); 

      X_p_neg=X_p_neg+x(k+1)*exp(-1j*2*pi*k*(u-p)/M); 

  end 

  h=1/2*real((X_p_pos+X_p_neg)/(X_p_pos-X_p_neg)); 

  u=u+(sin(pi/M))*h/(pi/M); 

  X_p_pos=0; 

  X_p_neg=0; 

end 

theta_xxx=acosd(u/M*lamda/d) 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

% X_axis=acos(x_axis*rad/(2*pi)*lamda/d)/rad 

% figure(2) 

% plot(spec) 

% axis([0 360 min(spec) 1.2*max(spec)]) 

% grid on 
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Appendix D- code for Capon Beamforming 

%% CB 

clc 

close all 

clear all  

  

i=sqrt(-1);   

j=i;   

degrad=pi/180;   

  

N=4;      

M=3;         

  

f0=40; 

f1=50; 

f2=60; 

  

nn=4; 

  

phi_1=60; 

phi_2=0; 

phi_3=60; 

phi=[phi_1]'; 

  

SNR=20; 

SN1=SNR; 

SN2=SNR; 

SN3=SNR; 

sn=[SN1];  

  

tt=0:1/nn:1-1/nn;   

x0=exp(-j*2*pi*f0*tt);  

x1=exp(-j*2*pi*f1*tt);   

x2=exp(-j*2*pi*f2*tt);   

S=[x0];  

  

Ps=S*S'./nn;    

ps=diag(Ps);   

refp=10.^(sn/10);   

tmp=sqrt(refp./ps);   

S2=diag(tmp)*S;  
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tmp=-j*pi*sin(phi*degrad);  

tmp2=[0:N-1]';   

a2=tmp2*tmp;  

A=exp(a2);  

  

nr=randn(N,nn);   

ni=randn(N,nn);   

u=nr+j*ni;    

  

X=A*S2+(1/(10^(SNR/20)))*u;   

  

Rxx=X*X'/nn;   

invRxx=inv(Rxx);  

  

theta=[-90:90]';   

tmp=-j*pi*sin(theta'*degrad);  

tmp2=[0:N-1]';  

a2=tmp2*tmp;  

A2=exp(a2);  

den=diag(A2'*invRxx*A2);  

doa=abs(1./den);  

  

semilogy(theta,doa,'-blue');  

title('Capon beamforming');  

xlabel('DOA angle');  

ylabel('spectrum');  

grid on 
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