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Abstract—Growing pressures on healthcare costs are spurring
development of lightweight bodyworn sensors for real-time and
continuous physiological monitoring. Data from these sensors
is streamed wirelessly to a handheld device such as a mobile
phone, and then archived over the Internet at a central database.
Authenticating the data is vital to ensure proper diagnosis,
traceability, and validation of claims. Digital signatures at the
packet-level are too resource-intensive for bodyworn devices,
while block-level signatures are not robust to loss. In this
paper we propose, analyse, and validate a practical, lightweight
robust authentication scheme suitable for health-monitoring.
We make three specific contributions: (a) We develop an
authentication scheme that is both low-cost (using a Merkle
hash tree to amortise digital signature costs), and loss-resilient
(using network coding to recover strategic nodes within the
tree). (b) We develop a framework for optimising placement of
network coding within the tree to maximise data verifiability
for a given overhead and loss environment. (c) We validate our
scheme using experimental traces of typical operating conditions
to show that it achieves high success (over 99% of the medical
data can be authenticated) at very low overheads (as low as 5%
extra transmissions) and at very low cost (the bodyworn device
has to perform a digital signature operation no more than once
per hour). We believe our novel authentication scheme can be a
key ingredient in the integration of wearable medical monitoring
devices into current healthcare systems.

I. INTRODUCTION

Increase in age-related disabilities and chronic medical

conditions is putting huge pressure on national health ex-

penditures worldwide. The US spends $2.3 trillion, or 16%

of its GDP, on healthcare, and these costs are projected

to rise steeply in coming years. A promising approach to

dramatically cut costs is the emerging paradigm of mobile-

health, which consists of bodyworn wireless sensor nodes

that interface with handheld devices, enabling continuous

monitoring (and possible treatment) of patients in their

homes. Wearable platforms have recently begun to appear for

personalized healthcare: the Sensium Digital Plaster [1] is a

bodyworn wireless solution that monitors a subject’s ECG,

temperature, and movement. Efforts are underway to develop

sensor devices that interact with the iPhone and iPad [2]

and Android devices [3]. ABI research predicts 59 million

wearable home health devices will be in use by 2014 [4].

However, for wearable medical monitoring devices to be

integrated into the current healthcare system, doctors need

to be able to trust the data these devices generate, as do

insurance companies and government agencies that provide

benefits. Given the critical importance of medical data and

the huge associated liabilities, there have to be iron-clad

guarantees as to source and data integrity. Specifically, the

data should be traceable back to the originating device, it

should be non-repudiable, and should not be forgeable by

anyone, including the patient himself.

Wearable devices are by definition small and light (the

Sensium weighs under 10 grams), and hence severely con-

strained in computation, memory, communication, and bat-

tery resources. It is therefore tempting to offload the task

of guaranteeing authenticity of the sensed data to the (more

powerful) first-hop basestation, which may be a specialized

unit, or an attachment to a multipurpose handheld device such

as a mobile phone. However, software on the basestation

can be easily tampered with and secret keys extracted,

rendering the data reported by the basestation (to a local or

central database) untrustworthy. Moreover, traceability of the

medical data would only extend back to the basestation, and

not to the bodyworn device, which is problematic when errors

and malfunctions (which may carry heavy liabilities) need to

be isolated. These requirements necessitate data authenticity

be guaranteed by the source, namely the bodyworn device,

rather than an intermediate transit point.

A low-cost means of guaranteeing authenticity of a data

item is to generate a message authentication code (MAC),

which can be verified by any party that has the shared

secret key. However, the need to keep the key secret is

problematic when applied to healthcare monitoring at scale

because: (a) a single authority will be required for managing,

and distributing keys for hundreds of thousands of bodyworn

devices which gives rise to logistic problems and requires

strong measures to protect against compromise (which can

put the entire patient population’s data at risk), (b) multiple

entities (e.g. medical practitioners, insurance companies, etc.)

cannot authenticate the data unless each has access to the

secret key (increasing risk of compromise or creating a

performance bottleneck that the health system can ill afford).

Public-key cryptography is ideal for delivering conceptu-

ally simple and highly scalable at-source authentication of

medical data without requiring complex key management.



Data generated by the bodyworn device can be “digitally

signed” by hashing the data content and encrypting with the

device’s private key. Any entity can authenticate the data by

verifying the signature using the device’s public key (which

can be made publicly accessible). However, digital signatures

are computationally expensive, typically two to three orders

of magnitude more costly than symmetric-key operations.
This high energy cost of a digital signature operation

demands that it be performed sparingly by the bodyworn

device. In other words, the body-sensor device transmits, for

example, every hour a single digital signature authenticating

all sensing data transmitted over that period. Amortising the

cost of the digital signature thus over a large set of data

saves precious energy, but has the risk that if even one piece

of data is lost, the signature is rendered unverifiable, and no

data in that set can be authenticated. Packet loss is inevitable

in dynamic environments, and one may think this problem

can be overcome by having the bodyworn device compute

the signature over those data items in the block that have

successfully been transferred to the basestation; however this

approach (a) relies on link-layer acknowledgements which

may not necessarily be present in the system, (b) requires

lock-step synchronisation between the device and base to

ensure that the signature is computed over exactly the same

set of data packets, which can be problematic to implement

given that loss can happen in both directions (i.e. data packets

and acknowledgement packets), and (c) precludes scenarios

where multiple base-stations are present (e.g. in a hospital or

a disaster-recovery scenario) wherein any base can pick up

the packet transmitted by the bodyworn device and upload

it to the database. We therefore believe the authentication

scheme should not assume lossless data transfer (particularly

in a body-area network, for which extensive experimentation

has indicated that movement and changes in body orientation

can induce significant loss [5], [6]), but should instead be

designed to be robust to data loss. Existing data stream

authentication mechanisms in the literature are not easily

adaptable to online scenarios involving devices with very low

computation, memory, communication, and power resources.
In this paper we design, analyse, optimise and evaluate a

novel authentication scheme whereby the bodyworn device

need only perform digital signatures infrequently (e.g. once

an hour, over a large block of data), thereby reducing energy

costs, and the receiver can verify most of the data even in

the presence of losses. We clarify here that our objective is

not to recover lost data packets (that is deemed too complex

and costly), but to be able to authenticate received data

packets even if other packets in the data set are lost. Our

scheme leverages the idea of a Merkle hash tree together

with network coding. The sender combines hashes of the

data items to form a tree and digitally signs only the root.

The receiver validates the data by repeated hashing along

the “authentication path” till the root is reached. Due to

packet loss, nodes along the authentication path may not be

available to the receiver. The sender therefore applies network

coding to strategically insert “recovery packets” to help the

receiver reconstruct the authentication path. We show that, if

configured properly, recovery packets dramatically improve

authentication of the data with very low computation and

transmission overheads, even in the presence of loss.

Our specific contributions are: First, we develop a novel

low-cost scheme for authenticating lossy data by combining

a Merkle hash tree (to amortise authentication cost) with

strategic use of network coding (to recover lost hash nodes

in the tree). Second, we develop an optimization framework

that, for given loss conditions and specified overhead, deter-

mines the best use of coding to maximize the fraction of data

items that can be successfully verified. Third, we validate

our scheme using experimental traces of typical operating

scenarios (∼2% packet loss) to show that it allows nearly all

(over 99%) of the medical data to be verified in a dynamic

online setting for very low cost in transmission overheads

(less than 4%) and computation (a digital signature operation

once per hour). To the best of our knowledge our scheme is

the first to provide a practical way of ensuring authenticity of

lossy data at very low energy costs, suitable to the emerging

paradigm of continuous healthcare monitoring.

The rest of this paper is organized as follows: in Section II,

we discuss the system model, prior work, and briefly intro-

duce hash trees and network coding. We describe our solution

in detail in Section III, and formulate the optimization in

Section IV. We support our findings in Section V with results

from experiments in real settings using bodyworn devices. We

conclude in Section VI.

II. SYSTEM MODEL AND BACKGROUND

In this section we detail the system architecture, operating

assumptions and threat model, we discuss prior work in this

domain and introduce hash trees and network coding.

A. System Architecture

Recently proposed deployments of medical sensor net-

works are geared towards interconnecting and integrating

various devices such as wireless sensors, personal digital

assistants (PDAs), mobile phones, tablets, PC-class systems,

online databases, etc. Examples include the MobiHealth

[7] and UbiMon [8] projects targeting continuous patient

monitoring and value-added healthcare.

For our purposes, we consider a basic architecture depicted

in Fig. 1, consisting of disparate devices and multiple access

points. An at-home patient wears a wireless sensor device to

read his blood pressure, ECG, etc. once per second. These

readings are periodically communicated to a basestation i.e. a

mobile phone or PDA, that may incorporate a utility to view

the physiological readings, and uploads the data stream over

the Internet to a centralized database. Authorized personnel

such as doctors and nurses access the database directly to

diagnose and monitor patients. The data is also of interest

to litigators for forensics, investigate malpractice, and assign

liabilities. Our aim is to secure this data from tampering
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Figure 1. System Architecture

throughout the network while allowing it to be easily viewed

and authenticated.

B. Operating Assumptions and Threat Model

Sensor devices have severely limited computation, mem-

ory, and communication resources. The basestation device,

however, need not be restricted in resources. Packets will

be dropped over the wireless channel between sensor device

and basestation. Studies have shown that packet loss is very

unpredictable [5] for bodyworn devices, however, it is also

generally low [6] in indoor environments (1 ∼ 3% as per

our experiments) due to the rich multipath. Our solution is

specifically targeted for such low-loss environments.

Our focus is on two main types of threat: first, an adversary

can easily eavesdrop on messages, masquerade as another

entity, and inject false data into the network. Second, is the

internal threat: a genuine user of the device may seek to

deliberately alter his physiological data to secure benefits by

hacking into his cell phone or logging on to the database. We

do not consider more advanced attacks in this paper, such as

denial-of-service or jamming attacks.

C. Related Work

In this section, we situate our research contribution in

the field of data stream authentication. Several stream au-

thentication protocols exist in the literature, and their design

concerns include authentication properties (per link or end-

to-end), nature of the data stream (offline, i.e. data is known

to the sender beforehand or online, i.e. data generated in

real time). Typical performance metrics considered are com-

putation cost, communication overhead, sender and receiver

memory buffer size, authentication delay, and loss tolerance.

1) Digital Signatures: Digital signatures give ironclad,

non-repudiable guarantees to source and integrity, but are

impractical for resource-constrained devices. On the popular

Mica2/MicaZ wireless sensor network platform, signature

generation with RSA (using a 1024-bit key) takes about

12 seconds, consumes 360 mWs, and with ECC (using a

160-bit key) takes 0.9 seconds, consuming 27 mWs [9]. By

way of comparison, this energy is two to three orders of

magnitude higher than for a hashing operation: an SHA-1

operation over a 16-byte block of data consumes about 112

µWs. Authentication schemes therefore typically utilize hash

functions to amortize signature costs over large sets of data,

which we examine next.

2) Hash Chaining: Hash chaining [10] is one of the

simplest techniques for digitally signing streams. For offline

streams, the first packet is digitally signed, and every packet

sent to the receiver has appended to it the hash of the next

packet to follow in the stream, thereby leveraging the one-

way nature of the hash function to verify the whole stream.

For live data streams, the initial digital signature is essentially

used to authenticate a parallel chain of public keys for one-

time signatures, which in turn are used to authenticate the

data packets. These techniques are not loss-tolerant and incur

significant communication overhead. [11], [12] and [13] aug-

ment this basic scheme for robustness by appending to every

data packet additional hash values of strategically selected

data packets (adding further to communication costs) such

that lost links in the received hash chain may be recovered.

The authors in [14] take a different approach to transmit-

ting the authenticating chain. Every data packet has appended

to it FEC-encoded hash values and the signature of the data

set such that if there are a data packets in the set, the operator

of the scheme can choose a value b where b ≤ a, such that the

signature and hash values are recoverable if the receiver gets

any b out of a packets. This scheme is extended in [15] where

the number of hash packets transmitted is further reduced,

improving efficiency without impacting performance greatly.

This is possible because the receiver itself generates certain

hash values from successfully received data packets.

3) Hash trees: Hash trees, first proposed by Ralph Merkle

[16], can similarly be used to authenticate data sets. Hash

trees allow computation of a message digest over a set of

data items using hash and concatenate operations to build

a tree structure encompassing the entire set. A hash tree

of height h is depicted in Fig. 2. Tree nodes are identified

by an (i, j) tuple, such that H(i,j) refers to the j-th node

in the i-th row (counting up from below) within the tree.

The lowest level of the tree is formed by taking the hash

of the corresponding data items, i.e. Hash(Dj) where Dj

is the j-th data item and Hash is a collision resilient hash

function. Each internal node of the tree is computed by

taking the hash of the concatenation of both its children

nodes, i.e. Hash(childleft|childright). Due to the one-way

nature of the hash function, each node in the tree validates

its children, and, by extension, their respective children, and

so on, including all encompassed data items.

A digital signature on the root of the tree therefore

authenticates all data items and amortizes the cost of the

signature. Assuming that the data items and signed root are

reliably transmitted, the receiver reconstructs the tree from

the data, verifies the signature using the sender’s public key,

and consequently authenticates all data items. Alternatively,

the receiver can authenticate an individual data item in the
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Figure 2. An 8-leaf Hash Tree

set by receiving the item’s individual authentication path

i.e. those sibling nodes (that share the same parent) that

lie on the path from the data item to the root (shaded in

Fig.2). Individual data items within the set can thus be

authenticated independently. The corresponding cost is the

overheads involved in transmitting the authentication path.

This is the approach taken in [17] , where the authors embed

the respective authentication path with each data item to

verify multicasts for multimedia applications. Each data item

is therefore authenticated as soon as it is received. However,

this communication overhead is prohibitive for a constrained

sensor device. Appending the complete authentication path

for a tree of height h = 12, for example, results in an

excessive overhead of 12x20 bytes per data item (for SHA-1).

Hash trees are also used in [18] to authenticate media

files in offline P2P networks. A file is divided into data

blocks and a tree built over the entire set. The signed root is

communicated to the downloading client initially, which then

requests peers for FEC-coded information to reconstruct the

entire tree, enabling it to verify data blocks once they arrive.

[19] and [20] propose authentication for sensor network

code distribution protocols (e.g. Deluge) using hash chains

and trees to amortise the cost of digital signatures over

entire program images. There are two differences between

this approach and ours: these solutions rely on Deluge’s

underlying reliable transmission mechanism to ensure the

data set is fully received, i.e. these solutions are not robust

to loss. Second, authentication is performed over the entire

image. In our case, we authenticate individual data items

irrespective of other items which may be irretrievably lost.

4) Our Contribution: Our solution, designed to run on

resource-constrained sensor devices, builds a hash tree over

a live stream and relies on intelligent application of network

coding to provide robustness to loss. Whereas most of the

schemes presented in prior work appear to have one or more

characteristics in common with our solution, there are key

differences: compared to chaining approaches, our scheme

takes advantage of the hash tree primitive, using a mere

fraction of the overhead of schemes such as [14] to provide

a very high degree of verifiability (experimental results show

that over 99% of the data may be verified on as low as

5% extra transmissions). Another key difference is memory

constraints: schemes such as [14], [18], and [17] work offline

and generate coded authentication information before data

transmission commences. For a bodyworn device, it is im-

practical to store in memory a data set potentially comprising

thousands of sensor readings. Our scheme constructs a hash

tree in real-time and performs network coding on tree items

as soon as they are generated (after which they are discarded

to conserve memory). To the best of our knowledge, ours is

the first scheme to investigate non-repudiable authentication

for live data streams for the unique case of severely resource-

constrained devices in a lossy environment.

D. Network Coding

Network coding improves network throughput and loss

resilience by having a node send linear combinations of

data packets, constructed so that a receiver can separate the

information or reconstruct losses. We apply network coding

at the packet level, which is essentially equivalent to symbol

level coding with packets serving as symbols [21], to protect

against packet loss between two communicating parties.

A number of coded packets (we call recovery packets)

are constructed from the data packets. Each recovery packet

X is associated with a set of n coefficients g1, ..., gn in a

finite field, and is computed symbol-wise as X =
∑n

i=1 giM
i

where M1, ...,Mn are the original data packets. To success-

fully recover all data, the receiver requires a sufficient number

of packets from the total set of original data packets and

recovery packets, i.e. if there are l data items, r recovery

packets, and m total items are sent such that m = l+ r, the

receiver can reconstruct all data packets if any combination

of n ≥ l packets are received. The imperative condition is

that coefficient sets chosen for coding the recovery packets

must be linearly independent. These coefficients only need to

be computed once prior to deployment, so that the encoding

process comprises simple finite field operations well within

the computational capabilities of embedded devices [22].

Next we show how network coding can be applied to hash

trees to make authentication robust to loss.

III. OUR SCHEME FOR AUTHENTICATING LOSSY DATA

We first describe the operation of our scheme, and then

discuss its properties.

A. Operation of Our Scheme

The sensor device is configured with a tree height and

recovery overhead. As it accumulates sensed data items, it

constructs a hash tree (of configured size) on the data items as

described previously, and the root is digitally signed using the

the sensor’s private key. Alongside, the device also constructs

recovery packets, equal in number to the recovery overhead,

that are independent linear combinations of internal nodes at

a chosen level in the tree. The data items, recovery packets,

and signed root are transmitted as they become available.

Internal hash nodes of the tree are never transmitted.
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The receiver (base-station or archival database) is assumed

to reliably receive the signed root (say using a reliable

transmission protocol), since verification of all data in the tree

hinges upon receipt of the signature. However, data items, as

well as recovery packets, are transmitted unreliably and may

be lost. As data items are received, the tree is reconstructed by

the receiver. Of the N(i) = 2h−i+1 nodes at level-i in the tree

of height h (levels are counted from bottom to top), say l may

be received, and of the R(i) recovery packets for that level,

say k are received. If l + k ≥ N(i), the receiver can fully

reconstruct tree level i, and consequently all levels above

(by successive concatenation and hashing) in the tree. The

verifiability of a data item is therefore no longer dependent

on receiving all data items, but is reduced to the ability to

reconstruct the authentication path up to level-i at which all

nodes are available (via reconstruction or recovery).

A more detailed description of the operations at the body-

worn sensor device follows (refer to flowchart in Fig.3):

1) Bootstrapping: We assume the sensor device’s public

key is accessible to the receiver. Linear coefficients

used for coding are pre-computed using deterministic

algorithms [23] and communicated to the two commu-

nicating parties during bootstrapping, along with the

allowed recovery overhead R(i), and the level-i of the

tree at which network coding is applied.

2) Data Sampling, Tree Construction and Digital Sig-

nature: Sensors collect data as per sampling frequency.

Each data item may contain a number of concatenated

samples. The hash tree is constructed in parallel. The

data item is first hashed to yield the corresponding

tree leaf, then it is transmitted and deleted to conserve

memory. As sibling leaves become available, they are

hashed to yield the parent and then discarded. At any

point in time, there are no more than h internal tree

nodes buffered in the sensor device’s memory and the

tree exists always in a state of partial construction to

minimize memory consumption, such that for a tree

of height h = 12 with 4096 data leaves and 8191

internal hash nodes, the sender need not buffer them

all, but store 1 data leaf and 12 hash nodes at any

one time. When the root is computed, it is signed and

transmitted using a reliable (e.g. ARQ-based) protocol.

Tree

Reconstruction

Recovery using

Network Coding

Verification of

Data items

Recovery Packets

Signed Root

Data Packets

Signature

Verification

(on Root)

Figure 4. Process flow at receiver

Internal hash nodes are not transmitted.

3) Network Coding: Coding is performed as an accumu-

lation operation: the sensor device maintains a running

buffer for R(i) allowed recovery packets. As soon as

any tree node is accumulated into all recovery packets it

is part of, it can be discarded. When a recovery packet

is ready, it is transmitted. Recovery packets are buffered

in the sender’s memory and therefore it is important the

quantity is not too great.

Some data items and recovery packets are dropped over the

wireless link. Receiver side operations (as depicted in Fig.4)

are as follows:

1) Packet Receipt, Signature Verification and Tree

Reconstruction: Received packets are mapped within

the data-set. The sender’s public key is used verify the

signature on the root. The tree is now reconstructed

bottom-up. Certain nodes in the tree will be missing

due to dropped data items.

2) Network Coding: At level-i, received recovery packets

are used to attempt recovery of missing nodes at that

level. If all nodes at this level become available, upper

levels of the tree can be fully reconstructed. Otherwise,

upper levels will also have missing nodes.

3) Data Verification: Data items that have a complete

authentication path all the way up to the root can be

authenticated, whereas others cannot.

B. Discussion of the Scheme

We first note that we do not apply network coding on the

data items themselves, since (a) our primary interest is in

authenticating received data, not in recovering all lost data,

(b) the data packets may be large and require unacceptable

overheads for recovery whereas hashes are capped in size

(e.g. 20 bytes in SHA-1), (c) the overhead for recovering

missing tree nodes at a higher level can be much less than

for recovering lost data items which number more, and (d)

if recovery were only attempted for data items and failed

for even one, all data items in the tree become unverifiable,

which is catastrophic.

Our scheme guarantees authenticity and non-repudiability.

Signature cost is amortised over 2h data items in a tree

of height h. For example, bodyworn sensors transmitting



a data item per minute (suitable for measuring heart-rate,

temperature, etc.) or once per second (for ECG monitoring)

can use trees of height h = 6 and h = 12 respectively, to

perform the signature operation approximately once per hour.

Transmission overheads are also much lower: our scheme

transmits only one digital signature per tree of 2h data items,

along with a handful (typically 5-10%) of hash-digest sized

coded recovery packets.

The novelty of our scheme is in applying network coding

to internal tree nodes to dramatically improve authentica-

tion probability, for low overheads, in the presence of data

losses. In the following section we develop a mathematical

framework to determine ideal placement of network coding

in the tree structure, tailored to the loss environment and

transmission constraints.

IV. A FRAMEWORK FOR OPTIMAL PLACEMENT OF

NETWORK CODING

In this section, we develop a framework to determine

the ideal placement of network coding within the tree to

maximize the fraction of successfully authenticated data

items, given loss conditions and coding overhead allowance.

We first argue (without formal proof) that for a given

loss environment and given limit on (network coding based)

recovery packets, it is best to apply all recovery effort to a

single level of the hash tree rather than splitting it across

levels. To see why, consider a case where R(i) recovery

packets are sent at level-i and R(j) at a higher level-j in

the tree (i.e., j > i). At the receiver, if the number of

missing nodes (i.e. nodes that could not be reconstructed from

their children) at level-i is no more than R(i), all missing

nodes can be recovered. This allows all upper levels to be

reconstructed fully, and the recovery packets at level-j are

thus wasted. If on the other hand the number of missing nodes

at level-i exceeds R(i), network coding at level-i cannot

recover any missing nodes, and is thus wasted. Either way,

having recovery packets at both levels is not helpful, since

one of them is always wasted (this observation was also

validated by our simulations). In what follows we therefore

consider network coding applied to only one level of the

tree, and develop a framework to identify the optimal level-i
at which to place all the recovery effort.

D

level 1 H

H

HH

H

HH

Rec Reclevel i

level h

k Recovery Packets

... ...

... ...

Ni = 2h-i+1

2i-1 Data Items

Root

Figure 5. Verifying data item D

Intuitively, if a given number of coded packets are placed at

a level-i low in the tree (i.e. close to the data leaves), recovery

is more likely to fail since the number of nodes (and hence

potential losses) is higher than at upper levels. However, if

recovery at this level is successful, the rewards are high as

more data items are likely to have a valid authentication path

to this level, and can hence be successfully authenticated

since all upper levels can be fully reconstructed. The optimal

placement therefore balances the risk against the reward to

maximise the probability of verification, as derived next.

A. Probability of Verification

We first compute the probability Pver that the receiver can

verify an arbitrary received data item D. We denote the packet

receipt probability by p (conversely, packet loss probability is

1−p), the network coding overhead (i.e. number of recovery

packets) by R, and the tree level at which coding is used by

i. Our objective is to find the i that maximises Pver. Our

model makes the following simplifying assumptions:

• Each data item and each recovery information is trans-

mitted as a separate packet.

• Each packet has independent and identically distributed

(iid) probability p of being successfully received (we

will show later that this is in some ways a worst-case

assumption that gives a lower bound).

• The root of the tree is transmitted using a reliable ACK-

based mechanism and is not subject to loss.

• Network coding for recovery is applied only at a single

tree-level in each instance (as argued above).

The probability of verification Pver is computed for an

arbitrary packet D depicted in Fig. 5. In reference to the

same figure, we define the following:

Definition 1: A node H(i,j) of the tree is said to be

available to the receiver if and only if:

1) either reconstruction succeeded: for level i = 1 (i.e.

a leaf node), the child data item Di was successfully

received, or, for i = 2, 3, . . . , h (i.e. an internal tree

node except root), the data items in the subtree rooted

at H(i,j), (namely items D(2i.j) to D(2i.j−2i+1)) have

all been successfully received,

2) or recovery succeeded: if coding has been applied at

level-i, then the sum of the number of nodes recon-

structed (from children) at level-i and the number of

recovery packets received at least equals the number

of nodes N(i) = 2h−i+1 at level-i of the tree (this

indeed ensures that all nodes at level-i and above are

available to the receiver).

Definition 2: In a tree of height h that has R(i) recovery

packets at a given level-i , the probability that a received data

item D is verifiable by the receiver, is the probability of the

intersection of the two events that:

1) all other data items in the subtree rooted at level-i, of

which D is part, are received, and
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Figure 6. Pver for trees of various heights (1− p = 2%)

2) all other nodes at level i are available to the receiver,

either by receiving all data items in the corresponding

subtrees, or else by recovering any missing level-i
nodes using received recovery packets.

Moreover, the two events in the definition above are indepen-

dent, by virtue of nodes at the same tree level having disjoint

subtrees, and our independent loss model assumption. Using

this, we can compute the probability Pver that a received data

item D in the tree is verifiable as:

Pver =P{received all other data items in D’s subtree}×

P{all other nodes at level i are available}.

Recalling that p denotes probability of successful receipt

of a packet, and that the subtree rooted at any node in level-i
has 2i−1 leaves, we get

P{received all data items in D’s subtree} = p2
i−1

≡ ζ.

There are N(i) = 2h−i+1 nodes at level i of the tree. To

recover D it is imperative that the remaining N(i)−1 nodes

at that level be available to the receiver, either by directly

reconstructing from received data packets or via recovery.

The probability of reconstructing any single node at level

i from received data packets is ζ as noted earlier. Then

the probability of obtaining exactly l level-i nodes from the

N(i)− 1 subtrees is

P
N(i)−1
l =

(

N(i)− 1

l

)

ζl(1− ζ)N(i)−l−1

and the probability of receiving exactly k recovery packets

from a total of R(i) transmissions is

P
R(i)
k =

(

R(i)

k

)

pk(1− p)R(i)−k.

Therefore, we take the product of summation of these terms

for all possible combinations where the number of recon-

structed nodes, l, and received recovery packets, k, such that

l + k ≥ N(i) − 1. Finally, we divide by p to condition the

probability on successful receipt of the data packet D that is

to be verified:

Pver = ζ

R(i)
∑

k=0



P
R(i)
k

N(i)−1
∑

l=N(i)−1−k

P
N(i)−1
l



 /p (1)

As a validation, when no recovery packets are applied at any

layer (i.e. R(i) = 0 for all i), the probability of being able

to authenticate a received data item simply reduces to the

probability of receiving all other data items, i.e. p2
h
−1, i.e.

the full tree can be reconstructed from just the data items.

B. Identifying Optimal i

The above formulation can be used to maximise the

probability Pver of verifiability by searching over i ∈ [1, h].
We illustrate the outcome for two plausible scenarios: first,

for for non-critical applications (e.g. temperature or heart-

rate monitoring), the sensor device aggregates and transmits

data items once per minute. To apply a digital signature

approximately once per hour, we can construct a tree of

height h = 6 spanning 64 data items. Our own experiments

with bodyworn devices indoors (detailed in the next section)

indicate they experience loss in the range 1 ∼ 3%. Here,

we assume packet loss 1 − p = 2%. Fig.6(a) depicts how

probability of verification Pver improves as more coding

packets are transmitted, rising from approximately 30% when

no coding is used, to over 99.9% with just 6 recovery packets

(an overhead of less than 10%). This trend can be seen more

clearly in Fig.7 showing (in log scale) the probability of not

being able to verify a data item as a function of overhead.

For critical applications (e.g. ECG monitoring), a more

appropriate transmission rate is 1 packet/second. If the sig-

nature is to be computed once per hour, a tree of height

h = 12 can be used, spanning 4096 leaves. The number

of recovery packets is varied from 0 to 128, and the cor-

responding verification probability is shown in Fig. 6(b).

Each curve in the figure corresponds to one placement of the

recovery packets. The first observation is that when network
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coding is not used, probability of verification is close to

zero, since verification of any data item depends on receipt

of all 4096 data items in the tree. As overhead increases,

verifiability increases dramatically. The depiction of this on

log scale in Fig.7 clearly shows that about 128 recovery

packets (corresponding to about 3% overhead) can reduce

the inability to verify a data item to nearly 10−6.

The other important observation in the various curves in

Fig. 6(b), each corresponding to a different placement of

network coding, is that optimal placement of coding depends

on allowed overhead. Indeed, as overhead is increased, mov-

ing coding lower in the tree is beneficial. As progressively

increasing overhead is applied, it becomes possible to meet

the conditions for recovery at lower tree levels. And as noted

earlier, if recovery is effected at a lower level, the probability

of verification is higher because the authentication path for

each data item is correspondingly shorter.

V. EXPERIMENTAL RESULTS

We compare analytical results with experimentation with

a real bodyworn network. A male subject wears two com-

municating MicaZ motes, one on his right arm, the other

at his waist on the left side, and works in an indoor office

environment. The wireless channel is sampled at a rate

of 1 packet/second at maximum transmission power. We

collected several traces worth several hours of data, and

present here two representative sets as summarized in Table

I: Low Activity, in which the subject works at his cubicle and

occasionally walks about the office, and High Activity, where

the subject ventures outdoors periodically for brief periods

(higher loss rate is due to reduced multipath). The observed

loss characteristics in our scenarios were consistent with other

studies of the near-body channel (e.g. [6]), namely loss 1−p
is typically in the range of 1-5%, it is influenced by motion,

it is more pronounced in outdoor environments, and packet

loss run lengths are mostly of size 1.

We overlay hash trees of height h = 12 over these connec-

tivity traces, and determine, for various coding overheads, the

Table I
SPECIFICATIONS OF DATA SETS COLLECTED IN EXPERIMENTS

Data Set Packet Loss Average Loss Run Duration

(1-p) (%) Length (s) (minutes)

Low Activity 1.28 1.29 132
High Activity 2.93 1.67 300

fraction of received data items verifiable at the receiver. The

results are shown in Fig. 8, which also plots the predicted

probability of verification Pver from our analytical model.

The first observation from these plots is that our scheme,

when applied to real traffic traces, does corroborate with

analysis to show that an overhead of just a 5-10% can

yield effectively near-100% verifiability for data items. This

confirms that the scheme has merit in real-life scenarios that

may exhibit bursty losses.

Indeed, the verification probability in the experimental

trace is consistently larger than from our analytical model (for

identical loss rate), indicating that the latter is conservative

in its estimate. To understand why, recall that our model

assumes iid loss, which results in a more even spread of

losses, which actually turns out to be worse than having

adjacent losses in the tree. For example, referring to Fig. 2,

consider the case of a data set where exactly two data items

are dropped. If the losses are approximately evenly spaced,

say for example D1 and D4 in a set of 8 data items (the

losses are both in the first half of the set), there will be

two missing nodes at level-1 (H(1,1) and H(1,4)) and level-2

(H(2,1), H(2,2)), and so on up the tree until the losses are

contained within a subtree, in this case, level-3 where only

H(3,1) is missing. Now if one coded packet is received for

level-3, the second half of the data set can be verified, i.e.

D5 − D8, 4 items out of 8. However, if these two losses

occurred in a burst, e.g. D1 and D2, the effect on the integrity

of the tree would be far less. There would be two losses at

level-1 (H(1,1) and H(1,2)) and one loss each at level-2 (i.e.

H(2,1)) and level-3 (H(3,1)). In this case if a single recovery

packet coded for level-2 is received, items D3 −D8 can be

verified, i.e. 6 items out of 8. Bursty losses are therefore

less damaging to the integrity of the tree, and less recovery

overhead is needed. Consequently, our analysis using an iid

loss model can be treated as a conservative estimate (i.e.

lower-bound) of the probability of data item verifiability.

In Fig. 8 we also show in each plot the predicted proba-

bility of verifiability for a loss rate of 1 − p = 2%. This is

because the scheme has to be optimized prior to deployment,

and can thus only use a target loss rate (which we pick to be

2%) rather than the actual loss rate in the deployment which

may not be accurately known beforehand. For Low Activity,

the proposed optimization (i.e. 1 − p = 2%) compensates

adequately and yields near perfect authentication but is not

as effective for High Activity due to the higher loss rate in the

environment. For this situation, the optimization can authenti-

cate up to 90% of the received data items. The experimental

results show some spikes due to sustained burst lengths in
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Figure 8. Comparing experimental and optimization results (h = 12)

the traces (mostly when subject is venturing outdoors) which

cause verification probability to fluctuate unpredictably. If

still better performance is desired, the optimization needs to

be run for (1 − p ≈ 3%) to locate optimal placement for

coding and provision more recovery overhead.

VI. CONCLUSION

In this paper, we proposed a low-cost practical solution

to authenticate medical data generated by wireless bodyworn

sensor devices. We employ a Merkle hash tree to amortise

digital signature costs and leverage network coding to make

the authentication scheme robust to packet loss. We provide

an optimisation framework so that network coding is best

used to maximise data verification probability for a given

loss environment and constraint on overhead. Furthermore,

we validate our findings with experimental data collected

using real bodyworn devices. Our results indicate that, in a

typical indoor environment, over 99% of the data can be au-

thenticated with as low as 5% overheads in transmission. We

believe our proposed solution for ensuring ironclad authen-

ticity of medical data is a positive step towards integrating

bodyworn sensors into current healthcare systems.
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