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ABSTRACT
Residential broadband consumption is growing rapidly, in-
creasing the gap between ISP costs and revenues. Mean-
while, proliferation of Internet-enabled devices is congesting
access networks, frustrating end-users and content providers.
We propose that ISPs virtualize access infrastructure, using
open APIs supported through SDN, to enable dynamic and
controlled sharing amongst user streams. Content providers
can programmatically provision capacity to user devices to
ensure quality of experience, users can match the degree
of virtualization to their usage pattern, and ISPs can real-
ize per-stream revenues by slicing their network resources.
Using video streaming and bulk transfers as examples, we
develop an architecture that specifies the interfaces between
the ISP, content provider, and user. We propose an algo-
rithm for optimally allocating network resources, leveraging
bulk transfer time elasticity and access path space diver-
sity. Simulations using real traces show that virtualization
can reduce video degradation by over 50%, for little extra
bulk transfer delay. Lastly, we prototype our system and
validate it in a test-bed with real video streaming and file
transfers. Our proposal is a first step towards the long-
term goal of realizing open and agile access network service
quality management that is acceptable to users, ISPs and
content providers alike.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design

Keywords
Software-Defined Networks; Slicing; Virtualization

1. INTRODUCTION
Fixed-line Internet Service Providers (ISPs) are increas-

ingly confronting a business problem – residential data con-
sumption continues to grow at 40% per annum [3], increas-
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ing the cost of the infrastructure to transport the growing
traffic volume. However, revenues are growing at less than
4% per annum, attributable mainly to “flat-rate” pricing
[3]. To narrow this widening gap between cost and rev-
enue, ISPs have attempted throttling selected services (such
as peer-to-peer), which sparked public outcry (resulting in
“net neutrality” legislation), and now routinely impose us-
age quotas, which can stifle delivery of innovative content
and services. It is increasingly being recognised that ensur-
ing sustainable growth of the Internet ecosystem requires a
rethink of the business model, that allows ISPs to exploit
the service quality dimension (in addition to bandwidth and
download quota) to differentiate their offerings and tap into
new revenue opportunities [28, 20].

Simultaneously, end-user expectations on service quality
are evolving as personal and household devices proliferate
and traffic types change. Real-time and streaming enter-
tainment content (e.g. Netflix and YouTube) has replaced
peer-to-peer as the dominant contributor to Internet traf-
fic [24]. However, maintaining quality of experience (QoE)
in online video viewing over best-effort networks remains a
challenge. The rapid growth in the number of household de-
vices (computers, phones, tablets, TVs, smart meters, etc.)
concurrently accessing the Internet has increased peak-load
and congestion on the access link, which is often the bottle-
neck between the (wired or wireless) residential LAN and
the ISP backbone network [26]. The consequent impact
on video quality (startup delays and rebuffering events) has
been shown to lead to higher user abandonment, lower user
engagement, and lower repeat viewership [12].

Content providers (CPs), who monetize their video offer-
ings via ad-based or subscription-based models, are seeing
a direct impact on their revenue from reduced user QoE.
Though they use sophisticated techniques such as playback
buffering, content caching, adaptive coding, and TCP in-
strumentation to improve video quality, these approaches
are inherently limited and often involve trade-offs (e.g. in-
creasing playback buffers can reduce rebuffering but increase
startup delay). The frustrations associated with providing
good QoE to users over a third-party access network may
explain why some CPs (e.g. Google) are building their own
fiberhoods, while some other CPs are merging with access
network operators (e.g. NBC and Comcast). However, we
believe that these proprietary solutions cannot be replicated
world-wide (for cost and regulatory reasons), and open solu-
tions are needed that allow any CP to improve the delivery
of their services over any ISP access network.



Given the strong motivation for all parties (ISPs, users,
and CPs) to want service quality capability in the network,
one can rightly ask why it does not already exist. Indeed,
user QoS/QoE has been studied extensively over the past
two decades, and many researchers (including the authors)
have worked to develop numerous technical solutions ranging
from ATM-SVC to RSVP and IntServ/DiffServ. However,
we believe that the limited success of these prior frameworks
is partly because they have not satisfactorily addressed two
critical aspects: (a) who exercises control over the service
quality? and (b) how is it monetized? These challenges are
elaborated next.
Control: Today, the control of network service quality is

largely left to the ISP, who carefully hand-crafts policy and
device configurations, likely via mechanisms (e.g. marking,
policing, resource reservation, and queueing) from the Diff-
Serv frameworks. Users have no visibility into the ISP’s
doings, and are left powerless and suspicious, wondering if
“neutrality” is being violated (e.g. peer-to-peer traffic be-
ing de-prioritized). Further, exposing controls to the user
also raises challenges around user expertise needed to con-
figure and manage QoS. At the other end, CPs can exert
little (if any) control over service quality in ISP networks
today. They do not have access to end-to-end quality as-
surance frameworks (e.g. RSVP/IntServ based) since ISPs
deem them either too onerous to operate or too dangerous
to expose; at best CPs can indicate relative priority levels
for their packets (e.g. via DiffServ code-points), but these
assurances are “soft”, being qualitative and subject to other
traffic in the network. These concerns exacerbate further
when the ISP and CP do not peer directly, i.e. connect via
a transit provider. Any viable quality enhancement solution
therefore has to tackle the issue of how the control is shared
amongst the various players involved.
Monetization: An ISP has little incentive to deploy ser-

vice quality mechanisms unless there is a monetary return.
Consumers are very price sensitive, and it is unclear if suffi-
cient consumers will pay enough for the QoS enhancement to
allow the ISP to recoup costs. CPs potentially have greater
ability to pay; however, current“paid peering”arrangements
are based on aggregate metrics such as transfer volume or
transfer rate. A CP is unlikely to pay more for “wholesale”
improvement in service quality, especially if a non-negligible
fraction of their traffic gets delivered at adequate quality
anyway. A viable QoS solution should therefore allow the
CP to make fine-grained (e.g. per-flow) decisions in an agile
way so that service quality can be aligned with their busi-
ness models. For example, the CP may want to deliver traffic
only for certain customers or certain content at high quality,
and these decisions can vary dynamically (e.g. depending on
time-of-day or loss/delay performance of the network).
The above two challenges have been poorly addressed in

earlier frameworks, dissuading ISPs from deploying service
quality mechanisms and causing frustration for CPs and
end-users. We believe that the emerging paradigm of soft-
ware defined networking (SDN) provides us a new oppor-
tunity to overcome this old impasse. Logical centralization
of the control plane under SDN helps in many ways:

1. A central “brain” for the network makes it easier for
the ISP to expose (e.g. via APIs) service quality con-
trols needed by an external party, such as the CP. We
believe that a software-driven API is a far superior
method for information exchange rather than inter-

connecting existing protocols (e.g. RSVP) to exter-
nal parties, since (a) protocols often reveal informa-
tion (e.g. network topology or network state) that
is both private to the ISP and unnecessary for the
external entity, whereas APIs can be crafted specifi-
cally for the negotiation task at hand, (b) protocols
do not easily straddle transit domains, whereas APIs
can be invoked by a remote entity that does not peer
directly with the ISP, and (c) protocols are typically
distributed across network elements and take longer
to converge whereas APIs implemented at the central
controller can respond rapidly to external requests. We
believe that the above advantages of APIs make SDN
a more suitable paradigm by which the ISP can expose
and share QoS control with external entities.

2. The centralized brain in SDN is more amenable for op-
timal decision making. Since the SDN controller has
a global view of resources, it can make informed de-
cisions based on current availability and requests. In-
deed, the resource management algorithm we develop
in this paper has a provable performance bound, which
is difficult to achieve in distributed systems that have
limited visibility into global state.

3. Lastly, SDN provides a cross-vendor solution that does
not require protocol support from the various forward-
ing elements. The resource partitioning can be exe-
cuted by the centralised software across any forward-
ing element over any access technology that supports
a standardized SDN interface such as OpenFlow.

At a high level, our solution encourages the ISP to “virtu-
alize” the access network, namely partition the last-mile net-
work bandwidth resources dynamically amongst flows, using
SDN. The virtualization is driven by open APIs that are ex-
posed to external entities (CPs in our case), who can choose
to invoke it to negotiate service quality with the network on
a per-flow basis. For the ISP, the API offers a monetization
opportunity, while protecting sensitive internal information,
and giving them the freedom to innovate mechanisms for
maximizing resource usage (for example by “pooling” WiFi
resources in a neighborhood). For CPs, the API provides
an enforceable assurance from the access network, and the
pay-as-you-go model gives them freedom to align quality re-
quirements with their business models. For users, we equip
them with a simple control into the degree to which their
access network resources are pooled/partitioned, allowing
them to match it to their usage patterns. While past expe-
rience has taught us that any large-scale deployment of QoS
faces significant practical obstacles, we believe our solution
approach has the potential to overcome the business, regu-
latory and administrative impediments, and offers the right
set of incentives for ISPs, CPs and users to collaborate for
its success.

Our specific contributions are as follows. We use video
streaming and file transfers as two motivating examples, and
develop a system architecture that virtualizes the last-mile
access infrastructure to allow controlled and efficient shar-
ing amongst user application streams. CPs can program-
matically provision capacity on the access links to end-user
devices at short time-scales to ensure consistent quality of
experience for users; ISPs can realize per-stream revenues
by dynamically reconfiguring their access network in an ag-
ile way; and users can choose their degree of participation



by tuning a single parameter. We develop an algorithm for
optimal resource allocation in the access network, leverag-
ing scheduling in the time dimension (that allows non-time-
critical elastic traffic such as bulk transfers to be deferred
in favour of time-sensitive streaming traffic) as well as in
the space dimension (by pooling bandwidth from multiple
wireless access points in a neighborhood). We then evalu-
ate the efficacy of our algorithm in improving service qual-
ity via simulations of real traces of over 10 million flows
taken from a large enterprise network. Lastly, we prototype
our system using commercial switches and commodity access
points, and demonstrate the benefits of our scheme via ex-
periments in a test-bed emulating three residences running
real applications. Our work presents a first step towards a
viable and pragmatic approach to delivering service quality
in access networks in a way that is beneficial to ISPs, users,
and CPs alike.
The rest of the paper is organized as follows: §2 describes

the use-cases considered in this paper. §3 describes our sys-
tem architecture, trade-offs, and algorithm. In §4 we evalu-
ate our system via simulation with real traffic traces, while
§5 describes the prototype development and experimenta-
tion. Relevant prior work is summarized in §6, and the paper
concludes in §7.

2. USE-CASES AND OPPORTUNITIES
The set of applications that can benefit from explicit net-

work support for enhanced service quality is large and di-
verse: real-time and streaming videos can benefit from band-
width assurance, gaming applications from low latencies,
voice applications from low loss, and so on. In this paper
we start with two application use-cases: real-time/streaming
video, chosen due to its growing popularity with users and
monetization potential for providers, and (non-real-time)
bulk transfers, chosen for their large volume and high value
to users. The APIs we develop and demonstrate for these
use-cases will help illustrate the value of our approach, and
can be extended in future work for other application types.

2.1 Real-Time / Streaming Video
Online video content, driven by providers such as Netflix,

YouTube, and Hulu, is already a dominant fraction of In-
ternet traffic today, and expected to rise steeply in coming
years. As video distribution over the Internet goes main-
stream, user expectations of quality have dramatically in-
creased. Content providers employ many techniques to en-
hance user quality of experience, such as CDN selection [15],
client-side playback buffering [22], server-side bit-rate adap-
tation [2], and TCP instrumentation [6]. However, large-
scale studies [5, 12] have confirmed that video delivery qual-
ity is still lacking, with startup delays reducing customer
retention and video “freeze” reducing viewing times. Since
variability in client-side bandwidth is one of the dominant
contributors to quality degradation, an ideal solution is to
“slice” the network to explicitly assure bandwidth to the
video stream. Eliminating network unpredictability will (a)
reduce playback buffering and startup delays for stream-
ing video, (b) benefit live/interactive video streams that are
latency bound and cannot use playback buffering, and (c)
minimise the need for sophisticated techniques such as band-
width estimation and rate adaptation used by real-time and
streaming video providers.

There are however important questions to be addressed in
realizing the above slicing solution: (a) what interaction is
needed between the application and the network to trigger
the bandwidth reservation? (b) is the bandwidth assured
end-to-end or only on a subset of the path? (c) which entity
chooses the level of quality for the video stream, and who
pays for it? (d) what rate is allocated to the video stream
and is it constant? (e) what is the duration of the reservation
and how is abandonment dealt with? and (f) how agile is
the reservation and can it be done without increasing start-
up delays for the user? Our architecture presented in §3 will
address these non-trivial issues.

2.2 Bulk Transfer
After video, large file transfers are the next biggest con-

tributors to network traffic. Examples include peer-to-peer
file-sharing, video downloads (for offline viewing), software
updates, and cloud-based file storage systems [24]. Unlike
video, bulk transfers do not need a specific bandwidth, and
user happiness generally depends on the transfer being com-
pleted within a “reasonable” amount of time. This “elastic-
ity” creates an opportunity for the ISP to dynamically size
the network bandwidth “slice”made available to bulk trans-
fers, based on other traffic in the network. This can allow
the ISP to reduce network peak load, which is a dominant
driver of capital expenditure, and release capacity to ad-
mit more lucrative traffic streams (e.g. real-time/streaming
video) requiring bandwidth assurances.

Though the idea of “shifting” bulk transfer traffic to low-
load periods based on their elasticity is conceptually simple,
there are challenges around (a) how to identify bulk transfer
parameters such as size and elasticity? (b) how to incentivize
the user/provider to permit such shifting? and (c) how to
dimension the network resource slice for this elastic traffic?
These are addressed in §3.

2.3 WiFi Pooling
Another opportunity that can be leveraged, particularly

for bulk transfers, is that in urban areas the density of wire-
less access points (APs) is high – often 6 or more WiFi net-
works are visible at a typical location [10]. An ISP with
a sufficiently high density of penetration in a neighborhood
may therefore have available multiple paths, each via a dif-
ferent AP, by which data can be sent to a specific household
device. As an example, the user’s iPad may be streaming
video via her home AP, while simultaneously her smart-TV
or media gateway, which may be downloading large content
for later viewing, could be made to do so via a neighbor’s
lightly loaded AP. This “off-loading” of traffic to alternate
paths leads to more efficient use of access link resources,
and motivates us to propose that the entire access network
infrastructure be virtualized by treating it as a pool of re-
sources, rather than limiting a household to one access link.

The ability to pool WiFi resources has many challenges,
including determination of signal strengths and data rates,
management of migrations of user clients across APs, and
considerations around security, quota, charging, and fair-
ness. However, several operators world-wide, such as Oi in
Brazil, Ziggo B.V. in the Netherlands, Telefonica in Spain,
and Comcast in the US, are surmounting these challenges
as they prepare to convert their users’ homes into hotspots
[14] to pool their WiFi resources. We will leverage these



methods, additionally using SDN to steer traffic along the
desired path in the pooled WiFi network.

3. SYSTEM ARCHITECTURE AND ALGO-
RITHM

Motivated by the above use-cases, we now propose a sys-
tem architecture for virtualizing the access network. We
first outline the major architectural choices and trade-offs
(§3.1), then describe the operational scenario (§3.2), and fi-
nally develop the detailed mechanisms and algorithms for
virtualization (§3.3).

3.1 Architectural Choices and Trade-Offs
The aim of virtualization is to partition resources dynam-

ically amongst flows in a programmatic way, so that the net-
work is used as efficiently as possible for enhancing applica-
tion performance or reducing cost. We briefly discuss why
open APIs are needed to achieve the virtualization, what
part of the network is virtualized, and who exercises control
over the virtualization.
Why Open APIs: Current mechanisms used by ISPs

to partition network resources require cripplingly expensive
tools for classifying traffic flows (e.g. using DPI), encourage
applications to obfuscate or encrypt their communications,
and risk causing public backlash and regulation. Therefore,
we advocate that the virtualization be driven externally via
an explicit API open to all CPs. This allows CPs to choose
a resource requirement commensurate with the value of the
service, while letting ISPs explicitly obtain service attributes
without using DPI.
What is Virtualized: Assuring application performance

ideally requires end-to-end network resource allocation. How-
ever, past experience with end-to-end QoS frameworks has
taught us that getting the consensus needed to federate
across many network domains is very challenging. In this
paper we therefore focus on the achievable objective of parti-
tioning resources within a single domain. A natural choice is
the last-mile access network as there is evidence [26, 9] that
bottlenecks often lie here and not at the interconnects be-
tween networks. Our solution can in principle be adapted to
any access technology, be it dedicated point-to-point (DSL,
PON) or shared (e.g. cable, 3G). In this paper we focus
our theoretical formulation and evaluation on point-to-point
wired access technologies, wherein each subscriber has a ded-
icated bandwidth, and overlay it with WiFi pooling to allow
sharing of bandwidth across residences. The case of shared
media (cable or 3G) deserves a separate discussion around
the policies needed to be fair to different users who embrace
the virtualization scheme to different extents, and is left for
future work.
Who Controls the Virtualization: Though the vir-

tulization APIs can be invoked by any entity, we envisage ini-
tial uptake coming from CPs rather than consumers, since:
(a) uptake is needed by fewer, since as much of 60% of In-
ternet traffic comes from 5 large content aggregators [9], (b)
CPs have much higher technical expertise to upgrade their
servers to use the APIs, and (c) client-side charging for API
usage can significantly add to billing complexity. For these
reasons, we expect CPs to be the early adopters of the vir-
tualization APIs, and defer consumer-side uptake to future
study.
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Figure 1: Network topology

The end-user still needs to be empowered with a means
to control the virtualization, e.g. a user might not want her
web-browsing or work-related application performance to be
overly affected by streaming video that her kids watch. We
therefore propose that each household be equipped with a
single parameter α ∈ [0, 1] which is the fraction of its access
link capacity that the ISP is permitted to virtualize. Set-
ting α = 0 disables virtualization, and the household contin-
ues to receive today’s best-effort service. Households that
value video quality could choose a higher α setting, while
households wanting to protect unpaid traffic (web-browsing
or peer-to-peer) can choose a lower α. Higher α can poten-
tially reduce the household Internet bill since it gives the
ISP more opportunity to monetize from CPs. Our work will
limit itself to studying the impact of α on service quality
for various traffic types; determining the best setting for a
household will depend on its Internet usage pattern and the
relative value it places on the streams, which is beyond the
scope of this study.

3.2 Operational Scenario
We briefly describe the operational scenario, the reference

topology, the flow of events, the API specifications, and the
roles of the CP and the user.

3.2.1 Topology and Flow of Events
Fig. 1 shows a typical access network topology. Each res-

idence has a wireless home gateway to which household de-
vices connect. The home gateway offers Internet connectiv-
ity via a broadband link (e.g. DSL or PON), connecting to
a line termination device at the ISP local exchange, which
is in turn back-ended by an Ethernet switch that has SDN
capability. The Ethernet switches at each local exchange
connect via metro- or wide-area links to the ISP’s backhaul
network. The ISP network houses an SDN controller that
exposes the APIs discussed below, and executes the virtu-
alization algorithm (described at the end of this section) to
reconfigure the network. The ISP network can either peer
directly, or via other ISPs, to content providers that source
the data that is consumed by users. Our solution works
equally well when the data is sourced from CDNs or content
caches within or outside the ISP network.



The operational flow of events is as follows. The user’s re-
quest for content (e.g. YouTube video link click or Dropbox
file transfer command) goes to the CP, who can instantly
call the API into the ISP network to associate resources for
this flow. If the negotiation succeeds, the ISP assures those
resources for the flow, and charges the CP for it. In what
follows we describe the APIs in more detail and elaborate
on the specific actions required by the CP and the user.

3.2.2 The APIs
We now develop minimalist specifications of the APIs for

the two use-cases considered in this paper; detailed specifi-
cations are left for future standardization.
API for Bandwidth Assurance: This specifies: (a)

Caller id: The identity of the entity requesting the service.
Authentication of some form (such as digital signature of the
message) is assumed to be included, but we do not discuss
security explicitly in this work. (b) Call Type: A type field
indicates the service being requested, in this case minimum
bandwidth assurance. (c) Flow tuple: The 5-tuple compris-
ing the IP source and destination addresses, the transport
protocol, and the source and destination port numbers, that
identify the flow (consistent with the OpenFlow specifica-
tion). Note that wildcards can be used to denote flow ag-
gregates. (d) Bandwidth: The bandwidth (in Mbps) that
is requested by the flow. (e) Duration: The duration (in
seconds) for which the bandwidth is requested.
This API assures minimum bandwidth to a service like

video streaming. Note that the flow can avail of extra band-
width if available, and is not throttled or rate-limited by
the network. Further, we have intentionally kept it simple
by using a single bandwidth number, rather than multiple
(e.g. peak and average) rates. The value to use is left to the
CP, who knows best their video stream characteristics (peak
rate, mean rates, smoothness, etc.) and the level of quality
they want to support for that particular session. The du-
ration of the bandwidth allocation is decided by the caller.
To combat abandonment, the CP may choose to reserve for
short periods (say a minute) and renew the reservation peri-
odically; however, this runs the risk of re-allocation failures.
Alternatively, the caller can choose to reserve for longer peri-
ods, and the APIs can be extended to include cancellation of
an existing reservation. These implementation decisions are
left for future standardization. Lastly, the ISP will charge
the caller for providing bandwidth assurance to the stream.
The pricing model is left to the individual ISP, and can be
dynamic (depending on time-of-day, congestion levels, etc.).
We do not know, or dare to put, a price on bandwidth –
that will ultimately be determined by market forces.
API for Bulk Transfer: This includes: (a) Caller id:

as before. (b) Call Type: in this case bulk transfer. (c)
Flow tuple: as before. (d) Size: The volume of data to be
transferred, in MegaBytes. (e) Deadline: The duration (in
seconds) by which the transfer is requested to be completed.
This API is for large data transfers that are not time crit-
ical. The elasticity can be leveraged by the ISP to reduce
peak demand [20], and the monetary benefit can be passed
on to the CP in the form of a lower per-byte transfer cost. In
turn, the CP may pass on the discount to the user, such as by
charging them less for downloading a movie for later view-
ing than for streaming it in real-time. The CP can either
solicit the deadline parameter directly from the user (via the

application’s interface), or deduce it implicitly (from prior
knowledge about the user), as elaborated further below.

One conceivable way by which the ISP can schedule bulk
transfers is to warehouse the data, i.e. move it from the
CP to the ISP, and then on to the user at a suitably sched-
uled time. However, this carries with it complexities (such
as proxies, split connections) and liabilities (e.g. pirated
data). We instead propose that the ISP dynamically ad-
just the network path and bandwidth made available to the
bulk transfer, without having to store any content. This
eliminates complexities and liabilities for the ISP, lets them
innovate (and protect) their mechanisms for path selection
and bandwidth adjustment, and does not require any user-
client changes.

3.2.3 Changes for Content Provider and User
The changes required at the content servers are well-within

the technical expertise of the CPs. They can identify a
client’s ISP based on the client IP address, and a DNS en-
try can be created for the controller advertised by that ISP.
We note that the CP has full visibility of the flow end-points
(addresses and ports), irrespective of whether the home uses
NAT or not. For streaming video, the bandwidth require-
ment can be deduced from the format and encoding of the
content. For bulk transfers, delay bounds can either be ex-
plicitly solicited from the user (via an option in the applica-
tion user interface) or chosen based on previously acquired
knowledge about the consumer (e.g. deadlines to ensure de-
livery before prime time viewing). Lastly, CPs are at liberty
to align the API usage with their business models, such as
by invoking it only for premium customers.

Subscribers are provided with a single knob α ∈ [0, 1] that
controls the fraction of their household link capacity that
the ISP is permitted to virtualize, adjusted via their ac-
count management portal. This parameter can be tuned by
the user to achieve the desired trade-off between quality for
reserved (video/bulk) flows and unreserved (browsing/peer-
to-peer) flows. Where WiFi pooling is employed, we do not
mandate any changes to user clients or applications to facil-
itate migration of traffic across access points (such as multi-
homing [7] or proxying techniques [29]), instead relying on
ISP-controlled migration using MAC address black-listing.
All user clients (computers, TVs, phones, etc.) running any
operating system can thereafter benefit from the virtualiza-
tion without requiring any software or hardware changes.
For bulk transfer applications, the user interface may be up-
dated by CPs to explicitly solicit transfer deadlines from
users, potentially giving users financial incentive to choose
slacker deadlines.

3.3 The Virtualization Mechanism
The mechanism we develop for the ISP to execute the

above APIs leverages the time dimension (§3.3.1) and space
dimension (§3.3.2), and schedules resources for traffic flows
as per our algorithm (§3.3.3).

3.3.1 Time Scheduling
The time “elasticity” of bulk transfers, inferred from the

deadline parameter in the API call, is used to dynamically
adjust the bandwidth made available to such flows. Upon
API invocation, the ISP creates a new flow-table entry and
dedicated queue for this flow in the switches along the path
(though scalability is a potential concern here, we note that



a vast majority of flows are “mice” and will not be using
the API). Periodically, the minimum bandwidth assured for
this queue is recomputed as the ratio of the remaining trans-
fer volume (inferred from the total volume less the volume
that has already been sent) to the remaining time (dead-
line less the start time of the flow). Note that the flow is
not throttled, and can possibly get higher bandwidth than
the minimum depending on congestion state. Also, the flow
bandwidth requirement is reassessed periodically (every 10
seconds in our prototype) – this allows bandwidth to be
freed up for allocation to real-time streams in case the bulk
transfer has been progressing ahead of schedule, and gives
the bulk transfer more bandwidth to catch-up in case it has
been falling behind schedule. Lastly, the dynamic adjust-
ment of network bandwidth “slice” for this flow is largely
transparent to the client and server. Call admission for
all flows ensures that no deadline violations occur; rejected
flows simply traverse as best-effort with no assurances (or
costs) for the caller.

3.3.2 Space Scheduling
Pooling of residential WiFi resources has been shown to be

feasible from a research [10] and commercial [27, 14] stand-
point. Our intention is to show that the ISP can leverage
such mechanisms to improve call admission success (and con-
sequent revenue), without needing to reveal such innovations
to CPs. We propose (and prototype) a solution in which
the ISP centrally manages the APs (akin to an enterprise
WiFi solution), and user clients are unmodified. The res-
idential APs are configured as transparent layer-2 devices
with no routing or address translation. IP address alloca-
tion to each user device is done centrally by the ISP, as is the
security authentication, akin to enterprise networks. Once
authenticated, a user device can then migrate (with minimal
disruption) across APs (our implementation achieves this by
dynamically black-listing client MAC addresses). Direct vis-
ibility of the user devices to the ISP also simplifies account-
ing on a per-device basis, which eliminates issues with quota
stealing across households.
Fairness in bandwidth sharing can be a concern when

households have different settings of fraction α that repre-
sents their contribution to the “virtual pool” of bandwidth.
The concern is that a household with low α allows little of
its bandwidth to be used by its neighbors, but can bene-
fit from using bandwidth from a neighbor with high α. To
counter this unfairness, we allow a household-i access to at
most fraction αi of the bandwidth in the virtual pool from
its neighborhood. More specifically, the maximum band-
width that household-i can access from its neighbors is lim-
ited to αi ∗

∑
j∈Ni

αjCj , where Cj denotes the broadband
capacity of household-j, and the set Ni denotes the APs
that comprise the wireless neighborhood of household-i. For
example, if three households with overlapping WiFi cover-
age, each with broadband access bandwidth of 10 Mbps, set
their parameters to α1 = 0.2, α2 = 0.5 and α3 = 1.0, then
household-1 can access at most 3 Mbps from its neighbors,
household-2 at most 6 Mbps, and household-3 the entire 7
Mbps from its neighbors.

3.3.3 Virtualization Algorithm
Our algorithm takes as inputs: (a) The bandwidth re-

quirement for each flow – for streaming video flows, these
are supplied with the API call, while for bulk transfers these

are computed periodically as described in §3.3.1. Further,
we aggregate the bandwidth requirements of all flows at a
client (since the client is single-homed) to obtain a single
bandwidth number bi for the client, and (b) The network
neighborhood of a client, namely the set of APs to which
the client can connect (if WiFi pooling is enabled). For
our test-bed, we obtain this information by writing a C-
program on our APs running dd-wrt that opens a monitor
port and scans for all client transmissions, records their sig-
nal strengths, and reports these back to our controller.

The output of the algorithm is an assignment of clients
to APs. The objective function is to balance the load, or
equivalently minimize the maximum (peak) load, across the
access links, so that the minimum residual bandwidth at
any access link is maximized to accept future traffic flows.
The problem is NP-hard in general, as can be demonstrated
by an easy reduction from the job shop scheduling prob-
lem as follows. Given a job scheduling problem with n jobs
of variable sizes and m machines, map each job to a client
with bandwidth requirement bi equal to the size of the job,
and map each processor to an AP. The mutual constraints
between jobs and machines are mapped to equivalent con-
straints between clients and APs (representing the feasible
associations between clients and APs). A polynomial-time
algorithm that minimizes the maximum load across the APs
will therefore minimize the makespan (i.e. total length of
schedule) for the job scheduling problem, which is known
to be an NP-hard problem. This reduction shows that the
problem of minimizing the maximum load across access links
is also NP-hard in general.

To obtain an approximate solution in reasonable time for
the general case (with WiFi pooling enabled), we adapt the
best-known heuristic, known as LPT (Longest Processing
Time) [8], whereby we sort the clients in descending order
of bandwidth requirement, and assign each in turn to the
feasible AP with the largest residual bandwidth. This algo-
rithm can be executed in linear time, and is known to be
within a factor of 4/3 of the optimum [8]. The next section
evaluates our virtualization algorithm via simulation of real
traces comprising over 10 million flows.

4. SIMULATION AND TRACE ANALYSIS
We now evaluate the efficacy of our solution by applying it

to real trace data. Obtaining data from residential premises
at large scale is difficult; instead we use a 12-hour trace
comprising over 10 million flows taken from our University
campus network. Though the latter will differ in some ways
from residential traces, we believe it still helps us validate
our solution with real traffic profiles. We describe the char-
acteristics of the data trace and the network topology, and
then quantify the benefits from our virtualization method.

4.1 Trace Data and Campus Network
Our trace data was obtained from the campus web cache,

containing flow level logs stored in the Extended Log File
Format (ELFF). Each row pertains to a flow record, and in-
cludes information such as date and time of arrival, duration
(in milliseconds), volume of traffic (in bytes) in each direc-
tion, the URL, and the content type (video, text, image,
etc.). Our flow logs cover a 12 hour period (12pm-12am) on
16th March 2010, comprising 10.78 million flows and 3300
unique clients.
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Figure 2: Campus trace CCDF of (a) video flow bandwidth and (b) elephant flow size.
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Figure 3: Aggregate load

For our evaluation we categorize flows into three types:
video, mice, and elephants. Video flows are identified by
their content type, and were found to be predominantly from
YouTube. The remaining flows are categorized as mice or
elephants based on their download volume. Mice flows are
representative of web-page views, for which the user expects
immediate response, and are defined as flows that download
up to 1 MB (chosen conservatively to be above the aver-
age web-page size of 700 KB [1] recorded in 2010). Elephant
flows are defined to be those of size over 1 MB, and assumed
to be “elastic”, i.e., the user can tolerate some transfer de-
lays. Of the 10.78 million flows, we found that the vast
majority (10.76 million or 99.8%) of flows were mice, while
there were only 11, 674 video and 9, 799 elephant flows. How-
ever, in terms of volume, the three categories were roughly
equal, constituting respectively 32%, 32%, and 36% of the
traffic download. Note that peer-to-peer traffic does not go
through the web-cache, and consequently elephant transfers
are likely to be under-represented in our trace. Neverthe-
less, the traffic characteristics of our trace are reasonably
consistent with prior observations of Internet traffic.
A time trace of the traffic volume in each category, av-

eraged over 1-minute intervals over the 12-hour period, is
shown in Fig. 3. The bottom curve corresponds to mice
flows, and we found that most (93%) mice flows complete
within a second, and very few (0.1%) mice flows download
more than 300 KB, consistent with published findings [21].

Video traffic volume (as an increment over the mice traffic
volume) is shown by the middle line in Fig. 3. To evaluate
the impact of our solution on video quality, we assume that
video flows have a roughly constant rate (this allows us to
measure quality as the fraction of time that the video stream
does not get its required bandwidth). This rate is derived by
dividing the video flow traffic volume by its duration. To ac-
count for the fact that video streaming uses playback buffers
that download content ahead of what the user is watching,
we added 40 seconds to the video flow duration, consistent
with the playback buffer sizes reported for YouTube [22].
The video flow traffic rate CCDF is depicted in Fig. 2(a),
and shows that more than 98% of video flows operate on less
than 5 Mbps, and less than 0.2% of flows use more than 10
Mbps. The video flow duration distribution (plot omitted)
also decays rapidly – only 10% of video views last longer
than 3 minutes, and only 1% are longer than 10 minutes.

The total elephant traffic volume (as an increment over
the mice and video traffic) is shown by the top curve in
Fig. 3. We observe several large spikes, indicating that bulk
transfers can sporadically impose heavy loads on the net-
work. In Fig. 2(b) we plot the CCDF of the file size, and
find that it decays rapidly initially (about 1% of flows are
larger than 100 MB), but then exhibits a long tail, with the
maximum file size being close to 1 GB in our trace.

The above traffic trace is simulated over a residential net-
work topology modeled on the campus from which the trace
is taken. It consists of 10 four-storeyed apartment build-
ings, each building containing 30 residences. Each residence
has a broadband capacity of 20 Mbps, and is assumed to be
equipped with a wireless access point. The coverage over-
laps of these access points was obtained from the WiFi maps
available for the campus buildings. In each simulation run,
clients are mapped to a randomly chosen apartment in a
randomly chosen building, yielding a roughly uniform den-
sity of 11 clients per household. Clients are only allowed to
connect to one access point at a time, i.e. we assume clients
do not have interface virtualization capability, and the WiFi
overlap maps are used to decide upon feasible client attach-
ment points. Our simulations using these overlap maps show
that a client is on average within range of 5.8 access points,
which is consistent with the number observed in residential
networks by earlier studies [10].

4.2 Simulation Methodology and Metrics
We wrote a native simulation that takes flow arrivals from

the trace as input, and performs slot-by-slot (where a slot
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Figure 4: (a) Video allocation failures versus α, and (b) Bulk transfer allocation success (left axis, ascending
curves) and mean rate (right axis, descending curves) versus α.

is of duration one second) service on each access link. All
video flows, and elephant flows of size larger than 10 MB, are
assumed to utilize the API. Such flows are allocated their
own queue, whereas flows that do not call the API (or are
denied by the API) share a best-effort queue. Within the
best-effort queue, mice flows (that transfer less than an MB)
are given their bandwidth first (since they are assumed to
be in TCP slow-start phase), and the remaining bandwidth
is fairly divided amongst the long (video and elephant) flows
(since such flows are typically in TCP congestion avoidance
phase). Reserved video flows are assumed to be constant
bit rate (as discussed above), and assured their bandwidth.
The minimum rate allocation for bulk transfer flows is up-
dated dynamically based on their progress, and any spare
capacity is shared fairly amongst the queues based on their
minimum allocations. We emphasize that our scheduler is
work conserving, and does not waste any link capacity if
traffic is waiting to be served.

4.3 Performance Results
The slackness in delay bound chosen for the bulk transfer

API calls impacts performance for both streaming video and
bulk transfer flows. We define elasticity parameter β for a
bulk transfer flow as the ratio of the chosen delay bound to
the expected delay when the entire access link capacity is
available to the flow. Though in reality each bulk transfer
will choose its own elasticity (possibly via some negotiation
between the user and the CP), to simplify the parameter
space in this study we assume that all bulk transfer flows
use the same elasticity parameter β. For our first set of
results we choose β = 10, i.e., each bulk transfer requests
at least one-tenth (rather than its fair share) of the access
link capacity. For given β, we plot in Fig. 4 the impact of
the degree of virtualization α (assumed to be the same at
each household) on performance for video and bulk transfer
performance.
Impact of virtualization degree α on call admis-

sions: Fig. 4(a) shows that video allocation failures reduce
as α increases, since a larger α makes more access band-
width available for allocation. For example, when β = 10
and considering only time scheduling (solid line with box
markers in the figure), it is seen that increasing α from 0.4
to 0.8 reduces allocation failures by more than half, i.e. from
1.8% to 0.75%. Similarly, Fig. 4(b) shows that bulk trans-
fer allocation success (left axis, ascending curves) increases
with α; for example, allocation success increases from 70%

to 84% as α increases from 0.4 to 0.8. We also note that as
α increases, the average bandwidth available to each bulk
transfer flow falls marginally (right axis, descending curves
in Fig. 4(b)), reflecting the fact that the virtualized capacity
is shared by more (video and bulk) flows that are admitted.

Impact of bulk transfer stretch β: We now increase
the elasticity factor β from 10 to 60 for all bulk transfer flows
– this six-fold increase is chosen so a 10-minute download is
now allowed to take an hour. This allows bulk transfers to be
stretched, and is expected to create extra room for accept-
ing more video flows. This is corroborated by the solid line
with triangular markers in Fig. 4(a), showing that allocation
failures drop by about 20% compared to using β = 10. For
example, at α = 0.8, allocation failures fall from 0.75% to
0.48%, representing an extra 30 video flows that can be given
bandwidth assurance. It is interesting to note from Fig. 4(b)
that the bulk transfer flows still receive a sufficiently high
average bandwidth (over 10 Mbps); this provides an incen-
tive for the CP to call the bulk transfer API with a relatively
slack deadline to reduce transfer cost without (in most cases)
significantly increasing transfer delay.

Impact of WiFi pooling: Lastly, when space schedul-
ing is enabled, allowing clients engaged in bulk transfers to
be migrated across to lighter loaded APs, there is a slight
reduction in video flow rejections, as shown by the dashed
lines (with box markers corresponding to β = 10 and trian-
gular markers for β = 60) in Fig. 4(a). The benefit of space
sharing is more evident for bulk transfers – Fig. 4(b) shows
that space sharing (dashed lines in figure) permits a larger
number of bulk transfers to be accepted, confirming that us-
ing multiple network paths enables more efficient usage of
network resources.

A detailed look at video performance improve-
ment: To understand the impact of virtualization on video
quality in more detail, we plot in Fig. 5 the CCDF of the
fraction of time for which a video flow does not receive its
required bandwidth. It is seen that when no virtualization
is employed (i.e. α = 0), approximately 3% of flows experi-
ence some level of degradation, with around 1% of flows not
receiving their required bandwidth more than half the time
(i.e., being severely degraded). By contrast, with our scheme
that virtualizes 80% of the link capacity, less than 0.8% of
flows experience any degradation at all (with β = 10), and
this number can be reduced to below 0.5% if bulk transfers
elasticity is increased to β = 60.
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Figure 5: Video bandwidth unavailability CCDF

Summary: The key observations from our evaluation are
that: (a) Even without WiFi pooling, virtualization signifi-
cantly improves video performance, by virtue of being able
to identify and squeeze elastic (bulk transfer) traffic, (b)
The more bandwidth a user permits their ISP to virtual-
ize (parameter α), the more video performance improves for
that user, (c) The higher the slack β chosen for bulk trans-
fers, the better video performs, (d) WiFi pooling (aka space
scheduling) improves video performance somewhat, while
bulk transfer rates are significantly improved (recall that
video flows are not migrated but bulk transfers are).

5. PROTOTYPE IMPLEMENTATION AND
EXPERIMENTATION

We prototyped our scheme in a small testbed, depicted in
Fig. 6, hosted in a 18m x 12m two-level shed, to emulate
a small part (3 homes, each with multiple clients) of a res-
idential ISP network. The objectives of this experimental
setup are to demonstrate the feasibility of our scheme with
real equipment and traffic, and to evaluate the benefits of
virtualization for real video and bulk-transfer streams.

5.1 Hardware and Software Configuration
Network Topology: The clients are within range of

their home AP, as well as the other two APs. Each AP
has broadband capacity 10 Mbps (achieved by disabling
auto-negotiate and forcing the interface speed), emulating
a DSL/cable/PON service. The APs connect back to an ac-
cess switch (emulating a DSLAM, cable head-end, or OLT),
which is back-ended with an OpenFlow capable Ethernet
switch. This connects through a network of switches (em-
ulating the ISP backbone network) to the controller (that
implements the API) and to a delay emulator that intro-
duces 5 ms of delay before forwarding traffic on to the servers
through the corporate network (the delay emulator and cor-
porate network together emulate the Internet).
Openflow switch: Our switch was a 64-bit Linux PC

with 6 Ethernet ports, running the OpenFlow 1.0.0 Stanford
reference software implementation. It supported 200 Mbps
throughput without dropping packets, which is sufficient for

Web server
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network 
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Figure 6: Network Architecture

our experiments. The switch has a default best-effort FIFO
queue for each home, and a separate queue was created for
each flow that made a successful API call to the controller.
Linux Hierarchical Token Buckets (HTBs) assure minimum
bandwidth to those flows, providing the “slicing” function.

Network controller: We used the POX OpenFlow con-
troller and developed Python modules that used the messen-
ger class to execute the API calls using JSON from our video
and bulk-transfer servers. Successful API calls result in the
installation of a flow table entry at the OpenFlow switch
to direct the traffic along the desired path. We also im-
plemented the algorithm described in §3.3 at the controller,
that makes call admission decisions, and polls the switch
every 10 seconds to check the volume sent for each bulk-
transfer flow, computes the minimum bandwidth required
to complete the transfer within the agreed time, and con-
figures this for the HTB queue at the switch. This periodic
reconfiguration of bandwidth for bulk-transfer flows involved
very low transmission overhead (of the order of a few bytes
per second per flow).

Video server: A Python scripted video on demand server
was developed using Flup. For each user video request, the
server calls the API via a JSON message to the network
controller. An example is: {hello: jukebox, type: minbw,
nwsrc: 10.10.7.31/32, nwdst: 10.10.5.18/32, proto: 6,
sprt: 8080, dprt: 22400, bw: 7600}. In this case the server
requests a minimum bandwidth of 7.6 Mbps for TCP on the
path from 10.10.7.31:8080 (server) to 10.10.5.18:22400

(client). The server executes a new VLC (v2.0.4) instance



for each video stream, and periodically renews the band-
width reservation until user video playback ends with TCP
disconnection.
Bulk transfer server: When the bulk transfer server re-

ceives a request from a client, it calls the API at the network
controller via a JSON message. An example is: {hello: juke-
box, type: bulk, nwsrc: 10.10.7.31/32, nwdst: 10.10.5.

18/32, proto: 6, sprt: 24380, dprt: 20, len: 1800000, dead-
line: 3600}. In this case the server requests a bulk transfer
of 1.8GB by TCP on the path from 10.10.7.31:24380 to
10.10.5.18:20. The deadline parameter indicates that the
transfer can take up to 1 hour. If the controller accepts
the request, the flow is given a dedicated queue, treated as
“elastic”, and can be charged at a lower rate.

Wireless APs: We used standard TP-LINKWR1043ND
APs. The first set of experiments use the APs straight out-
of-the-box, while the APs ran in layer-2 mode (i.e. rout-
ing, DHCP, and NAT disabled) with dd-wrt v24 for space
scheduling experiments so that user devices could migrate
across APs without changing IP addresses or disrupting ac-
tive flows. Our network controller logs in to the APs via SSH
to migrate clients when needed using MAC address black-
listing. To identify clients that are within radio range of
each AP (and hence eligible for migration), we wrote a C
program for the AP that opens a monitor port on the WiFi
adaptor to put the AP in promiscuous mode, and logs all
WiFi client transmission signal strengths. The AP reports
the wireless neighborhood to the controller every 60 seconds
– the messaging overheads of this were minimal, at just a
few bytes per second.
User clients: Each home has three clients, implemented

using standard computers. Client C1 represents a large-
screen device (e.g. PC or TV) and client C2 a small-screen
device (e.g. tablet/phone) on which users watch videos,
while client C3 represents a PC or media gateway that does
both web-browsing and bulk transfers. Browsing took place
within Internet Explorer (IE) v10, and a web-page of 1.1
MB containing text and images is accessed. All videos were
played by the VLC IE plugin.
User Traffic: Clients run PowerShell scripts to automat-

ically generate traffic representative of the average home.
Clients C1 and C2 are either idle or streaming video, and a
Markov process controls the transitions, with 40% of time
spent idle and 60% watching video. Client C1 streams a
high bandwidth video in MPEG-1/2 format, allocated a
peak bandwidth of 7.5 Mbps, and having mean rate of 5.9
Mbps averaged over 3-second interval samples. Client C2
streams a lower bandwidth video in MPEG-4v format, al-
located a peak bandwidth of 2.1 Mbps and having a mean
rate of 1.3 Mbps. Client C3 can be in idle, browsing, or
bulk-transfer states. For browsing it opens IE and loads a
1.1 MB web-page from our web-server. The user is assumed
to read the web-page for 10 seconds, reloads the web-page,
and the process repeats. We disabled IE’s cache so that it
downloaded the full web page on every access, which lets
us compare the download times for the page across various
runs. For bulk-transfers the file sizes were chosen from a
Pareto distribution with shape parameter 4.5, and scale pa-
rameter such that files are between 100 and 500 MB with
high probability. The idle periods are log-normal with mean
10 minutes and standard deviation 2 minutes.
Metrics: The video streaming quality is measured in

terms of Mean Opinion Scores (MOS). To automatically

App
α = 0 α = 0.8 α = 1

mean std mean std mean std
C1 MOS 2.87 0.44 3.10 0.31 3.25 0.01
C2 MOS 3.25 0.00 3.25 0.01 3.25 0.01

Page load (s) 2.84 0.86 3.10 1.61 4.85 3.55
FTP stretch 1.60 0.20 1.97 0.77 2.45 1.07

Table 1: Video, browsing, and ftp performance with
varying virtualization factor α.

evaluate MOS, we rely on the technique of [18] that com-
bines initial buffering time, mean rebuffering duration, and
rebuffering frequency to estimate the MOS (with a config-
ured playback buffer of 3 seconds). Our VLC IE plugin was
instrumented with Javascript to measure these parameters
and compute the MOS. Our client script also measured the
times taken for each bulk transfer and web-page download.

5.2 Experimental Results
We conducted tens of experiments varying the user se-

lected parameter α that controls the degree of virtualiza-
tion, and the elasticity β for bulk transfer flows. The im-
pact of these parameters on video quality, file transfer times,
and browsing delays is discussed next with time scheduling
(§5.2.1) and space scheduling (§5.2.2).

5.2.1 Virtualizing Individual Access Links
In our first set of experiments, each home’s access link

is independently virtualized. Consequently, broadband ca-
pacity is not shared across homes, and client migrations are
disallowed – this solution is easier to deploy at scale since
it does not require any modifications to the home gateways,
but has potentially reduced benefits as multiple paths to
household clients are not exploited.

In table 1 we show how the quality for the various appli-
cations depends on the fraction α of household link capacity
that is virtualized. The low-rate video (2.1 Mbps peak) on
client C2 always gets a near-perfect MOS of 3.25. This is
unsurprising, since a fair share of the link capacity suffices
for this video to perform well in our experiments, and reser-
vations are not necessary. The high-rate video stream (7.5
Mbps peak) on client C1 however sees marked variation in
quality: disabling virtualization with α = 0 makes the video
unwatchable most of the time, with low average MOS of
2.87 (standard deviation 0.44), while complete virtualiza-
tion with α = 1 always successfully allocates bandwidth to
this stream, yielding a perfect MOS of 3.25. With α = 0.8,
the average MOS degrades to 3.10 (standard deviation 0.31)
since allocations fail when the other video stream is also ac-
tive.

The table also shows that α has the converse effect on web-
page load time: when α = 0, the web-page loads in 2.84s
on average (standard deviation 0.86s), while increasing α to
0.8 and 1 steadily increases the average time taken for page
loads; furthermore, the standard deviation also increases,
indicating that downloads times become more erratic as α
increases. This is not surprising, since web-page downloads
(and mice flows in general) will not allocate resources via
the API call, and their performance suffers when bandwidth
is allocated to other reserved flows. This trade-off between
video quality and web-page load-time illustrates that users
should adjust their household α value (via trial-and-error or
other means beyond the scope of this paper) in line with



their traffic mix and the relative value they place on each
traffic type.
The performance of a bulk transfer flow is measured in

terms of its “stretch”, i.e. the factor by which its transfer
delay gets elongated compared to the baseline case where it
has exclusive access to the entire access link capacity. Ta-
ble 1 shows that with no virtualization, bulk transfer flows
get stretched by a factor of 1.6, and the stretch increases
1.97 at α = 0.8 and 2.45 at α = 1. This is both expected
and desired, since increasing α allows the video streams to
get higher quality, which comes at the cost of stretching the
elastic bulk-transfers.

5.2.2 With Space Scheduling Added
We now pool home broadband capacity and begin with the

ideal case of α = 1 at all households. Recall that we only
allow migrations for clients that are engaged in bulk trans-
fers (known via the API call), thereby protecting disruptions
for video streams and best-effort (browsing) traffic. Every
10 seconds, our algorithm reassesses and reallocates band-
width to bulk transfer flows, and can remap bulk-transfer
clients to other APs in order to leverage alternate paths of
higher available capacity.
Our results showed that the stretch factors for bulk trans-

fers in the three households reduced significantly, from the
original values of (1.92, 2.19, 2.08) to (1.37, 1.73, 1.44) when
WiFi pooling is enabled. We could visually see instances
where a household is doing video and bulk transfer, and our
algorithm migrates the bulk transfer to an idle neighbor AP.
It can be seen that virtualizing the WiFi pool makes “peak
demand offload” possible. This reduces transfer time by 20-
30% without impinging on other (video and web-browsing)
services in the network, and is therefore beneficial to all par-
ties.
We also conducted experiments in which users had dif-

ferent traffic profiles. Unsurprisingly, we found that WiFi
pooling is more beneficial to power users, as it lets them tap
into unused bandwidth from neighboring homes. However,
this affects neither the quality for the light users, nor their
Internet expense, since the ISP can account for downloads
on a per-device basis that can then be billed to the appro-
priate household. Moreover, a user who is uncomfortable
has the option to opt out of WiFi pooling or reduce their α
value.

6. RELATED WORK
The body of literature on QoS/QoE is vast, and bandwidth-

on-demand capabilities have been envisaged since the days
of ATM, IntServ and RSVP. These mechanisms equip the
ISP with tools to manage quality in their own network, but
little has been done by way of exposing controls to end-users
and content providers. Early attempts at exposing QoS to
external entities include the concept of bandwidth broker
for ATM networks [19], and protocols for QoS negotiation
(e.g. XNRP [23]). Tools for exposing network bandwidth
availability are starting to emerge, though predominantly
for data center users, such as Juniper’s Bandwidth Calendar-
ing Application [25] implemented over an OpenFlow-based
network. Bandwidth-on-demand for bulk data transfers be-
tween data centers has also been explored in the Globally
Reconfigurable Intelligent Photonic Network [16] and Net-
Stitcher [13], with the latter exploiting the elasticity in bulk
data transfer to schedule it during diurnal lulls in network

demand. Elasticity has also been leveraged by [4] to improve
ISP access network performance, with time-dependent pric-
ing explored in [11].

The works closest to ours are those that virtualize the
access [17] and home [31, 30] networks. NANDO [17] allows
multiple ISPs to share infrastructure, and consumers can
choose the ISP on a per-service basis. This model is very
attractive for public access infrastructure (e.g. in Australia
or Singapore), but it remains to be seen if private ISPs will
be willing to share infrastructure with each other. In [31],
the home network is sliced by the ISP amongst multiple
content providers. With this approach the ISP cedes long-
term control of the slice to the CP (it is however unclear
what policies dictate the bandwidth sharing amongst the
slices), which is different from our architecture in which the
ISP only “leases” well-specified resources to the CP on a
short-term per-flow basis. Both models have merits and are
worth exploring, though we believe our approach is likely to
be more palatable to ISPs as they can retain more control
over their network. Lastly, [30] gives users control of how
their home network is sliced, but requires a higher level of
user sophistication that we have tried to bypass.

The concept of WiFi pooling has also been studied before,
with works such as [10] showing increase in neighborhood
throughput from resource pooling. Note that unlike many
prior approaches, we effect our solution under centralized
SDN control of the APs and do not demand changes at
end-user clients, a principle that is also being followed in
commercial deployments we have cited earlier.

7. CONCLUSIONS
In this paper we have proposed an architecture for virtu-

alizing the access network via open APIs to enable dynamic
service quality management. Our architecture provides the
motivation and means for all parties to engage: content
providers can selectively choose to enhance service quality
for flows in line with their business models; ISPs can mone-
tize their access infrastructure resources on a per-flow basis
without revealing network internals; and users can readily
adjust the degree of virtualization to suit their usage pat-
tern. We developed an algorithm that achieves efficient vir-
tualization by leveraging the time elasticity of bulk transfer
applications, as well as the spatial overlap of WiFi coverage
in urban areas. We simulated our algorithm on real traffic
traces comprising over 10 million flows to show that virtual-
ization can reduce video quality degradations by 50-70%, for
a modest increase in bulk transfer delays. Finally, we proto-
typed our scheme on a small testbed comprising OpenFlow-
compliant switches, off-the-shelf access points, and unmod-
ified clients, to show how the user can control the trade-off
between video MOS, bulk transfer rates, and web-page load-
times.

Our work is a first step towards showing how the agility
and centralization afforded by SDN technology presents a
unique opportunity to overcome the long-standing impasse
on service quality in access networks. Needless to say, many
challenges are yet to be overcome to make this a reality, such
as enriching the API to include other application use-cases
(e.g. low-latency gaming or virtual reality applications), ex-
tending the API end-to-end across network domains via fed-
eration, and ultimately allowing end-users direct access to
APIs that let them customize their broadband experience to
match the devices and applications in their household.
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