
An Experimental Study of Security and Privacy
Risks with Emerging Household Appliances

(Position Paper)

Sukhvir Notra†, Muhammad Siddiqi†, Hassan Habibi Gharakheili†, Vijay Sivaraman†∗, Roksana Boreli∗†
† School of Electrical Engineering & Telecommunications, UNSW, Sydney, Australia.

∗ Networks Research Group, NICTA, Sydney, Australia.
Emails: {sukhvir.notra@student., m.siddiqi@, h.habibi@, vijay@}unsw.edu.au, {roksana.boreli@nicta.com.au}

Abstract—Smart household appliances, ranging from light-
bulbs and door-locks to power switches and smoke-alarms, are
rapidly emerging in the marketplace, with predictions that over
2 billion devices will be installed within the next four years. How-
ever, security implementations vary widely across these devices,
while privacy implications are unclear to users. In this paper we
dissect the behavior of a few household devices, specifically the
Phillips Hue light-bulb, the Belkin WeMo power switch, and the
Nest smoke-alarm, and highlight the ease with which security and
privacy can be compromised. We then propose a new solution
to protect such devices by restricting access at the network-level.
Our solution does not require changes from device manufacturers,
reduces burden on the end-users, and allows security to be offered
as an overlay service by the ISP or from a specialist provider in
the cloud.

I. INTRODUCTION

The home is becoming increasingly “smart”, driven by
emergence of Internet-connected appliances, referred to as the
Internet-of-Things (IoT). This enables consumers to remotely
monitor and manage their home environment [1] – we can
lock/unlock doors from miles away, smoke alarms can alert
your mobile phone when a fire is detected, and lighting systems
can be controlled remotely. Surveys in the US [2] indicate
personal or family safety, property protection, lighting/energy
management, and pet monitoring as top motivations for use of
such devices, with 51% of those surveyed willing to pay in
excess of $500 for a fully-equipped smart-home.

IoT devices are increasingly equipped with sensors (cam-
eras, microphones, motion detectors, etc.) and actuators (e.g.,
lights, speakers, locks), which raise privacy and security con-
cerns at an unprecedented scale. For example, cameras and
microphones built into surveillance equipment can be used
by hackers to spy on family activities. There are reported
cases [3] of hackers breaking into Internet-connected baby
monitors to speak obscenities and intrude on the family. Some
IoT applications are tightly linked to sensitive infrastructures
and strategic services such as water/electricity distribution and
surveillance of the assets. Other applications handle sensitive
information about people, such as their location and move-
ments, or their health and purchasing preferences. A smart
home lets a legitimate user control all of his/her devices with
ease. Unfortunately, it also provides a platform for the attackers
to hack into the home network, and remotely control various
automated systems. In this paper we explore the network
behaviour of three IoT devices including the Phillips Hue

light-bulb, Belkin WeMo power switch, and Nest smoke-
alarm. Based on experimental evaluation, we highlight and
demonstrate the lack of encryption, appropriate authentication,
message integrity checks and also the privacy implications for
these IoTs.

Existing solutions attempt to improve security of each
device by embedding it into IoTs, which requires changing
existing communication mechanisms and protocols. These em-
bedded solutions aim at enhancing encryption, authentication,
and key management. However, implementing such solutions
may not be feasible on a large scale, with potentially high
additional costs compared to the cost of IoT devices, and
with resource intensive overheads in terms of computational
processing and power consumption. Moreover, enhancing the
products in this way could require redesign of physical struc-
ture, which may not be an option for some IoTs. This leads us
to believe that a network-level approach can be more efficient
and acceptable implementation choice. We advocate dynamic
access control rules and policies, to augment the device-level
security provided by the manufacturers. Also, due to the wide
range of IoT devices and communication protocols, we believe
that the security needs to be outsourced as a service (i.e.
SaaS) to a “specialized” provider. The SaaS provider would
then maintain a database of specific rules/policies for IoTs.
Whenever a new IoT device is connected to the network,
the network user, administrator or even the ISP could query
protection methods from the SaaS provider. In this paper, we
provide the following contributions.

• We study the network activity of three devices including
Phillips Hue light-bulb, the Belkin WeMo power switch,
and the Nest smoke-alarm in our lab, and demonstrate the
ease with which security and privacy can be compromised
for these IoTs, and

• We develop a network-level access control solution that
further strengthens any security mechanisms that may
exist in the IoT device, and demonstrate its value for the
three devices considered.

The remainder of the paper is organized as follows: §II
summarizes the relevant prior work. In §III we demonstrate
the security and privacy vulnerabilities of selected IoT devices.
We describe our solution and experimental results in §IV, and
the paper concludes in §V.

II. BACKGROUND AND RELATED WORK

Security and privacy of IoT is in its infancy and most of the
research work is on understanding and identifying the security
and privacy threats and searching the existing suite of security
techniques to look for appropriate solutions [4]. Most of the
researchers advocate device embedded security architectures.
Some researchers propose to standardize IoT communication
protocols, for example, DTLS optimization has been suggested
to secure the IoT data exchange [5]. Implementation of IEEE
802.15.4-compliant link layer security procedures is advised
in [6] and a lightweight encryption/decryption method for ID
authentication among nodes in sensor layer has been presented
in [7]. Concepts from Artificial Immune System (AIS) have
been imported to detect attacks on IoT and have used those
concepts to develop an IoT intrusion detection system with
dynamic defense [8], [9]. VIRTUS [10], a middleware solution
for management of applications in IoT environments adopts
open standards such as XMPP and OSGi. Our demonstration
of risks associated with IoT devices in this paper is inspired by
[11] and [12]. However, they only present some vulnerabilities
of IoT devices and develop attacks accordingly and the solution
is not proposed.

Location privacy system based on the concept of Virtual
ID, that only exposes location in critical situations, is proposed
in [13]. Location privacy in the context of requested network-
based services with the ability of automated privacy choices
has been developed in [14]. Optimised implementation of
ECDSA and token based access to CoAP resources have been
used to develop an access control mechanism in [15].

Most of the prior works either partly address the problem
or propose high-level security architectures involving changes
to the way IoT devices are currently designed and commu-
nicating. With hundreds of IoT device manufacturers, it is
almost impossible to come up with a device embedded security
solution that caters to all the security and privacy threats for
a variety of IoT devices with varying capabilities. Also due to
the miniature size of many IoT devices with limited computing
capabilities and power resources make it impossible to apply
extensive computing-rich security algorithms. We also believe
that device embedded solutions requires all manufacturers to be
on board which is a hard task. Our approach however assures
security by applying a dynamic set of network-level rules to
limit IoT access to/from legitimate entities (i.e. Apps, servers,
and users).

III. DEMONSTRATING SECURITY AND PRIVACY RISKS

In this section we present our findings about the vul-
nerabilities (ranging from encryption, authentication, access
control, message integrity and suspicious private data transfer),
associated with selected IoT devices. We have selected three
devices that are arguably the ones most popularly purchased
and deployed today: the Nest Smoke-Alarm, the Hue light-
bulb, and the WeMo Motion Switch. For all these devices
installed in our lab, we have captured the network activity
using the Wireshark packet analyzer.

A. Operational Models

For all IoT devices, we have identified three main models
of communication between the user, IoT and the cloud-based

IoT IoT

Internet

(a)

IoT

Internet

(b)

IoT

Internet

IoT

(c)
Fig. 1. Operational model: (a) Direct, (b) Transit, (c) External server

server maintained by the manufacturer, as shown in Fig. 1.
“Direct” access model allows the user to directly communicate
with the IoT device (e.g. Philips Hue light-bulb and WeMo mo-
tion/switch) via the mobile App, then as depicted in Fig. 1(a),
the IoT device updates the server of the current status. It is also
possible to control the IoT device via the web portal provided
by the manufacturer. “Transit” model is mainly used for IoT
devices those do not have the capability to directly exchange
data with the Internet-based server. These type of devices (e.g.
Fitbit fitness tracker) do not have Wi-Fi interface and generally
use other means of communication such as Bluetooth and Near
field communication (NFC). In order to communicate with the
server to retrieve the required data, the user’s phone is used as a
relay/bridge for data exchange, as shown in Fig. 1(b). We note
that this model is not considered in the current study. Lastly,
in the “External” model, the user has no direct interaction with
the IoT device. Fig. 1(c) shows that the IoT device (e.g. Nest
Protect smoke alarm) communicates directly with the external
sever, and the only way for the user to retrieve relevant data,
such as current status, is via this external server.

B. Nest Smoke-Alarm

The first IoT device we used in our lab was a Nest Protect
smoke and carbon monoxide alarm. It communicates with user
through a mixture of verbal warnings, beeps, LED lights and
text alerts on the mobile app. It is equipped with a photoelectric
smoke sensor, a carbon monoxide sensor, a speaker, and four
sensors that detect motion, light, and heat. It is smart enough
to know when the user is in the same room or if he/she has
turned on the lights. These kind of capabilities would raise
a privacy concern for the users who may feel that they are
being monitored and tracked potentially. Using a 3-day long
traffic snapshot of our smoke-alarm, we have found that all
data exchange over the network is encrypted. Analyzing this
captured data shows that the Nest device is never contacted
by any external servers to retrieve information. All traffic to
external servers is initiated by smoke alarm sensor once a
day, during normal situation (i.e. no fire). However, in case
of emergency, the sensor immediately sends messages to a set
of external servers and then the user’s app is notified as well.

As depicted in Fig. 2, we have examined the flow of
data for Nest network activity by inspecting wireshark

Nest does a DNS query for : frontdoor.nest.com
8.8.8.8

frontdoor-srt01-production-40417003.us-east-1.elb.amazonaws.com

Nest does an encrypted TCP conversation with

above and then does a DNS query for:
transport04.rts08.iad01.production.nest.com

 8.8.8.8

DNS Response DN

ec2-50-19-134-217.compute-1.amazonaws.com

 8.8.8.8

Nest has an encrypted conversation with

above address (notification to App in

emergency) and then does a DNS query for:
log-rts08-iad01.devices.nest.com

devices-rts08-production.us-east-1.elb.amazonaws.com

Nest has a conversation with

above address. Then it makes a

DNS query for:
fd.rts08.iad01.nest.com

 8.8.8.8 8 8 8

frontdoor-rts08-production-

1713514578.us-east-

1.elb.amazonaws.com

Nest does an encrypted TCP

conversation with above

8 8

N

a

e
l

Nest has an encr pted con ersation ithN

DNS Response

DNS Response

Fig. 2. Nest communication process

packet capture. The smoke-alarm device authenticates itself
using its “OAuth2” token. We believe authentication occurs
during first conversation with frontdoor.nest.com.
After this stage, the Nest device talks to another server at
transport04.rts08.iad01.production.nest.com
which we shall refer to as “Notification server”. This server
is responsible for sending notifications to user’s App in case
of emergency. We corroborated this fact by conducting packet
capture of Nest mobile App traffic (using tPacketCapture
on Android), when the App is launched. We found that,
the size of data transfer to this server was less than 1 KB.
After concluding this conversation, Nest device does a DNS
query for log-rts08-iad01.devices.nest.com.
As suggested by the name of this server it seems to be
a “log server” which stores all data collected by the IoT
device. We also found that the size of this conversation was
about 20 KB on average, which is another indication of
the fact that this is the actual data storing server. Lastly,
Nest sensor concludes the daily sync process by contacting
to fd.rts08.iad01.nest.com. Relying on OAuth
2.0 protocol flow, we think this server could be potentially
used to obtain a new authentication token for next day sync
process. In order to inspect the Nest activity in case of
emergency, we conducted a fire test in our lab. We found
that the smoke-alarm followed the same process as during
unprompted daily sync activity, except the last conversation
(with fd.rts08.iad01.nest.com). We think it is
because Nest retains the previously allocated token for 24
hours and reuses it in case of emergency.

All things considered, Nest is actually quite a secure prod-
uct. All the communication from the smoke-alarm is encrypted.
Security is further enhanced by Single-Sign-On service with
OAuth2. This makes it very hard for someone to eavesdrop
and extract information about a user from the communication
between Nest sensor and servers.

In terms of privacy, there are a few concerns. The above
mentioned behaviour seems to suggest that the notification
server deals with the basic smoke-alarm functionality, i.e.
obtaining smoke alarm status from the device and notifying
the user on their mobile app. This leaves open the question
of the purpose of the log server, particularly since that com-
munication is an order of magnitude larger in volume than

the alarm functionality. This conversation also occurs after the
notification which raises concerns about its necessity. While
we cannot comment (due to encrypted conversations) on the
content of this data transfer, it has the potential to carry private
user information that is gained from motion and light sensors.

C. Hue Light-Bulbs

We now explore the network activity of Hue light-bulbs.
The Philips Hue Connected bulb allows the user to wirelessly
control the lighting system in the home. The user can adjust
intensity, set custom colors, color combinations, and schedules
via Philips Hue App for Android and iOS. Philips hue is also
very customizable and and can be configured to change the
state of the bulbs depending upon activity on other platforms
(such as Facebook) using the If-This-Then-That (IFTTT)
service. For example, the user can setup a recipe to turn the
light bulbs to colors from a photo (s)he has been tagged in or
turn the light off when user’s phone is out of the WiFi range.

We have installed the Philips hue starter package consisting
of three LED light bulbs and an ethernet enabled bridge. The
bridge acts as a controller for all the bulbs. All communications
from the App are directed towards the bridge. Bridge then
sends appropriate signals to the bulbs for a desired change,
using ZigBee Light link protocol. It is also possible to control
the lightbulbs from the meethue.com web-site when not
home. However, the users need to associate their bridge with
a specific account first.

When the Hue App is launched, it first generates a hash-
like username (in our case: v7Le0FDyDCh3NLcE) and then
checks to see if the bridge has its username “whitelisted”, by
issuing the following GET request:
GET /api/v7Le0FDyDCh3NLcE HTTP/1.1
Host: 129.94.5.95
Proxy-Connection: keep-alive
Accept-Encoding: gzip, deflate
Accept: */*
Accept-Language: en-us
Connection: keep-alive
Pragma: no-cache
User-Agent: hue/1.1.1 CFNetwork/609.1.4 Darwin/13.0.0

Note that the above 129.94.5.95 is the bridge’s IP
address. Here is the response from the bridge to the App, if it
is not authorized:
HTTP/1.1 200 OK
Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0
Pragma: no-cache
Expires: Mon, 1 Aug 2011 09:00:00 GMT
Connection: close
Access-Control-Max-Age: 0
Access-Control-Allow-Origin: *
Access-Control-Allow-Credentials: true
Access-Control-Allow-Methods: POST, GET, OPTIONS, PUT, DELETE
Access-Control-Allow-Headers: Content-Type
Content-type: application/json
["error":"type":1,"address":"/","description":"unauthorized user"]

In this case, the app asks the user to press the physical
button on the bridge while continuously sending GET requests.
Once the button is pressed, the bridge response changes as
following:
HTTP/1.1 200 OK
Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0
Pragma: no-cache
Expires: Mon,21 April 2014 23:00:00 GMT
Connection: close
Access-Control-Max-Age: 0
Access-Control-Allow-Origin: *
Access-Control-Allow-Credentials: true
Access-Control-Allow-Methods: POST, GET, OPTIONS, PUT, DELETE
Access-Control-Allow-Headers: Content-Type
Content-type: application/json
["success":"username":"v7Le0FDyDCh3NLcE"]

At this point the app (i.e. username) is added to the
whitelist maintained by the bridge. In order to control the
lights, the app makes PUT request with appropriate message
to the bridge, using the whitelisted username. Bridge then
replies back with HTTP/1.1 200 OK response to indicate a
successful operation.

Fig. 3. Wireshark capture of Philips Hue GET message

Fig. 3 shows an example of our Wireshark capture of GET
request/response exchanged between the bridge and app, all in
plain text. The top two lines reveal the legitimate username
and the bridge’s IP address. Also, the whitelist is identified in
the response on the bottom in Fig. 3. It also contains current
status of lights (brightness/color/hue/alarm status, etc) in plain
text giving an attacker great insight into the current state of
affairs inside victim’s house.

Philips Hue light-bulb was hacked in 2013 by [11] using
the above vulnerability. It was shown that the username is not
random, rather just MD5 hash of MAC address of the mobile
device on which the app is running. Since then, Philips app
has changed the mechanism to create the username. However
the communication is still in plain text. We have exploited
this vulnerability by writing a python script (which we made
available on GitHub [16]). To conduct this attack, potential
attacker needs to capture traffic (either GET or PUT) between
a legitimate user and Hue bridge. This capture can then be
used to extract the bridge’s IP and the whitelisted username
(as shown in Fig. 3). Our code then uses this username to
connect to the victim’s bridge. It is then possible to retrieve
other whitelist usernames by making a GET request using our
code. The attacker can also take full control of the bridge
by making PUT requests, using our code. For example the
following shows a PUT request to turn the lights on with
brightness of 254 and color temperature of 50:

PUT /api/v7Le0FDyDCh3NLcE/lights/1/state HTTP/1.1
Host: 129.94.5.95
Content-Length: 55
Accept-Encoding: gzip, deflate, compress
Accept: */*
User-Agent: python-requests/2.2.1 CPython/2.7.5 Darwin/13.2.0

{"transitiontime": 0, "on": true, "bri": 254, "ct": 50}

The bridge’s response is shown below:

HTTP/1.1 200 OK
Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0
Pragma: no-cache
Expires: Mon, 1 Aug 2011 09:00:00 GMT
Connection: close
Access-Control-Max-Age: 3600
Access-Control-Allow-Origin: *
Access-Control-Allow-Credentials: true
Access-Control-Allow-Methods: POST, GET, OPTIONS, PUT, DELETE, HEAD
Access-Control-Allow-Headers: Content-Type
Content-type: application/json

[{"success":{"/lights/1/state/transitiontime":0}},
{"success":{"/lights/1/state/on":true}},
{"success":{"/lights/1/state/ct":153}},
{"success":{"/lights/1/state/bri":254}}]

D. WeMo Motion Switch

Lastly, we experimented with the Belkin’s WeMo motion
sensor and switch kit which is designed to give a wireless
control of home appliances to the user. Both of these devices
are connected to the Internet and notify the user of any activity
via Belkin’s WeMo App. WeMo Switch is essentially a power
socket and any electrical device such as desk lamps, coffee
machines, room heaters etc, can be connected to it. WeMo
Motion is an Internet-connected motion sensor which can
notify the user if a motion is detected by sending a notification
to the App. The user can configure this kit by inserting rules via
the App interface regarding a certain action to be taken upon
detection of a motion. For example, Turn the WeMo switch on
for 5 minutes when WeMo motion detects a motion.

When the App is launched, the phone broadcasts a SSDP
discovery request to the multicast group 239.255.255.250.
If the WeMo switch/motion is in the same LAN as the
phone, phone receives a reply from them. If a reply is re-
ceived, then the phone communicates with the devices directly
and then the devices notify the Belkin’s cloud-based server
(api.xbcs.net) of any change made by the user. If App
doesn’t receive any SSDP reply, all commands are relayed
to the devices via cloud-based server, assuming the “remote
access” is enabled on the App by the user.

We have identified a set of security issues with this IoT
device listed as following:

1) WeMo devices use a SOAP API for all communications
between App and the device. Note that both ends have
to be in the same LAN. This SOAP communication is
entirely in plain text. This is a vulnerability as an attacker
can learn the format of communication and can also
capture packets from legitimate user and replay them to
the device at a later stage.

2) On observing this communication we discovered that the
WeMo devices used no authentication method to ensure
that the commands were coming from a legitimate device.
This is a major vulnerability and can be easily exploited
by an attacker issuing correctly formatted requests to the
device.

3) WeMo Motion/Switch list all the services offered by these
devices on an exposed xml interface, reported by the
SSDP discovery process. Each of these services then
list actions (and their arguments) that can be performed
by these devices, for example: Controlling the Switch
(on/off), Get the current status of the switch (on/off), Get
a list of close by Access Points (including their encryption
mode and signal strengths) to these devices.

4) These devices also have only two fixed transport ports
that are used to listen in for user commands (49154 and

POST /upnp/control/remoteaccess1 HTTP/1.1

SOAPACTION: "urn:Belkin:service:remoteaccess:1#RemoteAccess”

Content-Length: 611

Content-Type: text/xml; charset="utf-8

HOST: 129.94.5.93

User-Agent: Sukhvir Notra-HTTP/1.0

<?xml version="1.0" encoding="utf-8"?>

...<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"

s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

... <s:Body>

... <u:RemoteAccess xmlns:u="urn:Belkin:service:remoteaccess:1">

... <DeviceId>358240057593091</DeviceId>

... <dst>0</dst>

... <HomeId></HomeId>

... <DeviceName>HACKER</DeviceName>

... <MacAddr></MacAddr>

... <pluginprivateKey></pluginprivateKey>

... <smartprivateKey></smartprivateKey>

... <smartUniqueId></smartUniqueId>

... <numSmartDev></numSmartDev>

... </u:RemoteAccess>

... </s:Body>

...</s:Envelope>

(a) Request

HTTP/1.1 200 OK

CONTENT-LENGTH: 577

CONTENT-TYPE: text/xml; charset="utf-8”

DATE: Sat, 21 Jun 2014 12:17:35 GMT

EXT:

SERVER: Unspecified, UPnP/1.0, Unspecified

X-User-Agent: redsonic

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"
s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"><s:Body>

<u:RemoteAccessResponse xmlns:u="urn:Belkin:service:remoteaccess:1”>

<homeId>1101801</homeId>

<pluginprivateKey>aca02649-e097-4079-859e-76ed2666fdec</pluginprivateKey>

<smartprivateKey>7b2b5736-3dfe-40e0-b2d5-91370faaa588</smartprivateKey>

<resultCode>PLGN_200</resultCode>

<description>Successful</description>

<statusCode>S</statusCode>

<smartUniqueId>358240057593091</smartUniqueId>

</u:RemoteAccessResponse>

</s:Body> </s:Envelope>

(b) Response

IOTlab

(c) App interface

Fig. 4. WeMo switch remote access: (a) request, (b) response, and (c) app interface

49153). Lack of entropy makes this a potential vulner-
ability, which can be exploited by targeted messages to
these devices.

5) These devices use STUN protocol to give Belkin servers
the ability to transverse user’s NAT and give them the
access to these devices. However these devices don’t use
SSL to connect to the STUN server which leaves the
possibility of Man-In-Middle-Attack (MITM) open.

1) no-NAT Attack: Based on above vulnerabilities, we
have written a Python script to emulate an attack. Our attack
focuses on vulnerabilities 2, 3, and 4 as listed above. Our code
initially conducts an SSDP discovery process to detect the IP
address of the WeMo devices and the port they are listening
on (49154 or 49153). Once we have the IP and the port, our
code then transmits properly formatted SOAP commands to the
devices to control the device or query it for any information.
These SOAP commands use the actions and arguments as
reported by these devices during the SSDP discovery process.

Our code can be found online at Github [16]. The script
exploits the fact that WeMo devices don’t use any authentica-
tion or access control methods to protect their devices. Hence
anyone can control these devices with a properly formatted
SOAP query. In this attack, we assume the WeMo devices
have public IP addresses without NAT enabled.

2) Remote Access Attack: If WeMo is protected by NAT,
it is still possible to take control of these devices remotely.
Since no authentication is employed by WeMo devices, anyone
with one time access into victim’s LAN will then be able to
control the devices from anywhere in the world. However, this
attack is not scalable. An attacker merely need to download the
WeMo App and gain access to victim’s LAN. Once inside the
LAN, attacker launches their standard WeMo app. App will
then conduct a SSDP discovery (per usual) and locate victim’s
WeMo devices. Attacker can then enable the remote access
for his app by going to Setting→Remote Access→Enable
Remote Access. Now the attacker’s app has remote access
to the victim’s WeMo devices. The attacker can use this to
exploit victim’s WeMo devices from anywhere in the world

at anytime. This process is also emulated by our code. At-
tacker just needs to pick a DeviceName and DeviceId,
then send a properly formatted SOAP request to the devices
(Fig. 4(a)). Upon arrival of this request, the WeMo devices
reply back with a set of credentials for remote access including
homeId, pluginprivateKey, smartprivateKey and
smartUniqueId, as shown in Fig. 4(b).

Now when the attacker tries to control WeMo devices from
the app, the illegitimate request is sent to Belkin’s servers
with proper credentials as provided by WeMo devices. The
servers then relay this requests to the IoT devices. This is
made possible by the fact that the Belkin’s servers are aware of
“translated public address” (assuming NAT) for these devices
using STUN protocol.

Note that in order to explicitly demonstrate our attack, we
chose “HACKER” as our device name as shown in Fig. 4(a).
However, in real practice more subtle name such as “My
Phone” can be chosen to avoid suspicion from legitimate user,
as the app’s remote access interface (Fig. 4(c)) is shown to all
user’s that are linked to that particular device.

Needless to mention, our code [16] stops after it re-
ceives the credentials from WeMo devices. However, in
order to attack these devices an attacker can contact
http://api.xbcs.net:8443 with a properly formatted
request (using these credentials) and the Belkin server will
relay the commands to the devices.

IV. OUR SOLUTION: NETWORK-LEVEL PROTECTION

We now propose our solution to protect IoT devices at
the network level. In our model, an external entity, called the
Security as a Service (SaaS) Provider, maintains a database
of access control rules that secure the various IoT products.
This rule database is maintained in the cloud and can be
updated whenever new vulnerabilities emerge. This service
can be queried dynamically via a simple API that takes as
input MAC addresses and/or device friendlyName and other
optional device specific arguments. We have developed a code

that represents a SaaS provider’s API which is available at
[16]. Successful API call returns a set of rules. In what follows
we illustrate how this concept can be applied to secure the
three devices whose vulnerabilities we have illustrated in the
previous section.

A. Privacy Protection for the Nest Smoke-Alarm

In terms of security, Nest smoke-alarm is a robust
product. However, there are potential privacy concerns for
the user pertaining to activity monitoring. As mentioned
in §III-B, Nest device seems to transfer 20KB of data
daily to the log server. While we don’t know the con-
tents of this data (because of encryption), the size of this
transfer is alarming. In order to safeguard the user’s pri-
vacy we found that blocking access to the log server (i.e.
log-rts08-iad01.devices.nest.com) prevents data
transfer without jeopardising Nest’s ability of notifying user
in emergency. We applied the following rule which was
obtained from SaaS provider (queried by Nest’s MAC address
18-b4-30-xx-xx-xx) and conducted a fire test:

{"firewall": "Enabled",
"allow": ["174.129.5.148",

"50.19.134.217",
"23.23.239.159"],

"direction": "Outbound",
"device": ["Nest Labs Inc."]}

This rule blocks all outgoing traffic by enabling firewall
with the exception of three destinations representing necessary
servers (i.e. authentication, notification and token renewal).
After applying this rule on the network (i.e. home gateway)
and conducting a fire test, we found that the app still received
a fire notification. Needless to mention in our experimental
setup we did not have any other Nest products installed, to test
whether inter-connectivity between multiple Nest products is
lost because of our block.

B. Securing Access to Household Devices

Note that our lab setup is not behind the NAT and the
Hue bridge/WeMo switch have public IP addresses. In typical
home networks NAT essentially protects these devices from an
Internet-based attacker. But these IoTs are vulnerable in enter-
prise environment such as small-office-small-home (SOHO),
campus networks etc. In order to secure the Hue device when
the bridge is not behind the NAT server, we applied a dynamic
access control rule (as below) on inbound traffic of home
gateway, using SaaS rule repository:

{"firewall": "Enabled",
"allow": ["198.142.228.10",

"162.13.15.30"],
"direction": "Inbound",
"device": ["Philips Lighting BV"]}

In this case, the allow field contains the permitted source
IP addresses (i.e. legitimate user’s phone and Philips server).
Note that, we have also implemented an Android app which
reports the current IP of the legitimate user’s phone to our
SaaS provider. This enables our SaaS code to update the
aforementioned rule and provides dynamic access control.
We have tested this simple network-level solution and found
that our “attacker” script could not reach the bridge inside
the lab (i.e. home) whereas the legitimate user was able to
communicate with bridge.

WeMo’s switch can be protected in a similar way as Hue’s
IoT against no-NAT attack. However, the remote access attack
can only be avoided by restricting access to the device within
the LAN (i.e. home network behind NAT). This could be
achieved by isolating WeMo devices using separate VLANs.

V. CONCLUSIONS

As smart homes increasingly adopt IoT devices, security
and privacy become important concerns. In this paper we have
highlighted real vulnerabilities in selected popular devices used
in today’s home environment, and explored a solution that
protects them at the network-level. We undertook extensive
analysis of the captured packet traces to identify current
vulnerabilities, and developed scripts that can automate the
attacks at scale. We have then developed a solution that allows
an external entity, such as the ISP or a SaaS provider, to install
appropriate access control rules in the network to protect these
IoT devices against external threats. We believe our tool is the
first step towards more sophisticated and comprehensive IoT
security and privacy assurance, and can be generalized and
extended to other devices in the future.

REFERENCES

[1] C. Wan and D. Low, “Capturing Next Generation Smart Home Users
with Digital Home,” Huawei, White Paper, Jun. 2013.

[2] iControl. (2014) 2014 State of the Smart Home.
[3] abcNEWS. (2013) Baby Monitor Hacking Alarms Houston Parents.

http://goo.gl/LPuJzg.
[4] H. Suo, J. Wan, C. Zou, and J. Liu, “Security in the internet of things:

A review,” in Proc. of Computer Science and Electronics Engineering
(ICCSEE), March 2012.

[5] S. Keoh, S. Kumar, and H. Tschofenig, “Securing the internet of things:
A standardization perspective,” Internet of Things Journal, IEEE, vol. 1,
no. 3, pp. 265–275, June 2014.

[6] D. Altolini, V. Lakkundi, N. Bui, C. Tapparello, and M. Rossi, “Low
power link layer security for iot: Implementation and performance
analysis,” in Proc. of Wireless Communications and Mobile Computing
Conference (IWCMC), July 2013.

[7] Q. Wen, X. Dong, and R. Zhang, “Application of dynamic variable
cipher security certificate in internet of things,” in Proc. of Cloud
Computing and Intelligent Systems (CCIS), Oct 2012.

[8] C. Liu, J. Yang, Y. Zhang, R. Chen, and J. Zeng, “Research on
immunity-based intrusion detection technology for the internet of
things,” in Proc. of Natural Computation (ICNC), July 2011.

[9] C. Liu, Y. Zhang, and H. Zhang, “A novel approach to iot security based
on immunology,” in Proc. of Computational Intelligence and Security
(CIS), Dec 2013.

[10] D. Conzon, T. Bolognesi, P. Brizzi, A. Lotito, R. Tomasi, and M. Spirito,
“The virtus middleware: An xmpp based architecture for secure iot
communications,” in Proc. of Computer Communications and Networks
(ICCCN), July 2012.

[11] N. Dhanjani. (2013) Hacking Lightbulbs. http://goo.gl/RY252I.
[12] N. Dhanjani. (2013) Reconsidering the perimeter security argument.

http://goo.gl/ukUELD.
[13] C. Hu, J. Zhang, and Q. Wen, “An identity-based personal location sys-

tem with protected privacy in iot,” in Proc. of IEEE Broadband Network
and Multimedia Technology (IC-BNMT), 2011 4th IEEE International
Conference on, Oct 2011.

[14] M. Elkhodr, S. Shahrestani, and H. Cheung, “A contextual-adaptive
location disclosure agent for general devices in the internet of things,”
in Proc. IEEE LCN Workshops, Oct 2013.

[15] A. Skarmeta, J. Hernandez-Ramos, and M. Moreno, “A decentralized
approach for security and privacy challenges in the internet of things,”
in Proc. of Internet of Things (WF-IoT), March 2014.

[16] S. Notra. (2014) UNSW IoT. https://github.com/sukhvir-notra/UNSW-IoT.

