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Abstract—Emerging body-wearable devices for continuous
health monitoring are severely energy constrained and yet re-
quired to offer high communication reliability under fluctu ating
channel conditions. Such devices require very careful manage-
ment of their energy resources in order to prolong their lifetime.
In our earlier work we had proposed dynamic power control as
a means of saving precious energy in off-the-shelf sensor devices.
In this work we experiment with a real body-wearable device
to assess the power savings possible in a realistic setting.We
quantify the power consumption against the packet loss and
establish the feasibility of dynamic power control for saving
energy in a truly-body-wearable setting.

Index Terms—Body-Area Wireless Networks, Dynamic Power
Control, Health Monitoring

I. I NTRODUCTION

Healthcare today is experiencing enormous cost pressures
from the necessity for monitoring patients with chronic med-
ical conditions. The global demographic trend towards an
ageing population, coupled with a sedentary lifestyle and poor
diet is leading to an increasing number of people living for
years (or even decades) with chronic conditions requiring
ongoing clinical management. The healthcare information
systems in use today are mainly designed to manage acute
illness, and are ill-equiped to cope with demands for pervasive
monitoring of chronic conditions. Wireless body-worn sensor
devices have the potential to provide a large scale and cost-
effective solution to this challenge. At Toumaz Technology,
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we are developing the wireless infrastructure for intelligent,
non intrusive, continuous patient monitoring.

For a body-wearable patient monitoring solution to be suc-
cessful the devices must be sufficiently small and lightweight
so as to not impede patient activity. At Toumaz we are
developing the ultra low-power SensiumTM“digital plasters”
(shown in figure 1) which are designed to be truly body-
wearable. This is a significant reduction in size over existing
prototype devices (such as the MicaZ motes [4] used in Har-
vard’s CodeBlue [11] project) while allowing for monitoring
of ECG, temperature, blood glucose and oxygen levels. The
SensiumTMcan also interface to 3-axis accelerometers and
pressure sensors; and multiple digital plasters can be attached
to a patient, allowing physiological data to be relayed backto
a basestation SensiumTMplugged into a PDA or Smartphone.

A small form factor inherently constrains the battery size.
The SensiumTMoperates on a flexible paper-thin printed battery
[10] with a capacity of around 20 mWatt-hours (in comparison,
the MicaZ motes operate on a pair of AA batteries which
provide a few Watt-hours of capacity). Such stringent energy
constraints require careful energy management.

Communication is the most energy consuming operation
that a sensor node performs [5], and can be optimised at mul-
tiple layers of the communication stack. At the physical layer,
we have innovated an ultra-low-power radio [13] suited to
body-area networks: our radio provides a proprietary50 kbps
wireless link over a distance of2-10 metres, and consumes2.7
mW at a transmit strength of−7 dBm (compare this to the
CC2420 radio [2] in MicaZ motes that consumes22.5 mW for
−7 dBm output). At the data-link layer, energy can be saved
by intelligent medium access control (MAC) protocols that
duty-cycle the radio, i.e. by turning the radio off whenever
packet transmission or receipt is not expected. Several such
MAC protocols have been developed in the literature (see [6]

Fig. 1. Toumaz SensiumTM Digital Plaster



for a survey). The B-MAC [9] protocol included in the TinyOS
distribution and its enhancements [1] provide versatilityto
the application in controlling the duty-cycling of the radio,
while at Toumaz we have developed our proprietary MAC
protocol [8] suited to body area networks. However, these
MAC protocols only controlwhen the radio is switched on,
they do not determine theoutput powerof the radio when it
is on. Further, the ability to vary the transmission power is
avaliable on most platforms (the SensiumTMsupports8 levels,
ranging from−23dBm to−7dBm output, while the CC2420
radio in the MicaZ motes provides32 levels ranging from
−25dBm to 0 dBm output).

In our earlier work [14] we had proposed dynamic power
control as a means of improving the energy performance
of body area sensor devices, and validated our proposed
algorithms using MicaZ motes. In this work we experiment
with the Toumaz Sensium platform and establish the effi-
cacy of dynamic power control for truly-wearable devices
which are specifically designed for health monitoring. The
SensiumTMoperates in the900MHz frequency spectrum (as
opposed to2.4GHz for the Micaz motes), and has a lower
number of output power levels (8 as opoosed to32 in the
MicaZ motes). Our focus is therefore on assessing the impact
of power control in trading off reliability of the wireless link
for energy efficiency in a realistic body-worn setting. Note
that the variable nature of wireless links in sensor networks
has been recorded in several empirical studies [16], [15], and
the idea of dynamically adapting transmit power has been
explored before [7], [3], [12]. However, these earlier studies
have targeted static deployments (such as for environmental
or structural monitoring applications) wherein variability in
wireless link quality over time is lower and slower. In con-
trast, our work considers wearable mobile devices where the
wireless link quality can change significantly and rapidly since
it is very susceptible to position and orientation of the human
body.

Our first contribution is to profile the wireless channel using
the SensiumTMplatform by emulating patient activity. We show
that the wireless channel can exhibit large variations in quality,
depending on the patient activity and orientation relativeto the
base station, thus making fixed transmit power sub-optimal;
setting a low transmit level results in excessive losses when
the link quality is poor, while setting a high transmit level
wastes energy when the channel is good. Next we assess the
potential savings afforded by power control, by evaluating
offline, the optimal power to be used at each time instant,
so as to expend minimum energy while maintaining reliable
communication. Though infeasible to implement in practice,
this evaluation allows an understanding of the potential bene-
fits of power control, and serves as a benchmark to compare
practical schemes. Finally, we adapt our previously proposed
power control scheme to the SensiumTMplatform, and quantify
the energy savings and reliability figures achieved by our
power control scheme. We show that the proposed scheme
achieves energy savings varying between14% and32% with
an acceptable decrease in reliability, highlighting the efficacy
of dynamic power control.

II. CHANNEL PROFILING

We begin by empirically profiling the temporal variations
in the quality of the wireless link between a body-worn
SensiumTMdevice and a fixed SensiumTMbase-station, as a
patient wearing the device performs various activities. The
patient was played by the first author. In each experiment
the device was strapped around the patient’s chest, simulating
continuous monitoring of heartbeat and ECG. The experiments
were conducted indoors in an office space containing 8 cubi-
cles. The base-station was placed at an elevation on one side
of the room to provide better line-of-sight coverage.

transmit level output power power draw
(dBm) (mW)

7 -6 2.8
6 -7 2.7
5 -9 2.6
4 -10 2.5
3 -12 2.4
2 -15 2.2
1 -18 2.0
0 -22 1.8

TABLE I
OUTPUT POWER SETTING AND TYPICAL BATTERY POWER DRAW FOR THE

TOUMAZ SENSIUMTM RADIO

The SensiumTMsupports8 RF output power levels which
can be controlled at runtime, and can provide an RSSI value
(varying between0 and 7, 0 being the lowest) for each
transaction. The output power (in dBm) and corresponding
energy consumption rate (in mW) for these8 levels are
shown in table I. To profile the wireless channel, we send
packets from the body-worn device to the base station at125
millisecond intervals. Each packet is sent at a successively
higher power level, reverting to level0 after all 8 levels have
been transmitted. This effectively allows us to sample the
channel at all8 power levels every second. At each power
level, the average RSSI at the base station is recorded; this
allows us to map the transmitted power level to the received
RSSI, across time (when a packet is lost, we record the RSSI
for that packet as−1). While we would like to ideally take
simultaneous measurements at all8 power levels, using a
small inter-packet spacing allows more-or-less simultaneous
measurement. We simulate three types of patient behaviour,
detailed below.

A. Fast Walk

This scenario has the patient walking back and forth in the
room for a few minutes at a reasonably active pace; the patient
stays between1 and5 meters from the base-station at all times.
The body device, strapped on to the patient’s chest, is assumed
to generate a packet every second (simulating a heartbeat/ECG
monitor) and transmits it at all8 output levels.

Figure 2 plots the RSSI recorded at the base station for
power levels0, 4 and 7 as a function of time (for ease of
visibility we only plot the first200 seconds). Note that for
any power level, the brisk movements of the patient result
in strong fluctuations in the RSSI, with the RSSI routinely
fluctuating by2 − 3 levels in a matter of seconds. Note also
certain trends with respect to time; as the orientation of the
patient changes (as the patient walks towards and away from
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Fig. 2. Fast walk: RSSI vs. time
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Fig. 3. Slow walk: RSSI vs. time

the base station), the channel quality shows a corresponding
increase or decrease.

B. Slow Walk

This scenario considers a slowly moving person, such as an
elderly or handicapped person with restricted mobility, who
walk slowly (one step every six seconds) towards and away
from a base station (simulating movement around a room, or
to a toilet). The RSSI recorded at power levels0, 4 and7 are
plotted in figure 3 (once again, we plot the first200 seconds of
the trace). Note that the variation in RSSI is much less rapid
as compared to the fast walk scenario. The channel quality
shows definite trends as the patient moves towards and away
from the base station, and maintains its value when the patient
is stationary. Again, it is clear that a fixed transmit power
would perform sub-optimally, wasting power when the channel
is good and causing packet losses when the channel is bad.
Clearly, the RSSI for lower power levels is below that for
higher levels, as we would expect.

C. Resting

In this scenario the patient sits down to rest on a chair
a few feet away from the base-station. Figure 4 plots the
RSSI over the first200 seconds at transmit levels0, 4 and
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Fig. 4. Resting: RSSI vs. time

7. Note that in this case the wireless link remains stable
for extended periods, changing occasionally to reflect the
patient’s orientation. Power control could potentially have
major benefits in this scenario; at the same time, a fixed power
scheme would once again be wasteful, since it would have to
cater to the worst case channel scenario.

Having gained a better understanding of the wireless chan-
nel under various patient activity scenarios, we quantitatively
assess the potential performance impact of adaptive transmit
power control in the next section.

III. O PTIMAL TRANSMIT POWER

We quantify the potential benefits of adaptive transmit
power control by computing what the “optimal” transmission
level might be for each of the three scenarios considered
before. We define the “optimal” as the lowest required transmit
power level (as a function of time) to achieve a RSSI value
greater than0. Further, we treat an RSSI of0 as a packet
loss; while this is conservative, it ensures that the optimal
scheme tries to keep the RSSI away from the lowest possible
level. Since we know the RSSI level corresponding to each
transmit power level, the optimal simply picks the lowest
power level which has an RSSI above0. Though this scheme
is not achievable in practice, it provides an upper bound on
potential savings.

We plot the chosen transmit level, as well as the received
RSSI for the optimal scheme in figure 5 (for ease of com-
parison the results of our practical power control scheme are
superimposed on this plot and will be discussed in the next
section). When the patient mobility is high and the channel
is varying rapidly the optimal scheme must vary the transmit
power frequently to maintain an RSSI of1, as seen in subplots
(a) and (b). Using the energy consumption values in table I)
we compute the energy consumption of the offline optimal
scheme. Comparing with the maximum power scheme (where
every packet is transmitted at power level7) the offline optimal
results in an energy savings of29%. Note however, that the
channel varies rapidly in this case, and a practical scheme
(which would have to predict future channel quality based
on past samples) may not be able to track the variations
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(a) Fast Walk: Chosen transmit levels
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(b) Fast Walk: RSSI at Base Station

0 50 100 150 200
0

1

2

3

4

5

6

7

Time (seconds)

P
ow

er
 L

ev
el

 

 

Aggressive
Offline Optimal

(c) Slow Walk: Chosen transmit levels
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(d) Slow Walk: RSSI at Base Station
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(e) Resting: Chosen transmit levels
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Fig. 5. Transmit power and associated RSSI for fast walk, slow walk, and resting scenarios under Offline Optimal and Aggressive power control schemes



accurately. We evaluate the performance of a practical scheme
in the following section.

In contrast the channel variations during slow walk are
significantly more gradual, as seen in figure 3. The channel
shows variations depending on the patient’s orientation (facing
towards or away from the base station) as well as the distance
to the base; note the gradual increase in channel quality from
30 to 65 seconds, followed by a gradual decrease from65 to
80 seconds). However the channel quality remains good most
of the time (with power level0 returning an RSSI value1
for significant periods). As a result the optimal scheme can
maintain a transmit level of0 for significant periods as seen
in figures 5(c) and 5(d), occasionally increasing the power to
account for variations (e.g. at9 seconds power level0 is not
received, and power level3 is chosen to maintain acceptable
RSSI). The optimal saves34% power compared with maxi-
mum power; further, this scenario affords a practical scheme a
better chance of achieving savings, since past channel quality
is a better indication of future channel behaviour.

Finally when the patient is resting, the link is very stable
and the optimal scheme can almost always use power level0.
The scheme has energy savings of35% as compared with
maximum power. The stability of the channel in this case
affords a practical scheme ample opportunity to conserve
energy without sacrificing reliability. In the following section
we discuss such a scheme and evaluate its performance.

IV. PRACTICAL TRANSMIT POWER CONTROL SCHEME

The optimal scheme described above was performed off-
line and is infeasible to realise in practice since it requires
the sender to havea priori knowledge of the link quality
at the receiver. On the other hand, practical on-line power
control schemes rely on channel quality feedback from the
receiver to adjust the transmit power. There is thus an inherent
delay between sampling the channel and adjusting the transmit
power, which limits the performance of practical schemes. In
our earlier work [14] we had proposed practical power control
schemes for body area devices. In this section we analyze and
evaluate the performance of the “aggressive” scheme in the
three scenarios under consideration.

Our scheme was inspired by the TCP congestion control
mechanism, wherein the receiver maintains a running average
of the RSSI values. Using a weighted average immunizes the
scheme against rogue samples. We use exponential averaging
to update the running average; thus for every new RSSI sample
R the running averagēR is updated as̄R← (1−α)R̄ + αR.
Here α is a weighting factor which decides how heavily the
current RSSI sample is weighted. We useα = 0.8 to make the
scheme reactive to the current sample, (and hence the name
“aggressive” for this scheme). The scheme attempts to keep
the running average between thresholdsTL (lower) andTH

(upper). We adapt our original scheme to account for the8
power levels on the SensiumTM(as compared to32 for the
MicaZ motes); thus when the running average falls below the
lower thresholdTL we increase the transmit power by2 levels,
while if it rises above the upper thresholdTH we reduce the
transmit power by1 level. As long as the running average
remains betweenTL and TH no action is taken. We outline
the algorithm in figure 6.

1) R̄← (1− α)R̄ + αR

2) if R̄ < TL increase the transmit power by2 levels
(capped at7)

3) if R̄ > TH reduce the transmit power by1 level (capped
at 0)

4) if TL ≤ R̄ ≤ TH no action is required
Fig. 6. Practical Power Control Scheme

We chooseTL = 1 andTH = 2; thus our scheme attempts
to keep the RSSI at level1 or above (since RSSI level0 is
the lowest receivable RSSI, our scheme attempts to keep the
RSSI above this level to increase reliability). As in the case of
the offline optimal, we consider a packet lost if it is received
at an RSSI of0 or lower.

We evaluate the efficacy of our practical scheme on the
three scenarios outlined before. At each time instant the
algorithm makes a decision on the transmit power based on
the weighted average. This transmit power is then used for the
next transaction. From our trace data we know the received
RSSI for every power level at every time instant, allowing us
to implement the power control scheme. The energy usage and
reliability of our scheme is summarized in table II, while the
transmit power and corresponding RSSI are plotted in figure
5.

For the fast walk scenario the transmit power varies appre-
ciably to track the channel variations. Note that our practical
scheme is slower to react to a poor channel than the offline
optimal; this is due to the inherent delay in the feedback loop.
As a result, the practical scheme is liable to lose some packets,
as seen in RSSI plot in figure 5(b). Further, after experiencing
a bad channel, the practical scheme is also correspondingly
slower in reducing power compared to the optimal. This is
due to the effect of thresholds; as long as the weighted average
remains betweenTL andTH , the scheme maintains the same
power level. This is reflected in the RSSI; the practical scheme
maintains RSSI at a higher level than the optimal (in essence
using more energy). In spite of this, our practical scheme saves
14% energy as compared to maximum power (using21% more
energy than the optimal). The price we pay is a decrease in
reliability; the practical scheme results in17% packet loss.
This again illustrates the energy vs. reliability tradeoffinherent
in practical schemes.

The practical scheme performs better for slow walk, saving
25% energy compared to maximum power, and uses only13%
more energy than the optimal. The packet loss is also corre-
spondingly smaller at11%. Once again the scheme exhibits
the same inherent characteristics; there is a delay in reacting to
a bad channel (due to the feedback nature of the scheme), and
it maintains a higher power level than the optimal for some
time in a good channel (due to our specific choice ofTH and
TL). For example, in the range139 to 149 seconds the RSSI
at the receivers remains betweenTL andTH ; thus the scheme
maintains transmit power at level1 (while the optimal level is
0). Note however that this behaviour guards against a rogue
sample in a predominantly bad channel, which may otherwise
cause packet loss.

The practical scheme performs even better in the resting
scenario, saving33% energy compared to the maximum, and



Max (fixed) Optimal Aggressive
Scenario Energy per Packet Energy per Packet Energy per Packet

Packet (mW) Loss (%) Packet (mW) Loss (%) Packet (mW) Loss (%)
Fast walk 2.8 0.67 1.99 0.67 2.41 16.96

better than “max” by: − 29% 14%
worse than “optimal” by: 40.95% − 21.20%

Slow Walk 2.8 2.90 1.85 2.90 2.09 10.99

better than “max” by: − 33.99% 25.40%
worse than “optimal” by: 51.5% − 13.01%

Resting 2.8 1.26 1.84 1.26 1.88 5.37

better than “max” by: − 34.46% 32.79%
worse than “optimal” by: 52.57% − 2.55%

TABLE II
SUMMARY OF ENERGY AND LOSS PERFORMANCE FOR VARIOUS POWER CONTROL STRATEGIES

is within 2.5% of the optimal. Reliability is also highest among
the three scenarios, with a packet loss of5%. In this case
the wireless channel remains relatively stable for significant
periods, leading to large energy savings with respect to the
maximum.

A. Discussion

This work establishes the feasibility of dynamic power
control in a truly-wearable body area device. We have used
the three scenarios as a guideline to measure the performance
of power control under different operating conditions. Clearly,
the performance of our scheme would depend heavily on the
specific patient characteristics and operating conditions. For
long term monitoring, we make the assumption (as in our
previous work) that the patient spends an equal amount of
time in the three scenarios. This results in an average power
savings of24% as compared to maximum power. Note that
our algorithm is simple to implement at the base station, and
these energy savings are therefore easy to achieve. Focusing
again on body-worn disposable “digital plasters”, our scheme
could result in almost25% increase in the life of these devices,
a handy increase.

At the same time our work allows us to bound the potential
improvements possible using power control in body-worn
devices. Note that the maximum savings achieved by the
optimal scheme are34% (compared to maximum power).
Comparing this with innovations such as the ultra low power
radio developed at Toumaz (which uses an order of magnitude
less energy than the CC2420 radio in MicaZ motes) we see that
dynamic power control, would be secondary to other energy
saving techniques, but can be used in conjunction with other
techniques to improve energy efficiency.

While we restricted our study so far to three illustrative
scenarios, much further work is required in exploring the po-
tential of dynamic power control for specific health monitoring
environments (e.g. critical care in hospitals, aged care, athlete
monitoring, etc.) which have different characteristics interms
of patient mobility, periodicity and criticality of collected data,
etc.

V. CONCLUSIONS ANDFUTURE WORK

In this work we build upon our earlier results on power
control in body-worn devices. We profile wireless channel in
a body-worn healthcare monitoring system using the Toumaz
SensiumTM, and assess the theoretical potential for saving
energy without compromising reliability. Next we adapted our
practical power control algorithm for use on the SensiumTM,

and showed that energy savings of24% are possible on average
without undue loss of reliability. We show that even with
the reduced number of power levels and different operating
frequency of the SensiumTM(as compared with MicaZ motes),
power control remains as effective in saving energy. Since our
power control algorithm is easy to implement, these savings
are easily achievable. While our current work focused on
continuous long-term patient monitoring, in future we planto
study the efficacy of power control in more dynamic settings
such as athlete monitoring.
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