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Packet Pacing in Small Buffer
Optical Packet Switched Networks

Vijay Sivaraman, Hossam Elgindy, David Moreland, and Diethelm Ostry

Abstract—In the absence of a cost-effective technology for
storing optical signals, emerging optical packet switched (OPS)
networks are expected to have severely limited buffering capabil-
ity. To mitigate the performance degradation resulting from small
buffers, this paper proposes that optical edge nodes “pace” the
injection of traffic into the OPS core. Our contributions relating
to pacing in OPS networks are three-fold: first, we develop real-
time pacing algorithms of poly-logarithmic complexity that are
feasible for practical implementation in emerging high-speed OPS
networks. Second, we provide an analytical quantification of the
benefits of pacing in reducing traffic burstiness and traffic loss at
a link with very small buffers. Third, we show via simulations of
realistic network topologies that pacing can significantly reduce
network losses at the expense of a small and bounded increase
in end-to-end delay for real-time traffic flows. We argue that
the loss-delay trade-off mechanism provided by pacing can be
instrumental in overcoming the performance hurdle arising from
the scarcity of buffers in OPS networks.

I. INTRODUCTION

The maturation of Wavelength Division Multiplexing
(WDM) technology in recent years has made it possible
to harness the enormous bandwidth potential of an opti-
cal fibre cost-effectively. As systems supporting hundreds
of wavelengths per fibre with transmission rates of 10-40
Gbps per wavelength become available, electronic switching
is increasingly challenged in scaling to match these transport
capacities. All-optical switching [1] shows promise in meeting
these challenges. To support data traffic efficiently, various
optical sub-wavelength switching methods [2], [3] have been
proposed, of which optical packet switching (OPS) [4] is
particularly attractive. Several experimental test-beds [5]–[9]
have demonstrated the feasibility of OPS.

A fundamental concern in OPS networks is contention,
which occurs at a switching node whenever two or more
packets try to leave on the same output link, on the same wave-
length, at the same time. Today’s electronic switches resolve
this contention relatively easily by using electronic random-
access memory (RAM) that can store over a million packets.
By comparison, a state-of-the-art random-access optical buffer
available on an integrated opto-electronic chip [10] can hold
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at most a few dozen packets. Alternatively, spools of fibre can
implement fibre delay lines (FDLs) [11] that provide optical
buffering capability. Unfortunately, the high speed of light
means that a significant buffering capability would necessitate
large fibre spools too unwieldy to be practical: 1 km of fibre
stores 5µsec of optical data; by contrast a conventional router
today typically buffers 50-250msec of electronic data. More-
over, incorporating FDLs into a typical OPS switch design
requires larger optical crossbars, which can add significantly
to cost as the FDL buffers increase. Wavelength conversion
[12], [13] is another technique for resolving contentions in
the optical domain, whereby a contending packet is converted
to an unused wavelength on the same outgoing link. However,
wavelength converters are expensive, and often limited in their
conversion range. Other methods such as deflection routing
[14] and combinational schemes [15] have also been investi-
gated for alleviating contentions, but usually incur overheads
such as packet reordering, complexity, etc. It therefore seems
that OPS networks of the foreseeable future will have very
limited contention resolution resources.

Our objective in this paper is to investigate the impact
of limited contention resolution resources (henceforth “small
buffers”) on the end-to-end performance of real-time traffic
in an OPS network, and to develop means of managing the
performance degradation. We begin by observing that not
withstanding the high bandwidth available in OPS networks,
small buffers at OPS nodes cause significant loss when the
traffic exhibits short-time-scale burstiness. To alleviate this,
we advocate that traffic characteristics be modified before
injection into the OPS network, with the aim of using the
limited contention resolution resources more effectively. The
mechanism to achieve this, termed “pacing”, reduces the
short-time-scale burstiness of arbitrary traffic, but without
incurring significant delay penalties. Our contributions in this
context are three-fold. We first develop algorithms that perform
efficient real-time optimal pacing of high data rate traffic.
Our algorithms vary in complexity between amortised constant
time and poly-logarithmic time in the number of queued
packets, and are shown to be amenable to efficient hardware
implementation. Our second contribution develops a novel
analytic framework to quantify the impact of pacing on a
short or long range dependent traffic stream. It lets us estimate,
for various pacer delay budgets, the burstiness of the output
traffic stream and associated loss at a link with very small
buffers. The analytical estimates match well with simulation
and provide insight into the operation of the pacer. For our
final contribution, we demonstrate via simulation of realistic
OPS network topologies derived from operational networks
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Fig. 1. Loss vs. buffer size at a finite-buffer switch

in Australia and the USA, that pacing can help achieve
acceptable network loss performance at the cost of a small and
controllable increase in flow end-to-end delays. We therefore
propose pacing as an attractive mechanism for the realisation
of cost-effective (i.e with small buffers) OPS networks that
can provide the desired loss and delay performance.

The rest of this paper is organised as follows: section II
illustrates the performance impact of small buffers, discusses
prior work addressing this issue, and outlines our approach of
pacing packets. In section III we briefly describe the system
setting and recall results from off-line smoothing techniques
for video traffic relevant to our work, while section IV devel-
ops efficient algorithms for the real-time pacing of arbitrary
time-constrained traffic. In section V we quantify via analysis
the impact of pacing on traffic burstiness and loss for a single
flow, after which the loss-delay trade-off achievable via pacing
in realistic network scenarios is investigated via simulation in
section VI. The paper is concluded in section VII, which also
points to directions for future research.

II. SMALL BUFFERS: IMPACT AND SOLUTIONS

In this section we first illustrate via simulation the impact
of small buffers on losses for real-time traffic (the impact on
TCP traffic when mixed with real-time traffic is studied in
our subsequent work [16], [17]). We then briefly review some
prior solutions to reducing the performance degradation, and
outline our approach to tackling this through packet pacing.

A. Loss for Real-Time Traffic

A direct and obvious impact of small network buffers is
an increase in packet losses. As an example we consider a
single link with a queue of finite and small capacity. The link
rate is set at 10 Gbps, and packets have a constant size of
1250 bytes (this is consistent with earlier studies of slotted
OPS systems). Fig. 1 shows the packet losses as a function of
buffer size obtained from simulations of short range (Poisson)
as well as long range dependent (LRD) input traffic at various
system loads (the traffic model is detailed in section V). The
plots illustrate that an OPS node with very limited buffering

(say 10 to 20 packets) can experience significant losses even
at low to moderate traffic loads, particularly with the LRD
model which is more representative of real-world traffic. This
may be unacceptable in a core network supporting real-time
applications with stringent loss requirements.

B. Prior Work

Some earlier works have proposed modifying traffic char-
acteristics to improve performance in optical networks with
limited buffers. The approach in [18]–[20] is to treat this as a
global scheduling problem, wherein packets are transmitted by
the optical edge nodes at appropriate time instants that meet
the packet’s time-constraints while minimising (a weighted
measure of) loss in the network. The general problem is shown
to be NP-hard [20], and approximate off-line [19], [20] and
on-line [18] algorithms are developed for restricted topologies.
Though theoretically insightful, these methods require global
network-wide co-ordinated scheduling amongst the nodes,
which is not practically feasible in packet networks.

Traffic shaping has been widely used for controlling packet
losses in electronic networks. ATM and IP networks have
used rate-based shaping methods such as GCRA or leaky-
bucket to protect the network against relatively longer-time-
scale rate fluctuations, while short-time-scale burstiness is
expected to be absorbed by router buffers. The requirements
for controlled loss, delay and delay variation in ATM networks
have stimulated extensive studies [21] of queueing behavior
for a broad range of traffic models and traffic control and
shaping policies. Low transmission delay requires small queue
lengths, and it has been conjectured that actively spacing
traffic might ensure negligible cell delay variation [21, pg.
121]; however, the provision of guaranteed delay constraints
in networks limited to small buffers has not been investigated.
When buffers at routers are small, we observed in simulations
that short-time-scale burstiness seems to be the main cause of
performance degradation. Rate-based shaping cannot protect
against such losses, since a low shaping rate leads to excessive
queueing delays at the shaper, while a large shaping rate is
ineffective in reducing short-time-scale burstiness. This has
been confirmed by studies in [22] and our earlier work in
[23]. What is therefore required is a means of reducing the
short-time-scale burstiness of the traffic without introducing
excessive delays; such traffic “pacing” is the topic of this
paper.

Parallel to our work, researchers at Stanford have developed
techniques that make networks with very small buffers work-
able. Following on from their arguments in [24] showing that
router buffer size need only be inversely proportional to the
square-root of the number of TCP flows, they have recently
shown in [25] that by making each TCP sender “pace” its
packet injections into the network, a router buffer size of 10-
20 packets suffices to realise near-maximum TCP throughput
performance. Though some aspects of the model are still
under discussion [26], [27], it would seem their identification
of the advantages of TCP pacing bolsters our proposal to
pace traffic at the optical edge. There are however significant
differences to our approaches – while their study considers
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TCP traffic, our current study primarily focuses on non-TCP
real-time traffic (we have since extended our work [16], [17] to
scenarios that have mixed TCP and real-time traffic). Another
difference is that rather than pacing at the end-hosts, we focus
on pacing at the edge of the optical network. The former has
the advantage that it may require changes only in the end-host
TCP implementation. Nevertheless, packet spacing may not be
adequately preserved when traffic reaches the core network,
particularly if there is a significant volume of bursty real-
time traffic sharing links with the TCP traffic. Our approach
puts the pacing as close to the small buffer OPS network
as possible, potentially delivering improved performance for
all traffic. On the downside, our approach requires dedicated,
possibly expensive, high-speed pacing engines.

C. Packet Pacing

Pacing, also known as smoothing, has been studied before
in the context of video traffic transmission. Unlike a shaper,
which releases traffic at a given rate, a pacer accepts arbitrary
traffic with given delay constraints, and releases traffic that
is smoothest subject to the time-constraints of the traffic.
Here “smoothness” may be measured using the maximum
rate, rate variance, etc. The delay tolerance of traffic passing
through the pacer is crucial to the efficacy of the pacer – the
longer the traffic can be held back at the pacer, the more the
window of opportunity the pacer has to smooth traffic and
reduce burstiness. A fundamental theoretical contribution in
[28] identifies an optimal strategy for the off-line smoothing of
stored video clips. This has led to several studies on dynamic
smoothing of broadcast video streams [29]–[31] (where a
few seconds of distribution delay is acceptable) as well as
interactive video streams [32] (wherein only a few frames can
be buffered at the smoother).

To the best of our knowledge, there has not been a study
(apart from our own [33], [34]) on the use of traffic pacing
techniques for alleviating contentions in OPS networks with
very small buffering resources. Our paper makes three new
contributions in this regard: (1) we develop new algorithms of
provably low complexity that can perform efficient pacing of
arbitrary traffic in real-time, (2) we develop a novel analytical
framework for estimating burstiness and loss of a paced traffic
stream, and (3) we quantify via simulation of realistic topolo-
gies the loss-delay tradeoffs that packet pacing facilitates. In
the next section we describe the architecture of the pacer and
elaborate on the optimal off-line algorithm which provides the
basis for our real-time pacing algorithms.

III. SYSTEM MODEL AND OFF-LINE OPTIMUM

The packet pacer smoothes traffic entering the OPS network,
and is therefore employed at the optical edge switches on
their egress links connecting to the all-optical packet switching
core. Note that the optical edge switches process packets
electronically, and are therefore assumed to have ample buffers
required to do the pacing. Once a packet enters the OPS
core, is it processed all-optically by each OPS core switch,
where buffering is limited. The idea of pacing is therefore
to modify the traffic profile entering the OPS network so
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as to use the limited buffers more efficiently and reduce
losses, but without adversely affecting end-to-end delay. As
we mentioned in the previous section, rate-based shaping is
unsuitable as it does not effectively resolve short-time-scale
burstiness, while adversely affecting end-to-end delay. Our
pacing method instead smoothes traffic, that is, it minimises
output burstiness, subject to delay constraints. We show in this
paper that this approach is very effective in reducing short-
time-scale burstiness, and hence OPS losses, while preserving
end-to-end delay performance.

A generic architecture of our pacer is shown in Fig. 2.
Incoming packets are classified (according to some criteria)
and assigned a deadline by which they are to be released by the
pacer. A special case we will consider later is when all packets
have identical delay constraints, in which case the architecture
can be simplified. The objective of the pacer is to produce the
smoothest output traffic such that each packet is released by
its deadline. It is natural for the pacer therefore to release
packets in order of deadline, namely to implement Earliest
Deadline First (EDF) service [35], [36], which has known
optimality properties [37] and can be implemented efficiently
[38]. However, the pacer, much like a traffic shaper, is non-
work-conserving, and in trying to produce a smooth output,
behaves as a variable rate server whose rate is modulated
by the deadlines of the waiting packets. The challenge is
in determining the rate modulation strategy that maximally
smoothes the output (this section) and in implementing this
scheme efficiently in real-time at high data rates (next section).

Our pacing strategy derives from studies of video traffic
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smoothing, which we summarise next. Let [0, T ] denote the
time interval during which the pacing system is considered,
chosen such that the system is devoid of traffic at 0 and T .
Denote by A(t), 0 ≤ t ≤ T the arrival curve, namely the
cumulative workload (say in units of bytes) arriving in [0, t).
Denote by D(t), 0 ≤ t ≤ T the deadline curve, namely the
cumulative workload that has to be served in [0, t) so as not
to violate any deadlines (thus any traffic with deadline earlier
than t contributes to D(t)). Fig. 3 depicts an example A(t) and
D(t) for the case where all arriving traffic has identical delay
requirements. Note that by definition D(t) can never lie above
A(t). Any service schedule implemented by the pacer can be
represented by an exit curve S(t), 0 ≤ t ≤ T , corresponding to
the cumulative traffic released by the pacer in [0, t). A feasible
exit curve, namely one which is causal and satisfies the delay
constraint, must lie in the region bounded above by the arrival
curve A(t), and below by the deadline curve D(t).

Amongst all feasible exit curves, the one which corresponds
to the smoothest output traffic, measured by various metrics
such as transmission rate variance, has been shown in [28] to
be the shortest path between the origin (0, 0) and the point
(T,D(T )), as shown in Fig. 3. This curve always comprises
a sequence of straight-line segments joining points on the
arrival and deadline curves, each segment representing a period
during which the service rate is a constant. Computation of
this curve requires knowledge of the complete traffic arrival
curve, which restricts the approach to off-line applications
like the transmission of stored video files. For on-line video
transmission applications such as news and sports broadcasts
for which delays of seconds to minutes are tolerable, on-line
algorithms can be derived from the above off-line optimum by
maintaining a time window (i.e. delay buffer) to implement a
lookahead capability (see for example [29]–[31]). There has
also been some work in smoothing interactive video streams
[32] wherein a few frames are buffered at the smoother.

Unlike the video transmission context, smoothing or pacing
in OPS networks will have to operate under much more
demanding conditions. Current mechanims for smoothing con-
sider one or a few video streams at end-hosts or video server;
by contrast OPS edge nodes will have to perform the pacing
on large traffic aggregates at extremely high data rates. The
time-constraints for computing the optimal pacing patterns are
also much more stringent – unlike video smoothing where
a few frames (tens to hundreds of milliseconds) of delay is
acceptable, OPS edge nodes will have buffer traffic for shorter
time lest the buffering requirement becomes prohibitively
expensive (at 10 Gbps, 1 msec of buffering needs 10 Mbits
of RAM). Our next section therefore develops algorithms that
are amenable to efficient implementation at OPS edge nodes.

IV. EFFICIENT REAL-TIME PACING

It is shown in [28] that an off-line pacer yields the smoothest
output traffic satisfying the delay constraints if its service
rate follows the shortest path lying between the arrival and
deadline curves. In the on-line case, however, the packet
arrival process is non-deterministic, and the arrival curve is not
known beforehand. In the absence of any assumptions about

// determine length and deadline of new packet p
1. L = length(p); T = currtime; Tp = T + d

// append new hull piece
2. h = new hullPiece
3. h.startT = ((hullList.empty()?) T : hullList.tail().endT);
4. h.endT = Tp;
5. h.slope = L/(Tp-h.startT)
6. hullList.append(h)

// scan backwards to restore hull convexity
7. h = hullList.tail()
8. while ((hPrev=h.prev)6=NULL ∧ hPrev.slope ≤ h.slope)
9. h.slope = [h.slope ∗ (h.endT − h.startT)

+ hPrev.slope ∗
(hPrev.endT − max(T, hPrev.startT))]

/ (h.endT − max(T, hPrev.startT))
10. hullList.delete(hPrev)
11. end while // the hull is now convex

Fig. 4. On-line algorithm for hull update upon packet arrival
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future packet arrivals, our on-line algorithm determines the
smoothest output for the packets currently in the pacer. Thus
at time t, the arrival curve considered to the right of t is a
horizontal line (since future arrivals are not known yet), and
the shortest-path exit curve degenerates to the convex hull of
the deadline curve [33]. Upon each packet arrival, the deadline
curve is augmented, and this may require a recomputation of
the convex hull which defines the optimal exit curve. This
section develops algorithms for the efficient update of the
convex hull of the deadline curve upon each packet arrival.

A. Single Delay Class – Constant Amortised Cost Algorithm

We first consider the case where all packets entering the
pacer have identical delay constraints. This simplifies the
hull update algorithm since each packet arrival augments the
deadline curve at the end. Our first algorithm computes the
convex hull in O(1) amortised time per packet arrival.

Fig. 4 depicts this update algorithm performed upon each
packet arrival, and Fig. 5 illustrates the operations with an
example. Recalling that the convex hull is piecewise-linear,
we store it as a doubly linked list, where each element of the
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list corresponds to a linear segment whose start/end times and
slope are maintained. In step 1 of the algorithm, the length
of the incoming packet is determined, along with its deadline.
The arrival of this new packet causes the deadline curve to
be amended, which results in a new segment being appended
to the hull. Steps 2-6 therefore create a new linear segment
with the appropriate slope and append it to the end of the
hull (shown by operation a in Fig. 5). The new piece may
cause the hull to lose convexity, since the newly added piece
may have slope larger than its preceding piece(s). Steps 7-
11 therefore scan the hull backwards and restore convexity.
If a hull piece has slope larger than its preceding piece, the
two can be combined into a single piece which joins the end-
points of the two pieces (as depicted by operations b and
c in Fig. 5). The backward scan repeatedly fuses hull pieces

until the slope of the last piece is smaller than the preceding
piece (operation d in Fig. 5). At this stage the hull is convex
and the backward scan can stop, resulting in the new hull.

Claim 1: The algorithm of Fig. 4 has constant amortised
computation cost per packet arrival.

Proof: Our proof method follows the technique outlined
for amortised analysis in [39] that assigns a dollar cost to each
unit of computation. We start with the invariant that every point
on the hull has a $1 deposit associated with it. Upon packet
arrival, steps 1-6 are constant time operations, consuming $1
paid by the arriving packet. Further, an additional $1 is de-
posited at the end point of the newly added hull segment. The
loop in steps 7-11 walks backwards through the hull checking
for convexity at each hull point. Each check is a constant time
operation, and is paid for by the $1 deposited at the hull point.
If convexity fails, the hull point is removed, fusing two hull
pieces into one. If convexity holds, the arriving packet deposits
$1 at that hull point, and the algorithm terminates. Thus each
arriving packet has paid a constant $3 in computation cost,
and at termination of processing, a $1 deposit is still available
at each hull point, maintaining the invariant. This completes
the proof.

In spite of a constant amortised cost per packet arrival, a
packet arrival in the worst-case may cause all hull points to be
scanned (steps 7-11) in order to restore convexity. We therefore
develop in the next section an algorithm that has worst-case
complexity logarithmic in the number of packets queued at
the pacer.

The pacer releases packets based on the computed exit curve
in a fairly straightforward manner: a process accumulates
“credits” or “tokens” (much like a leaky-bucket) at an instanta-
neous rate stipulated by the slope of the piece (corresponding
to the current time) in the exit curve. A packet from the
head of the pacer queue is released as soon as sufficient
credits (corresponding to the packet size) are available, such
credits being deducted when the packet departs the pacer. The
released packet is eligible for transmission on the output link.
The link scheduler selects from amongst eligible packets for
transmission, and is assumed to be FIFO in this work.

B. Single Delay Class – Logarithmic Cost Algorithm
Our O(log n) worst-case complexity algorithm for optimal

exit curve computation is illustrated with an example in Fig.
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Fig. 6. Example showing single-class hull update

6. Starting with the original convex hull O-A-B-C-D-E-F-G, a
new packet arrival at time 0 adds a new point H to the deadline
curve. From H, we find a tangent to the original convex hull by
doing a binary search on the hull segment slopes. Operation
1 examines the mid-point C of the hull, realises that H-C

lies below the original hull, and so moves right. In operation
2 the mid-point E of the right half is examined, and it is

found that EH lies above the original hull, so the algorithm
moves left, till it reaches point D in operation 3 that gives
the desired tangent and final hull O-A-B-C-D-H.

1) Determine size and deadline of newly arrived packet and
create new vertex u.

2) Search in the AVL tree for the tangent point r from
vertex u to the convex hull.

3) Delete all vertices with time larger than that of r, insert
vertex u, and rebalance the AVL tree.

Fig. 7. Single-class hull update algorithm

Fig. 7 depicts the update algorithm in pseudocode. Recalling
that the deadline curve is piecewise-linear, and the start/end
times of the individual segments correspond to arrival of new
packets as illustrated in Fig. 6, we can represent it as a planar
polygonal line whose vertices v0, v1, . . . vn are in increasing
order with respect to both axes. The vertices are stored in
a height-balanced search tree T structure, the AVL tree for
example, with the value of time used as the search key. Along
with each vertex we also store pointers to its predecessor and
successor on the boundary of its convex hull.

In step 1 of the algorithm, the size of the incoming packet
is determined, along with its deadline, and a new vertex u
is created. The arrival of the new packet, which causes the
deadline curve to be amended, results in appending a new
vertex to the end of the hull. The new vertex may cause it to
lose convexity, since the newly added segment may have slope
larger than that of the preceding hull edge. Step 2 therefore
searches the tree T for the unique vertex r such that slope
of the segment connecting r and u is smaller than that of
the preceding hull edge but larger than that of the following
hull edge. The search process is a binary search of the AVL
tree, as described by Preparata [40, procedure TANGENT]. At
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this stage the hull representation is restructured in step 3 by
removing all vertices with value of time larger than that of r,
inserting the new vertex u, and rebalancing the tree T , again
as described in [40].

The complexity of the above convex hull update operation
that needs to be performed upon the arrival of each packet
has O(log n) cost, where n is the number of queued packets
[40]. Once the pacer has released packets corresponding to
a segment of the hull, the segment needs to be deleted.
The complexity of deleting a vertex of the convex hull and
restructuring the tree T also has O(log n) cost, where n is the
number of queued packets, as shown in [40].

C. General Poly-Logarithmic Cost Algorithm

We now consider the general case where arriving packets
may have arbitrary delay constraints. Handling packets with
different delay times is complicated by the fact that the arrival
of a new packet causes significant changes to the deadline
curve. Recalling that the deadline curve is a piecewise-linear
curve, where the start/end times of its individual segments
correspond to deadlines of packets already in the system,
we represent it as a planar polygonal line whose vertices
v0, v1, . . . vn form a sequence in increasing order with respect
to both axes. The arrival of the new packet with a deadline
between two existing vertices, say vi and vi+1, changes the
deadline curve through the insertion of a new vertex u between
them in the sequence and raising each of the vertices in the
sub-sequence vi+1, vi+2, . . . , vn by a value corresponding to
the size of the new packet. As a result some vertices of the
deadline curve, which were not part of the hull prior to arrival
of the new packet, may appear as convex hull vertices as
illustrated in Fig. 8. The number of such new points can be as
high as the number of packets in the system, and the process
of re-computing the convex hull is not as simple as searching
a binary tree as we did in the single-class case above.

The idea behind the algorithm is that for an incoming packet
with arbitrary deadline, the original deadline curve is split
into two parts, corresponding to the left and right of the new

arrival’s deadline. The convex hulls for each of the parts is
independently computed, after the deadline curve to the right
has been shifted up to account for the new packet arrival. The
two hulls are then merged back to get the complete convex
hull. The goal is to perform this process as efficiently as
possible.

1) Determine size and deadline of newly arrived packet and
create new vertex u.

2) Insert u into the 2-3 tree and divide it into trees TL and
TR. TL holds keys ≤ that of u, and TR the remaining.
Store size of new packet in root of TR.

3) Merge TL and TR into a single tree.

Fig. 9. Multi-class hull update algorithm

Fig. 9 depicts our algorithm for determining the convex
hull upon each packet arrival. Our vertices are stored in
the leaves of a search tree T structure which is capable of
supporting concatenable-queue operations, such as the 2-3 tree
[41, sections 4.12], with the value of time used as the search
key. Each internal node of T stores the convex hull of its leaves
in a secondary tree structure that is also capable of supporting
concatenable-queue operations. A linear size of the tree T and
all its secondary structures is achieved by storing a vertex in
the convex hull of an internal node only if it is not stored in
any of its ancestor nodes [42].

In step 1 of the algorithm, the size of the incoming packet
is determined, along with its deadline, and a new vertex u
is created. The arrival of the new packet, which causes the
deadline curve to be altered, triggers re-computation of the
convex hull. Step 2 therefore searches the tree T along the
root-to-leaf path and inserts the new vertex u as a new leaf
according to its deadline value. The tree T is then divided
about u so that all the leaves to the left of u and u itself are
in one 2-3 tree TL and all the leaves to the right of u are in a
second 2-3 tree TR. The division is a recursive process detailed
in [41, section 4.12]. For each internal node visited during the
search process that will be deleted in the divide process, we
use the convex hull stored in its secondary structure to compute
a complete hull for each of its children, as described in [42].
At the end of the divide process, values of all vertices in TR

need to be incremented by the size of the incoming packet
(i.e. shift the deadline curve up); this is achieved by storing
the size of the new packet in the root of TR. In step 3, the
two trees TL and TR are again concatenated into a single tree,
which yields the final convex hull of the new deadline curve.
The complexity of the entire convex hull update operation that
need to be performed upon each packet arrival is O(log2 n),
where n is the number of queued packets [42].

As in the single-class case, a hull segment needs to be
deleted once packets corresponding to the segment have been
released. The complexity of deleting a vertex of the convex
hull and restructuring the tree T again has an O(log2 n) cost,
where n is the number of queued packets, as shown in [42].

V. PERFORMANCE EVALUATION FOR A SINGLE FLOW

Having addressed the feasibility of pacing at high data rates,
we demonstrate the utility of pacing in OPS systems with small
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Fig. 10. Burstiness vs. time-scale for various pacing delays from simulation of Poisson and LRD traffic

buffers. This section evaluates via analysis and simulation the
impact of pacing on traffic burstiness and loss for a single
flow, while the next section evaluates via simulation loss
performance for several flows in realistic network topologies.

A. Traffic Models

We apply our pacing technique to Poisson and long range
dependent (LRD) traffic models (both of which were intro-
duced in section II-A); the Poisson model is selected for
its simplicity and ease of illustration of the central ideas,
while the LRD model is chosen since it is believed to be
more reflective of traffic in real networks. Our LRD traffic
generators are derived from Norros’ self-similar traffic model
[43]. This model combines a constant mean arrival rate with
fractional Gaussian noise (fGn) characterised by zero mean,
variance σ2 and Hurst parameter H ∈ [1/2, 1). We use our
novel filtering method [44] to generate long sequences {xi}
of normalised fGn (zero mean and unit variance) for a chosen
H . A discretisation interval ∆t is chosen, and the traffic yi

(in bits) arriving in the i-th interval is obtained by scaling and
shifting the normalised fGn samples as follows:

yi = max{0, c + σxi} (1)

where c denotes the traffic quantity (in bits) obtained in the
interval from the constant rate stream, and σ is a scaling
factor that determines the instantaneous burstiness. The yi is
truncated at zero (to prevent arrival of negative quantity of
traffic in that interval), causing the mean E[yi] to differ from
c. Letting m = E[yi] denote the mean traffic rate (i.e. bits
per interval), we take expectation of both sides of eq. (1) to
obtain:

m

σ
=

1√
2π

e−(c/σ)2/2 +
c

σ
Q(−c/σ) (2)

where Q(x) = P{X > x} denotes the complementary
cumulative density function of the standard Gaussian random
variable X . For this work we set the Hurst parameter at

H = 0.85 and the discretisation interval ∆t = 1.0µs. The
scaling factor σ was chosen to satisfy c/σ = 1, which
corresponds to truncations for around 16% of the samples,
and c is then adjusted to give the desired mean traffic rate m.
The fluid traffic is then packetised for use in simulation. For
simplicity, in this section we assume packet sizes are fixed at
1250 bytes, such that a packet can be transmitted in a slot of
size 1µsec on a 10Gbps optical link; our packet and slot sizes
are consistent with studies of OPS networks in the literature
[45], and are also commensurate with current optical crossbar
technology such as [46]. The fixed packet-size assumption will
be relaxed in the next section that considers several traffic
flows in realistic network topologies.

B. Impact of Pacing on Traffic Burstiness

We now study using simulation and analysis how pacing
changes the burstiness of a traffic stream at various time-scales.
Burstiness at time-sale s is quantified by β(s), the coefficient
of variation (i.e. ratio of standard deviation to mean) of traffic
volume measured over time intervals of size s. Log-log plots
of β(s) versus s are routinely used in the literature to depict
traffic burstiness over various time-scales as an indicator of
self-similarity of traffic traces and to show the influence of
the Hurst parameter H . Our simulations in this section fix the
link rate at 10 Gbps and packet sizes at 1250 bytes (such that
each packet requires exactly 1µs for transmission).

1) Simulation Results: Fig. 10 shows for Poisson and LRD
traffic the burstiness β(s) versus time-scale s (in µsec) on log-
log scale observed in simulation for pacing delay d of 0 (i.e.
no pacing), 10µsec, 100µsec, 1msec, and 10msec. We first
note that the unpaced Poisson stream (at 8 Gbps or 80% load)
in Fig. 10(a) and the unpaced LRD stream (at 4 Gbps or 40%
load) both exhibit straight lines with respective slopes −0.5
and −0.15; this validates the expected slope −(1 − H) for
Hurst parmeter settings H = 0.5 and H = 0.85 of the short
and long range dependent traffic respectively (the different
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Fig. 11. Traffic burstiness β(d) versus pacer delay d from analysis and simulation of Poisson and LRD traffic

slope at very short time-scales for LRD traffic arises from
the packetisation of the ideal fluid model).

We next note that pacing reduces burstiness only within a
range of time-scales, explained as follows. At very short time-
scales (e.g. s = 20 = 1µsec in our example), burstiness is
invariant to pacing due to the discrete nature of packet release.
Specifically, if pi(∆t) denotes the probability that an interval
of size ∆t has i packets, then for i ≥ 2: lim∆t→0 pi(∆t) =
o(∆t) is vanishingly small when the traffic model does not
permit batch arrivals. The burstiness β(∆t) at very short time-
scales therefore depends only on p0(∆t) and p1(∆t), which in
turn are determined by the mean traffic rate and are invariant
to pacing. At very long time-scales (beyond the delay budget
d of the pacer), burstiness is again invariant to pacing. This
is because the pacer does not hold any packet back beyond
its deadline, and so pacing cannot alter the characteristics of
the traffic at time scales that are much longer than the pacing
delay budget.

Pacing is most effective in the range of time-scales within
the pacer’s delay budget. Barring the very-short time-scale
region (that is dominiated by the discrete nature of the packet
pacing process), we observe that for both Poisson and LRD
traffic, and for any fixed pacer delay budget d, the burstiness
of the paced traffic remains nearly constant at β(d) with
time-scale, till it converges with the burstiness of the input
traffic. This demonstrates the efficacy of pacing in reducing
short time-scale burstiness, without altering longer time-scale
traffic characteristics. The burstiness β(d) achieved by pacing
is estimated analytically next.

2) Analytical Estimate: The analysis of the pacer is non-
trivial, since it operates as a variable-rate server whose rate is
modulated by the deadlines of the packets in queue; classical
queueing thoery does not handle such servers. Our approach
uses a fluid approximation of the pacer output (input to the
pacer can be fluid or discrete packets), and attempts to estimate
the pacer’s fluid service rate R(t) at time t. To simplify the

analysis we assume that all packets arriving at the pacer have
identical delay constraint d.

Recall from the previous section that at time t, R(t) equals
the slope of the convex hull of the deadline curve. Though
estimating this slope precisely is complex, we can approximate
it by considering the shape of the deadline curve in the region
surrounding time t. The pacer rate R(t) at time t is influenced
by the shape of the deadline curve in the preceding interval
[t−d, t) as well as the succeeding interval time [t, t+d), since
the pacer can “look-ahead” no more than its delay budget d.
The deadline curve prior to time t−d does not influence its rate
at time t, nor does the deadline curve beyond time t+d since
packets contributing to that region of the deadline curve have
not arrived by time t. In the interval [t− d, t + d) of interest
for the deadline curve, the total traffic volume that has to be
released by the pacer equals the traffic volume A[t − 2d, t)
arriving in interval [t− 2d, t), since such traffic has deadlines
within this region. Noting that the pacer has 2d units of time
to release this traffic, and that the optimal pacer will release
traffic at the smoothest possible rate within this interval, we
can approximate the pacer rate by

R(t) ≈ A[t− 2d, t)/2d (3)

For any stationary arrival process the quantity A[t − 2d, t)
is independent of t and depends only on d. Using known
expressions for the traffic arrival volumes under the Poisson
and LRD models, we now estimate the burstiness of the (fluid)
traffic egressing the pacer.

For Poisson arrivals at rate λ (normalised to units of packets
per packet-transmission-time), the distribution of the number
of arriving packets in interval [t− 2d, t) is given by P [A[t−
2d, t) = k] = e−2λd(2λd)k/k!. This lets us determine the
mean, standard deviation, and their ratio the burstiness β, of
the pacer output rate R(t) estimated in (3):

β(d) ≈ 1/
√

2λd (4)
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Fig. 12. Loss versus buffer size at various pacing delays from simulation of Poisson and LRD traffic

This analytical estimate of burstiness of the fluid pacer traffic
is plotted against pacer delay d in Fig. 11(a) for Poisson traffic
at 80% load, and compared to the burstiness of the paced
traffic at time-scale commensurate with the pacing delay d
observed in simulation. Though the plot shows that analysis
predictions of burstiness to be lower than simulation (fluid
approximation do typically show lower burstiness than the
corresponding discrete packet system), the slopes of the two
curves are in excellent agreement, validating the model as an
accurate predictor of the impact of pacing on traffic burstiness.

For the Norros LRD traffic model, recall that yi in (1)
denotes the amount of traffic arriving in the i-th discretization
interval of size ∆t. The average traffic arrival rate over
time interval 2d is then deduced by generating blocks of
m = 2d/∆t aggregated samples as defined in [47, pg 18],
where the rate in the j-th block is given by:

Y (m)(j) =
1
m

mj∑
i=m(j−1)+1

yi (5)

The asymptotic mean and variance of the aggregated block
samples Y (m) can be determined using the expressions in [47,
pg 20], which allow us to estimate, for the setting c/σ = 1,
the rate burstiness of R(t) in (3) as:

β(d) ≈ (2d)−(1−H) (6)

Fig. 11(b) shows the analytical estimate of the burstiness of
paced LRD traffic (at 40% load) as a function of pacing
delay budget, and compares it to simulation. The discrepancy
between analysis and simulation is attributed to the asymptotic
nature of the estimates of moments of the rate process.
Nevertheless, the slope of the burstiness curve from analysis
shows excellent agreement with simulation, thereby validating
the model and demonstrating the effectiveness of pacing in
reducing burstiness.

C. Impact of Pacing on Packet Loss

Having quantified the impact of pacing on the burstiness of
Poisson and LRD traffic, we now feed the paced traffic into
a constant rate server (OPS link) and observe how losses are
affected by pacing. For analytical and conceptual simplicity
we consider only a single flow with fixed size packets in this
section; realistic network topologies with multiple flows and
variable packet sizes are considered in the subsequent section.

1) Simulation Results: In our simulation we feed the paced
traffic stream into an OPS link with fixed capacity and small
buffers, and observe the packet loss probability as a function
of buffer size for various pacing delays. Fig. 12(a) plots for
Poisson traffic (at 60% link load) the observed loss (on log
scale) as a function of buffer size (in packets) for pacing
delays of 0 (corresponding to no pacing), 10, 20, 30, 40, and
50 µsec (recall that 1µsec corresponds to the transmission
time of a packet). Pacing is seen to be extremely effective in
reducing loss: at the cost of a few tens of µsec of increase in
end-to-end delay, the packet loss probability can be reduced
by multiple orders of magnitude, which is a very attractive
cost-benefit trade-off. Fig. 12(b) plots the losses for an LRD
traffic stream (at 40% load) when pacing delay of 0 to 70µsec
is employed. Once again pacing is seen to be effective: for
example, a 70µsec pacing delay (which contributes to a very
small increase in end-to-end delay), reduces losses at the link
by more than an order of magnitude.

2) Analytical Estimate: The modification of traffic charac-
teristics by the pacer makes it very challenging to estimate the
packet loss probability of the paced traffic stream when fed
into a finite capacity queue. We estimate loss under a fluid
bufferless approximation, which has been used very success-
fully in the past for analysing loss at core nodes such as ATM
multiplexers [48] and generalised processor sharing (GPS)
schedulers [49]. Specifically, the core OPS link is assumed
to be bufferless, and losses happen whenever the input (fluid)
rate exceeds the service rate. The bufferless approximation
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Fig. 13. Loss probability versus pacing delay from analysis (fluid model) and simulation (buffer size of one packet) for Poisson and LRD traffic

is particularly reasonable for our study since the OPS core
nodes are expected to have very small buffering capability.
The packet loss probability L can then be approximated by
the probability that the pacer service rate R(t), which we have
estimated in (3), exceeds the core link capacity (which we
normalise to unity for convenience). This probability is then
estimated using the Chernoff bound:

L ≈ P [R(t) > 1] = P [euR(t) > eu] <
E[euR(t)]

eu
∀u > 0

(7)
For Poisson traffic, we can compute E[euR(t)] as follows:

E[euR(t)] =
∞∑

k=0

euk/2dP [A[t− 2d, t) = k/2d] (8)

=
∞∑

k=0

euk/2de−2λd(2λd)k/k! (9)

= e−2λd
∞∑

k=0

(eu/2d2λd)k/k! (10)

= e−2λde2λdeu/2d

= e2λd(eu/2d−1) (11)

Subsituting this in (7) gives us the upper bound on loss
L ≤ e2λd(eu/2d−1)/eu ∀u > 0. To obtain the tightest bound,
we minimise over u; this yields u = 2d ln 1/λ, which when
substituted back into the loss estimate gives us the tightest
upper bound:

L ≤ (λe1−λ)2d (12)

Fig. 13(a) shows the analytical estimate of loss (as a func-
tion of pacing delay) and compares it to observations from
simulation (the buffer size in simulation is set to one packet).
The analytical bound is seen to match the simulation very
well in slope, making it a good predictor of packet loss when
a paced Poisson traffic stream is fed into a queue of small
buffer capacity.

For LRD traffic based on the Norros model, E[euR(t)]
where the rate R(t) ≈ A[t − 2d, t)/2d is obtained from the

underlying aggregated process (5) using expressions in [47]:

E[euR(t)] = ecu+σ2u2/2(2d)2−2H

(13)

Substituting this in (7) gives us the loss estimate L ≤
ecu+σ2u2/2(2d)2−2H

/eu. This loss estimate is minimised when
u = (1− c)(2d)2−2H/σ2, which when substituted back in the
Chernoff loss bound yields:

L ≤ e
1
2

(1−c)2

σ2 (2d)2−2H

(14)

For LRD traffic with c = σ = 0.4 packets (i.e. 40% load), Fig.
13(b) shows the analytical estimate of loss L as a function
of pacing delay d, and compares it to simulation. We first
note that there is a significant vertical discrepancy between
our analysis and simulation. This is a known problem in
the asymptotic performance studies of LRD systems, which
predict the slope accurately but not the absolute values. Refine-
ments such as the Bahadur-Rao theorem [50, sec 9.4.5],[51],
[52] can be used to determine the multiplicative factors that
improve accuracy, but are outside the scope of this paper.

Barring the vertical displacement, analysis shows the losses
decay with pacer delay at a rate comparable to that observed
in simulation. We expect their asymptotic slopes to converge;
however, observing this in simulations is difficult since losses
become too low to measure with sufficient confidence as pacer
delays increase. Increasing loss rates by increasing traffic load
is infeasible since that will not leave sufficient gaps between
packets to make smoothing effective.

VI. SIMULATION STUDY OF NETWORKS

The previous section considered the impact of pacing on
burstiness and loss at a single node. In this section we study its
impact in more complex OPS networks with very limited con-
tention resolution capabilities. It should be borne in mind that
the efficacy of pacing in a network setting will be tempered
by two considerations: First, unlike the single-link scenario
considered earlier in which all traffic was smoothed by the
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one pacer, traffic will now be paced locally and independently
by each ingress point of the OPS core – though globally sub-
optimal, this is the only feasible practical option. Second, the
traffic smoothing at the edges will to some extent be negated
by the multiplexing of streams at core nodes which will
increase burstiness downstream. We are currently addressing
the latter issue by developing scheduling schemes for OPS core
nodes that best preserve the packet spacing introduced by the
edge pacers [53], however this work is beyond the scope of
the current paper.

Our simulation study of pacing in a multi-hop OPS network
uses two network topologies: the CeNTIE network [55] which
is a trans-Australian research network chosen because our
group built and operated it, and the NSFNet backbone in the
USA which has a richer topology and has been used in prior
optical networking research studies e.g. [15]. For both topolo-
gies we quantify the core packet loss as a function of con-
tention resolution resources (optical buffers and wavelength
converters) for various end-to-end delay penalties (incurred via
pacing at the edge). The network models simulated operate in
an unslotted aysnchronous fashion [56], and transport variable
size IP packets. We assume a packet size distribution similar
to the one observed by CAIDA [54] from a capture of over 87
million packets in the year 2000 at the NASA Ames Internet
Exchange (AIX). The cumulative distribution of packet size
is shown in Fig. 16, with distinct steps at 40 (the minimum
packet size for TCP), 1500 (the maximum Ethernet payload
size), as well as at 532 and 576 from TCP implementations that
don’t use path MTU discovery. The mean packet length is 420
bytes, and our experiments in this section will for convenience
configure buffer size at the switches to be multiples of 420
bytes. The buffering at the OPS core nodes is assumed to be
First-Come-First-Served, as shown feasible by emerging all-
optical random access storage technology [10].

Our first set of experiments are performed on the CeNTIE
topology, which has metropolitan networks in Sydney, Can-
berra, Melbourne, and Perth, and includes end-user research
groups from the health, education, film post-production, and
finance industries. We simulate the core of the CeNTIE
network as an OPS network, with logical topology and fibre
lengths shown in Fig. 14. The figure also shows the eight
trafic flows we chose to simulate that are representative of
the usage of the CeNTIE network. Each flows generates LRD
traffic based on the model described in section V-A, with an
average load of 60% on each of the core links.

We first consider contention resolution using optical buffers
without any wavelength conversion. Fig. 17(a) plots the ag-
gregate network losses versus optical buffer size at each
OPS node. Each run simulated over 40 million packets, and
confidence intervals were small enough not to be shown in the
plots. The buffer size in bytes is set at integeral multiples (0,
1, 2, 3, 4, 6, 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, and 40)
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Fig. 18. NSFNet: Packet loss for various pacing delay budgets

of the average packet size of 420 bytes. The various curves
in the figure correspond to different pacing delay bounds at
the optical edge nodes. Note first that in the absence of any
buffers at the OPS nodes, pacing has no effect on loss rates.
Though counter-intuitive, this is because loss in a bufferless
system depends only on how many input lines have a packet
destined for the same output line at any given time, and this
is invariant to pacing. Pacing helps reduce burstiness over a
period of time, but does not alter the average rate of packets.

As the optical buffer size increases to say 10-20 packets
(4200-8400 bytes), edge pacing with a fairly small end-to-end
delay penalty (less than hundred µsec) reduces losses in the
OPS core by nearly two orders of magnitude. For a cross-
continental network with tens of milliseconds in propagation
delay, an additional few hundred microseconds of delay is

negligible, while the loss performance improves substantially.
This ability to trade-off some end-to-end delay for a substantial
reduction in loss, and the ability to explicitly control the trade-
off, suggest that pacing a very useful mechanism for achieving
a desired performance in OPS networks with small buffers.

We now consider contention resolution using wavelength
converters rather than optical buffers. The converters are
assumed to have a full range of conversion, i.e., can convert
any incoming wavelength to any outgoing wavelength. There
are no optical storage buffers, and hence “small buffers” in this
context refers to the limited number of wavelengths available
for resolving contentions. Although in a real system each
wavelength would operate at 10 Gbps or even higher, we
maintain the total fibre capacity at 10 Gbps as in the previous
experiment, and split this capacity equally amongst the wave-
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lengths on the fibre. Maintaining the same fibre capacity allows
us to use the same input traffic as in the previous scenario
(keeping link loads at the same level), and allows a direct
comparison to the results from the previous scenario. Fig.
17(b) plots the aggregate network losses against the number of
wavelengths on each OPS link. As before, the various curves
correspond to the various delay constraints at the edge node
pacers. Note again that in a single wavelength system, i.e. in
the absence of any contention resolution mechanims, pacing
does not impact loss rates. As the number of wavelengths
increases, pacing helps reduce loss rates: for example, when
each link carries 100 wavelengths, pacing at the edges with a
delay penalty of 1 msec reduces losses by nearly two orders of
magnitude, demonstrating again the efficacy of pacing when
contention resolution resources are sparse.

Our second set of experiments simulate the NSFNet topol-
ogy, with 24 core OPS nodes interconnected as shown in Fig.
15. Each core node is connected to four edge nodes (not shown
in the figure), and the network thus has 96 edge nodes. Each
edge node generates traffic to one other randomly chosen edge
node, giving us a total of 96 flows in the network. Each flow is
routed along the shortest path (computed using the shown fibre
lengths) from origin to destination. All flows generate Poisson
traffic (we did not have sufficiently long traces of LRD traffic
to generate sufficient packets for this large topology), and the
maximum core link load in the network is maintained between
64% and 80% of link capacity.

Fig. 18(a) shows the aggregate packet loss probability in the
network as a function of buffer size (in bytes) when optical
buffering is employed for contention resolution. Each curve
in the figure correponds to a different pacing delay. Once
again pacing is seen to be very effective in reducing core
loss for a very small penalty in end-to-end delay: for 10-
20 packets (4200-8400 bytes) of buffering, a pacing delay of
100µs reduced loss by as much as three orders of magnitude,
which would be a very attractive loss-delay trade-off in a core
OPS network. Fig. 18(b) plots loss as a function of number
of wavelengths per fibre when wavelength converters (with
full conversion capability) are used for contention resolution.
The benefits of pacing are again clear: for say 60 wavelengths
per fibre, pacing delays of less than a millisecond are able to
reduce loss by more than one order of magnitude.

VII. CONCLUSIONS

Emerging optical packet switched (OPS) networks will
likely have very limited contention resolution resources usu-
ally implemented in the form of packet buffers or wavelength
converters. This can cause high packet losses and adversely
impact end-to-end performance. We identify short-time-scale
burstiness as the major contributor to the performance degra-
dation, and proposed to mitigate the problem by “pacing”
traffic at the optical edge prior to injection into the OPS core.
Pacing dramatically reduces traffic burstiness for a bounded
and controllable penalty in end-to-end delay. We developed
algorithms of poly-logarithmic complexity that can efficiently
implement optimal real-time pacing of traffic aggregates with
arbitrary delay requirements. We developed a novel analytical

model that accurately quantified the impact of pacing on traffic
burstiness and loss at a core node with small buffers. We
showed via simulation of realistic OPS network topologies
that pacing can reduce losses by orders of magnitude, at the
expense of a small and bounded increase in end-to-end delay.
This ability to trade-off delay for loss makes pacing a very
attractive way of realising acceptable performance from OPS
networks with small buffers.

Our future work targets a deeper study of TCP performance,
particularly when mixed with real-time traffic [16], [17]. We
also intend to compare our traffic pacing at the optical edge
to pacing TCP traffic at end-hosts [25].
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