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Abstract— Metropolitan air pollution is a growing concern in
both developing and developed countries. Fixed-station monitors,
typically operated by governments, offer accurate but sparse
data, and are increasingly being augmented by lower fidelity
but denser measurements taken by mobile sensors carried by
concerned citizens and researchers. In this paper, we introduce
HazeEst—a machine learning model that combines sparse fixed-
station data with dense mobile sensor data to estimate the air
pollution surface for any given hour on any given day in Sydney.
We assess our system using seven regression models and tenfold
cross validation. The results show that estimation accuracy
of support vector regression (SVR) is similar to decision tree
regression and random forest regression, and higher than extreme
gradient boosting, multi-layer perceptrons, linear regression, and
adaptive boosting regression. The air pollution estimates from our
models are validated via field trials, and results show that SVR
not only yields high spatial resolution estimates that correspond
well with the pollution surface obtained from fixed and mobile
sensor monitoring systems, but also indicates boundaries of
polluted area better than other regression models. Our results
can be visualized using a Web-based application customized for
metropolitan Sydney. We believe that the continuous estimates
provided by our system can better inform air pollution exposure
and its impact on human health.

Index Terms— Air pollution monitoring, machine learn-
ing, support vector regression, wireless sensor network, web
application.

I. INTRODUCTION

METROPOLITAN air pollution monitoring has to date
been left to government agencies that typically com-

mission and operate fixed-site stations housing air quality
monitors [1]. These monitors, though very accurate, have high
installation costs and large space requirements, which limits
their number. For example, there are only 15 air pollution
monitoring sites in the state of New South Wales, Australia [2].
They are separated by tens of kilometers (if not more),
and the resulting coarse-grained spatial measurements do not
accurately reflect the air pollution surface for a metropolitan
area (such as Sydney) that has pockets of higher pollution.
To address this shortcoming, many research groups around the
world [3]–[6] have over the past few years developed systems
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comprising portable monitors that can “crowd-source” air
pollution measurements (from citizens and/or public transport
vehicles) with denser spatial granularity at low cost. However,
little work has been done in the literature to fuse the data
from these two sources, or to develop a model for estimating
air pollution with high spatial granularity.

Fine-grained air quality estimation is needed for better
understanding of the health impacts of pollution. It is recog-
nized that air pollution data taken from (sparse) fixed stations
is not representative of real exposure for patients of respiratory
illnesses [7]–[9]. However, the use of (dense) mobile sensor
data suffers from the problem that such data has neither been
continuous nor long-term, since most projects for mobile air
quality monitoring have operated for less than 5 years and
produced sporadic data that is not systematically archived,
limiting their utility for long-term medical studies.

In this paper we develop a novel solution to the above
problem. We develop a system called HazeEst, which trains
a machine learning model using existing pollution data from
fixed and mobile sensors, and uses the model to estimate the
fine-grained air pollution surface over long time periods. Our
specific contributions are:

1) We design HazeEst, a system that uses historical data
from both fixed and mobile sensors to learn air pollution
profile at fine spatial granularity, and thereafter estimates
the air pollution surface for any day/time in metropolitan
Sydney. The surface can be visualized using our web
application.

2) We compare and validate estimation accuracy across dif-
ferent regression models, and show that estimation accu-
racy of SVR (Support Vector Regression) is similar to
DTR (Decision Tree Regression) and RFR (Random For-
est Regression), but higher than XGB (Extreme Gradient
Boosting), MLP (Multi-Layer Perceptrons), LR (Linear
Regression) and ABR (Adaptive Boosting Regression).

3) We conduct field trials to validate our models, and show
that our estimated surface matches well at high spatial
resolution with the surface obtained from fixed/mobile
sensor data, and further that the SVR model is able to
clearly delineate the boundaries of polluted areas.

The rest of this paper is organized as follows: Section II
describes related work, and Section III provides background
on data sources, participatory sensing systems and details
the seven regression models used in this study. Section IV
describes the steps in our model, while model implementation
and estimation accuracy is studied in Section V. Section VI
presents results from our field trials in Sydney, and our
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system implementation is discussed in Section VII. The paper
concludes in Section VIII.

II. RELATED WORK

Mapping urban air pollution using data from static stations
and spatial interpolation methods has been studied for a
long time. Authors developed a regression-based method to
map traffic-related air pollution within a GIS environment
in three European cities [10]. The air pollution data they
used is from 80 fixed monitoring sites in each city, and they
shown that their map produced good estimations compared
to the monitored pollution levels. Another study which is
taken in Milan shows that good air pollution concentration
contour map can be generated using cokriging, which is an
extension of kriging that has been commonly used for air
pollution interpolation [11]. However, the air pollution data
has been used in these studies is from low spatial resolution
fixed monitoring stations, and the interpolation results cannot
accurately reflect the air pollution surface.

The idea of using wireless sensor networks to get fine
spatial resolution air pollution has been investigated by several
projects around the world in the past few years. One among
the very early projects which have implemented this idea real-
istically is the Mobile Environmental Sensing System Across a
Grid Environment (MESSAGE) project [12] which is a 3 year
research project costing 3.5 million pounds, led by the Imperial
College, London since 2006. The project has evolved into the
Cambridge Mobile Urban Sensing effort (CamMobSens). Low
cost portable sensing units which can measure CO, CO2 and
NO2 have been designed and calibrated in their project, and
then deployed city-wide [13]. Data from static stations and
mobile sensors is compared and proves that their sensors are
a valid means to get dense and accurate pollution readings.
Another early project is CommonSense [14] from Berkeley
University and Intel. In this project, the researchers design
a portable air pollution monitoring sensor prototype which
can measure various pollutant concentrations. Data from the
sensor can be uploaded to the server and is viewable on
Google Maps via web application. Microsoft and Vander-
bilt University also put effort into the Mobile Air Quality
Monitoring Network (MAQUMON) project [15], in which
they design a number of vehicle-mounted air pollution sensor
nodes to measure O3, NO2 and CO/VOC concentrations.
An air pollution contour map is also implemented using
image overlays. However, it appears that this project has
not been undertaken further in a large scale of deployment.
In recent years, the most noteworthy project is OpenSense2
(inherited from OpenSense) [16] at EPFL Switzerland. They
have successfully deployed ten air pollution monitoring sensor
units on top of public buses city-wide in the city of Zurich
and another twelve in Lausanne. A range of pollutants data is
collected and stored in their central server for over two years.
Statistical models such as region-based Gaussian model and
land use regression model are also explored to produce high
quality and fine-grained pollution maps.

In our prior work [17] and [18], we presented HazeWatch –
an air pollution wireless sensing system which consists of four
parts: (1) portable sensor units, (2) mobile application which

can receive data from sensors via Bluetooth, and send data
with timestamps and locations to the server in real-time, (3) a
cloud-based server which stores all the data and interpolates
the spatio-temporal estimates, and (4) mobile and web-based
applications to visualize air pollution data. We designed and
built our own sensor units for air pollution measurement.
Metal oxide sensors (MOS) was used to develop the sensor
units in the first place, and it allowed us to built our unit
housing three sensors (CO, NO2 and O3) at a cost price
close to $50, but posed many performance problems related to
non-linearity and influence of temperature and pressure. Then
we chose electrochemical (EC) sensors to build the second
version of our units, which are sensitive, accurate, and linear,
but expensive ($50-100 each). Concurrent to our development
effort, we also used some other commercial sensing devices to
get measurements, such as Node sensor (detailed information
is given is section III). We validated our system with a
number of trials and demonstrated that our system yields more
accurate air pollution estimations than current systems based
on government monitoring data.

These crowd-sourcing air pollution sensing systems highly
increase the monitoring spatial resolution, however, data from
such systems is not long-term, since most of these projects are
operated for less than 5 years, and limits the usage for a better
understanding of the health impacts of pollution. As a result,
most medical researchers only use data from (sparse) static
pollution monitoring sites to find associations between air
pollution and respiratory diseases. We believe the conclusion
they made could have been biased based on just sparse air
pollution data.

To address the problem, many other research groups have
started utilizing machine learning models and air pollution
data from wireless sensor networks to estimate or predict air
quality in the past two years. For example, authors compare
air pollution forecasting performance among three machine
learning algorithms using multi-gas sensing devices [19]. Their
work uses three months of pollution data to predict temporal
series data, and (sparse) fixed station locations as spatial
factors to get air pollution forecasting maps. Compared to
their work, our model not only considers both spatial and
time-series aspects, but also uses historical data to improve
the estimation accuracy.

Having similar goals to ours, the researchers from
OpenSense project design their own air pollution mobile
sensing system, and use the land use regression model to
get fine spatial resolution pollution maps of ultrafine particles
using both current and historical data [20]. Our model differs
from their work in the specific method of estimating air
pollution maps, for any given time in the past seven years.

III. BACKGROUND

In this section we give a brief introduction of A) pollu-
tant selection and data sources, and B) the seven regression
algorithms we use and compare in our estimation model.

A. Pollutant and Data Sources

1) Pollutant: in this study, we monitor Carbon Monox-
ide (CO) as the pollutant because of its most well known
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effect on the human body - reducing blood’s oxygen
holding capacity, which can cause oxygen delivery issues
and lead to tissue and organ problems. Historical CO data
is obtained from two sources - a government air pollution
monitoring network and our own participatory sensing
system [17].

2) Data source:

i) Government air pollution monitoring network: there
is a 15 static station network monitoring air quality,
operated by the Office of Environment and Her-
itage (OEH) in New South Wales, Australia. All
the readings which are updated hourly from the
monitoring stations and are viewable online as both
ambient concentrations and air quality index (AQI)
values. Seven pollutants can be monitored within one
station at the same time. Historical data in the past
seven years can be obtained from their website [2].
In this paper, we specifically use CO concentration
data from May 2009 to May 2016.

ii) Participatory sensing system: as mentioned in section
II, we have developed a participatory mobile sensing
system which can crowd-source fine-grained spatial
measurements of air pollution. In the past three
years, we have collected 34,864 minutes of CO data
using Node sensors [21], which is a commercial
portable air pollution sensing device. The Node
sensor platform is designed with plug-in modules
mode. It comprises body platform part and inter-
changeable OXA gas sensor header part, and one
pollutant can be measured with each separate sensor
header. A range of pollutants can be monitored
using Node sensors, such as Carbon Monoxide (CO),
Carbon Dioxide (CO2), Nitric Oxide (NO), Nitrogen
Dioxide (NO2), etc. Smart phones can connect to
the body platform with Bluetooth 4.0 up to 250 feet
away. It has to be calibrated in six months by mobile
app. The CO monitoring resolution of the Node
sensor is less than 1.5 ppm, and the GPS shift of
mobile phone is usually less than 15 meters.

B. Regression Models

1) Support Vector Regression (SVR): support vector
machine is a thriving supervised model for regression
analysis [22]. SVR aims to provide a non-linear mapping
function to map a given training data set D: {(x1, y1),(x2,
y2),…,(xi , yi )} to a high dimensional feature space.
In this space a decision separating hyperplane can be
defined which separates all the data points, with maximal
functional margin.

2) Decision Tree Regression (DTR): decision tree [23] is a
widely used machine learning method for classification
and regression. The aim of decision tree learning is
to create a model which can classify target values by
learning decision rules from input features. Whether the
decision tree is a classifier or regressor depends on if the
output variable is categorical or numeric. Learned trees
can be different based on different tree algorithms, such

as ID3, C4.5, and C5.0. Classification and Regression
Tree (CART) algorithm is used in this study.

3) Random Forest Regression (RFR): random forest [24] is
an ensemble learning algorithm and based on decision
tree learning and bootstrap aggregating. It can be used for
classification, regression and other tasks. The basic con-
cept of random forest is to fit a number of decision trees
on random subsets of all the features and sub-samples
of the dataset, and use averaging method to improve the
prediction accuracy and avoid over-fitting. Specifically,
it uses bootstrap aggregating (or named bagging) to
repeatedly train decision or regression trees, with random
feature subsets and sample subsets. It then predicts unseen
input samples by averaging all the predictions from trees
which have been trained. One advantage of random forest
is that it can avoid high variance and high bias which is
often happens using a single decision tree.

4) Extreme Gradient Boosting (XGB): gradient boost-
ing [25] builds an ensemble of prediction models itera-
tively, and allows differentiable loss function optimization
to obtain better prediction performance. Extreme gradient
boosting [26] is an optimized gradient boosting library
which provides a parallel tree boosting to solve both
classification and regression problems. It is best known
for its fast training speed and high prediction accuracy
on a lot of real world problems.

5) Multi-Layer Perceptrons (MLP): multi-layer percep-
tron [27] is a feed-forward artificial neural network model
which can learn a non-linear function and map a set of
input features to a target. It comprises of perceptrons
which are organized into layers. Between the input and
output layer, there can be one or multiple hidden layers.
It also uses back-propagation to update weights and
minimize the loss function.

6) Linear Regression (LR): linear regression [28] focuses on
finding the relationship between one or multiple inputs X
and one output Y. In this paper we use ordinary least
squares linear regression which aims to minimize the
sum of the squares of the differences between real and
predicted output Y.

7) Adaptive Boosting Regression (ABR): adaptive boosting
[29] is a popular boosting algorithm and can resist over-
fitting better than many other algorithms. The core idea
of adaptive boosting is to add a number of weak learners
repeatedly to a single strong learner, and the final predic-
tion is generated by the combination of predictions from
all the weak learners. Different weightings for different
weak learners are adjusted by the current prediction
error.

IV. MODELING

Our estimation model consists of four main steps, which
is shown in Fig. 1. We select nine input features to feed
in our model: location row, location column, hour window,
weekday/weekend, season, and values from four fixed stations
for that particular hour. The output is one single CO value
for the particular time and location. The detailed steps are as
follows:
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Fig. 1. Flowchart of our estimation model.

A. Data Pre-Processing
1) Remove all the missing values and irrelevant features

from the database table, like other pollutant values.
2) Remove CO values which are outside of range 0 ppm

to 60 ppm, to ensure the validity of the pollution
data.

B. Input Feature Engineering
1) Ground truth data: we select hourly CO values from four

fixed stations (Liverpool, Chullora, Rozelle and Prospect)
as the ground truth data feature. Because the high quality
government static monitoring stations are more accurate
than our portable sensors, introducing values from these
sites to our model can reduce the bias values from our
sensing system. Also, these four stations are the only
static CO monitoring stations which are distributed within
the greater Sydney region.

2) Spatial feature: split the greater Sydney area (one grid)
into 100×100 cells, and convert the original latitude and
longitude locations into these 10,000 value cells.

3) Temporal features: Fig. 2 shows that average hourly
CO readings change based on different hours, day of the
week and season in the past seven years. As a result,
we use the following temporal features:

i) Hour: from Fig. 2(a), we can see that average
hourly CO concentrations increase from 08:00, and
reach the peak at 11:00, then decrease till 15:00.
After that, the values rise a little bit before drop-
ping to the bottom at 23:00. Therefore, we classify
the hours into four time windows (8:00-11:00,
12:00-15:00,16:00-19:00,20:00-23:00) as the hour
feature.

ii) Day of the week: it can be seen from Fig. 2(b)
that average hourly concentrations are stable among
different days of the week. However, pollution levels
start to decrease from Saturday, except Rozelle, and
all reaches the floor on Sunday. Hence, we use
weekday/weekend as one temporal feature.

iii) Season: Fig. 2(c) shows that summer has the lowest
average hourly CO concentrations, while winter is
the worst season for CO exposure. Season is another
indicative feature for pollution estimation.

C. Target Preparation

Data from the sensor network is uploaded every 5 seconds.
We need to convert target values into hourly data before we
train the model.

1) If there is more than one data point from the sensor
network in a particular cell in one hour, use the average
value of all the data points in that cell to represent
the hourly CO value for that cell in that particular
hour.

2) Remove data from the database table where sensing data
points coverage is less than 10 cells in an hour to increase
spatial diversity.

3) Normalize hourly CO values of all cells using standard
score method (also known as Z-score standardization)
to make the mean and standard deviation of the values
to 0 and 1 respectively.

D. Model Training

Feed normalized data and features into one regression
model, and optimize the estimation performance by tuning
hyper-parameters.

V. MODEL IMPLEMENTATION AND ESTIMATION RESULTS

A. Model Implementation

All the regression models are implemented using Python
and scikit-learn [30] (except XGB), which is an open source
machine learning library for the Python programming lan-
guage. All hyper-parameters are tuned using ten-fold cross
validation method and the GridSearchCV function. Grid-
SearchCV function can exhaustively search over specified
parameter values defined by the user and automatically detect
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Fig. 2. Four static stations CO readings from May 2009 to May 2016 based on (a) different hours from 8:00 to 23:00, (b) day of the week from Monday
to Sunday, and (c) seasons from spring to winter.

Fig. 3. Comparison of (a) original values in test dataset and (b)–(h) test estimation values based on seven regression models.

TABLE I

DATASET USED IN THE EXPERIMENTS

the hyper-parameter which has the best score. To avoid over-
fitting, which is a common problem in machine learning
algorithms, we limit the minimum sample numbers per leaf on
DTR and RFR, and ensure the estimation accuracy is similar
based on both training and test dataset.

B. Estimation Accuracy Comparison

The entire dataset we use in the estimation is shown
in Table I. We can see that CO values from fixed stations
are very low with a range of 0.7ppm, while the normalized

CO value for each cell has a value range around 9ppm. For
ten-fold cross validation method, mean absolute error (MAE)
and root mean squared error (RMSE) are used to validate the
model output accuracy.

First we use ten-fold cross validation method to train
and test the entire dataset using seven different regression
algorithms. The results are shown in Table II. According to
the table, SVR, DTR, and RFR have similar MAE and RMSE
errors, which are lower than results from XGB, MLP, LR, and
ABR. RFR achieves the lowest MAE and RMSE.
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Fig. 4. Comparison of air pollution contour map based on (a) interpolated values based on real data from both static stations and wireless sensor network,
and (b)–(h) regression model estimations at 16:00 on 03/05/2016.

TABLE II

ENTIRE DATASET ESTIMATION ACCURACY

TABLE III

TEST DATASET ESTIMATION ACCURACY

Then the entire dataset is split into 2559 training samples
and 285 test samples. Every model is trained using the training
set, and estimations are generated based on trained model
and the test set inputs afterwards. The estimation accuracy
is shown in Table III. Similar to the previous results, SVR,
DTR, and RDR also has the lower MAE and RMSE than
MLP, LR and ABR. XGB has a higher MAE but a lower
RMSE than SVR. DTR has the lowest MAE while RFR gets
the lowest RMSE. A visualization of estimation results and
original test data can be found in Fig. 3, from which one can
see that estimations from SVR, DTR, RFR, XGB and ABR

correspond well to the original test output. In contrast with
results from the above four models, estimations from MLP,
LR cannot indicate significant values, and stay at a low level
all the time.

VI. TRIAL RESULT AND DISCUSSION

From the previous section, we can see that SVR, DTR
and RFR have better estimation performance across all
seven regression algorithms. In this section, we evaluate our
approach with field trials and show the estimation perfor-
mances between different algorithms.

We conducted trials and utilized an interpolation model
to generate hourly air pollution data, based on CO readings
from both static sites and the mobile sensor network. This is
compared to the data which is based on estimation values from
seven regression models. One of these trials was conducted
at 16:00 on 03/05/2016. During the trial, several participants
were asked to bring the Node sensors which have been
mentioned in §III to collect real-time air pollution data near
the CBD and M5 tunnel, which usually have high pollution
concentration values in Sydney. All the data was uploaded to
the server using our mobile application, via mobile networks.
After one hour of data collection, we then used the inverse
distance weighting (IDW) interpolation model to get CO
pollution surface values using data from both fixed stations
and mobile sensors. The contour map is shown in Fig. 4 (a).

Based on seven regression trained models and input fea-
tures, which follow the feature engineering rules for that
particular hour, we estimate 10,000 cell values for each
algorithm. After reverting the normalized CO estimations back
to normal values, we have the seven contour maps as shown
in Fig. 4(b) - (h). One immediate observation can be made –
the contour map based on SVR corresponds well with the
sensing interpolation map, and can clearly highlight the most
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TABLE IV

ESTIMATION ACCURACY FOR A PARTICULAR HOUR

polluted area in greater Sydney. Results from DTR, RFR, XGB
and ABR can indicate polluted areas to some extent, however,
polluted area boundaries are indicated by large pixels instead
of smoothly by small pixels. MLP can present the polluted area
smoothly, however, the polluted area is quite large compared
with the original one. Moreover, from the figure, we can
see that LR results cannot show the pollution contour map
correctly.

Estimation accuracy can be found in Table IV. These max
values, MAE and RMSE are based on values that have been
reverted from the normalized values, which are different from
the cross validation and testing accuracy results which are
based on normalized values. From Table IV, we can see that
the maximum values from original data are around 48 ppm,
and SVR cannot capture the peak values as accurate as DTR.
However, SVR has the lowest estimation MAE and RMSE,
which is 1.95 and 3.17, while MAE and RMSE of DTR is
higher at 3.79 and 5.29 respectively. Based on contour maps
and estimation accuracy results, we can see that SVR has
the best estimation performance among these seven regression
algorithms.

VII. SYSTEM IMPLEMENTATION

In this section we briefly describe the pollution estimation
system implementation. As shown in Fig. 5, the system com-
prises three main parts: data collection, cloud server and web-
based application for users to visualize the pollution contour
map.

A. Data Collection

The first component of the system is data collection.
As described in Section III, air pollution is collected both from
a fixed-based (static) and mobile sensor network.

We have used scripts which are written in Perl to get
fixed stations data from the NSW Office of Environment and
Heritage (OEH) government website [2] since March 2010.
We also partnered with OEH who provided us data between
May 2009 and March 2010. Carbon Monoxide data is updated
hourly from eight monitoring sites around whole New South
Wale area.

Data from the sensor network is collected and uploaded
using Node sensors and a mobile application every
5 seconds. A few data contributors collected data while they
were commuting between home and workplace. All the sensors
are calibrated every half year, using calibration devices which
are supported by OEH.

Fig. 5. System flowchart.

B. Cloud Server

The cloud server is the central component, which is hosted
in our data center. We use a relational MySQL database, for its
efficiency and reliability while searching over a large dataset.
Collected sensing data is stored in a table named Samples
which have fields like latitude, longitude, location_name (for
the fixed stations), user_id, and device_id, etc. Data from
Samples is processed and fed into the estimation model to filter
and generate values. These are then inserted into a table for
training. Model training is executed on these to get trained and
an optimized SVR model. New sensing data is uploaded every
day to our database, therefore we execute this data filtering and
training occur every month to train an updated SVR model.

To reduce the estimation query response time, we have
generated one-year estimation data from May 2015 to
May 2016 and saved it in an estimation table. There are around
8700 hours of data in the estimation table, with each hour
having 10, 000 values for the grid.

C. Web Application

The last component is web application [31], with which
users can visualize pollution estimations in Sydney in any
particular hour in the past seven years. We set a date detection
step between user query and database, to speed up querying
time. If the query date is between May 2015 to May 2016,
our system retrieves data from the database directly. If not,
it analyzes the user query, extracts the input features, and feeds
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Fig. 6. (a) Contour map of CO estimation concentrations on Google map,
and (b) plot of 8:00 am–11:00 pm CO concentrations at a particular location.

them into the trained model to get 10, 000 estimation values
for the particular hour.

Sample screen shots of our web application are shown
in Fig. 6. It comprises two parts – the first part as shown
in Fig. 6(a) is the air pollution contour map visualization
part, and the second part is a chart which shows whole
day concentration variations in a particular location as shown
in Fig. 6(b). The panel on the right of the first part allows users
to input data such as location (latitude/ longitude), date, time
and pollutant (CO is the only available pollutant at present).
Location information is needed for the second part and all the
rest of the inputs are required to generate estimations. The
right side of the first part shows the contour map along with
the pollution level indicator bar. The second part shows the
concentration variations in a particular location which can be
set via input or dragging the yellow home location icon on the
map. Variation trends will change based on the selection of
different locations in real-time. Users do not need to refresh
the web page to get a new pollution variation chart, which
makes the web application more user-friendly.

VIII. CONCLUSION

In this paper, we introduce a novel machine learning
based dense air pollution estimation system which utilizes
historical data both from (sparse) government monitoring
sites and (dense) wireless sensor network. We choose seven
regression models and compare the estimation performances,
and then select SVR as the machine learning algorithm. This
is applied in our system for its optimal air pollution surface

estimation performance. A web application is also developed
for users to visualize air pollution contour maps in Sydney
for any given hour in the past seven years. In the model
training part, we show that the estimation accuracy of SVR,
DTR, and RFR has better estimation performances among all
seven regression algorithms, using both entire dataset and test
dataset. During the entire dataset training, which uses ten-fold
cross validation, RFR has the lowest MAE and RMSE which
is 0.295037 and 0.611891 respectively. In the test dataset
validation, DTR has the lowest MAE which is 0.276770 while
RFR has the best RMSE which is 0.642000. In the air pollution
surface estimation part, estimates using SVR correspond well
with the sensing interpolation map, and can more clearly
highlight the most polluted area in greater Sydney compared
with other regression models. These results indicate that our
system can generate accurate air pollution estimations, and
highly increase the air pollution map resolution. We believe
our system is useful for long-term air pollution related disease
research. In the future we aim to introduce meteorological
factors into this system, such as weather and wind speed,
to increase the estimation accuracy.
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