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Modeling Classroom Occupancy using Data of
WiFi Infrastructure in a University Campus

Iresha Pasquel Mohottige, Hassan Habibi Gharakheili, Tim Moors, Vijay Sivaraman

Abstract— Universities worldwide are experiencing a surge in enrollments, therefore campus estate managers are seeking
continuous data on attendance patterns to optimize the usage of classroom space. As a result, there is an increasing
trend to measure classroom attendance by employing various sensing technologies, among which pervasive WiFi
infrastructure is seen as a low-cost method. In a dense campus environment, the number of connected WiFi users does
not well estimate room occupancy since connection counts are polluted by adjoining rooms, outdoor walkways, and
network load balancing. This paper develops machine learning-based models, including unsupervised clustering and a
combination of classification and regression algorithms, to infer classroom occupancy from WiFi sensing infrastructure.
Our contributions are three-fold: (1) We analyze metadata from a dense and dynamic wireless network comprising of
thousands of access points (APs) to draw insights into coverage of APs, the behavior of WiFi-connected users, and
challenges of estimating room occupancy; (2) We propose a method to automatically map APs to classrooms and
evaluate K-means, Expectation-Maximization (EM-GMM) and Hierarchical Clustering (HC) algorithms; and (3) We model
classroom occupancy and evaluate varying algorithms, namely Logistic Regression, Support Vector Machine (SVM),
Linear Discriminant Analysis (LDA), Linear Regression (LR) and Support Vector Regression (SVR). We achieve 84.6%
accuracy in mapping APs to classrooms, while our estimation for room occupancy (with symmetric Mean Absolute
Percentage Error (sMAPE) of 13.10%) is comparable to beam counter sensors.

Index Terms— WiFi sensing, people counting, clustering, regression

I. INTRODUCTION

IN large universities, enrollments are steadily increasing but
resources such as lecture rooms do not grow at the pace of

enrollment. As classrooms are allocated to courses in advance
based on enrollment, it is becoming increasingly challenging
for estate managers of university campus to allocate the grow-
ing enrollment to limited available classroom spaces. However,
class attendance often deviates from the class enrollment and
widely vary depending on the factors like time-of-day, lecture
engagement and availability of virtual learning environments.
Therefore, campus management is giving increasing attention
to various methods that can monitor occupancy and maximize
the use of campus spaces. This has led to concepts such as
smart campus that aims to employ reliable, but affordable
sensors in the decision making process in order to optimally
use the limited resources at minimal costs.

The special-purpose hardware sensors have a high up-
front cost and require efforts in deployment and maintenance
whereby limiting their adoption only to commercial spaces
as opposed to university campuses having large number of
buildings. As the WiFi infrastructure pervades modern cam-
puses and usage of mobile devices is growing, metadata from
network of WiFi APs can be used to estimate classroom
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occupancy in many university campuses.
However, using WiFi APs to estimate occupancy can be

challenging and so requires a careful analysis. WiFi signals are
not limited to indoor space but pass through walls, and thus
devices carried by users in nearby rooms or outside walkways
(bystanders) may connect to APs inside rooms – this can
corrupt the occupancy estimations that use WiFi session data.
Furthermore, errors occur due to the WiFi users connecting
with multiple devices, room occupants connecting to APs
outside the room and room occupants who do not show any
presence in WiFi.

The focus of our study is to use WiFi sessions data for
estimating the occupancy of rooms where formal teachings
take place, and enrolled students (class list) are known. Note
that in addition to WiFi session data, our method requires two
more sources of information namely timetabling and class-list
as input. Therefore, estimating the occupancy of social spaces
or meeting/seminar rooms is beyond the scope of this work
since the additional data sources are not available for these
rooms. The key novelty of this work is to develop a practical
method for estimating room-level occupancy using prevailing
wireless network data as opposed to costly sensing methods
such as video camera-based sensing. The contributions of
our paper are three-fold:(1) We analyze metadata from a
dense and dynamic wireless network of our university campus
comprising of thousands of APs to draw insights into coverage
of APs, behavior of WiFi connected users, and challenges
of estimating room occupancy; (2) We propose a method
to automatically map APs to classrooms using unsupervised
clustering algorithms; and (3) We model classroom occupancy
using a combination of classification and regression methods
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of varying algorithms. Our solution builds upon our previous
work [1] by extending our data analysis to highlight cover-
age of WiFi APs and dynamics of WiFi clients, and also
developing a method to automatically map APs to classrooms.
New contributions have helped us improve the performance
of our occupancy estimation method presented in the prior
conference paper [1]. We achieve 84.6% accuracy in mapping
APs to classrooms along with a symmetric Mean Absolute
Percentage Error (sMAPE) of 13.10% in estimating room
occupancy. Our estimation results are comparable to prior
methods which employed dedicated and specialized sensors
for room occupancy.

The rest of this paper is organized as follows: §II describes
prior work in estimating occupancy using various sensing
technologies, and §III describes the analysis of data from WiFi
sensing. In §IV, we present our learning-based approach for
mapping APs to classrooms, while in §V we develop a model
to estimate classroom occupancy. The paper concludes in §VII.

II. RELATED WORK

This section briefly presents related prior work and indicates
how our work differs from existing approaches. The number
of occupants in a room is useful information for a variety
of applications such as optimal resource allocation, efficient
energy consumption, crowd handling, adaptive network load
balancing and security surveillance in residential, commercial
and campus buildings.

A. Use of Specialized Sensors
There are studies that estimate room occupancy using spe-

cialized occupancy detection hardware. In [2] researchers used
machine learning techniques such as Support Vector Machine
(SVM), Neural Networks (NN) and Hidden Markov Models
(HMM) to process the data collected from a network of sensors
consisting CO2 monitors and ambient sensors. HMM gave the
most realistic results in predicting the number of occupants
in offices with 73% accuracy, however it was only tested in
small rooms with less than 10 occupants.

In their approach to determine occupancy using single
passive infrared sensor combined with machine learning tech-
niques Raykov et al. [3] proposed a low-cost occupancy esti-
mation solution that produced a mean absolute error (MAE)
of 1, but was tested only in rooms with 14 or less occupants.
Golestan et al. [4] developed time series neural networks to
estimate the number of room occupants with a RMSE of 0.8
for rooms with maximum 67 occupants. They used a set of
occupancy indicative sensors including BLE (Bluetooth Low
Energy) beacons. Woodstock et al. [5] evaluated RGB color
sensors, as an alternative to PIR sensors, for determining
whether a room is occupied or not. Wu et al. [6], [7] employed
improved PIR sensing and evaluated various classification
algorithms, which resulted in 99% accuracy using the SVM
classifier. Again, their method was purely aimed at detecting
the presence of people in a room.

Sgouropoulos et al. in [8] achieved a MAE of 1.2 by
employing camera image processing techniques. Paci et al. [9]
utilized camera sensors and thermal comfort sensors combined

with Support Vector Regression (SVR) to count number of
people inside large lecture rooms. Their approach produced
a MAE of 7 people for rooms with 0 - 150 occupants, but
worked well only when there is less movement. Chidurala et al.
[10] employed thermal imaging sensors and evaluated Gaus-
sian Naive Bayes, K-Nearest Neighbour (KNN), SVR, and
Random Forest (RF) algorithms to estimate room occupancy.
The results from the RF algorithm showed the highest accuracy
of 99%. However, the method was only tested for rooms with
up to three occupants. The complex processing algorithms
employed for image processing-based methods require heavy
computational resources and if explicit consent is not obtained,
privacy remains an issue.

Yoshida et al. [11] installed a number of devices (e.g.,
Raspberry Pi) in a room to collect RSSI from WiFi networks.
They estimated room occupancy by analyzing changes in
signal propagation between APs and installed devices. They
employed linear regression (LR) and SVR algorithms and
achieved a MAE of 0.47 in estimating occupancy in rooms
with maximum 8 people.

Authors in [12] employed a specific mobile app to collect
Received Signal Strength Indication (RSSI) data from beacons
transmitted from Apple’s iBeacons. The work in [13] proposes
to estimate room occupancy by modifying the iBeacon pro-
tocol. Both approaches require users to install a mobile app
on their device to collect and transfer data from the device to
a remote processing server. We believe that it can be quite
challenging to encourage a reasonable number of users to
install a new app which can drain their mobile battery faster
due to underlying Bluetooth communication.

Recently, Demrozi et al. [14] evaluated a method to estimate
room occupancy using BLE devices. They achieved 98%
accuracy in detecting occupancy and an MAE of 0.32 in
estimating the number of occupants. All of these approaches
that are based on special-purpose hardware sensors require
new sensor installations, therefore, have the disadvantage of
associated costs in deployment and maintenance.

B. Use of Existing Infrastructure

Most light-weight approaches for occupancy estimation use
existing infrastructure as occupancy sensors. In [15], Akkaya
et al. highlighted the growing trend to employ implicit sensing
infrastructure (e.g., electricity or lighting systems, or enterprise
computer network) to estimate occupancy due to the associated
high costs in deployment and maintenance of special-purpose
hardware sensors. They also emphasized the challenges in
estimating room occupancy with WiFi AP infrastructure, es-
pecially in areas such as lecture theater in a university. Melfi
et al. [16] employed occupancy sensing methods such as
monitoring of MAC and IP addresses in routers and WiFi
APs. Although accuracy was within a 10% confidence interval
around the ground truth occupancy for whole buildings, it was
unacceptably erroneous at floor or room granularity due to the
overlap of AP coverage and inconsistent wireless connectivity
of devices. Balaji et al. [17] attempted to improve the accuracy
issues identified in [16] by using occupant identity. They used
WiFi MAC address and AP location from WiFi session data
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and achieved 86% accuracy in determining occupancy in office
spaces in a commercial building. Using a combination of
number of WiFi devices, electrical energy demand and water
consumption, Das et al. [18] achieved an overall MAPE of
only 13.22%. Ouf et al. [19] captured 70% of the variability
in room occupancy explained by WiFi device counts in a study
that evaluated effectiveness of using WiFi AP data to estimate
occupancy as opposed to CO2 sensors.

Eldaw et al. [20] attempted to estimate class attendance
retrospectively by considering the WiFi traces of selected
classrooms for the entire semester as input. Authors associate
user ids to a class based on the number of their “revisit” over
a semester – in other words, bystanders are filtered out if they
appear in WiFi logs of a room less than 50% of the semester.
Work by Redondi et al. [21] primarily aimed to determine
whether a classroom is occupied or not (instead of estimating
the count of occupants) by considering WiFi connections from
devices inside a classroom. Authors applied a threshold value
on RSSI of WiFi connections to filter bystanders. However,
they do not provide any insights into the impact of the used
threshold values on their estimation (e.g., comparing results
with/without threshold-based filtering).

WiFi localization is another well-discussed area of occu-
pancy research. Work in [22] developed a method to localize
WiFi clients using a single AP and achieves an accuracy
up to centimeters – the proposed method required changes
inside the WiFi AP. Authors did not attempt estimating room
occupancy since it required to obtain classroom coordinates to
map localized clients to the classrooms. Instead, we estimate
classroom occupancy by classifying WiFi users as inside
and outside, and thus we do not require any changes in
existing infrastructure. Another work by [23] employed WiFi
fingerprints to localized people, however required people to
install a mobile app to collect channel information.

Another recent work by Tang et al. [24] employed Passive
WiFi Radar (PWR) sensing to detect and count room occu-
pancy using Convolutional Neural Network (CNN). The PWR
system can directly leverage any commercial WiFi AP for
detection. Unlike other WiFi-based methods that measure RSS
and CSI data, PWR exploits target reflections. They achieved
an accuracy of 99.5% in occupancy detection and 98% in
people counting. However, their method was only tested for
rooms with an occupancy of up to four people.

It is important to note that relying upon purely APs located
in a room to estimate occupancy introduce errors in a univer-
sity campus with high density of APs where occupants in a
room may connect to APs both in and around the room. To
the best of our knowledge, our work is the first to develop a
practical method for mapping APs to rooms using real data
and use metadata in WiFi session logs combined with machine
learning techniques to estimate occupancy in classrooms with
a large number of occupants in a university campus.

III. WIFI SENSING OF OCCUPANTS

In this section, we begin with our method for sensing
occupants and describe our dataset. We then clarify challenges
of inferring the count of people in a room by touching upon

the wide coverage of WiFi APs in a large university campus
and drawing basic insights into user connections footprint.

A. Data Collection
We collected daily dumps of WiFi session logs from the

IT department of our university for 70 WiFi APs located in
7 lecture theaters on the campus, for the period of 2017-July-
31 to 2017-October-27 (i.e., sem2-2017) and 2018-February-
26 to 2018-June-1 (i.e., sem1-2018) – in our university there
are about 5000 APs operational across the entire campus.
We chose to select two buildings (teaching-focused) in which
majority of lecture theaters are located, and obtained WiFi
traces from 70 APs covering selected rooms of various sizes.

We show in Table I a sample of WiFi session logs. Each row
of our dataset contains several fields including a unique User
ID (i.e., a unique identifier and password is required for WiFi
authentication with enterprise-level security), MAC address of
user device, time when the device is associated/disassociated
to/from the corresponding AP, Session duration, AP name,
several counters (i.e., Tx/Rcvd Bytes) and performance metrics
such as the signal strength as shown in Table I. Due to the
sensitive nature of such information that we used in our work,
the research was approved by university Human Research
Ethics Advisory Panel under the approval number HC17140
to use the anonymized personal information.

In addition to WiFi session data, we obtained data of
timetabling information containing course timeslots allocated
to rooms. Note that we do not have access to course-related in-
formation (e.g., course name, faculty) which had been filtered
due to privacy reasons. We also collected the list of enrolled
students for several courses/classes as ground truth to associate
a WiFi user with a classroom. WiFi users who appear in both
the enrollment list and the WiFi session data of a class are
labeled as occupants and others as bystanders. Furthermore,
we performed spot measurement for collecting ground-truth
count of attendees in several classes.

B. Challenges of Inferring Classroom Occupancy using
WiFi Traces

In this subsection, we look at a few examples of WiFi
users and the variety of their connections due to overlapping
coverage of APs found in the dataset from our university
campus to show that estimating classroom occupancy requires
more knowledge than merely counting unique user identifiers
connected to APs in a room.

1) Identifying WiFi Users: By analyzing WiFi session data
during a class, we see different types of WiFi users. In Fig.
1a, we plot a time trace of AP connections for a student (with
student identifier a4636cd1) between 9am and 12pm. This
student enrolled in a tutorial class of Course-101 held from
10am to 11am on Fridays in Semester 2, 2017 in classroom
MatC. MatC is located at the second floor of a two-story
building, i.e., Mathews building. APs of level 1 (L1) and level2
(L2) are shaded in light-blue and light-yellow (in Fig. 1a)
respectively. Each solid-blue dot indicates the AP to which
this student is connected at every 5 minutes. We can see that
the student was consistently connected to the WiFi network
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TABLE I: Sample of WiFi session logs.
User ID MAC address Association time Disassociation time Session duration AP name Bytes Tx Bytes Rcvd SNR RSSI Status
145e7e26 00:08:22:60:fb:fe 31/07/2017 10:40 31/07/2017 11:15 35 min mattap1 2717397 1717397 31 -63 Disass

145e7e26 00:1e:64:d5:43:e6 31/07/2017 10:55 31/07/2017 11:20 25 min mattap14 473749 2456743 27 -68 Disass

b6c72a33 00:34:5c:fb:8d:2b 31/07/2017 11:15 31/07/2017 11:20 5 min mattap13 1465373 6293826 35 -61 Disass

490801c0 00:3b:21:5d:fb:80 31/07/2017 20:40 - 20 min clb17 156318 3462431 49 -45 Ass
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Fig. 1: Time-trace of connected APs for an enrolled student and building AP layout.

throughout the period from 9:15am-11:20am – there were
no trace time samples in our dataset (i.e., 9am-9:10am and
11:25am-12pm) during this period of focus, since our dataset
only covers 70 out of 5000 APs across our university campus.
The student was first seen connected to AP mat29 located in
walkway of L1 in Mathews building, as shown in Fig. 1b.
The student then got connected to mat11 in the room MatB in
L1 and maintained the connection for about 40 minutes. The
student probably attended another class (for which we do not
have the ground-truth data) held in MatB between 9am-10am.
At 10am and 10:05am the student connected to mat06, still
in MatB. Next, at 10:10am the student was seen connected to
mat13 in MatC (shown in Fig. 1b) as expected. At 10:15am
the student connected to AP mat14 and stay connected to it
till 11am. Lastly, the student was captured by mat29 located
at L1 walkway, leaving the building after the class.

We show in Fig. 2 various patterns of WiFi connected
users during a tutorial class scheduled for 10am-11am in
room MatC (top yellow ribbon in these plots corresponds to
APs in this room): Fig. 2a illustrates a WiFi user connected
via two devices, i.e., Device1 remains permanently connected
to the inside AP mat13, and Device2 enters the room with
its already established connection to an outside AP mat12
located at L2, joins (after about 20 minutes) the inside AP
mat14 in this room, and later switches to an outside AP mat2
located at L2; Fig. 2b shows a passerby WiFi user temporarily
connected to an AP in this classroom; and lastly, Fig. 2c shows
a WiFi user who is an enrolled student of the tutorial class
held in room MatC, but connected to AP mat16 located in
adjacent room, MatD. This example highlights the variety of
users connections that need to be accounted for estimating
room occupancy – multiple connections in Fig. 2a are to be
aggregated as a single user; the user in Fig. 2b should be
filtered out; and the user in Fig. 2c should be accounted in
estimating the occupancy of the subject class.

2) Coverage of WiFi APs: We performed several spot mea-
surements in real classes to correlate attendees’ layout (their
seating pattern) in classroom and the corresponding WiFi ses-
sion logs. As an example, we show in Fig. 3a, our observation
for a class in the theater CLB8. We show the layout of APs
for CLB8 with 9 APs and three doorways in Fig. 3b. This
selected class had 212 students enrolled and was scheduled
on Tuesdays from 1pm to 2pm during semester 2, 2017 –
the observation was made at 1.30pm. We see the number of
WiFi users connected at each AP (all APs to which at least
one enrolled student is connected) at that time. In the Fig. 3a
the enrolled and non-enrolled students are shown by blue and
green bars respectively. For this measurement, we observed
that many students were clustered in the middle of the class as
indicated by the highest number of room occupants connected
to AP clb23 located in the middle of the room, as shown in
Fig. 3b. Another observation was that a group of students sat
near doorways and thus got connected to their nearest APs,
i.e., clb19 close to D3, clb18 close to D1, and clb2 close to
D2 as shown in Fig. 3b – each of these APs serve about 10
WiFi users.

Interestingly, clb21 shows the second highest number of
occupant connections, though it is located outside the room
(but close to doorway D3 at back). This is probably because
students who enter the room from entrance D3 has a high
chance of sitting at the back and kept their connection to the
same AP – they connected to clb21 while entering the room.
This observation shows that just considering those APs located
inside a classroom may result in missing out a significant
number of occupants connected to an external close-by AP
(i.e., clb21 in our example). Therefore, it is important for each
classroom to identify APs (inside and outside but close-by)
that serve attendees. In other words, we need to map WiFi APs
to campus classrooms. This becomes useful to count enrolled
students connected to APs associated with the corresponding
classroom. We also note that there are enrolled students who
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Fig. 2: Time-trace of users connection to WiFi APs in Mathews building.
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Fig. 3: Enrolled/non-enrolled user connections to APs in
CLB8 (lecture theater with 9 APs and three doorways, i.e.,
D1, D2 and D3) during a selected class and room AP layout.

may not always attend the class and connect to other APs far
from the room during the class, (i.e., connections to k1702,
shown by the second blue bar from the right in Fig. 3a),
thus should not be mapped to the room of interest. Similarly,
AP clb01 and clb28 shows a few connections from enrolled
students – these APs are located inside a classroom next
to CLB8. Therefore, it is important to account for all the
WiFi connections made to APs both inside and outside the
classroom, especially those that cover a significant number of
room occupants e.g., clb21 in Fig. 3.

C. Why Filtering Bystanders and Mapping APs to
Rooms?

We collected ground-truth attendance data of 40 classes
held on campus – our samples cover a variety of courses and
classroom locations, from different days of week as well as
different times of day. We plot in Fig. 4 the count of attendees
versus enrollments across classes – each blue circle represents
a class. It is seen that the attendance count is well below
the enrollments for most of the classes (i.e., circles fall under
the line y = x), especially for larger classes with enrollment
counts of more than 200. For example, the class highlighted
by red letter “A” in Fig. 4 has an enrollment of 247 while the
attendance was only 81 students. This clearly highlights the
need for measuring class attendance patterns automatically and
continuously, enabling university estate managers to optimize
the usage of classroom spaces.

In addition to ground-truth data, we obtained WiFi session
logs and class lists (enrolled students) for the above 40 classes
to analyze class attendance and count of WiFi users (connected
to APs inside these individual classrooms). For each class, the
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Fig. 4: Ground truth data showing class attendance
is often lower than its enrollment.
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B

Fig. 5: Classroom occupancy is inferred from the
intersecting of enrolled WiFi users and all WiFi
users connected to class APs.

WiFi session data of all APs in a classroom (where the class
is run) was considered. We denote: (a) class enrollment count
by “OccupancyEnrolled” that is obtained from class list; (b)
measured attendee count by “OccupancyWiFi” which is the
total number of WiFi users during a class; (c) measured en-
rolled count by “OccupancyEnrolledWiFi” that is the number
of enrolled students connected to WiFi during that class. As
illustrated in Fig. 5, OccupancyEnrolledWiFi (set C) is the
intersection of the other two sets namely OccupancyEnrolled

(set A) and OccupancyWiFi (set B).
We found that OccupancyWiFi was always higher than

the OccupancyEnrolledWiFi, as shown by the scatter plot in
Fig. 6. This indicates that the OccupancyWiFi covers a variety
of WiFi users including enrolled students in a class, students
in adjacent rooms, and also passersby/bystanders as discussed
in §III-B.1. Furthermore, we plot OccupancyEnrolledWiFi

versus ground-truth attendees in Fig. 7 to show that
OccupancyEnrolledWiFi was lower than the observed actual
occupancy in many classes. Such cases occur when some of
the room occupants connect to APs outside of the classroom,
or they do not connect to university WiFi network (e.g.,
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Fig. 8: Ground-truth occupancy
correlates better with
OccupancyEnrolledWiFi than
OccupancyWiFi.

TABLE II: Correlation between ground-truth attendees count
and measured count considering all WiFi users and enrolled
WiFi users.

Measured occupancy Pearson’s correlation coefficient sMAPE
All WiFi users 0.35 26.3%

Enrolled WiFi users 0.77 24.1%

instead they may turn off devices during lectures, or use
Internet via their personal mobile 3G/4G). In §III-B.2 we
showed that certain APs located outside of the classroom may
cover a significant number of occupants inside (e.g., clb21
in Fig. 3). Also, we observe two outliers (highlighted by A,
B in Fig. 7), where the ground-truth occupancy is less than
the OccupancyEnrolledWiFi. This is possible when enrolled
students connect to APs in the classroom from outside but
within close proximity.

Comparing Fig. 7 with Fig. 8 (visually) shows that the
ground-truth attendees count displays a better correlation with
OccupancyEnrolledWiFi than with OccupancyWiFi. We ver-
ified this by computing the Pearson’s correlation coefficient
for these two pairs that are found to be 0.77 and 0.35 for
OccupancyEnrolledWiFi and OccupancyWiFi, respectively.
Also, we computed sMAPE when occupancy is estimated by
measuring the count of all WiFi users versus the count of
enrolled WiFi users. As shown in Table II, a slightly lower
error is obtained when enrolled students are considered for
class occupancy. Therefore, filtering out non-enrolled user
from from the WiFi session logs would enhance the estimation.

Based on our findings so far, in §IV we will develop a
method to automatically map campus APs to their correspond-
ing classrooms. Next, in §V we will use WiFi session data of
the APs mapped to individual classrooms to estimate room
occupancy using machine learning techniques.

IV. MAPPING WIFI APS TO CLASSROOMS

In a large university campus with nearly 100 acres of real
estate, and over 50,000 students and staff, the IT department
of the university operates a dense and dynamic network
comprising thousands of wireless APs to provide an improved
WiFi experience for users. We use WiFi AP logs to estimate
classroom occupancy, therefore knowing what APs cover the
room occupants is important. We saw in §III-B.2 even APs
outside a room can largely cover occupants of the room

because WiFi signals go through walls. Although wireless
site surveys provide records of AP locations in an area, it
is cumbersome to manually combine such data with a system
that counts room occupants, especially in a dense university
campus where there is a large number of buildings and APs,
considering the time to be spent and errors that may occur. On
the other hand, surveys do not provide up-to-date information
on how room occupants are covered by the APs located in and
around the rooms. In this section, we present our method to
automatically map APs to classrooms of a university campus.
We develop a practical application based on realistic data
collected from 70 APs on the campus to map these APs to
their corresponding classrooms – note that some APs do not
associate with any rooms since they are located in corridors
or walkways.

A. Feature Selection for WiFi APs
It is possible to compute how many users are connected to

a particular AP at a given time using the WiFi session logs
that provide the unique user identifiers, time of associations,
time of disassociation, and the connected AP for each session.
Similarly, the number of enrolled students connected to a
particular AP can also be computed using the enrollment
list (i.e., class lists) of the class held in the room at the
time of interest. During a particular class, at every fixed time
interval (e.g., every 10 minutes) we compute the following two
features:

• fracClass: Fraction of connections made by students
enrolled in the class to a particular AP, e.g., 25% of
the students enrolled in the class might connect to APk

giving APk a fracClass of 25%.

fracClassAPk
=

NEn(APk)∑
i NEn(APi)

(1)

where NEn is the number of enrolled students connected
to an AP.

• classFrac: Fraction of connections to an AP that were
made by students enrolled in the class, e.g., 60% of the
connections to APk might be made by students enrolled
in the course.

classFracAPk
=

NEn(APk)

N(APk)
(2)
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where NEn is the number of enrolled students connected
to an AP and N is the total number of connections to an
AP.

The parameter fracClass is a measure of how each AP
covers the connections of enrolled students. For an AP located
faraway from the room, the number of connected enrolled
students is typically smaller than that for an AP located in
or around the room, hence a lower fracClass is expected.
The other parameter we define is classFrac which indicates
how vulnerable each AP is to the connections from WiFi users
located outside the room of interest.

To better understand these two key features, we compute
them for a sample class (i.e., a lecture of Course-100) in
theater MatC, across APs to which enrolled students of the
class connect and at varying time resolutions (i.e., 2-min,
5-min, and 10-min), shown in Fig. 9 and Fig. 10. Due to
flux of students entering/exiting the class during the first and
last few minutes of lectures, features are computed for the
interval between 10 minutes after the scheduled lecture time
and 10 minutes prior to end of the scheduled lecture time.
Unsurprisingly, profiles for both fracClass and classFrac
get smoother by reducing the resolution of sampling (Fig. 9
and Fig. 10), but the profile trend is largely maintained from
2-minute resolution on the left to 10-min resolution on the
right. We will look closely at the impact of sampling rate on
accuracy and time complexity of APs mapping in §IV-B.

Looking at Fig. 9, AP mat13 (located inside the room)
contributes to most of connections (i.e., more than 80%) made
by enrolled students followed by mat12 and mat14. Note
that mat12 is located at L1 while our subject class is held
at L2. This is probably due to a one-hour tutorial class of
the same course which is held at L1 (just prior to this class)
and thus users devices maintain their connections made in the
previous class, though users moved to a new room which is
located just above the previous room. In the middle of the
class (i.e., around 10:30am), we see that mat03 (located in
MatC) starts getting connections from enrolled students while
connections count of mattap12 (located at L1) starts falling.
This is probably because new connections from users closer
to mat12 cause connections from the class of MatC to switch
to their nearby AP mat03.

Now moving to Fig. 10, connections made by enrolled
students to each of those APs located inside the room MatC
(i.e., mat03, mat13, and mat14), account for more than 60%
of the total connections while this metric (i.e., classFrac) is
20% for mat12 which is located at L1. We note that the profile
of classFrac for APs mat12 and mat11 falls during the class
time since the count of enrolled students connected to those
APs drops as explained above – i.e., a rise in connections from
nearby users probably forces connections from users inside the
classroom to migrate. Surprisingly, classFrac for AP mat02
located at L1 starts rising to a value of about 60% after
10:45am, since the number of non-enrolled students connected
to it drops (i.e., possibly due to end of another class), and thus
the contribution of enrolled students of Course-100 becomes
significant.

This example shows that the two features (i.e., fracClass
and classFrac) are collectively needed to associate an AP

to its corresponding room. In what follows, we feed these
temporal features to a model that learns how to distinguish
APs (to which class occupants get connected) located in and
around a given classroom, from other APs spread across the
campus.

B. Unsupervised Clustering of APs
The WiFi session data was collected from IT department

of our campus during 2017-July-31 to 2017-October-27 (i.e.,
sem2-2017) and 2018-February-26 to 2018-June-1 (i.e., sem1-
2018) while we obtained class lists data for 12 courses held
in 5 classrooms. The minimal required data to map the APs
related to a particular classroom is the WiFi session data
during a single class held in the room of the interest and the list
of students enrolled in that class. Additionally, the timetabling
information is used to map the classes to rooms where we
intend to discover the relevant APs. Our method is scalable
across the whole campus at the availability of the input data
shown in the method overviews in Fig. 11.

Our objective is to determine APs in and around a room
that cover a significantly large number of the room occupants
(mapping APs), and hence two clusters are needed, i.e., (a)
APs located in and around the room (APs mapped), and (b)
APs located far from the room (APs not-mapped). Note that
this mapping could be one-to-many especially when an AP
in a corridor is close to multiple rooms. We computed the
parameters fracClass and classFrac at 10-minute resolution
for 12 classes across each weeks of the semester (Note that
we re-sampled the different length temporal features of classes
with varying duration during the clustering). The derived
features are then fed as input to clustering algorithms. In the
next subsection we evaluate the performance of three widely
used clustering algorithms, K-means, EM-GMM and HC.

C. Clustering Results
We evaluate the performance of three clustering algorithms

namely, K-means, HC, and EM-GMM. Table III shows re-
sults of correct prediction (i.e., true positive and true nega-
tive). There exist four basic clustering algorithms, including
centroid-based, connectivity-based, EMM, and density-based
models. K-Means is a centroid-based algorithm that is rel-
atively simple to implement and run given the number of
clusters. HC is a connectivity-based algorithm that is widely
used for real-world applications. It has two variants: Agglom-
erative and Divisive. Agglomerative is the bottom-up approach
that starts with each observation in its own cluster, merging
clusters in the hierarchy. We employed the most widely used
HC variant agglomerative clustering in this work. EM-GMM
is a distance-based clustering algorithm that assumes Gaussian
distribution instead of the uniform distribution assumption in
K-Means and is less expensive than K-Means. It is a soft
clustering method that computes a probability to associate
an instance with each cluster. In this work, we cluster our
instances by choosing the highest probability derived from
EM-GMM. The density-based clustering algorithms such as
DBSCAN grow in popularity as they do not require cluster
count as input. However, they tend to produce poor results if
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Fig. 9: fracClass computed during 10:10am-10:50am for class Course-100 scheduled on 10am-11am in theater MatC.
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Fig. 10: classFrac computed during 10:10am-10:50am for class Course-100 scheduled on 10am-11am in theater MatC.
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Fig. 11: System architecture for mapping APs to classrooms.

the dataset has variable density clusters. Therefore, density-
based clustering was not a choice for our work where the
density of the expected clusters largely differs (the cluster
of APs associated in a room are expected to have a much
smaller density than the rest of the APs). We used the campus-
wide layout of WiFi network provided by our university IT
department to obtain the ground-truth location of APs, whether
they are associated with a room (inside or nearby), or not
(faraway outside).

K-means achieved 85.7% accuracy in mapping APs asso-
ciated with rooms and 99.7% accuracy for APs disassociated
with rooms. It is only slightly better than HC and EM-GMM
to make a general conclusion on what algorithm performs best
for our method. To better visualize clustering features, we first
apply Principal Component Analysis (PCA) to our feature set
reducing dimensions, and then plot clustering results on two
principal components of AP features (for a sample class held
in room MatA) in Fig. 14. It is clearly seen that these two
PCA components contain enough information to distinguish
two clusters of APs, inside and outside, for this example. Also,
we observe that all outside APs are correctly classified (blue

TABLE III: Performance comparison of clustering algorithms
(correct prediction).

Associated room APs Not-associated room APs Response time
average run-time std. deviation

K-means 85.7% 99.7% 53.6 ms 2.2 ms

HC 83.1% 99.7% 0.84 ms 0.11 ms

EM-GMM 81.1% 99.6% 9.1 ms 0.9 ms

circles) by K-means while three of inside APs are misclassified
as outside. In terms of response time, K-means takes 53.6 ms
to generate results of mapping APs to classrooms – this time
is 0.84 ms for HC, and 9.1 ms for EM-GMM.

We now compute the time complexity of feature extraction
and the accuracy of K-means clustering. The temporal features
generated at 1, 2, 5, 10, 15, 30, 45 and 60 minute time
resolutions. Our aim is to estimate the room occupancy in
near real-time. With that, the AP mapping algorithm which
uses the two features (i.e., fracClass and classFrac) becomes
more accurate when it is run in real-time since it dynamically
captures the WiFi coverage over current room occupants.
Fig. 12 shows two components (data retrieval and feature
calculation, shown by dashed blue and dotted red lines) of
the total time taken to generate features for an AP. Note
that the number of data rows retrieved from the database at
coarser resolutions (e.g., 60-minute) is hundreds of times less
compared to finer resolutions (e.g., 1-minute). Therefore, it is
seen that the feature extraction time displays a non-linear trend
mainly because of the database retrieval time component, and
hence the total time of feature extraction rapidly falls with
time resolution.

The accuracy of correctly clustering the APs in and near the
room (true positive) is higher when features extracted at higher
temporal resolutions (as shown in Fig. 13). Furthermore, the
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Fig. 12: Average time taken to extract features per AP.

machine classifies the APs far from the room (true negative)
with nearly 100% at all time resolutions. We have 5000
APs on our campus, and it is not practically feasible to
generate features for all 5000 APs on campus at high temporal
resolution (every 1-minutely) despite of the higher accuracy.
Therefore, we select the 10-minute time resolution as it is
cheaper at time cost and does not compensate the accuracy
which is 92.1% at 1-minute resolution and 84.1% at 10-minute
resolution. Note that this value is tuned for a network of 70
APs in our study. The trade-off between accuracy and time-
complexity varies by the size of WiFi network. Note that
features extraction and automatic AP mapping engines run on
a machine with 6 CPU cores, 16 GB of memory, and storage
of 521GB.

1) Consistency of AP Mapping: We now look at how map-
ping of APs to classrooms varies across weeks. Note that it
is possible to have APs mapped (incorrectly) to their adjacent
rooms. Also, in certain circumstances, we may find an AP
mapped to a room faraway from its actual location. This case
can only occur if a considerable number of students enrolled
in a class do not attend their classroom and connect to an AP
located in other side of the campus (far from the classroom)
– also this AP serves no other class (with students) at that
particular time.

We quantify “consistency” metric for each AP, computed
as fraction of time the AP is correctly mapped to its expected
room across all classes over 10 weeks. Fig. 15 shows the
Complementary Cumulative Distribution Function (CCDF) of
consistency for mapping APs. We see that the chance of having
consistency of more than 80% is 0.7. We observe that mapping
of APs may fluctuate across weeks, but the chance is fairly low.
Note that this is mainly because our mapping algorithm takes
WiFi occupancy and enrolled WiFi occupancy as inputs which
both are dynamic and fluctuate across weeks. Our consistency
results illustrate the need for dynamic use of AP mapping (i.e.,
for each class).

2) Impact of Room Size and Class duration on Mapping APs:
We now evaluate the variation of AP mapping accuracy across
classrooms and classes of varying duration. The 5 classrooms
of our study include one very large lecture theater (i.e., MatA),
two large lecture theaters (i.e., MatB and CLB8), one medium
lecture room (i.e., MatC), and one smaller classroom (i.e.,
Mat228). We show in Fig. 16, the confusion matrix of AP
mapping for the 5 classrooms. It is seen that the accuracy of
mapping APs outside rooms (i.e., true negative) is very high
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Fig. 13: Accuracy of AP clustering at varying temporal
resolutions.
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Fig. 14: A sample of K-means clustering results on two
principal components of AP features, for a class.

close to 100%, meaning that APs faraway from rooms are
well distinguished and thus not mapped to any rooms. For
APs located inside classrooms, the rate of correctly mapped
instances is relatively lower. For example, in the largest lecture
theater MatA with 17 APs inside, the rate of correctly mapped
APs inside (i.e., true positive) is 79% as shown in Fig. 16a.
For room CLB8 with 10 APs, this metric 80% as shown in
Fig. 16b. This is mainly because these rooms have APs which
serve a small number of (or zero) enrolled students in the class
– these APs are located at the border/corner of rooms, and thus
get misclassified. We highlight these APs by red color in Fig.
17a and 17b for MatA and CLB8, respectively. We note that
the rate of true positive gets slightly better (close to 90%) for
lecture rooms with fewer APs (i.e., MatB with 4 APs and MatC
with 3 APs). Surprisingly, the smallest room Mat228 with 3
APs displays the lowest true positive rate – we found that one
of these 3 APs (i.e., mat33 highlighted by red in Fig. 9(c)) was
configured by the highest value of power level, (thus serving
most of users in the classroom), while the power for other two
APs was set to default auto which is the recommended power
setting. This inconsistent configuration results in small values
of fracClass and classFrac features computed for the other
two APs in the room, leading to an incorrect classification.

Lastly, we compute the impact of class duration on mapping
APs to rooms. For short duration classes (i.e., less than two
hours) the accuracy of mapping APs is 81% while it gets
slightly better up to 86% for long duration classes (i.e., 2
hours or more). This is because our temporal features for
longer classes become distinctly large, allowing our method
to perform better in mapping APs to rooms.
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V. MODELING CLASSROOM OCCUPANCY

Given the list of student identifiers of enrolled students for
a particular class or classes and the WiFi session data for
the campus during that class, we identify the APs that the
occupants of a particular room get connected. Then the WiFi
session data from such APs that are selected for a particular
room is used to estimate the number of people in that room.
In this section we explain the feature extraction, method and
results of estimating occupancy.

A. Feature Selection for WiFi Users

In general, bystanders would often differ from room occu-
pants in the way they use WiFi. For instance, the duration of
connection during a particular class is useful in determining
the WiFi user’s occupancy in that class. In our previous
work [1], we identified the following set of features (extracted
from WiFi sessions data) to distinguish room occupants from
bystanders. For each user, we can compute the following
features.

1) RSSI - Average of RSSI values across number of ses-
sions associated with a user during the class of interest.
For instance, bystanders are expected to receive less
signal strength compared to occupants.

2) Arrival delay - Time difference between the class start
time and the WiFi user’s first appearance in WiFi during
the class of interest. For instance, a student who attends
a lecture is more likely to arrive to the classroom around
the start of the class, and hence expected to have low
arrival delays.

3) Number of sessions - Number of associations during the
class of interest. For example, there is a high chance for
a lecture attendee to have multiple associations during
the class due to inconsistent WiFi connectivity of mobile
devices as highlighted in [16].

4) Number of devices - Number of devices used to connect
to WiFi during the class of interest. For instance, a
bystander walking past a room is more likely to get
connected only with their mobile phone while class
attendees would probably have multiple devices (mobile
phone, tablet, and laptop) connected to WiFi.

5) Percentage of ‘in time’ (tin) - Percentage of a user’s
WiFi access that occurred inside the class time during
the class of interest. By considering the association and

disassociation times of a session we removed the over-
lapping sessions by a single user to compute the non-
overlapping connected time during a class. Bystanders
walking past the room have less connected time to WiFi.

6) Percentage of ‘out time’ (tout) - Percentage of user’s
WiFi access that occurred outside the class of interest.
This is normalized by subtracting the class duration from
the time in which the lectures are usually scheduled
during the day (9am - 9pm) on our campus. Bystanders
connecting to APs inside a room are working in nearby
offices or study spaces would typically have high tout
values.

To better understand these features, we illustrate in Fig.
18 a time trace of WiFi association with APs in a sample
classroom from four selected users (S1...S4) – each colored
box represents the time interval over which a user connects
to APs inside this room. The corresponding features are
computed and summarized in Table IV.

User S1 connects to WiFi with multiple devices, having two
overlapping sessions; S2 probably has two classes (i.e., class3
and class4) scheduled in the same room on that day; S3 has
one device only connected with WiFi during a class; user S4
is seen throughout the day, hence likely to be someone who is
working/studying in proximity area, but may not be inside the
room. During class1 which lasted one hour, user S1 has two
connections; one from 9:20am to 9:40am, and another one
from 9:30am to 10:00am. We compute the non-overlapping
connected time during this class to be 40 minutes. Rest of
that day, S1 is not seen connected to any AP inside or nearby
this room beyond the class1. Similarly, during class3 which
lasted for three hours, user S2 has two sessions having spent
50 minutes in class and has an out of class time of 30 minutes
(10 minutes from 10:50am to 11:00am plus 20 minutes from
14:20pm - 14:40pm). Another user, S3 has spent 45 minutes
in class3 and does not reappear beyond the class3 – hence has
a tout of 0 minutes. The WiFi user S4 is seen for 40 minutes
during class3, however this user has 85 minutes connection
out of the class3 during that day.

In Fig. 19, we show the distribution of identified features
for the two WiFi user groups (i.e., room occupants in blue
and bystanders in green) using a dataset of 20,000 WiFi users
across 2700 classes. Looking at these plots, we can visually
distinguish (to a great extent) the two groups by individual
features (i.e., tin, tout, arrival delay, number of devices,
number of sessions, and average RSS) though there are some
overlaps – this shows that our features collectively capture the
property of each user group. Considering Fig. 19a, occupants
display a mean tin of 67.9% which is more than double the
mean tin (i.e., 27.3%) for bystanders. Similarly, occupants of
a room can be characterized by lower tout (i.e., 3.0%), and
lower ‘arrival delay’ (i.e., 13.1 minutes) compared to those
of bystanders (i.e., 25.1% and 29.1 minutes, respectively) as
shown in Fig. 19b and Fig. 19c. Furthermore, occupants on
average display slightly more devices (i.e., 1.47) and more
sessions (i.e., 2.19) compared to bystanders (i.e., 1.08 and
1.34) as shown in Fig 19d and Fig. 19e respectively. In terms
of RSSI shown in Fig.19f, we don’t see a significant difference
between occupants and bystanders (i.e., mean value of 59.4
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Fig. 16: Confusion matrix of AP mapping for five classrooms of varying size.
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Fig. 17: Those APs that are located at corners (in red) of the room did not get mapped to their respective rooms.09:00 21:00
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Fig. 18: Daily trace of four users in session logs of APs in a classroom.

TABLE IV: Features computed for sample WiFi users.
User Class duration tin tout RSSI (dB)
S1 1-hour 40/60 = 66.7% 0.0% 61.5

S2 3-hour 50/180 = 27.8% 30/540 = 5.6% 66.0

S3 3-hour 45/180 = 25.0% 0.0% 60.0

S4 3-hour 40/180 = 22.2% 85/540 = 15.7% 62.0

vs. 66.4). This is probably because that devices typically
get connected to the AP with the strongest signal regardless
of location. We also note that the received signal strength
varies by a number of factors such as device type (e.g.,
laptop, mobile phone) and device manufacturer. Additionally,
the RSSI recorded in WiFi logs is an average value computed
over the whole session.

B. Supervised Learning for Estimating Classroom
Occupancy

In this section we outline our two-step approach for esti-
mating classroom occupancy. Firstly, we classify individual
WiFi users as occupant or bystander using the six features
described in §V-A. To train our classifier model, we extract
the six features for each WiFi user, and obtain users’ label
by checking the WiFi session logs against the class list.
Secondly, we employ a regression algorithm to predict the
room occupancy using the count of occupants predicted by

the classifier model. The ground-truth data for the regression
was obtained by the actual count of the room occupants. The
regression step compensates for the room occupants who are
not captured by the WiFi logs. It is important to note that,
nearly 18% of the students on average (from the 40 classes in
initial analysis), do not connect to wireless network during a
class. Fig. 20 illustrates an overview of our proposed approach.

1) Classification of WiFi users: We use the collected dataset
of 20,000 WiFi users across 2700 classes and apply widely
used binary data classification techniques, namely logistic
regression, SVM (Support Vector Machine) and LDA (Linear
Discriminant Analysis), to distinguish room occupants from
bystanders.

For each of WiFi user IDs (unique identifier appears in WiFi
data), we extracted the features: (1) Percentage of ‘in time’
(tin); (2) Percentage of ‘out time’ (tout); (3) Arrival delay;
(4) Number of sessions; (5) Number of devices; (6) RSSI, as
defined in §V-A. We now rank the features using univariate
feature selection method with F-test (a built-in function of
Python sklearn library) for numerical variables. As shown
in Fig. 21, the feature tin contains the highest information
followed by (in order) the features tout, Arrival delay, Number
of devices, Number of sessions, and RSSI. These features are
fed as inputs to the model that classifies a WiFi user as an
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(f) No visible difference in RSSI of occupants
and bystanders.

Fig. 19: Histogram of features (occupants vs. bystanders)
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Fig. 20: System architecture for classroom occupancy estimation.
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Fig. 21: Feature ranking using univariate feature selection.

occupant or a bystander. The list of enrolled students for 12
classes are collected as the ground truth for classification.
Based on the assumption that students who appear in both
the class list and the WiFi session logs for the class are in
fact inside the room, we labeled such WiFi users as occupants
and others as bystanders.

We showed in our previous work [1], that the LDA clas-
sification displays the best performance among classifiers we
used. It correctly classified room occupants and bystanders
85% and 83% of the time respectively.

2) Regression Analysis: The occupancy computed by the
LDA classification only accounts for room occupants who
connected to the WiFi network. However, we know that there
are occupants (those with no device, or with only 3G/4G-
enabled devices) whose traces are not found in WiFi session
data of the classroom. As observed earlier (in Fig. 22), there
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Fig. 22: Room occupancy count and the WiFi user count are
linearly correlated.

is a linear correlation between the room occupants count and
the WiFi users count by LDA, we now develop a univariate
linear regression model that takes WiFi users count by LDA as
input and generates the classroom occupancy as output. The
regression model corrects the occupancy estimated by LDA
classification, yielding a value closer to the actual classroom
occupancy.

We extended the data set from our previous study [1] to
collect 2700 classes during 2017-July-31 to 2017-October-27
(i.e., sem2-2017) and 2018-February-26 to 2018-June-1 (i.e.,
sem1-2018). The data were spanning across different courses
and 7 classrooms on our campus. In the sample, 46% of classes
lasted one hour, 45% lasted two hours, 5% lasted three hours,
2% lasted one and a half hours, and 1% lasted four hours or
two and a half hours. The rooms are scheduled for lectures
most of the time while paper-based exams are also occasion-
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ally possible, therefore we expected anomalous periods with
little WiFi use. However, we omitted the data from weeks
when classes were not held (e.g., mid-semester break). For
each class, we predicted individual WiFi user’s presence in
the room through classification and computed the number of
occupants to be fed to regression analyzer as the input variable.
The regression training set was labeled using the actual count
of room occupants. We evaluated the performance of LR
(Linear Regression) and SVR (Support Vector Regression) in
estimating room occupancy in our previous work [1], and
showed that both LR and SVR regression algorithms result
in similar prediction performance.

C. Occupancy Estimation Results

In this section, we present the performance of our method
to estimate classroom occupancy. We employ a two-step
supervised learning approach. For all classrooms considered
in our study, we identified those APs to which occupants get
connected using our mapping method explained in previous
Section. In what follows next, we show the results of LDA-
based classification followed by LR-based prediction.

1) Performance Comparison: We now compare the perfor-
mance of our method with special-purpose occupancy sensing
(i.e., beam counting) and prior work.

WiFi Sensing vs. Beam Counting: In a parallel research
to our work [25], the same rooms considered in our study
were instrumented with EvolvePlus wireless beam counters
to estimate the room occupancy. We compare the error rate of
occupancy estimation by directly applying linear regression to:
(a) WiFi counts and (b) Enrolled WiFi counts, (c) standalone
LDA classification, (d) LDA classification followed by linear
regression (our method), and (e) Beam counters. The WiFi
Counts and Enrolled WiFi Counts are defined as the unique
number of student identifiers and the unique number of en-
rolled student identifiers appeared in WiFi data during the class
of interest respectively as termed by OccupancyWiFi and
OccupancyEnrolledWiFi in §III. We compute the occupancy
output of LDA classification by summing up the number of
WiFi users predicted as occupants while occupancy output
by regression is computed by using the output of the LDA
classification as the input to linear regression. The beam
counter consists of a pair of sensors which are positioned
across a doorway, each generates an IR beam. They are
used to count the number of people passing through the
beam in each direction. We computed classroom occupancy
from the data generated from beam counters by subtracting
the total exits from the total entries across all doorways
of a classroom during a particular class. For our regression
problem, we choose sMAPE [26] as the evaluation metric.
sMAPE is intuitive to interpret results in bounded percentage
terms particularly when comparing the estimation errors at
varying scales (i.e., in a room with varying capacities of up
to 500 occupants).

sMAPE =
100%

n

n∑
i=1

| Fi −Ai |
| Fi | + | Ai |

(3)

where Ai is the actual value, Fi is the forecast value for ith

TABLE V: Error rate (sMAPE) for various methods of esti-
mating occupancy across all rooms.

(a) WiFi Counts (b) Enrolled WiFi Counts (c) LDA (d) Our method (e) Beam Counters

sMAPE 26.3% 24.1% 20.15% 13.1% 13.0%

regression input – there are n inputs. We show in Table V the
value of sMAPE for various approaches.

We see that the largest error is obtained when we directly
model occupancy using WiFi Counts and the error reduces
when filtered non-enrolled connections using the class lists –
using linear regression model with enrolled students as input.
We achieve a lower error when a classification method is used.
The objective of the classification is to remove the bystanders
who corrupt the room occupancy estimation in a dense campus
environment by connecting from outside the particular room.
To compensate for room occupants who are not captured by
WiFi we proposed employing a regression step. Regression
after classification (i.e., column ‘Our method’) yielded better
accuracy than standalone LDA classification displaying the
importance of having a two-stage approach so as to remove
bystanders and also to capture the actual room occupants who
are not captured by WiFi. A closer look at the predictions of
regression showed that it inflates the result of classification
such that it gets closer to the actual occupancy.

In our previous work [1], the lowest percentage error was
obtained with beam counters, however introduction of AP
mapping to classrooms and extension of the dataset improved
the performance of our method to become comparable to
dedicated beam-counting sensors. Typically, beam-counting
sensors can only be used for closed spaces (with doorways),
and yield acceptable accuracy when doorways are narrow –
beam-counters fail to count a group of people walking side-
by-side in/out, specially for rooms with wider doorways [25].
On the other hand, WiFi-based sensing seems more generic in
terms of scope since the infrastructure is available in all spaces
(open and closed) across the university campus. Also, room
settings do not affect the accuracy of WiFi-based estimation.

Comparing our method with prior works: We compare
the performance of our method with that of state-of-the-art
methods in Table VI. In prior work, errors are computed in
terms of mean absolute error (MAE). We, instead, normalize
MAE (NMAE) by dividing it by the corresponding sample size
of each study. Therefore, numbers shown in Table VI reflect
their sample size. In Table VI, we also show a cost figure
for deployment, maintenance and computational complexity
of each method. As shown, lowest NMAE of 0.09 is obtained
for camera and ambient sensing methods [9], however this
method incurs a very high cost. Our method outperforms [3],
[8] and [11] when error, cost, and number of occupants are
collectively considered. Majority of methods in prior work
were only evaluated for relatively smaller rooms (i.e., capacity
of up to 40) and none of them mentioned the scalability of their
method (up to what occupancy level their method achieves a
reasonable accuracy). The accuracy of our method, instead,
slightly varies for different levels of occupancy (from 8.8% to
13.8%), as shown in Table VII.

In terms of performance, we believe that the two-step ML-
based inference is the key enabler for our method. The first
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TABLE VI: Error comparison (prior work vs. our method).
Sensing Method Occupants Normalized MAE (NMAE ) Cost

Camera + Ambient sensing( [9]) 0 - 150 0.09 High

Our method (WiFi) 0 - 500 0.10 Zero
Raspberry Pi + WiFi APs( [11]) 0 - 8 0.12 Low

PIR( [3]) 0 - 14 0.14 Medium

Camera( [8]) 0 - 8 0.29 High

TABLE VII: Average percentage error (sMAPE) of our method
by occupancy-level

Occupancy Level Average sMAPE
0 - 100 13.8%

101 - 200 8.8%
201 - 300 13.1%
301 - 400 10.8%
401 - 500 10.5%

step, a clustering-based mapping of APs to rooms, helps us
partially filter out occupancy noises introduced by APs in
nearby rooms. The second step, a regression-based inference
of room occupants, further removes occupancy noises intro-
duced by outside bystanders. Furthermore, we have fine-tuned
our inference models by selecting the best performers among
various clustering and regression algorithms. Our method
comes at zero cost, is tested in rooms with occupants ranging
from 0 to 500, and yields decent performance. Therefore, it
sounds more palatable for large-scale deployment than other
sensing alternatives.

2) Robustness of our Approach: In this section, we ana-
lyze the performance of our method at various conditions
of occupancy levels and room capacities. First, we compute
the error in estimating classroom occupancy for short (less
than 2-hours) and longer (2-hours or more) classes separately.
The percentage error (sMAPE) is found to be 10.9% and
11.9% respectively for short and long classes. This shows
that that class duration does not have a significant impact on
occupancy estimation. We believe this is because our features
for classifying WiFi users (i.e., percentage in time, percentage
out time, arrival delay, number of sessions, number of devices,
and RSSI) are independent of class duration.

Next, we quantify the error of our estimation with respect
to occupancy level and room capacity as shown in Tables VII
and VIII. Considering class occupancy levels in Table VII,
the error of our method varies from 8.8% to 13.8% with
a mean of 11.4% and variance of 2%. Similarly, for rooms
with different capacities, shown in Table VIII, the estimation
errors fall between 8.6% to 15.2% with a mean of 11.4% and
variance of 2.5%. In summary, the estimation error is fairly
consistent (with slight variations) across classes of varying
occupancy levels and room sizes.

VI. DISCUSSION

In this study, we have developed methods to first map
APs to classrooms, and next estimate classrooms occupancy
using WiFi session data of their corresponding APs. The
performance of our method that uses data from existing WiFi
infrastructure without needing new or specialized sensing
hardware, thus saving costs of procurement, installation, and
maintenance, is comparable to beam counter sensors used

TABLE VIII: Average percentage error (sMAPE) of our
method by room capacity.

Capacity Average sMAPE
Room 1 (Mat227) 42 9.1%
Room 2 (Mat228) 42 8.6%
Room 3 (MatC) 110 9.7%
Room 4 (CLB8) 231 13.6%
Room 5 (MatB) 246 15.2%
Room 6 (MatA) 472 11.4%
Room 7 (CLB7) 497 12.3%

in selected rooms of our university campus. Furthermore,
our results demonstrate the generality of our method, which
performs fairly consistently across classrooms of various sizes,
duration, and attendance levels.

On the other hand, one may argue that our method requires
additional sources of information on class timetabling and
enrollment lists. We acknowledge that this dependency would
prevent our method from estimating the occupancy of social
or open spaces.

Furthermore, this study obtains ground truth data for associ-
ating students with classrooms using class enrollment lists. A
WiFi user is counted as a room occupant if they are enrolled in
the class held in that room. However, our measurement method
may miss certain cases where enrolled students are located
in the proximity of their classroom (and hence connecting
to a WiFi AP of that room) without attending the class. It
is also possible that the actual room occupants may connect
to a nearby AP which is not mapped to their room. We
have employed classification and regression methods to model
classroom occupancy, and the scale of our dataset (i.e., < 10k
entries) eliminated the choice of deep learning-based methods.
Another concern pertains to the privacy of data obtained from
WiFi session logs, even though we obtained ethics approval
from our university for this study. We emphasize that our
method measures only metadata of users’ activity on the
WiFi network and hence is less intrusive than camera-based
counting methods.

Lastly, there is a body of works on WiFi localization that
promise to yield an accurate estimation of room occupancy
[22], [23]. However, these methods demand analysis of wire-
less channel information, which is not available in our dataset.
Considering the limitations of our work, one possible future
work (given the same dataset) would be estimating occupancy
for an extended set of spaces in which activities do not
adhere to a fixed timetable. Finally, scheduling courses for
certain classrooms may also require accounting for temporal
or seasonal variations associated with classroom occupancy
that is left for future work.

VII. CONCLUSION

Quantitative measures for learning space utilization and
student attendance are of importance to university managers.
This paper developed and evaluated machine learning-based
methods, unsupervised clustering, and a combination of clas-
sification and regression algorithms to estimate classroom
occupancy using data collected from a dense wireless network
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in a large university campus. We have analyzed real session
logs of 70 APs from our campus WiFi network to draw insights
into the coverage of APs and the dynamics of user connections
to APs. We then identified two AP features and developed a
clustering-based method by evaluating K-Means, EM-GMM,
and HC clustering, to automatically map APs to their respec-
tive rooms. Lastly, we employed LDA to classify WiFi users
as room occupants and bystanders, followed by regression
algorithms LR and SVR, to estimate the occupancy count of a
room. Our WiFi sensing method displayed a palatable accuracy
compared to special-purpose beam counters.
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