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I. ANALYSING THE COMPUTATIONAL COMPLEXITY OF SR

In this section, we elaborate on the analysis of the compu-
tational complexity of SR.

An LDPC matrix with block length Ny can be defined by
the symbol and check node degree dlStrlbuthH polynomlals
AMz) = Za 5 Ae? ! and p(z) = szQ ppx’~1. Here, A
and P are the highest degrees in A(z) and p(z), respectively.
We denote the total number of non-zero entries in an LDPC
matrix as G, and adopt the well-known Belief Propagation
(BP) decoder [1] for error correction. We define the total
number of arithmetic operations of SR as Zm ! E;D;, where,
for each Sj, E; is the number of arithmetic operations executed
within a decoding iteration,' and D; is the number of decoding
iterations [2]. We note, in our GPU-based SR, E; and D;
are different for the m slices of each block since m LDPC
matrices are used to reconcile the m slices. For a channel
with constant 7" and &, D; is dependent on a target egc, and
on the polynomials A\(z) and p(x). Note, for Ny larger than
approximately 10°, Dj is independent of N (a result we will
adopt later). Assuming the Gaussian approximation within the
Density Evolution Algorithm, D; is given by

D, = argmin{a, = (3, % \@), p()) < exc,k € 2,
(D

where ¢y, is the BER after the k" decoding iteration and given
by [3]

Gk = f(v: k; Ale
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Here, L = 1—20:2 Aa® (logy 4+ (a — 1) gr—1) , where gg =
0, and ¢(v) is given by
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Finding a closed solution to Eq. 2 is problematic due to
the ¢~ !(w) term (here w = ¢(v)). To make progress, the
following approximation for Eq. 3 is used [3]

v >0
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'In a BP decoder, a decoding iteration is one pass through the decoding
algorithm.

We then find ¢~ !(w) is given by

—0.4527 0<w<1
0 w=1.

(10gw—0.0218) 1.1628

¢~ H(w) ~ (5)

With this all in place, it is now possible to solve for D; as
given by Eq. 1.

Now we focus on the determination of F;. When messages
are propagated from the variable nodes to the check nodes,
there are 2G multiplications and G additions [4]. When
messages are propagating back to the variable nodes, there are
4G operations required (2G multiplications and 2G additions)
[4]. Therefore, E; is obtained by [2], [4]

E; = TG = TNg( Zb 2=t Zb
;=16 = Pb) (6)
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The decoding time of the whole reconciliation process, At, is
given by

m—1

At=cy, Y E;D;, (7)

where ¢, is a hardware-dependent constant representing the

average time taken to complete an arithmetic operation.

Clearly, by dividing N values into multiple blocks with length

Np and decoding these blocks simultaneously, Alice and Bob
N

can reduce the decoding time by a factor of Ny = Ng-

II. THE ESTIMATION OF T AND &.;, USING A FINITE
NUMBER OF QUANTUM SIGNALS

In this supplementary document, we elaborate on the esti-
mation of channel parameters, 7' and &.p,, from N, quantum
signals and determination of the upper bound of S377 based
on the estimated 7" and &.;, for a given N. Here, we closely
follow the methodology in [5] (and references therein).

The parameter estimation at Step 4 of our protocol is a two-
step process. Firstly, Alice and Bob estimate each coefficient
in the covariance matrix between the shared states based on
N, (randomly selected) quantum signals sent from Bob. Then,
Alice uses these estimated coefficients to determine 7" and &.p,.
In the asymptotic regime, the estimation of 7" and &, is exact
since Alice and Bob use an infinite number of quantum signals.



The following the two functions will be useful,
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Alice can determine the Holevo Information between Bob and
Eve’s states xgp via [6]-[8]

XEB = XE — XE|B » (10)

where xr is Eve’s von Neumann Entropy before Bob makes
his heterodyne detection and xg|p is Eve’s von Neumann
Entropy after his detection. The term y g is given by

(-1 hy —1
wer ()2 (),

Z(z)=(z+Dlog(z+1)—zlogz.

We define that ¢y = F1(¥1,Ps) and ¢ = Fy(¥q,Ps) to
be the symplectic eigenvalues of the covariance matrix of the
shared states (before Bob’s heterodyne detection) where

Uy = (Va+1)*(1-27) + 2T + T? (Va + 1 + xen) (13)
Uy =T2((Va+1én + 1), (14)

Xch = % + fch . (15)
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The term x g p is given by

XEBZ(9121) +Z<9221) +Z(9321> . (16)

where 61, 65 and 63 are the symplectic eigenvalues of the
covariance matrix of the shared states (after Bob’s heterodyne
detection). Specifically, we have 6, = F} (©1,03) and 03 =
F5 (01,02) where

S =<\I’1X§ + WUy 41

+ 2xqa (T (Va+14xen)+ (Va+1) \/‘172) (17)
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where 7, is the detection efficiency and we set ng = 1 for
simplicity. It is known that #3 = 1 under the assumption of
Gaussian collective attack [8]. Therefore, we have Z (%) =
0.

However, the estimation of T' and &, is not exact in the
finite-key regime. The estimated 7' and ., are subject to
statistical fluctuations that leads to a deviation of the estimated
T and &, from their true values (since Alice and Bob use only
N, signals for the estimation at Step 4). The impact of using
a finite number of quantum signals for parameter estimation
in the security analysis is twofold. Firstly, the protocol will
fail with a probability of epg if the true value of T or &,

is out of the confidence interval set by that epg. Secondly,
the amount of the deviation of the estimated 7" and &.;, from
their true values is probabilistic. The lower and upper limits
of the confidence interval of the estimated 7" for a given epg
are given by [9], [10]
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where 7, /2 = Q '(E); and t and & are the estimators for
T and ., respectively. Similarly, the lower and upper limits
of the confidence interval of the estimated &, for a given epg

are given by [9], [10]
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respectively.

Based on the above, we can now determine SIEBPEE, i.e. the
upper bound of xpg in the finite-key regime. Firstly, for the
purpose of analysis, we set the expectation of ¢ and & as /7gT
and Tng€.p+1+&,, repectively. Then, we replace 7" and £, in
Eqs. 13 to 15 and Egs. 17 to 20 with 7% and &Y} , respectively.
Next, we determine S377 by using Egs. 8, 9 to determine all
the symplectic eigenvalues. Finally, we use Eq. 11, 16 and 10
to obtain S5 5.
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Fig. 1: K (in bits per pulse) vs. N.. Here we adopt the standard
CV-QKD setting except for N, for all the curves. For all the
curves, we assume N, = %

The motivation of setting a large NN, is to reduce the length
of the confidence intervals when estimating 7' and &.p,. In
Fig. 1, we compare the impact on K when setting different
N.. For all the curves in Fig. 1, we assume N, = % The
“take-away” message is that, for a given ¢, setting a large NV,
is necessary for most CV-QKD deployments if a significant
reduction of K is to be avoided.



In the satellite-based scenario, Alice and Bob starts the
protocol with only N, quantum signals because the satellite
is only visible to the ground station for a limited time frame.
In this section, we revisit the analysis of the final key rate in
the finite-key regime and conduct a numerical search to show
how the final key rate K is affected by N, for a given N,
and e.
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Fig. 2: K (in bits per pulse) vs. N, when N, = 10° (blue)
and N, = 100 (red). Here, we adopt the standard CV-QKD
settings except that N = 2 (N, — N,) varies for different N..

We next consider a slightly different case where N, is varied
for a given N,. In Fig. 2, we observe that K is cut off when
N, approaches 107 and 10° (for N, = 10°). At N, = 107,
the parameter confidence intervals are not consistent with a
positive K. As N, approaches N,, K decreases rapidly since
the number of quantum signals for reconciliation approaches
zero. Similar remarks can also be applied for N, = 10%°.

In Fig. 2, we see that setting N, = % is an acceptable

compromise between accommodating finite-key effects and
preserving enough quantum signals for the post-processing.

REFERENCES

[1] T. Richardson and R. Urbanke, Modern Coding Theory.
University Press, 2008.

[2] X. Ai, R. Malaney, and S. X. Ng, “A Reconciliation Strategy for Real-
Time Satellite-Based QKD,” IEEE Communications Letters, vol. 24,
no. 5, 1062-1066, 2020.

[3] S.-Y. Chung, T. J. Richardson, and R. L. Urbanke, “Analysis of Sum-
Product Decoding of Low-Density Parity-Check Codes Using a Gaussian
Approximation,” IEEE Transactions on Information Theory, vol. 47,
no. 2, 657-670, 2001.

[4] V. A. Chandrasetty and S. M. Aziz, “FPGA Implementation of an LDPC
Decoder Using a Reduced Complexity Message Passing Algorithm,”
Journal of Networks, vol. 6, no. 1, 36, 2011.

[5] S. Kish, E. Villasefior, R. Malaney, K. Mudge, and K. Grant, “Feasibility
Assessment for Practical Continuous Variable Quantum Key Distribution
over the Satellite-to-Earth Channel,” Quantum Engineering, vol. 2, no. 3,
€50, 2020.

[6] F. Grosshans, “Collective Attacks and Unconditional Security in Con-
tinuous Variable Quantum Key Distribution,” Physical Review Letters,
vol. 94, 020504, 2005.

[71 M. Navascués, F. Grosshans, and A. Acin, “Optimality of Gaussian At-
tacks in Continuous-Variable Quantum Cryptography,” Physical Review
Letters, vol. 97, no. 19, 190502, 2006.

Cambridge

[8] S. Fossier, E. Diamanti, T. Debuisschert, R. Tualle-Brouri, and P. Grang-
ier, “Improvement of Continuous-Variable Quantum Key Distribution
Systems by Using Optical Preamplifiers,” Journal of Physics B: Atomic,
Molecular and Optical Physics, vol. 42, no. 11, 114014, 2009.

[9]1 A. Leverrier, F. Grosshans, and P. Grangier, “Finite-Size Analysis of

a Continuous-Variable Quantum Key Distribution,” Physical Review A,

vol. 81, no. 6, 062343, 2010.

P. Jouguet, S. Kunz-Jacques, E. Diamanti, and A. Leverrier, “Analysis

of Imperfections in Practical Continuous-Variable Quantum Key Distri-

bution,” Physical Review A, vol. 86, no. 3, 032309, 2012.

[10]



