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I. ANALYSING THE COMPUTATIONAL COMPLEXITY OF SR
In this section, we elaborate on the analysis of the compu-

tational complexity of SR.
An LDPC matrix with block length NR can be defined by

the symbol and check node degree distribution polynomials,
λ(x) =

∑Λ
a=2 λax

a−1 and ρ(x) =
∑P

b=2 ρbx
b−1. Here, Λ

and P are the highest degrees in λ(x) and ρ(x), respectively.
We denote the total number of non-zero entries in an LDPC
matrix as G, and adopt the well-known Belief Propagation
(BP) decoder [1] for error correction. We define the total
number of arithmetic operations of SR as

∑m−1
j=0 EjDj , where,

for each Sj, Ej is the number of arithmetic operations executed
within a decoding iteration,1 and Dj is the number of decoding
iterations [2]. We note, in our GPU-based SR, Ej and Dj

are different for the m slices of each block since m LDPC
matrices are used to reconcile the m slices. For a channel
with constant T and ξ, Dj is dependent on a target ϵEC , and
on the polynomials λ(x) and ρ(x). Note, for NR larger than
approximately 105, Dj is independent of NR (a result we will
adopt later). Assuming the Gaussian approximation within the
Density Evolution Algorithm, Dj is given by

Dj = argmin
k

{qk = f(γ, k, λ(x), ρ(x)) ≤ ϵEC , k ∈ Z∗} ,
(1)

where qk is the BER after the kth decoding iteration and given
by [3]

qk = f(γ, k, λ(x), ρ(x)) =

P∑
b=2

ρbϕ
−1

(
1− Lb−1

)
. (2)

Here, L = 1−
∑Λ

a=2 λaϕ (log γ + (a− 1) qk−1) , where q0 =
0, and ϕ(v) is given by

ϕ(v) =

{
1− 1√

4πv

∫ +∞
−∞ tanh

(
u
2

)
e−

(u−v)2

4v du v > 0

1 v = 0 .
(3)

Finding a closed solution to Eq. 2 is problematic due to
the ϕ−1(w) term (here w = ϕ(v)). To make progress, the
following approximation for Eq. 3 is used [3]

ϕ(v) ≈

{
e−0.4527v0.86+0.0218 v > 0

1 v = 0 .
(4)

1In a BP decoder, a decoding iteration is one pass through the decoding
algorithm.

We then find ϕ−1(w) is given by

ϕ−1(w) ≈


(

logw−0.0218
−0.4527

)1.1628

0 < w < 1

0 w = 1 .
(5)

With this all in place, it is now possible to solve for Dj as
given by Eq. 1.

Now we focus on the determination of Ej . When messages
are propagated from the variable nodes to the check nodes,
there are 2G multiplications and G additions [4]. When
messages are propagating back to the variable nodes, there are
4G operations required (2G multiplications and 2G additions)
[4]. Therefore, Ej is obtained by [2], [4]

Ej = 7G = 7NR(

∑P
b=2

ρb

b∑Λ
a=2

λa

a

)(

P∑
b=2

bρb) . (6)

The decoding time of the whole reconciliation process, ∆t, is
given by

∆t = ch

m−1∑
j=0

EjDj , (7)

where ch is a hardware-dependent constant representing the
average time taken to complete an arithmetic operation.
Clearly, by dividing N values into multiple blocks with length
NR and decoding these blocks simultaneously, Alice and Bob
can reduce the decoding time by a factor of Nd = N

NR
.

II. THE ESTIMATION OF T AND ξch USING A FINITE
NUMBER OF QUANTUM SIGNALS

In this supplementary document, we elaborate on the esti-
mation of channel parameters, T and ξch, from Ne quantum
signals and determination of the upper bound of SϵPE

BE based
on the estimated T and ξch for a given N . Here, we closely
follow the methodology in [5] (and references therein).

The parameter estimation at Step 4 of our protocol is a two-
step process. Firstly, Alice and Bob estimate each coefficient
in the covariance matrix between the shared states based on
Ne (randomly selected) quantum signals sent from Bob. Then,
Alice uses these estimated coefficients to determine T and ξch.
In the asymptotic regime, the estimation of T and ξch is exact
since Alice and Bob use an infinite number of quantum signals.
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The following the two functions will be useful,

F1(v1, v2) =

√
v1+

√
v2
1−4v2

2 , (8)

F2(v1, v2) =

√
v1−

√
v2
1−4v2

2 . (9)

Alice can determine the Holevo Information between Bob and
Eve’s states χEB via [6]–[8]

χEB = χE − χE|B , (10)

where χE is Eve’s von Neumann Entropy before Bob makes
his heterodyne detection and χE|B is Eve’s von Neumann
Entropy after his detection. The term χE is given by

χE = Z

(
ψ1 − 1

2

)
+ Z

(
ψ2 − 1

2

)
, (11)

where
Z(z) = (z + 1) log (z + 1)− z log z . (12)

We define that ψ1 = F1(Ψ1,Ψ2) and ψ2 = F2(Ψ1,Ψ2) to
be the symplectic eigenvalues of the covariance matrix of the
shared states (before Bob’s heterodyne detection) where

Ψ1 = (VA + 1)2(1− 2T ) + 2T + T 2 (VA + 1 + χch) ,(13)
Ψ2 = T 2 ((VA + 1)ξch + 1) , (14)

χch = 1−T
T + ξch . (15)

The term χE|B is given by

χE|B = Z

(
θ1 − 1

2

)
+ Z

(
θ2 − 1

2

)
+ Z

(
θ3 − 1

2

)
, (16)

where θ1, θ2 and θ3 are the symplectic eigenvalues of the
covariance matrix of the shared states (after Bob’s heterodyne
detection). Specifically, we have θ1 = F1 (Θ1,Θ2) and θ2 =
F2 (Θ1,Θ2) where

Θ1 =

(
Ψ1χ

2
d +Ψ2 + 1

+ 2χd

(
T (VA + 1 + χch) + (VA + 1)

√
Ψ2

)
+ 2T

(
V 2
A + 2VA

)) 1

T 2 (VA + 1 + χ)
,

(17)

Θ2 =
(

VA+1+χd

√
Ψ2

T (VA+1+χ)

)2

, (18)

χd = 2−ηd

ηd
+ 2χd

ηd
, (19)

χ = χch + χd

T , (20)

where ηd is the detection efficiency and we set ηd = 1 for
simplicity. It is known that θ3 = 1 under the assumption of
Gaussian collective attack [8]. Therefore, we have Z

(
θ3−1
2

)
=

0.
However, the estimation of T and ξch is not exact in the

finite-key regime. The estimated T and ξch are subject to
statistical fluctuations that leads to a deviation of the estimated
T and ξch from their true values (since Alice and Bob use only
Ne signals for the estimation at Step 4). The impact of using
a finite number of quantum signals for parameter estimation
in the security analysis is twofold. Firstly, the protocol will
fail with a probability of ϵPE if the true value of T or ξch

is out of the confidence interval set by that ϵPE . Secondly,
the amount of the deviation of the estimated T and ξch from
their true values is probabilistic. The lower and upper limits
of the confidence interval of the estimated T for a given ϵPE

are given by [9], [10]

TL =

t̂− τϵPE/2

√
σ̂2

NeVA

2

, (21)

TU =

t̂+ τϵPE/2

√
σ̂2

NeVA

2

, (22)

where τϵPE/2 = Q−1( ϵPE

2 ); and t̂ and σ̂ are the estimators for
T and ξch, respectively. Similarly, the lower and upper limits
of the confidence interval of the estimated ξch for a given ϵPE

are given by [9], [10]

ξLch =
σ̂2 − τϵPE/2

σ̂2
√
2√

Ne
+ 1 + ξd

t̂2
, (23)

ξUch =
σ̂2 + τϵPE/2

σ̂2
√
2√

Ne
− 1− ξd

t̂2
, (24)

respectively.
Based on the above, we can now determine SϵPE

BE , i.e. the
upper bound of χBE in the finite-key regime. Firstly, for the
purpose of analysis, we set the expectation of t̂ and σ̂ as

√
ηdT

and Tηdξch+1+ξd, repectively. Then, we replace T and ξch in
Eqs. 13 to 15 and Eqs. 17 to 20 with TL and ξUch, respectively.
Next, we determine SϵPE

BE by using Eqs. 8, 9 to determine all
the symplectic eigenvalues. Finally, we use Eq. 11, 16 and 10
to obtain SϵPE

BE .
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Fig. 1: K (in bits per pulse) vs. Ne. Here we adopt the standard
CV-QKD setting except for No for all the curves. For all the
curves, we assume Ne =

No

2 .

The motivation of setting a large Ne is to reduce the length
of the confidence intervals when estimating T and ξch. In
Fig. 1, we compare the impact on K when setting different
Ne. For all the curves in Fig. 1, we assume Ne = No

2 . The
“take-away” message is that, for a given ϵ, setting a large Ne

is necessary for most CV-QKD deployments if a significant
reduction of K is to be avoided.
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In the satellite-based scenario, Alice and Bob starts the
protocol with only No quantum signals because the satellite
is only visible to the ground station for a limited time frame.
In this section, we revisit the analysis of the final key rate in
the finite-key regime and conduct a numerical search to show
how the final key rate K is affected by Ne, for a given No

and ϵ.
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Fig. 2: K (in bits per pulse) vs. Ne when No = 109 (blue)
and No = 1010 (red). Here, we adopt the standard CV-QKD
settings except that N = 2 (No −Ne) varies for different Ne.

We next consider a slightly different case where Ne is varied
for a given No. In Fig. 2, we observe that K is cut off when
Ne approaches 107 and 109 (for No = 109). At Ne = 107,
the parameter confidence intervals are not consistent with a
positive K. As Ne approaches No, K decreases rapidly since
the number of quantum signals for reconciliation approaches
zero. Similar remarks can also be applied for No = 1010.
In Fig. 2, we see that setting Ne = No

2 is an acceptable
compromise between accommodating finite-key effects and
preserving enough quantum signals for the post-processing.
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