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Abstract 

In this thesis, a new code construction method and two enhanced decoding schemes for low-density parity-check (LDPC) codes 
were proposed to improve their error performance.  

In the first part of the thesis, we develop a new construction method of binary spatially-coupled (SC) LDPC codes for storage 
applications based on Euclidean geometry (EG) and a two-dimensional edge-spreading process. We show that the error 
performance of the constructed EG-SC LDPC codes is superior to that of their EG LDPC code counterparts, and there is no error 
floor compared to the protograph SC LDPC codes and regular LDPC codes. To achieve a high error correction capability, we further 
propose a reliability-based windowed decoding (RBWD) scheme for the SC LDPC codes based on a partial message reservation 
method and a partial syndrome check stopping rule. It is shown that the RBWD scheme significantly improves the error floor 
performance compared to the sliding window decoder with the conventional WBF algorithm. 

We investigate the decoding of the LDPC codes adopted in the fifth generation (5G) mobile networks. We propose a two-
dimensional scale-corrected min-sum algorithm based on partial self-correction and message amplification, which results in the 
error performance near the sum-product algorithm (SPA). Then we present an enhanced quasi-maximum likelihood (EQML) 
decoding method to further improve the error performance for 5G short LDPC codes. The proposed decoding method performs 
node selection with multiple rounds of decoding tests. We also present a partial pruning stopping rule to reduce the decoding 
complexity and derive a lower bound on the error performance. We show that the EQML decoding method outperforms the SPA 
with the same decoding complexity and approaches the Polyanskiy-Poor-Verdú bound within 0.4 dB. 

We also design a decoding scheme based on the approximate message passing (AMP) algorithm for the 5G LDPC codes. We 
propose a decoding model, which aims to recover the error vector from the output of the decoder. When the initial decoding 
attempt fails, the AMP detector estimates the reliability of the channel outputs and flips the signs of unreliable channel outputs to 
create the new input sequence for one more decoding test. We show that the proposed AMP-aided decoding scheme achieves a 
0.1 dB gain over the counterpart of one-time decoding for various block lengths and low code rates and the obtain about 0.05 dB 
gain for the EQML decoding. 
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Abstract

In this thesis, we mainly investigate the construction method and the advanced

decoding schemes for low-density parity-check (LDPC) codes to improve their er-

ror performance. Various construction methods and decoding schemes for LDPC

codes have been well studied and investigated in the literature. However, with

the increase of the new applications, such as the low-cost NAND flash memories,

Internet of things, and ultra-high-speed communications, these classical coding

techniques still face new challenges in term of the complexity and robustness.

We address these problems by providing a new construction method and several

improved decoding schemes for the LDPC codes. The key idea is to evaluate the

reliability of the received messages properly and utilize these reliable messages

to improve the error performance. The research work described in this thesis

consists of three parts.

In the first part of the thesis, we develop a new construction method of bi-

nary spatially-coupled (SC) LDPC codes based on Euclidean geometry (EG) for

storage applications. In the construction method, we propose a two-dimensional

edge-spreading process to generate a base matrix for the SC LDPC codes. Then

the parity-check matrix of the constructed LDPC code is obtained by unwrapping

the base matrix and the lifting operation. We evaluate the error performance of

the constructed EG-SC LDPC codes by using a weighted bit-flipping (WBF)

decoding algorithm for its low decoding complexity. We show that the error
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performance of the constructed EG-SC LDPC codes is superior to that of their

EG LDPC code counterparts, and there is no error floor compared to the con-

structed protograph SC LDPC codes and regular LDPC codes. To achieve a high

error correction capability and low decoding complexity, we further propose a

reliability-based windowed decoding (RBWD) scheme for the SC LDPC codes. A

partial message reservation method is adopted in the RBWD scheme to mitigate

the error propagation. And a partial syndrome check stopping rule is also intro-

duced for each decoding window to further reduce the error floor. It is shown that

our proposed scheme significantly improves the error floor performance compared

to the sliding window decoder with the conventional WBF algorithm.

Next, we investigate the decoding of the LDPC codes adopted in the fifth gen-

eration (5G) networks standard. To be more specific, we propose a two-dimensional

scale-corrected min-sum algorithm for 5G LDPC codes to approach the error per-

formance of the sum-product algorithm (SPA) with low decoding complexity. In

the proposed decoding algorithm, we adopt a partial self-correction method fol-

lowed by message amplification to improve the reliability of the variable-to-check

(V2C) messages. Simulation results show that the proposed decoding algorithm

can approach the frame error performance of the SPA by using a pair of universal

scaling factors. After that, we present an enhanced quasi-maximum likelihood

(EQML) decoding method based on the proposed decoding algorithm to further

approach the error performance of the maximum likelihood decoding for 5G short

LDPC codes. The proposed decoding method performs multiple rounds of de-

coding tests once the first decoding attempt fails, where the decoder inputs of

the selected unreliable variable nodes are modified in each decoding test. A novel

node selection method based on the sign fluctuation of V2C messages is proposed

for the EQML decoding method. We also introduce a partial pruning stopping
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rule to reduce the decoding complexity by deactivating part of the decoding tests

once a valid codeword is found. A lower bound on the error performance is de-

rived by using the semi-analytical method to predict the error performance of the

EQML decoding method. We show that the proposed EQML decoding method

also outperforms the SPA with the same decoding complexity and approaches the

Polyanskiy-Poor-Verdú bound within 0.4 dB.

In the last part of the thesis, we also design a detector aided decoding scheme

based on the approximate message passing (AMP) algorithm for the 5G LDPC

codes with code rate less than 1/2. In the proposed decoding scheme, we propose

a system model, which aims to recover the error vector from the output of the de-

coder. The AMP detector estimates the reliability of the channel output for each

node when the initial decoding attempt fails. The signs of the channel outputs

on the unreliable VNs are flipped according to the preset threshold to generate

the updated decoder input sequence and one decoding test is conducted after-

wards. We show that the proposed AMP-aided decoding scheme achieves a 0.1

dB gain over the counterpart of one-time decoding for the 5G LDPC codes with

various block lengths and low code rates. In addition, attributing to the AMP

detector, the error performance under the conventional MSA can approach that

of SPA within 0.3 dB for all simulated LDPC codes. Moreover, we also propose

an AMP-Enhanced Quasi-Maximum Likelihood (EQML) decoding scheme for the

decoding of 5G LDPC codes. The AMP detector is conducted for the unsuccessful

decoding tests in the reprocessing of the EQML decoding to further improve the

error performance. Some properties of the proposed AMP-aided decoding scheme

are also analyzed and we also show that the proposed AMP-EQML decoding

scheme outperforms EQML decoding for information bit length of K = 320 and

752.
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Chapter 1

Introduction

At the end of the 20th century, mobile communication technology is one of the

most important technologies to promote the rapid development of human society,

which have a significant impact on people’s lifestyles, working and economics. In

fact, mobile communications have grown rapidly over the past 30 years after

the invention of the cellular concept, which is a big breakthrough in solving the

problem of capacity and coverage of mobile communication systems [2]. Since

the successful implementation of the first analog cellular mobile phone system in

Chicago in 1979, mobile communications have experienced four generations [2–5]

and is moving toward the 5G mobile networks [1, 6–8].

In the coming 5G era, it is notable that the mobile Internet and the Internet

of Things (IoT) have become the two driving forces for the development of mobile

communications, which profoundly affects various aspects of people’s daily life.

In particular, the application scenarios in 5G mobile networks can be divided into

three categories:

• Enhanced Mobile BroadBand (eMBB) for mobile Internet, which can pro-

vide the subscribers with ultra-high data rate and traffic density require-

1



2 1. INTRODUCTION

ments across a wide coverage area. [9]

• Massive Machine Type Communications (mMTC) for IoT, which can sup-

port over 1 million/km2 connection density for a huge number of low-cost

IoT devices [10,11].

• Ultra-Reliable and Low Latency Communications (uRLLC), which provide

extremely reliable communications for the applications and services with

strictly low end-to-end delay requirement less than 1ms [12].

To satisfy the increasing demands of mobile Internet and IoT services, the 5G

communication systems face enormous challenges. Many development works of

5G technologies have drawn significant efforts and been investigated by a num-

ber of researchers [13–15]. Some advanced transmission technologies such as

non-orthogonal multiple access (NOMA) [13,16–31], millimeter wave (mmWave)

[13, 32–37], and massive multiple-input multiple-output (mMIMO) [38–43] are

determined to be the key technologies for wireless transmission in 5G frame-

works. Behind these technologies, channel coding always plays an important role

in communication systems.

The establishment of information and channel coding theory originates from

Shannon’s landmark paper proposed in 1948 [44]. In this famous paper, Shannon

shows that as long as the transmission rate is less than the channel capacity, for

any type of channel, there exists a coding scheme that can achieve an arbitrary

small error probability for the communication system with a sufficiently large code

block length. This theory, so-called the noisy channel coding theorem, states that

the capacity of channels can be reached by channel coding technologies, which

can be regarded as a guideline for the design of channel coding scheme. After

that, constructing channel codes that can approach the channel capacity under
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effective decoding algorithms with desirable complexity has been a long-term goal

pursued by many researchers [45–50].

Since the purpose of adopting channel codes is to correct the errors when the

data is transmitted over unreliable or noisy communication channels, they are

also called error correction codes. In the past few decades, block codes [51, 52]

and convolutional codes [53, 54], which are two types of error correction codes,

have been thoroughly studied and widely used in communication and storage sys-

tems. In 1950, the mathematician Hamming proposed the first practical linear

block code, i.e., the (7,4) Hamming code [55]. This method divides the input

data into 4 groups of bits, and then linearly combines the information bits to

obtain 3 parity-check bits to form a 7-bit codeword. The use of parity-check

bits can not only detect transmission errors but also correct a single random

error. Hereafter, the block codes started to attract the interest of many re-

searchers and been quickly developed into a systematic coding theory. For exam-

ple, Reed and Muller proposed a new block code, Reed-Muller code [56] in 1954,

which has strong flexibility in terms of code block lengths and error correction

capability. In 1957, Prange proposed an important class of block codes, namely

cyclic codes [57], where the generated codewords have cyclic shift characteristic.

This codeword structure greatly simplifies the encoding and decoding process and

makes it friendly for hardware implementations. A famous member of the cyclic

codes is the BCH codes proposed by Bose, Ray-Chaudhuri and Hocquenghem

in 1959 ∼ 1960 [58, 59], which can correct multiple random errors. In the same

year, Reed and Solomon constructed a class of q-ary BCH codes with strong error

correction capability, namely the Reed-Solomon codes [60]. The most outstanding

advantage of RS codes is that they are ideal for correcting burst errors and thus

are widely used in CD/DVD players, digital video broadcasting (DVB) [61], and
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digital subscriber line (DSL) standards [62].

The convolutional code [63] is another type of error correction code developed

along with the block code. The encoding of the convolutional code is not only

related to the current input bits but also related to several input bits at the

previous time. The most commonly used decoding algorithm is the Viterbi algo-

rithm [64], which is a maximum likelihood decoding based on the trellis diagram

of a convolutional code and can be performed continuously on a bit stream. Thus,

the decoding delay for convolutional codes is relatively small compared to that

of block codes. In addition, there are some channel coding schemes proposed by

combining more than one error correction code into a single design. For instance,

the product code proposed by Elias [65] uses two linear block codes as compo-

nent codes to construct a channel code with long block lengths from short codes,

which can correct multiple bursts of errors. Forney proposed the serial concate-

nated codes [66] to construct long codes from short component codes, where the

inner codes are serially cascaded with the outer codes. As shown in [66], the

concatenated codes can achieve exponentially decreasing error probabilities at

all data rates less than capacity, with decoding complexity that increases only

polynomially with the code block lengths.

Although the above channel coding technologies have been well-developed for

different applications, they still operate far away from the channel capacity. With

the increasing performance requirements of communication systems, modern er-

ror correction codes are developed with more powerful error correction capability,

which have error performance close to the channel capacity. Among the modern

error correction codes, Turbo codes [67–69], LDPC codes [46, 70, 71], and polar

codes [72] are of great impacts on both academic and industry. As originally in-

vented by Gallager in 1962, LDPC codes are a type of error correction code with



5

long block lengths and can be decoded efficiently by using the low-complexity

iterative belief-propagation (BP) decoding algorithms [70]. However, due to the

limitations of hardware and software, LDPC codes had not drawn much attention

until MacKay et al. found that LDPC codes have decoding performance close

to channel capacity under iterative BP decoding algorithms [45, 71]. Later in

2001, Richardson et al. proposed the well-known density evolution (DE) algo-

rithm to optimize the degree distribution of irregular LDPC codes [73]. Based

on DE, the designed 1/2-rate irregular LDPC code in the AWGN channel has

a performance gap within 0.0045 dB from the capacity, which can be regarded

as another milestone after the rediscovery of LDPC codes. The most remarkable

advantage of LDPC codes is the low decoding complexity and suitable for parallel

decoding [74], which can achieve high throughput decoding.

In the fourth generation (4G) mobile networks, which is known as the Long

Term Evolution (LTE), turbo codes [67, 68] and tail-biting convolutional codes

[4, 53] are used as the main coding schemes for data channels and control chan-

nels, respectively. While in the fifth generation (5G) mobile works, LDPC codes

are eventually designed and used for the eMBB scenario [1]. Compared to 4G

mobile networks, the envisioned applications of 5G mobile networks impose more

stringent requirements for communication systems in terms of throughput, delay,

and reliability, which give rise to new challenges for the channel coding schemes.

Therefore, how to design proper LDPC coding schemes in order to achieve the

high performance requirements of communication systems in 5G and beyond has

become an attractive research problem. As such, this thesis aims to investigate

LDPC coding techniques from the perspective of code construction and decoding

methods. In the following, we will discuss the motivation for each research work.
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1.1 Motivation

1.1.1 Design of Low-Density Parity-Check Coding Schemes

with High Error Correction Capability

Digital communication systems and digital storage systems widely use flash mem-

ories, as a type of memory device characterized by non-volatility for data retention

in power-off situations to achieve the reliability requirements. In the non-volatile

memory application fields, NAND flash memory plays an increasingly important

role over the past three decades for their higher throughput and lower power con-

sumption compared to conventional hard-disk drives (HDDs) [75]. However, the

cost of NAND Flash for the same storage capacity is still much higher than that

of HDDs these days. To solve this problem, many technologies such as multi-level

cell (MLC), triple-level cell (TLC), and 3D stacking are developed for NAND flash

memory [76, 77], where there is more information packed in one storage element

or more storage elements packed together. However, as more information per

storage element or more storage elements are packed in a small package, the

error rate of the stored information and the endurable program/erasure cycles

of the storage cells will deteriorate. To deal with this issue, many powerful er-

ror control codes (ECCs), such as Bose-Chaudhuri-Hocquenghem (BCH) codes

[78], concatenated codes [79], product codes [80,81] and low-density parity-check

(LDPC) codes [82] [83], were proposed and studied in the literature and in indus-

try. Among these ECCs, LDPC codes are in favor by many researchers for their

capacity-approaching property when soft information is available [70] [84].

Recently, spatially-coupled (SC) LDPC codes [85], which are a kind of con-

volutional LDPC codes [86], attracted a lot of researchers’ attention [87–92]. SC

LDPC codes combine the capacity-achieving property of irregular LDPC codes
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and the linear minimum distance growth property of regular LDPC codes [89].

More importantly, as shown in [85], SC LDPC codes show a significant convo-

lutional gain compared to the associated block LDPC codes for the same circu-

lant size. Even for the same structured decoding latency or the same decoder

complexity, SC LDPC codes also have a considerable coding gain compared to

their uncoupled counterparts, especially at high signal-to-noise-ratio (SNR) re-

gion [85,88]. Since the next-generation NAND Flash memories require both high

error correction capability and very low uncorrectable error rate, it is of great

interest to consider SC LDPC codes to achieve superior error performance.

It is known that SC LDPC codes can be constructed from LDPC block codes

[85]. For the construction of block LDPC codes, algebraic construction methods,

especially those based on finite geometries [46], provide a systematic way to con-

struct a large family of girth-6 LDPC codes with various code lengths and code

rates. These codes have near-capacity performance and low error floor. Instead

of above merits, the LDPC codes constructed based on finite geometries can

be decoded with various decoding algorithms, such as majority logic decoding

algorithms, iterative message-passing decoding algorithms, which provide flexible

options for different applications to practical systems [74]. Among the LDPC

codes constructed based on finite geometry, Euclidean geometry (EG) LDPC

codes [74] have relative good error performance under low complexity decoding

algorithms, such as the conventional weighted bit-flipping algorithm [46], which

can benefit to the high-speed low-latency decoding for NAND Flash memories.

Hence, constructing binary SC LDPC codes based on EG LDPC block codes

has great potential to satisfy the requirements of both error performance and

decoding latency for NAND Flash memories.

In addition, it is shown in [93] that a sliding windowed decoder is an effi-
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cient decoding architecture for SC LDPC codes in the sense that only a portion

of one codeword is decoded at a time. Compared to the full block decoding

(FBD) [91,94] which takes the entire codeword for decoding, a sliding windowed

decoder has a lower decoding latency and memory requirement. However, most

of the previous work, such as [95–97] considered improving the error performance

of the sliding windowed decoder by using soft-decision decoding algorithms such

as sum-product algorithm (SPA) [45]. This causes a high decoding complexity

and more power consumption for NAND Flash memories as soft information is

used to perform message update [98,99]. Therefore, the reliability-based decoding

algorithms were proposed in [74, 100, 101], which only requires hard information

when performing message update and can obtain a lower decoding complexity

compared to the SPA at the expense of performance loss. It is worth noting that

there is a significantly high error floor when the conventional WBF algorithm is

used for windowed decoding of SC LDPC codes. This is because there exist vari-

able nodes (VNs) that have neighboring check nodes (CNs) outside the decoding

window due to the windowed decoding architecture. Consequently, the messages

sent out from these VNs may not be reliable. More severely, these unreliable

messages are propagated along with the decoding window and deteriorate the er-

ror performance. As such, it is of great necessity to design a windowed decoding

architecture for the reliability-based decoding algorithms to mitigate or eliminate

the error propagation of the unreliable messages.

1.1.2 Design of Advanced Decoding Methods for 5G LDPC

Codes

In the 5G frameworks, LDPC codes have been selected to be one of the channel

coding schemes for the data channels in the eMBB scenario [1]. As known from [1],
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the 5G LDPC codes have the maximum length of 8448 information bits with the

code rates covering from 1/3 ∼ 8/9, and also support the code rate 1/5 when the

length of information bits is not greater than 3840 bits. However, the decoding

complexity will substantially increase for long information bits and low code rates.

Thus, the error performance and decoding complexity should be both considered

in the design of decoding methods to make a good balance between the reliability

and implementation complexity.

It is well-known that the SPA [45] has good error performance by iteratively

performing messages update between variable nodes (VNs) and check nodes (CNs).

However, its decoding complexity is fairly high for hardware implementations as

the nonlinear operations are performed for messages update [98]. Therefore, sim-

plified versions of the SPA, such as the conventional min-sum algorithm (MSA)

[102], and MSA-based decoding algorithms [47–50], such as the normalized MSA

(NMSA) [47] and the offset MSA (OMSA) [48] are proposed and widely used in

practical communication systems. More specifically, the conventional MSA [102]

reduces the decoding complexity on CN update by only taking the magnitude and

sign of the messages, which causes a distinct performance degradation relative

to the SPA. By improving the estimation accuracy for the messages computed

at the CN or VN update, the MSA-based decoding algorithms were proposed

in [47–50] to obtain the error performance near that of the SPA for the moderate

to long LDPC codes with high rates. Nonetheless, the error performance of

these MSA-based decoding algorithms is highly affected by the VNs with low

degrees [103]. As shown in [1], there are a number of VNs with degree-1 in their

associated Tanner graphs [104] of the 5G LDPC codes. This results in a poor

error performance of the MSA-based decoding algorithms compared to that of

the SPA since the messages sent from the CNs connected to these degree-1 VNs
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are bounded in magnitude [105] at each iteration and become unreliable for these

degree-1 VNs. Moreover, the performance degradation becomes more notable for

the MSA-based decoding algorithms when using long information block length

and low code rate (less than 1/2). This is because the portion of the degree-1 VNs

is even higher compared to the VNs of other degrees. As a result, it is necessary

to develop an improved decoding algorithm, particularly for the 5G LDPC codes

with degree-1 VNs.

To achieve ultra-reliability and low decoding complexity under the constraint

of limited end-to-end delay, the LDPC codes with short block lengths have been

considered in the 5G frameworks [1]. Compared to the LDPC codes with long

block lengths, there exist a number of unavoidable small cycles in the Tanner

graphs of short LDPC codes. This allows the error messages to propagate within

the cycles and severely deteriorate the error performance of short LDPC codes

[106]. In this case, the SPA, which is considered to have asymptotically opti-

mal performance, has a considerable performance gap from the maximum likeli-

hood (ML) decoding. Therefore, several improved decoding methods, called the

quasi-ML (QML) decoding methods, were investigated in [107–110], where the

reprocessing architecture is introduced after the failure of the initial decoding

attempt. In the reprocessing, part of the codeword is forced to be corrected by

using the idea of list decoding, i.e., a list of all possible combinations for the

selected VNs is generated and multiple rounds of the decoding or re-encoding

tests are conducted thereafter. The ‘best’ codeword is chosen from the repro-

cessing output according to a certain decision metric. One of the famous QML

decoding methods, so-called the ordered statistic decoding (OSD) [107], performs

sorting and Gaussian elimination to generate the list of bit combinations for a

predetermined number of VNs with the most reliability. Each combination is
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re-encoded into a codeword, and one of them is chosen as the decoding output

according to the Euclidean distance with the received signal. However, there

is a high decoding complexity caused by the sorting and matrix transformation

operations, which makes the OSD unsuitable for hardware implementations. Al-

ternatively, the QML decoding methods in [108–110] conducts multiple rounds of

the decoding tests based on the modified decoder input sequences derived from

the channel output sequence. As shown in [108], although the error performance

of all these above QML decoding methods can be close to that of ML decoding

with a sufficient large number of conducted decoding tests (more than 1000 de-

coding tests for one received signal), the performance gap to the ML decoding is

still considerable when a small list size is used (less than 100 decoding tests for

one received signal). Consequently, developing the advanced decoding methods

for the 5G short LDPC codes becomes important to the 5G mobile networks.

1.2 Literature review

In this section, the related works of this thesis about the construction and decod-

ing of the LDPC codes are discussed and reviewed.

1.2.1 The Construction of LDPC Codes

In general, LDPC codes consist of two categories: random/pseudo-random LDPC

codes [51], and the structured LDPC codes [46]. Due to the cyclic or quasi-cyclic

structure of their parity-check matrices, the structured LDPC codes have been

widely used in many practical applications as they are much easier for hardware

implementation. The construction methods of structured LDPC codes are mainly

divided into:
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• Computer-based (or graph-based) construction: using computer-aided algo-

rithm such as progressive edge-growth (PEG) [111], and approximate cycle

extrinsic (ACE) [112] to construct LDPC codes with good graph structures.

A typical example of such LDPC codes is the protograph-based LDPC

codes [113].

• Algebra-based (or matrix theory-based) construction: using algebraic tools,

including finite fields, finite geometry, to construct LDPC codes.

It is known that the PEG algorithm is one of the most efficient computer-based

methods to design the LDPC codes with large girth property [111]. For a given

degree distribution of VNs, and the number of VNs and CNs, the PEG algorithm

adds one edge on the code Tanner graph at a time and aims to maximize the local

cycle length. Therefore, it is a greedy algorithm for constructing the Tanner graph

of an LDPC code with large lengths of cycles. Nevertheless, the parity-check

matrices of LDPC codes constructed by the PEG algorithm still have randomness,

which increases the encoding and decoding complexity.

A much easier way to construct LDPC codes is generating a large Tanner

graph from a small protograph [113], which is called the protograph-based con-

struction method. For a given design code rate and the degree distribution of

the LDPC codes, the protograph can be obtained based on computer searching

and optimized through the mathematical tools such as density evolution [52] and

extrinsic information transfer chart [114]. Then the Tanner graph of an LDPC

code can be derived by the graph lifting operation [113], where the protograph

is copied for U times and the edges of each independent graph are permuted

between different copies. The major characteristic of protograph-based construc-

tion method is that the properties of the protograph will be inherited to its lifted

Tanner graph such as good iterative decoding thresholds and linear minimum
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distance growth. As a consequence, for properly designed protographs, we can

also have these excellent properties on their derived LDPC codes [115].

In addition, the algebra-based construction method constructs the cyclic shift

matrix based on the given parameters of finite geometry [46]. Each element in

the cyclic shit matrix is then replaced by a circulant permutation matrix with the

same size according to the rule of matrix dispersion and masking [74] rules. As

shown in [46], the LDPC codes constructed from finite geometry have good error

performance for various low-complexity decoding algorithms, which is in favor of

simple hardware implementation.

Apart from the construction methods mentioned above, spatially-coupled (SC)

LDPC codes have been paid widespread attention by a lot of researchers [85,89–

91,116,117]. It is known that SC LDPC codes are a type of LDPC convolutional

codes [86] which can be constructed from LDPC block codes by matrix unwrap-

ping [85] and termination [89]. The graph structure of the associated LDPC

block code is preserved for the unwrapped graph, which means all of the nodes

remain their degrees and local connectivity compared to the underlying LDPC

block code. The termination further introduces lower CN degrees at both sides

of the unwrapped graph and causes slight structured irregularity. This results in

an effect, called threshold saturation [118, 119], which demonstrates a dramatic

improvement for the BP threshold of a regular SC LDPC code. More specifically,

it shows that the BP threshold of a regular SC LDPC code can converge to the

maximum a posteriori (MAP) threshold of its block code counterpart [120]. Note

that the threshold refers to the worst channel parameter (e.g., SNR for additive

white Gaussian noise channel) that leads the error probability after decoding

converges to zero. Since the MAP decoding has the same performance as the

ML decoding if all codewords are transmitted with equal probability, it is pos-
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sible to achieve the ML threshold of the underlying LDPC block codes through

spatial-coupling. Notice that ML decoding is the optimal decoding algorithm in

terms of minimizing error probability. Moreover, as shown in [85], SC LDPC

codes have good features of both regular and irregular LDPC codes that the BP

threshold is close to the capacity and the minimum distance of the code grows

linearly with the increase of block lengths.

1.2.2 The Decoding Algorithms of LDPC Codes

In addition to introducing LDPC codes, Gallager also presented a near-optimal

decoding algorithm in [70], which is now called the sum-product algorithm (SPA)

or BP algorithm [45]. The SPA is initially performed in probability domain,

where the messages sent along an edge between VNs and CNs represent the

posterior conditional distribution on the bit associated with the VN connected

to that edge. Each VN or CN acts under the assumption that each incoming

message at current iteration is conditionally independent of the others, and rep-

resents a conditional distribution on the associated received bit. Furthermore,

only extrinsic information is used for computing the messages. The probability

domain SPA uses a continuous message alphabet, which increases the implemen-

tation complexity for hardware. Therefore, the SPA in the logarithmic domain

was proposed in [45], where the messages are represented by log-likelihood ratios

(LLRs). However, due to the nonlinear operations performed during the update

of messages, the SPA has a high decoding complexity. For practical consider-

ations, some simplified versions of the SPA, such as the conventional min-sum

algorithm (MSA) [102], the normalized MSA (NMSA) [47], and the offset MSA

(OMSA) [48] are proposed and widely used in practical communication systems.

To be more specific, the conventional MSA [102] reduces the decoding complexity
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by simplifying the message update rule at each iteration, which only considers

the magnitudes and signs of the messages. However, it is shown in [102] that

the magnitude of the messages computed by MSA is always greater than that

computed by the SPA. This phenomenon is called the over-estimation and causes

the performance degradation of the conventional MSA algorithm compared to

the SPA. To reduce the performance gap between the conventional MSA and

the SPA, the MSA-based algorithms are proposed in [47–49], where one or two

correction terms are introduced to restrict the magnitude of the computed mes-

sages. Instead, the self-correct MSA [50] exploits the sign flipping phenomenon of

VNs’ extrinsic messages, where these messages can be sent if they have consistent

signs in two consecutive iterations. Other than the decoding algorithms based on

the soft decision as discussed above, Gallager also proposed a bit-flipping (BF)

algorithm in [70], where the messages computed at each iteration are all quantized

based on hard decision according to their signs. Compared to the SPA, the BF

algorithm has a much lower decoding complexity and can be easily implemented.

However, the error performance of the BF algorithm is far away from that of the

SPA as shown in [46]. In [74], the conventional weighted BF (WBF) algorithm

was proposed, which is a kind of reliability-based decoding algorithm. In the

WBF algorithm, the fixed weights obtained from received signals are assigned to

the checksums. A flipping metric is then computed for each VN according to the

majority-logic. The least reliable VNs are flipped in priority at each iteration.

Compared to the BF algorithm, the conventional WBF algorithm aims to provide

better error performance closer to the SPA with slight increased computational

complexity.
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1.2.3 The Decoding Architectures of LDPC Codes

For the decoding of short LDPC codes, there is a significant performance gap

between the SPA and ML decoding due to the existence of the small cycles [106].

Hence, several quasi-ML (QML) decoding methods [107–110] were proposed to

approach the ML-decoding performance for the LDPC codes with short block

lengths by introducing the reprocessing architecture. The general flow of the

reprocessing can be summarized as follows:

• Perform the conventional BP decoding.

• If the BP decoding successes, output the decoded codeword. Otherwise,

choose the candidate VNs according to a certain node selection methods

[107–110].

• Create a list of all possible combinations of the selected VNs.

• Reconstruct the input sequences from the previous decoder output [107] or

the channel outputs [108–110].

• Conduct multiple rounds of re-encoding [107] or decoding [108–110] tests.

• Determine the ‘best’ codeword according to certain decision metric.

Note that the idea of these QML decoding methods is intentionally correcting

partial codeword for a received signal by enumerating all possible combinations

of the selected VNs. For example, the OSD proposed in [107] only corrects the

selected VNs with the most reliability according to the magnitude of their channel

outputs. By performing sorting and matrix transformation, a list of codewords

is obtained by encoding all error combinations into corresponding codewords. In

the end, one of them is chosen as the decoding output, which has the minimum
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Euclidean distance with the received signal. Apparently, there is an extremely

high decoding complexity caused by the sorting, matrix transformation, and mul-

tiple rounds of the encoding process. To reduce the decoding complexity, the

augmented BP (ABP) decoding and saturated min-sum (SMS) decoding were

proposed in [108] and [109], respectively. Instead of re-encoding all error com-

binations, these QML decoding methods select the unreliable VNs based on the

magnitude of their channel outputs. The conventional BP decoding tests are

conducted for several rounds thereafter to generate a list of codewords, where

the decoder input is modified from the initial channel output sequence at each

decoding test. In addition, the QML decoder in [110] is different in the sense

of selecting unreliable VNs, where the reliability of each unsatisfied CN is first

calculated based on the LLRs. Starting from the unsatisfied CN with the largest

LLR value, two least reliable VNs connected to the unsatisfied CNs with the

smallest magnitude of their channel outputs are forced to flip their hard decision

with a high priority. Nevertheless, for all these QML decoding methods with a

small number of unreliable VNs being selected, the performance gap to the ML

decoding is still considerable.

For the decoding of SC LDPC codes, an efficient decoding architecture was

proposed in [93], so-called the sliding windowed decoder. Instead of performing

the decoding on the entire codeword as that in FBD [94], a sliding windowed

decoder uses a window with much smaller size and decoding on a portion of the

codeword to achieve much less latency and memory demands. In the decoding

window, an iterative message-passing decoding algorithm can be performed in

an either FBD or non-uniform [96] way. The decoding window shifts to the

next position if the stopping rule is satisfied or the preset number of iterations

is reached. The symbols that are shifted out of the decoding window is called
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the target symbols. It is shown in [97] that the windowed decoding architecture

introduces inherent performance degradation compared to the FBD. Most of the

work in the literature [95–97] focused on improving the performance of the sliding

windowed decoder with soft-decision decoding algorithms such as the SPA. In [88],

the authors present the performance comparison of both binary and non-binary

SC LDPC codes in terms of the computational complexity and decoding latency.

The density evolution of SC LDPC codes under the sliding windowed decoder

was proposed in [90], which is used for the construction of SC LDPC codes over

GF(q) with good windowed decoding threshold.

1.3 Thesis Outline and Main Contributions

1.3.1 Thesis Organization

In this subsection, we present the outline of each chapter in this thesis. There

are seven chapters in total, which covers the following aspects

• An overview of 5G frameworks and the development of channel coding tech-

nologies;

• Motivation of the research works conducted in this thesis;

• Background information on digital communication and channel coding;

• Basics and related works on LDPC codes.

• Details of the conducted research works.

• Conclusions of this thesis and future prospects.
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Chapter 1

We provide an overview of 5G mobile networks and the development of channel

coding technologies. Then, we state the motivation of this thesis and the related

works in the literature. We also present the outline and the main contributions

of this thesis.

Chapter 2

We provide background knowledge of digital communication and channel cod-

ing techniques. Definitions and basic concepts are also given. The materials

presented in this chapter will be used throughout the rest of this thesis.

Chapter 3

The basics and related works on LDPC codes, including various decoding

methods, commonly used analysis method, some classical construction methods

of LDPC codes, are discussed in this chapter. These materials provide the fun-

damental concepts for the conducted research works in the following chapters.

Chapter 4

In Chapter 4, we first address the problem of how to construct a binary

spatially-coupled (SC) LDPC code for storage applications with high error cor-

rection capability and very low uncorrectable error rate. Then we focus on how

to employ a sliding windowed decoder with the conventional weighted bit-flipping

algorithm to achieve a lower decoding complexity with slightly performance degra-

dation compared to the full block decoding. Details of the construction methods,

full descriptions of the proposed windowed decoding scheme, and relevant simu-

lation results are presented.

Chapter 5

In Chapter 5, we introduce an enhanced quasi-maximum likelihood (EQML)

decoding method for 5G LDPC codes. Detailed design of the decoding algorithm
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and the decoding architecture, the theoretical analysis of the error performance

and decoding complexity are also presented in this chapter.

Chapter 6

In Chapter 6, we aim to achieve a desirable error performance for 5G LDPC

codes by using the reprocessing architecture with a much lower decoding com-

plexity. A novel approximate message passing (AMP)-aided decoding scheme is

presented. Detailed explanation on how to formulate the decoding model with

the AMP detector, the decoding procedures, as well as the analysis for some

properties, and error performance of the proposed scheme are presented in this

chapter.

Chapter 7

This chapter concludes the thesis by summarizing the main ideas of each

chapter and the contributions of all the works conducted during my Ph.D. career.

1.3.2 Research Contributions

In the following, we present the detailed research contributions in chapters 4-6,

respectively.

Chapter 4 presents a systematic design method of binary SC LDPC codes

for storage applications. Most importantly, the proposed construction method is

based on Euclidean geometry (EG) with high error correction capability and low

uncorrectable bit error rate. In the proposed construction method, we adopt a

two-dimensional edge-spreading process to generate a base matrix for SC LDPC

codes, where a circulant decomposition method is used for the two-dimensional

edge-spreading on a protograph of the constructed SC LDPC codes. Then the

base matrix of the protograph is unwrapped and repeated periodically to con-

struct the base matrix for a terminated SC LDPC code. The resulting base matrix
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is then lifted by the circulant permutation matrices to obtain the SC LDPC codes

for various code lengths and code rates. In addition, we derive a lower bound on

the rank of the parity-check matrix of our proposed EG-SC LDPC codes which is

determined by the rank of the unwrapped parity-check matrix of the underlying

EG LDPC code. We show that the error performance of the constructed EG-SC

LDPC codes outperform their EG LDPC code counterparts, and show no error

floor compared to the constructed protograph SC LDPC codes and regular LDPC

codes.

We further propose a reliability-based windowed decoding scheme for SC LDPC

codes to significantly reduce the error floor. In the proposed scheme, we propose a

partial message reservation method which mitigates the error propagation by only

reserving the reliable messages between two adjacent windows. We also introduce

a partial syndrome check stopping rule to reduce the error floor under windowed

decoding. The error performance of the proposed RBWD scheme is evaluated by

simulation and it shows that the bit error rate of the RBWD scheme can approach

that of full block decoding within 0.1 dB by using the low-complexity weighted

bit-flipping decoding algorithm.

The results in Chapter 4 have been presented in the following publications:

• Y. Xie, L. Yang, P. Kang, and J. Yuan, “Euclidean geometry-based spa-

tially coupled LDPC codes for storage,” IEEE J. Select. Areas Commun.,

vol. 34, pp. 2498–2509, Sep. 2016.

• P. Kang, Y. Xie, L. Yang, and J. Yuan, “Reliability-based windowed de-

coding for spatially coupled LDPC codes,” IEEE Commun. Lett., vol. 22,

pp. 1322–1325, Jul. 2018.

In Chapter 5, a novel enhanced quasi-maximum likelihood decoding method

for 5G LDPC Codes is presented. We first propose an improved MSA-based
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decoding algorithm with a low decoding complexity compared to the SPA but has

the frame error performance near the SPA. A self-correction method is employed

in the decoding algorithm, which reserves the reliable variable-to-check (V2C)

messages and reduces the sign flips. Moreover, we apply one pair of universal

scaling factors to the update of check node (CN) and variable node (VN) messages

for all information bit lengths K ∈ [40, 8448] and code rates R ∈ [1/5, 8/9] in the

5G standard. In particular, the scaling factor used for VN update amplifies the

magnitude of the extrinsic messages sending to their neighboring CNs which are

connected to degree-1 VNs, and further improves the reliability of the reserved

messages with the self-correction method.

We further propose an enhanced reprocessing architecture, so-called the en-

hanced quasi-maximum likelihood (EQML) decoding method, for 5G short LDPC

codes to approach the frame error performance of the ML decoding with a desir-

able decoding complexity. By utilizing the sign flips for VNs’ extrinsic messages,

a novel node selection method from edge perspective is proposed in the repro-

cessing architecture to improve the accuracy of selecting unreliable VNs. We

also introduce a stopping rule based on partial pruning to reduce the decod-

ing complexity caused by multiple rounds of decoding tests in the reprocessing.

The lower bounds on frame error rate (FER) of the proposed EQML decoding

method by using a semi-analytical method. We investigate the FER performance

of the proposed decoding algorithm and the EQML decoding method. Simulation

results show that the proposed decoding algorithm can approach the error per-

formance of the SPA for the 5G LDPC codes within 0.3 dB for all information bit

lengths. Moreover, the EQML decoding method outperforms the SPA with the

same decoding complexity for the 5G short LDPC codes and can approach the

Polyanskiy-Poor-Verdú (PPV) bound within 0.4 dB in terms of FER performance.
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And the derived lower bound on the FER is close to the simulation results in the

low signal-to-noise ratio (SNR) region.

The results in Chapter 5 have been presented in the following publications:

• P. Kang, Y. Xie, L. Yang, C. Zheng, J. Yuan, and Y. Wei, “Enhanced

quasi-maximum likelihood decoding for 5G LDPC codes,” submitted to

IEEE Trans. Commun. on 19th Jul. 2019.

• P. Kang, Y. Xie, L. Yang, C. Zheng, J. Yuan, and Y. Wei, “Enhanced

quasi-maximum likelihood decoding of short LDPC codes based on satura-

tion,” in Proc. IEEE Inf. Theory Workshop, pp. 1–6, Aug. 2019.

• P. Kang, Y. Xie, L. Yang, C. Zheng, J. Yuan, and Y. Wei, “A method for

improved decoding of low-density parity-check codes,” Ref. No. 201811279697.5.

• P. Kang, Y. Xie, L. Yang, C. Zheng, J. Yuan, and Y. Wei, “A method for

enhanced decoding of low-density parity-check codes,” Ref. No. 201811279838.3.

• P. Kang, Y. Xie, and J. Yuan, “Improved Min-Sum Decoding of LDPC

Codes,” Project: Enhanced Decoding Algorithm for 5G LDPC Codes -

Stage 1, Huawei Technology CO., LTD, Shanghai, China.

• P. Kang, Y. Xie, and J. Yuan, “Improved Quasi-Maximum Likelihood

Decoder of LDPC Codes,” Project: Enhanced Decoding Algorithm for 5G

LDPC Codes - Stage 2, Huawei Technology CO., LTD, Shanghai, China.

In Chapter 6, a reprocessing scheme based on approximate message passing

(AMP) [121] is presented to improve the performance of the 5G short LDPC codes

with code rates R ≤ 0.5. The decoding of the LDPC codes is formulated as a

compressed sensing (CS) problem, where we use a sparse error vector to indicate

the reliability of each VN in the codeword and reconstruct the error vector by
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the AMP algorithm. In the proposed decoding scheme, the AMP detector esti-

mates the reliability of the channel output for each VN from the residue signal,

where the residue signal is constructed by removing the decoded signal from the

associated channel output sequence. Then the signs of the channel outputs on

the unreliable VNs are flipped according to the preset threshold to generate the

updated decoder input sequence. The decoder conducts a new decoding test with

the modified input sequence and outputs the valid codeword if the decoding test

successes. Moreover, an AMP-EQML decoding scheme is also presented for the

5G LDPC codes, where the AMP detector is used as a post-process operation for

the unsuccessful decoding tests in the reprocessing of the EQML decoding. In

this way, the probability of obtaining a valid codeword can be increased, which

results in further improvement of the error performance of the EQML decoding.

In addition, some properties of the proposed AMP-aided decoding scheme such as

false flip rate (FFR), the denoiser success rate over the total number of decoding

failure (DSRF) and the denoiser success rate over total transmissions (DSRT) are

also analyzed and discussed. We show that the proposed AMP-aided decoding

scheme achieves a 0.1 dB gain over the counterpart of one-time decoding for the

5G LDPC codes with various block lengths and low code rates. Furthermore, at-

tributing to the AMP detector, the error performance of the AMP-aided decoding

scheme with the conventional MSA can approach that of SPA within 0.3 dB for all

simulated LDPC codes. It is also shown that the proposed AMP-EQML decoding

scheme outperforms EQML decoding for information bit length of K = 320 and

752.

The results in Chapter 6 have been presented in the following publications:
• P. Kang, Y. Xie, Z. Sun, and J. Yuan, “The AMP-aided Decoding Scheme

of 5G LDPC Codes,” Project: Enhanced Decoding Algorithm for 5G LDPC

Codes - Stage 3, Huawei Technology CO., LTD, Shanghai, China.



Chapter 2

Backgrounds and Preliminaries

It is well-known that channel coding is one of the key technologies in modern

digital communication systems. In this chapter, we firstly introduce the funda-

mental mathematics and information theories of channel coding. This includes

the communication system model, linear block code, decoding method, perfor-

mance metric and channel capacities of coded systems. Note that we only do

a preliminary introduction here without proofs. More details about the classic

channel coding techniques can be found in [51, 54, 74, 122]. The introduction of

modern channel coding techniques can also be found in the literature [52,69], and

the knowledge of wireless digital communication can be referred to [123–126].

2.1 The System Model of Digital Communica-

tion

In 1948, Shannon proposed a general model of the digital communication system

in his landmark paper [44], where he pointed out that the essential issue in the

design of a communication system is how to transmit messages efficiently and

25
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Figure 2.1: The block diagram of digital communication system with single car-
rier.

reliably, given the presence of noise. He further demonstrated that this goal can

be achieved using coding techniques.

The details of Shannon’s proposed model for a digital communication system

are depicted in Fig. 2.1. This model is the basis behind various modern communi-

cation systems such as digital satellite TV, digital broadcasting, cellular network

and Wi-Fi. The components of the digital communication system are described

as follows.

• Source and user (or sink). The information source occurs in digital form

(e.g., computer files), or digitized from an analog source (e.g., speech).

We consider the output as a sequence of bits with a particular probability

distribution function.

• Source encoder and source decoder. The encoder performs compression

on the information source, wherein the bit sequence of the information

source is converted into an alternative bit sequence with fewer bits. Hence,

the efficiency of the information representation is enhanced. Depending

on the source, the compression may be lossless (e.g., for computer data

files) or lossy (e.g., for video, still images, and music). The source decoder

performs the inverse function as the encoder, which recovers the bit sequence
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of the information source exactly (in the case of lossless compression), or

approximately (in the case of lossy compression), from the output sequence

of the source encoder.

• Channel encoder and channel decoder. To achieve reliable transmission,

channel encoder introduces appropriately designed redundant bits to pro-

tect the information bits from various channel impairments, such as noise,

distortion, and interference. Denoted by R (0 < R < 1), the code rate is

the ratio of the number of input bits at the channel encoder to the number

of output bits. The function of the channel decoder is to recover the input

of the channel encoder (i.e., the compressed sequence) from the channel

output. Note that the designed goal of the channel encoder and decoder is

to transmit the information bits at the highest possible rate while achieving

a low probability of decoding errors under the channel with the existence

of noise, distortion and interference.

• Modulator and demodulator. The modulator converts the output bit se-

quence from the channel encoder into a proper signal sequence s that is

suitable for the channel. For example, for a wireless communication chan-

nel, the bit sequence must be represented by a signal with high-frequency

to facilitate transmission with an antenna of reasonable size. In particular,

the modulator can be divided into two types: the baseband modulator and

the passband modulator. The baseband modulator converts the output bit

sequence from the channel encoder into a baseband signal waveform by

performing bit mapping followed by pulse shaping. As the inverse operator

to the modulator, the demodulator recovers the modulator input sequence

from the modulator output sequence. More specifically, the demodulator

converts the received waveform into a discrete-time signal sequence (im-
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plemented by a matched filter). It then performs symbol-by-symbol or

sequence detection and sends the decision result in the form of bit sequence

or the calculated likelihood ratio information to the channel decoder.

• Channel. The channel is a physical medium that is capable of transmit-

ting the output signal of a modulator. Physically, the channel includes

transceiver antennas, amplifiers and filters that exist at both ends of the

system. When the signal is transmitted over the channel, the channel may

further introduce noise and interference in addition to the signal distor-

tion. For research purpose, we adopt probabilistic models to evaluate the

characteristics of the channel and obtain a variety of equivalent channel

models.

Based on Shannon’s model, a channel can be characterized by the channel ca-

pacity C, which is a measure of how much information the channel can transmit

with an arbitrary small error probability. Shannon showed that we can achieve

any reliable transmission (arbitrary small error probability) with appropriately

designed codes as long as the code rate R < C. This thesis focuses on the

low-density parity-check (LDPC) codes and their variations, particularly for the

spatially-coupled LDPC codes and the LDPC codes used in 5G mobile commu-

nication systems.

2.1.1 Signal Constellation

The binary sequence from the output of the channel encoder is mapped to a signal

constellation A, which is defined in the following.

Definition 2.1. (Signal Constellation): An N-dimensional signal constellation
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of size M is an N-dimensional vector set, such that

A =
{
am ∈ CN , 1 ≤ m ≤M

}
. (2.1)

Note that each point in the signal constellation, which is also known as a

signal point, corresponds to a different modulated waveform after pulse shaping,

and all modulated waveforms have the same set of orthogonal basis. A set of

N -dimensional signals of size M can transmit log2M bits for each N -dimension.

For example, the signal constellation of quadrature phase-shift keying (QPSK)

modulation is a set of 2-dimensional real vectors of sizeM = 4, and each 2-dimensional

vector (complex signal) has log2M = 2 bits. Therefore, the average energy of a

signal constellation A (for each of the N dimensions) is given by

Es = E{‖am‖2} =
M∑
m=1

‖am‖2P(am), (2.2)

where P(am) is the probability that the signal point am is transmitted. If the M

signal points in A are transmitted with equal probability, we have

Es =
1

M

M∑
m=1

‖am‖2. (2.3)

2.1.2 Signal Mapping

The function of signal mapping is to convert the bit sequence z of length log2M

into a certain signal point s = C(z) in the signal constellation A. Note that C(·)

is the mapping function and the bit sequence z is called the label of the signal

point. It is known that the signal mapping is not arbitrary, and usually needs to

be optimized for desirable error performance. In general, the Gray mapping has

a better error performance and is more commonly used in engineering practice
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(e.g., the 5G communication systems).

In this thesis, we consider binary phase-shift keying (BPSK) and QPSK mod-

ulations. For BPSK modulation, the bit zm is mapped to a real signal s as follows:

s = 1− 2zm. (2.4)

For QPSK modulation, the bits zm and zm+1 are mapped to a complex signal s

as

s =
1√
2

[(1− 2zm) + j(1− 2zm+1)]. (2.5)

2.2 Linear Block Codes

The most investigated and commonly used channel codes in practice are the

codes defined on a finite field. Assume that the source can be represented by a

sequence of consecutive binary symbols on the finite field GF(2), which is called

the information sequence. The binary symbols in the information sequence is

called the information bits. With respect to block codes, their information se-

quences are divided into multiple message sequences with fixed-lengths, where

each message sequence contains K information bits. As a result, there are 2K

types of different message sequences in total. In the channel encoder, each input

message sequence u = (u1, u2, . . . , uK) of K information bits is encoded as a

length-N binary sequence c = (c1, c2, . . . , cN) according to certain coding rules,

where N > K. The sequence c is called the codeword of the underlying message

sequence u and the binary digits in the codeword are called code bits. Since there

are 2K different message sequences, resulting in 2K corresponding codewords, the

set of all codewords constitutes an (N , K) block code. The parameters N and

K are called the block length and the dimension of the code, respectively. The



2.2 Linear Block Codes 31

N −K bits are the redundant bits added by the encoder to each input message

sequence. The ratio R = K/N is called the code rate and can be interpreted as

the average number of information bits carried by each code bit.

2.2.1 Definition

Definition 2.2. (Binary Linear Block Codes): A binary (N,K) linear block code

C is a K-dimensional subspace, containing 2K codewords, of the vector space

which is composed of all N-dimensional vectors over GF(2).

In any linear code, the all-zero codeword is always one of its valid codewords

since it represents the origin of the vector space.

2.2.2 The Generator Matrix and Parity-check Matrix

According to the definition of a binary (N , K) linear block code C, there are K

linear independent codewords g1,g1, . . . ,gK , such that each codeword c in C is a

linear combination of the K linear independent codewords, i.e.,

c = u1g1 + u2g2 + · · ·+ uKgK , (2.6)

where ui ∈ GF(2).

We rearrange the K linearly independent codewords g1,g1, . . . ,gK in C as the

row vector of a K ×N matrix over GF(2) as follows:

G =



g1

g2

...

gK


. (2.7)
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Define u = (u1, u2, . . . , uK) as the message sequence to be encoded. Let

c = (c1, c2, . . . , cN) be the corresponding codeword for u, we have

c = u ·G. (2.8)

Therefore, the codeword c of the message sequence u is a linear combination of

the row vectors of the matrix G, where G is called the (N,K) generator matrix of

the linear block code C. Furthermore, the generator matrix G can be transformed

into the systematic form:

G = [IK |P] , (2.9)

where IK is aK×K identity matrix, and P is the matrix of sizeK×(N−K), pi,j ∈

GF(2). A codeword constructed from the generator matrix G in the systematic

form is called the systematic code, where the most left K bits in the codeword c

are identical with the message sequence u1, u2, . . . , uK and the right most N −K

bits in the codewrod are the linear combination of the original information bits.

These N −K bits are called the parity bits. Additionally, an (N,K) linear block

code C can also be defined by its parity-check matrix H. The relationship between

the generator matrix G and H is

GHT = 0. (2.10)

Note that a binary N -dimensional vector c ∈ V is a codeword in C if and only if

c ·HT is an N −K dimension all-zero vector, such that

C =
{
c ∈ V : c ·HT = 0

}
, (2.11)

where C is called the null space of H. To consider the case of a systematic
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generator matrix G for an (N,K) linear block code, its corresponding parity-check

matrix H in the systematic form can be represented as

H =
[
PT|IN−K

]
. (2.12)

In summary, a linear block code can be uniquely determined by two matrices,

namely the generator matrix and the parity-check matrix. In this thesis, LDPC

codes are defined based on the parity-check matrix. Note that the parity-check

matrix H of the (N,K) linear block code is said to be full rank if the number

of rows in H is equal to the rank of H, i.e., rank(H) = N − K. However, it is

possible that H is not full rank, meaning that the number of rows in H is greater

than N − K. In this case, some rows in the parity-check matrix H will be the

linear combinations of the N −K linearly independent rows in H. These extra

rows are called the redundant rows. We will introduce LDPC codes in the next

chapter, of which the parity-check matrices are not necessarily full rank.

2.2.3 Shortening and Puncturing

Assuming C is a given (N,K) linear block code, we can simply modify it to get a

new code. These methods include extending a code, puncturing, shortening, and

expurgating, which are simple, but very practical and are often used in the design

of coded systems. Here we only briefly introduce puncturing and shortening as

these methods are most relevant to this thesis.

• Puncturing: This method reduces the code block lengths by deleting some

parity bits of the codewords in C, and thereby we can obtain a code with

a higher code rate. This operation corresponds to deleting the associated

columns of the generator matrix G.
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• Shortening: This method reduces the code length by removing some in-

formation bits of the codewords in C, which corresponds to deleting the

associated column of the parity-check matrix H or reducing the dimension

of the generator matrix G. Denote the number of shortened bits by φ, the

code rate of the new code is K−φ
N−φ < K

N
. Note that the information bits

that are thrown away are generally with fixed positions in the codeword,

such that the transmitter and the receiver both know the positions of the

discarded data.

2.3 Decoding and Performance Measurements

In a communication system, the channel decoder determines the transmitted

messages based on the received sequence, the encoding rules, and the noise char-

acteristics of the channel. This operation is called decoding. Depending on the

format of the messages from the demodulator, the decoding operation can be

divided into hard-decision decoding and soft-decision decoding.

• Hard decision: Assume that a codeword c of a binary (N,K) linear block

code is modulated by BPSK and transmitted over the additive white Gaus-

sian noise (AWGN) channel. Note that the binary modulator has only two

inputs (M = 2) and the channel output is a real number y ∈ (−∞,∞). If

the output of the demodulator adopts only two-level quantization, then the

input values of the decoder will only have two values. In this case, we say

that the demodulator adopts a hard decision, and the decoding based on the

hard decision output of the demodulator is called hard-decision decoding.

• Soft decision: If the output of the demodulator uses more than two levels

of quantization or does not perform quantization, the demodulator is said
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to adopt a soft decision. The decoding of the channel output based on this

soft-decision is called soft-decision decoding.

Generally speaking, hard-decision has low complexity and is easier to implement

than soft-decision, but soft-decision can provide better error performance. We

show the channel capacity of hard-decision and soft-decision in Fig. 2.2. The

Shannon limit of unconstrained-input AWGN channel is also demonstrated in

the figure for comparison.
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Figure 2.2: The BI-AWGN channel capacity for the soft-decision and
hard-decision together with the channel capacity of unconstrained-input AWGN
channel.

2.3.1 Error Detection of Linear Block Codes

Assume that an (N,K) linear block code C is with parity-check matrix H of

size (N − K) × N . Suppose c is the transmitted codeword and z is the hard

decision sequence at the demodulator output. Note that z and c may differ due

to the existence of channel noise and interference. Let z = c + e, where e is

called the error vector. To detect errors in the vector z, we compute the (N −K)
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dimensional vector over GF(2) as follows.

s = z ·HT = c ·HT + e ·HT = e ·HT , (2.13)

where s = (s1, s2, . . . , sN−K) is called the syndrome of z and can be used to detect

whether the received vector z contains transmission errors. More specifically, if

s 6= 0, this means that z is not a codeword in C. Thus, we can detect the

transmission error in z. On the contrary, if s = 0, then z can be determined as

a codeword in C although z is not necessarily equal to the transmitted codeword

c. In this case, an undetectable error occurs.

2.3.2 The Optimal Decoding Rule

Let c and y be the transmitted codeword and the received vector, respectively.

Define ĉ as the decoding output. The average decoding error probability is given

by

Pe =
∑
y

P(ĉ 6= c|y)P(y). (2.14)

In digital communication, the decoding rule that minimizes the average decoding

error probability is called the optimal decoding rule. Since minimizing P(ĉ 6= c|y)

is equivalent to maximizing P(ĉ = c|y), then the maximum a posteriori (MAP)

decoder performs as

ĉ = arg max
c∈C

P(c|y). (2.15)

For the MAP decoder, we select the codeword with the maximal conditional

probability P(c|y) among the codewords of C as the decoder output, where P(c|y)

is called the a posteriori probability (APP). According to the Bayes’ rule, we have
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P(c|y) = P(c)P(y|c)/P(y). (2.16)

Note that P(c) is a constant if each codeword is transmitted with equal proba-

bility, in which case the MAP decoding is equivalent to the maximum-likelihood

(ML) decoding, i.e.,

ĉ = arg max
c∈C

P(y|c). (2.17)

Note that the ML decoder always selects the codeword with the maximal con-

ditional probability P(y|c) for a given received vector y. However, the MAP

decoder can give the most likely codeword if the a priori information about c is

available. It is also noticeable that both MAP and ML decoding are the decoding

methods that can minimize the probability of codeword error.

In the following, we discuss how to apply the ML decoding for different chan-

nels. Suppose BPSK modulation is adopted, where the transmitted signal x = 1,

if c = 0, and x = −1, if c = 1 . We first consider the case of binary-input AWGN

(BI-AWGN) channel with zero mean and noise variance σ2. The conditional

probability is given by

P(y|x) =
1√
2πσ

exp

(
−‖y − x‖2

2σ2

)
. (2.18)

Define dE(y,x) as the Euclidean distance between the vector y and x, such that

dE(y,x) = ‖y − x‖ =

√∑
n

(yn − xn)2. (2.19)

The ML decoding is equivalent to minimize the Euclidean distance dE(y,x) as

ĉ = arg min
c∈C
‖y − x‖2. (2.20)
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Next, we consider the decoding under binary symmetric channel (BSC), where

only hard-decision can be adopted. Denote the hard-decision sequence of the

received vector y by z. With BPSK modulation, we have dE(y,x) = 2dH(z, c).

Note that dH(z, c) refers to the Hamming distance between the vector z and

c, and indicates the number of corresponding elements in vectors z that dif-

fers from each other. Therefore, the ML decoding here can be simplified as the

minimum-distance decoding as

ĉ = arg min
c∈C

dH(z, c). (2.21)

To summarize, for the BSC, the ML decoding is to obtain the codeword c with the

minimum Hamming distance from the received vector y. While for the BI-AWGN

channel, the ML decoding outputs the codeword with the minimum Euclidean

distance from the received vector y. This gives us guidance towards designing

the codes applied for different channels. For example, the minimum Hamming

distance between two codewords should be maximized when optimizing the code

for the BSC. However, for BI-AWGN channel, we need to maximize the minimum

Euclidean distance between two codewords.

2.3.3 Decoding in Log-likelihood Ratio Domain

As discussed previously, both the MAP and ML decoding are derived in the prob-

ability domain. However, in a practical communication system, the input of the

soft decision decoder is usually represented by log-likelihood ratio (LLR) infor-

mation for both numerical stability and simplified operation. Let x ∈ {+1,−1}
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be a binary random variable, then its log-likelihood ratio (LLR) is defined as

L(x)
∆
= ln

(
P(x = +1)

P(x = −1)

)
, (2.22)

where P(x = i) is the probability that the random variable x takes the value of

i. Fig. 2.3 shows the relationship of the L(x) value with different probability of

x = +1 and x = −1, respectively. It can be seen that the sign of L(x) gives a

hard decision about x, and the magnitude of the LLR indicates the reliability of

this decision.
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Figure 2.3: The log-likelihood ratio curve.

In terms of decoding, we also use the conditional LLRs. Assume that xn is

transmitted over the AWGN channel with BPSK signaling and the output of the

demodulator is yn. Then the conditional LLR is defined as

L(yn|xn)
∆
= ln

(
P (yn|xn = +1)

P (yn|xn = −1)

)
. (2.23)
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Since P(yn|xn) satisfies Gaussian distribution with variance σ2, we have

L(yn|xn) =
2yn
σ2

, (2.24)

This conditional LLR is also called the soft output of the channel.

2.3.4 Performance Evaluation of Coded Systems

Common Performance Metrics

For digital communication systems, the most commonly used performance metric

is the bit error probability Pb. This is defined as the average probability that the

decoder output bit ûi is not equal to the encoder input bit ui [74]:

Pb
∆
=

1

K

∑
1≤i≤K

Pr(ûi 6= ui). (2.25)

Note that Pb is called the bit error rate (BER) and we will continue to use this

terminology in the remainder of this thesis.

An alternative performance metric for coded systems is the codeword error

probability. It is defined as the probability that the decoder output decision ĉ

is not equal to the output codeword c from the encoder. Denoted by Pe, the

codeword error probability can be computed as

Pe
∆
= Pr(ĉ 6= c). (2.26)

Note that there are also different terminologies that refer to Pe, such as the word

error rate and frame error rate (FER). For consistency, we use the terminology

FER in the remainder of this thesis.

In addition to the decoding error probability (BER and FER), the coding gain
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can be also used to evaluate the performance of the decoder. Furthermore, coding

gain is an important parameter to measure the power efficiency of a coded com-

munication system. Let Eb/N0 be the ratio of the average energy per information

bit to the channel noise power spectral density. The coding gain is defined as the

amount of reduction in Eb/N0 by coded systems compared to uncoded systems to

achieve a given target error probability (generally under the same modulation).

Denoted by Gc, the coding gain (in dB) can be formulated as

Gc =

[
Eb
N0

]
uncoded

−
[
Eb
N0

]
coded

. (2.27)

The Capacity of Coded Systems

Apart from the error probability (BER or FER) and the coding gain, the per-

formance gap between the actual performance and the capacity is also an impor-

tant metric of modern coded systems. Define the signal-to-noise ratio (SNR) as

Es
N0

= log2M
RcEb
N0

, where M is the size of the signal constellation and Rc is the

code rate. The channel capacity of a discrete-time AWGN channel [74] is

C = log2(1 + SNR) = log2(1 + log2M
RcEb
N0

) b/2D. (2.28)

Note that the right side of Eq. (2.28) is called the Shannon limit, representing by

the minimal SNR to ensure the error-free transmission for a given code rate. From

the perspective of the performance analysis, we compare the computer simulation

results to the Shannon limits of the corresponding code rate, and evaluate the

performance gap.

However, in practice, the transmitted signal is often limited by a certain sig-

nal constellation A, and follows a certain probability distribution such as a uni-

form distribution. In this case, the capacity will change according to a cer-
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Figure 2.4: The capacity for different modulation over AWGN channels.

tain modulation in the coded systems, which is called the constrained-capacity.

Correspondingly, the capacity without considering modulation is known as the

unconstrained-capacity. In this thesis, only the capacity for discrete-time AWGN

channels with two-dimensional signal constellation are considered. Assume that

the AWGN channel model in discrete time follows y = x + n, where n is a

Gaussian white noise sequence with a mean of zero and variance σ2 per dimen-

sion. Suppose that the set of channel input includes M complex number : A ={
am ∈ CN , 1 ≤ m ≤M

}
. Therefore, the probability density function of the chan-

nel output is

p(y|x) =
1

2πσ2
exp

(
−|y − x|

2

2σ2

)
. (2.29)

Since y = am + n, we have

C∗ = log2M −
1

M

M∑
m=1

log2

∑
am′∈A

exp

(
−|am + n− am′ |2 − |n|2

2σ2

). (2.30)

In this way, we can calculate the capacity as a function of SNR by Eq. (2.30)
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from Monte-Carlo simulation. We demonstrate the constrained-capacity for the

AWGN channel with different modulation in Fig. 2.4, where we assume that each

symbol is transmitted with equal probability.

Performance in Finite Block Lengths

The capacity proposed by Shannon describes the performance of a coded systems

with infinite code block length or the highest rate of the communication system to

guarantee reliable transmission. However, in a practical communication system,

there are finite code block lengths meaning that the Shannon capacity is not

valid to evaluate the performance under the constraint of time delay. Therefore,

the performance limits in finite block lengths is a more attractive benchmark for

the coding design in practice. Gallager proposed an upper bound of the FER

for random coding with fixed block lengths under ML decoding, so-called the

random coding bound [127]. Moreover, the sphere packing bound is also given by

Shannon, which describes a lower bound of the decoding error probability [128].

Nevertheless, these bounds become loose and inaccurate for finite code block

lengths.

Recently, Polyanskyi, Poor and Verdú proposed the normal approximation

formula [129] (PPV bound) for the error performance in finite-length, which pro-

vides a simple and efficient measurement for the channel codes with relatively

long block lengths (code block lengths > 200). But the approximate result is still

not accurate enough for the codes with very short block lengths. Later, Erseghe

improved the work of Polyanskyi et al. by giving a compact integral expression

in [130], which provides a better approximation for short codes. In the following,

we introduce how to calculate the PPV bound for a short code under constrained

AWGN channel by using the Monte Carlo method. It is known that the formula
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of the PPV bound is given by [129]

R∗ (N∗, Pe) ≈ C∗ −
√

V

N∗
Q−1 (Pe) +O(log2N

∗), (2.31)

where the notations in the above equation are given as follows

• N∗ is the length of the channel input sequence. For M -ary modulation,

N∗ = N/log2M , where N is the code block lengths.

• C∗ is the channel capacity.

• R∗ = Rc · log2M is the spectrum efficiency, where Rc is the code rate.

• V refers to channel dispersion, and can be computed by [74]

V = Var

{
log

p(Y |X)

p(Y )

}
. (2.32)

• Q−1 (·) is the inverse function of Q(·), i.e.,

Q(x) =
1√
2π

∫ +∞

x

exp

(
−u

2

2

)
du. (2.33)

• Pe refers to FER.

• O(log2N
∗) is the correction term, which can be obtained by [129]

O(log2N
∗) =

1

2N
log2N

∗. (2.34)
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In particular, the channel dispersion can be estimated as follows

µ ' − 1

L

L∑
l=1

log2

p(yl|xl)
p(yl)

, (2.35)

V ' − 1

L

L∑
l=1

[
log2

p(yl|xl)
p(yl)

− µ
]2

. (2.36)

2.4 Summary

In this chapter, we present the background materials on coding theory, which

provides an overview of the knowledge to describe the principles and construc-

tion methods for our research works in the following chapters. The main points

presented in this chapter are summarized as follows.

• We introduce the basic concepts and the role of channel coding techniques

in modern digital communication systems.

• We introduce the definitions and present some properties of the linear block

codes, which are widely used in practical systems.

• We provide the basic knowledge of shortening, puncturing, and some defi-

nitions for the decoding of the linear block codes.

• We present some performance metrics and demonstrate various methods to

evaluate the performance of linear block codes.





Chapter 3

Low-Density Parity-Check Codes

Low-Density Parity-Check (LDPC) codes are a class of linear block codes that can

achieve near-capacity performance [52,69,74]. LDPC codes were firstly proposed

by Gallager in his doctoral thesis in the early 1960s [70]. However, they have not

been drawn much attention by researchers in the following 35 years until MacKay

et al. rediscovered that LDPC codes have a near-capacity performance by using

the sum-product algorithm (SPA) for decoding, and the decoding complexity

grows linearly with the code block lengths [45]. Furthermore, LDPC codes can

be represented by a sparse graph. Compared to Turbo codes [67, 68], which

are a widely used in the third-generation (3G) and the fourth-generation (4G)

communication systems, LDPC codes have been proven to have the following

advantages [51]

• There is no need to adopt interleavers when applying LDPC codes in the

communication systems, which reduces the complexity and latency of the

communication systems.

• Better FER performance in the waterfall region, which satisfies the require-

ments of modern digital communications with high reliability.

47
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In this chapter, we introduce the fundamentals of LDPC codes, including basic

concepts, encoding/decoding, analytical tools, and several classic LDPC codes.

This provides an overview and background knowledge of LDPC codes for the

research works presented in the following chapters.

3.1 Definitions and Representation of LDPC Codes

An LDPC code defined over GF(q) with information bit length of K and code

block length of N is a type of (N,K) linear block codes. In the following, we

only consider binary LDPC codes, i.e., q = 2.

3.1.1 Matrix Representation

We can use the parity-check matrix H to represent an LDPC code. More specif-

ically, the parity-check matrix H of an LDPC code is a sparse matrix of size

M ×N , i.e., H contains majority of ‘0’ elements and a relatively small number of

‘1’ elements, where M ≥ N −K. We call the number of ‘1’ elements in each row

and column of H as the row weight and the column weight, respectively. If the

matrix H has a constant column weight dv and a row weight dc, the null space

of the matrix H over GF(2) represents a (dv, dc) binary LDPC code. The code

rate Rc is given by [74]

Rc =
N − rank (H)

N
, (3.1)

where rank (H) refers to the rank of the matrix H. Since rank (H) ≤M , we have

N −M
N

= 1− dv
dc
≤ Rc, (3.2)
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where N−M
N

= 1 − dv
dc

is defined as the design rate of the LDPC code and the

equality satisfies when H is full rank. Note that we call the LDPC codes with

constant column and row weight as regular LDPC codes [74]. If the row weight or

column weight is not fixed, then the LDPC code is an irregular LDPC code [74],

which we would discuss later.

To obtain good performance by using iterative decoding, the parity-check ma-

trix H of an LDPC code should have at most one non-zero element in common for

any two rows (or two columns) [74]. This property is also called the row-column

constraint (RC-constraint [74]).

In practice, people prefer structured LDPC codes, especially the LDPC codes

with H in quasi-cyclic structure. Because this structure can significantly simplify

the complexity of hardware implementation [74]. In the following, we introduce

the definition of quasi-cyclic LDPC codes.

Definition 3.1. If the parity-check matrix of an LDPC code consists of an array

of circulants, then it is called a quasi-cyclic LDPC (QC-LDPC) code [74].

The parity-check matrix H of a QC-LDPC code can be represented as:

H =


A1,1 · · · A1,N

...
...

AM,1 · · · AM,N

 , (3.3)

where each matrix Ai,j is a U×U circulant. As an example, a 9×12 parity-check

matrix of a QC-LDPC code is shown in Fig. 3.1, which is an array of 3× 4 cyclic

sub-matrices of size 3× 3.

In addition, the structured LDPC codes also include LDPC codes with the

parity-check matrix H in a cyclic, or a single/double diagonal structure. These

structured codes can be constructed based on mathematical tools or computer
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1 0 0 0 0 0 0 0 1 1 0 0

0 1 0 0 0 0 1 0 0 0 1 0

0 0 1 0 0 0 0 1 0 0 0 1

0 1 0 0 0 1 0 0 0 1 0 0

0 0 1 1 0 0 0 0 0 0 1 0

1 0 0 0 1 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0 1 0 1 0

0 0 0 0 1 0 1 0 0 0 0 1

0 0 0 0 0 1 0 1 0 1 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 

H

Figure 3.1: A parity-check matrix of a QC-LDPC code.

search methods with the simplified design of the encoder and decoder, which is

friendly for hardware implementation [74].

3.1.2 Graphical Representation

In 1981, Tanner proposed the Tanner graph in [104], which can be used to rep-

resent the parity-check matrix of LDPC codes. As a bipartite graph, the Tanner

graph consists of one set of variable nodes (VNs) and one set of check nodes

(CNs). Denote the Tanner graph of an LDPC code by H and assume the size of

H is M ×N . A VN vn, 1 ≤ n ≤ N , is connected to a CN cm, 1 ≤ m ≤M , by an

edge in the Tanner graph if there is a nonzero element in the m-th row and n-th

column of H. If the Tanner graph is used to represent a (dv, dc)-regular LDPC

code, then the total number of the edges is equal to Mdc = Ndv.

An example of a length-12 (3,4)-regular LDPC code repesented by the Tanner
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graph is shown in Fig. 3.2, where the corresponding parity-check matrix H is

H =



1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1

1 0 1 0 0 1 0 0 0 1 0 0

0 1 0 0 0 0 1 1 0 0 0 1

0 0 0 1 1 0 0 0 1 0 1 0

1 0 0 1 0 0 1 0 0 1 0 0

0 1 0 0 0 1 0 1 0 0 1 0

0 0 1 0 1 0 0 0 1 0 0 1



. (3.4)

Let c be a codeword of the above LDPC code. For each CN, the summation of

VN CN

Figure 3.2: The Tanner graph of a length-12 (3,4)-regular LDPC code.

its neighboring VNs is equal to zero, according to Eq. (2.13). Note that there are

four dash lines in the Tanner graph shown in Fig. 3.2, which results in a closed

path.

Definition 3.2. (The Cycle and Girth): A closed path in a Tanner graph G is

called a cycle, which begins and ends at the same CN or VN. The number of edges

on the cycle is called the length of the cycle. The length of the shortest cycle is
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defined as the girth of the Tanner graph. The number of the cycles with different

lengths in G is called the distribution of cycles [74].

As shown in [74], the girth and the number of short cycles in the Tanner graph

can directly affect the performance of an LDPC code under iterative decoding

algorithm since the errors can propagate between the nodes within a cycle.

3.1.3 Polynomial Representation

For irregular LDPC codes, the column weight and row weight of the parity-check

matrix of an LDPC code vary with the columns and rows. Therefore, it is more

convenient to represent an irregular LDPC code by specifying the degree distri-

bution of the VNs and the CNs. Let ρ(x) and λ(x) be the degree distribution

of the VNs and CNs for an irregular LDPC code, respectively. The polynomial

representation can be given by [74]

λ(x) =
dv∑
d=1

λdx
d−1, (3.5)

ρ(x) =
dc∑
d=1

ρdx
d−1, (3.6)

where λd denotes the fraction of the edges connecting to degree-d VNs, and ρd

edge denotes the fraction of the edges connected to degree-d CNs. If the irregular

LDPC code has the parity-check matrix of size M ×N , then its code rate Rc is

bounded by [74]

Rc ≥ 1− M

N
= 1−

∫ 1

0
ρ(x)dx∫ 1

0
λ(x)dx

. (3.7)

As shown in [131], irregular LDPC codes have a better waterfall performance

closer to the capacity than regular LDPC codes under the same block lengths

comparison.
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3.2 LDPC Code Examples

Nowadays, LDPC codes can be generally divided into two categories: random or

pseudo-random LDPC codes and structured LDPC codes. It is noticeable that

the structured LDPC codes usually have their parity-check matrices with a cyclic

or quasi-cyclic structure, which is very convenient for hardware implementation

of the decoder. Therefore, we focus on structured LDPC codes in this section. In

the following, we would introduce some classic LDPC codes in details.

3.2.1 The Protograph-based LDPC Codes

An efficient technique to design LDPC codes is generating a large Tanner graph

from a protograph, which is called the protograph-based construction [113]. It is

known that the protograph is a small bipartite graph from which we can generate

a larger Tanner graph by duplication and edge permutation [113]. To be more

specific, we first select the code rate R and the number of VNs in the protograph

to obtain the degree distribution of the LDPC code ensemble to be constructed.

To construct a practical code from a protograph ensemble, the process of graph

lifting is adopted to derive a large Tanner graph from the protograph of the

ensemble. The constructed code from the derived Tanner graph is quasi-cyclic if

the lifting matrix is a circulant permutation matrix (CPM). Denote by

P :=



0 1 0 · · · 0

0 0 1
. . .

...

...
. . . . . . . . . 0

0
. . . . . . . . . 1

1 0 · · · 0 0


(3.8)
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a U ×U CMP such that PU = P0 = I, where I is the identity matrix. Note that

P is of weight one since it has only one non-zero element in each row and column.

Let f(x) =
∑l

i=1 x
ri be a univariate polynomial of l distinct terms such that

0 ≤ r1 < r2 < . . . < rl < U . We define a weight-l CPM as f(P) :=
∑l

i=1 Pri . We

call f(x) the generator polynomial of the weight-l circulant and it is represented

as the index vector f = [r1, r2, . . . rl], which consists of only the exponents of f(x).

The order U of a CPM is known as the lifting factor, and we call f the generator

vector of a circulant hereafter.

Fig. 3.3a demonstrates a protograph and its lifted Tanner graph is shown in

Fig. 3.3b. It is worth mention that parallel edges are allowed in the protograph,

while the Tanner graph is required to have an only single edge after the lifting

operation.

1
v 2

v
3

v

1
c 2

c

(a) An example of a protograph defined by Eq. (3.9)

1 1,
v

1 2,
v

1 3,
v 2 1,

v
3 1,

v 3 2,
v

1 1,
c

2 2,
v

2 3,
v 3 3,

v

1 2,
c 2 1,

c
2 2,

c 3 1,
c 3 2,

c

(b) The lifted Tanner graph

Figure 3.3: An example of lifting operation.
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By considering the matrix representation of the protograpgh in 3.3a, we can

use a base matrix, where

B =

 2 0 1

1 1 1

 , (3.9)

where the element “2” refers to the parallel edge between node c1 and v1, and

“0” indicates that there exists no edge between node c1 and v2. When U = 3,

the permutation matrices of the Tanner graph shown in Fig. 3.3b are given by

P1,1 =


1 1 0

0 1 1

1 0 1

 ,P1,2 =


0 0 0

0 0 0

0 0 0

 ,P1,3 =


0 0 1

1 0 0

0 1 0

 ,

P2,1 =


0 0 1

1 0 0

0 1 0

 ,P2,2 =


0 1 0

0 0 1

1 0 0

 ,P2,3 =


0 0 1

1 0 0

0 1 0

 .

Based on the above permutation matrices, we can obtain the parity-check matrix

as

H =

 P1,1 P1,2 P1,3

P2,1 P2,2 P2,3

 (3.10)

We can see in the above example, the permutation matrices are selected as the

CPMs, which results in a quasic-cyclic structure.

3.2.2 The Euclidean Geometry LDPC Codes

Let EG(m, 2s) be an m-dimensional Euclidean geometry over the Galois Field

GF(2s) where m, s ∈ Z+ are positive integers. Denote by H(m,2s) an N × M
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parity-check matrix over GF(2) composed ofM =
(
2(m−1)s − 1

)
(2ms − 1) / (2s − 1)

lines in EG(m, 2s) that pass through N = 2ms − 1 non-origin points. If m >

2, the M columns of the parity-check matrix H(m,2s) can be partitioned into

K =
(
2(m−1)s − 1

)
/ (2s − 1) cycle classes each of which consists of (2ms − 1)

lines [74] [46] [132], and each line is a generator vector of the cycle class. Alterna-

tively, if m = 2, the special class of two-dimensional EG codes is characterized by

a single cycle class, i.e., K = 1. Let H
(j)
(m,2s) be a (2ms−1)×(2ms−1) square matrix

with the first column being a generator vector of a cycle class. By cyclic shifting

the generator vector downwards, each cycle class can be arranged into the form

of weight-2s circulant. Hence, the parity-check matrix H(m,2s) =
[
H

(j)
(m,2s)

]
0≤j<K

is made of K weight-2s circulants juxtaposed side-by-side.

3.2.3 The LDPC Codes in the 5G Standard

Recently, protograph-based raptor-like (PBRL) LDPC codes [133] are designed

and used for the eMBB scenario in the fifth generation (5G) mobile networks due

to their low implementation complexity and satisfactory error rate performance

[1, 134]. Let H be a parity-check matrix of size M × N for a 5G LDPC code,

where M and N are the number of rows and columns in H, respectively. Define

Hcore as the core matrix with the highest rate that the parity-check matrix H

can have. Denoted by Hex the sub-matrix indicating the connection in the single

parity check (SPC) extension of the 5G LDPC code from the high rate to low

rate. The general structure of the parity-check matrix H of the 5G LDPC codes

can be represented as

H =

 Hcore 0

Hex I

 , (3.11)
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where 0 and I refer to the zero and the identity matrices. Note that the parity-check

matrix H here is lifted from an underlying base matrix by corresponding CPMs,

which also results in a quasi-cyclic structure. Fig. 3.4 shows the parity-check

matrix H of 5G LDPC codes, where the submatrices C and E consists of CPMs

and all-zero matrices, and the submatrix D corresponds to the parity-check bits

with dual-diagonal structure. This structure of the parity-check matrix H is

I

OA D

E

I

I

I

I

I

I I

II

I I

I

I I

ex
H

core
H

Figure 3.4: The parity-check matrix structure of 5G LDPC code.

equivalent to a high-rate LDPC code serially concatenated with multiple SPC

codes, and a parity-check matrix of an LDPC code with an arbitrarily low code

rate can be obtained as the number of rows and columns in Hex increases.

To obtain the Tanner graph of a 5G LDPC code, we follow a similar proce-

dure as described in Section 3.2.1. It is known that the 5G LDPC codes obtain

the different size of the parity-check matrices by extending the associated base

graphs (BGs) with different lifting factor U to achieve the flexibility of various

information bit lengths. Therefore, the lifting factor U is the first key parameter

to choose for the construction of the parity-check matrix. To select a proper value

of U , we need to determine the frame structure according to [1]. Define K as the

number of information bits and Kb is the number of columns in the base matrix

used by the information bits. There are two different BGs in the 5G standard,
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namely BG1 and BG2. According to [1], BG2 is used if the K ≤ 3840, and the

code rate R ≤ 2/3. Otherwise, BG1 is used. The value of Kb is selected based

on the following rules [1]:

For BG1:

Kb = 22.

For BG2:

If K > 640

Kb = 10,

else if K > 560

Kb = 9,

else if K > 192

Kb = 8,

else

Kb = 6.

end if

For a given Kb, the minimum value of lifting factor, denoted by Uc, can be selected

from the sets of lifting factors shown in Table 3.1, such that Kb · Zc ≥ K, where

a is known as the shift coefficient.
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Table 3.1: Set of shift coefficients and lifting factors

Set No. Shift coefficient a
Lifting sizes

U = a× 2j, j=0,1,2,3,4,5,6,7
Set 1 2 {2, 4, 8, 16, 32, 64, 128, 256}
Set 2 3 {3, 6, 12, 24, 48, 96, 192, 384}
Set 3 5 {5, 10, 20, 40, 80, 160, 320}
Set 4 7 {7, 14, 28, 56, 112, 224}
Set 5 9 {9, 18, 36, 72, 144, 288}
Set 6 11 {11, 22, 44, 88, 176, 352}
Set 7 13 {13, 26, 52, 104, 208}
Set 8 15 {15, 30, 60, 120, 240}

With the chosen Uc, the cyclic shift value Aij can be calculated by

Ai,j =

 −1, if Pi,j = −1

mod(Pi,j, Uc), otherwise
(3.12)

where Pi,j is the shift coefficient of the (i, j)-th element in the corresponding base

matrix, and an all-zero CPM is used if Pi,j = −1. Then the Tanner graph of the

5G LDPC code can be obtained by replacing each block in the base matrix by a

U × U CPM with corresponding shift coefficient Pi,j.

To obtain a better decoding threshold [1], the information bits in the first

two circulant column blocks of the parity-check matrix are always punctured.

Furthermore, to achieve rate adaptation with different information bit lengths

K, the last ∆K = Kbmax · Uc −K information bits need to be shortened by zero

padding, where Kbmax = 10 for BG2, and Kbmax = 22 for BG1. Additionally,

the last (nV − 2)Uc − K/R − ∆K parity bits in H are also punctured for rate

compatibility, where nV is the number of columns in the base matrix. Fig. 3.5

illustrates the corresponding bit positions of the shortened and punctured bits

in the parity-check matrix. Note that the shortened bits are considered as the

known information, for which the channel ouput LLRs are initialized as the LLR
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Figure 3.5: The bit positions of the shortened and punctured bits [1].

values of bit 0. However, the channel output LLRs on punctured bits are treated

as unknown with initialized LLR=0, and these punctured bits are expected to be

recovered at the end of the decoding process.

3.2.4 The Spatially-Coupled (SC) LDPC Codes

SC LDPC codes can be viewed as a type of LDPC convolutional codes (LDPC-CC)

[86] that have the ability to combine good features of both regular and irregular

LDPC codes in a single code design. To construct SC LDPC codes from LDPC

block codes, the well-known approach called matrix unwrapping [86] is commonly

adopted. Let H be the parity-check matrix of size r× c for a binary LDPC block

code. Its code rate is given by RBC = 1−M/N . A practical SC LDPC code, com-

monly known as the terminated LDPC-CC, can be represented by a parity-check
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matrix [85]

HSC =



L︷ ︸︸ ︷
H0
H1 H0
... H1

Hms−1
...

. . .

Hms Hms−1
. . . H0

Hms
. . . H1

...
Hms−1
Hms



, (3.13)

where ms is called the syndrome former memory. Each Hj of size r× c, such that∑ms
j=0 Hj = H, is a descendent matrix of the parity-check matrix H. The set of

descendent matrices is then repeated L times as shown in (3.13) to construct the

parity-check matrix HSC of the terminated SC LDPC code, where L is called the

termination length of the code. Note that the process of termination results in

a parity-check matrix HSC that contains irregular row weights. The code rate of

an SC LDPC code is then a function of L, given by [85]

RSC = 1− (L+ms)r

Lc
. (3.14)

Obviously, as the termination length L → ∞, the SC LDPC code has the same

code rate as the underlying LDPC block code defined by H, that is RSC
L→∞−−−→

RBC . Note that both RSC and RBC are known as the design code rate, while the

true code rate R is not smaller than the design rate.

The Construction of SC LDPC Codes

An insightful way of designing terminated SC LDPC codes is to use a protograph

representation of a code ensemble. Define a P = (V , C, E) protograph that con-
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nects a set of nV VNs V = {v1, v1, . . . , vnV} to a set of nC CNs C = {c1, c2, . . . , cnC}

by a set of edges E [113]. Assume nC > nV , the positive design rate of this proto-

graph ensemble block codes is RBC = 1− nC/nV , which is a lower bound on the

code rate of each member of the ensemble. Let B be the equivalent base matrix

of the protograph P. Then the protograph PSC of a (nV , nC, L) ensemble of

SC LDPC code is obtained by performing edge-spreading [89] to split the base

matrix B into ms + 1 descendent base matrices B(0),B(1), . . . ,B(ms). Each of the

descendent base matrices has size br × bc and
∑ms

i=0 B(i) = B. By arranging the

set of descendent base matrices into the similar form as shown in (3.15), the base

matrix of an SC LDPC code can be represented as [89]

BL =



L︷ ︸︸ ︷
B0... B0

Bms−1
...

. . . B0

Bms Bms−1
. . .

...
Bms

. . . Bms−1

Bms


, (3.15)

1 2 . . . L

Note that if all descendent base matrices B(i) are identical, the resulting ter-

minated base matrix of an SC LDPC code is time-invariant. Otherwise, it is

time-varying, where each row of (3.15) could start with a different B(i). The

lifting operation can be then applied to the unwrapped base matrix B to obtain

the Tanner graph of the SC LDPC code [89].

Since the derived Tanner graph of a block protograph LDPC code has UnC

check nodes and UnV variable nodes, a protograph based SC LDPC code lifted

from B using CMPs has (ms + L)UnC CNs and LUnV VNs. Note that the

design code rate of the protograph based SC LDPC codes is given by RSC =

1− (L+ms)br/Lbc.
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The Sliding Window Decoder for SC LDPC Codes

...s cm b U 

cW b U 

rW b U 

cL b U 

( )s rL m b U  

Target 

symbols

Decoded 

symbols

Reserved 

VNs

Figure 3.6: Illustration of sliding window decoder for an SC LDPC code. Note
that the symbols marked in green over the parity-check matrix have all been
decoded. The blue region over the parity-check matrix represents target symbols
and the symbols in gray over the parity-check matrix are yet to be decoded.

In [93], a sliding window decoder was proposed for SC LDPC Codes. Instead of

performing full block decoding (FBD) over the whole base matrix BL, the sliding

window decoder uses a window of size W covering W · Ubr CNs and W · Ubc

VNs. The decoding window slides from time index t = 1 to time index t = L

which associates with different window positions in BL. In a decoding window, an

iterative message-passing decoding algorithm is performed between all VNs and

CNs. The decoding process stops if a valid codeword is found or a predetermined

maximum number of iterations is reached. Then the decoding window shifts by

Ubr CNs vertically and Ubc VNs horizontally where the Ubc VNs shifted out of

the decoding window are called target symbols.

Fig. 3.6 shows the general decoding architecture of sliding window decoder

operating on the parity-check matrix of an SC-LDPC code. It is important to

mention that updating the CNs within current decoding window requires the
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extrinsic information based on the last update of VNs in the previous ms proto-

graph blocks (the red region in Fig. 3.6). Moreover, the sliding window decoder

is assumed to be restricted by the boundaries of protograph if it moves beyond

the protograph.

3.3 The Decoding of LDPC Codes

In terms of decoding the LDPC codes, Gallager originally proposed two decod-

ing algorithms in [70]. One of them is based on the soft decision, called the

sum-product algorithm, and another is based on the hard decision, which is called

the bit-flipping algorithm. After the rediscovery of LDPC codes, many researchers

put their efforts into designing the decoding algorithms and architectures with

improved error performance and low complexity. In this section, we first review

some of the decoding algorithms for LDPC codes. Then the improvement of the

decoding architectures is also discussed.

3.3.1 The Iterative Decoding Algorithms

According to our research works in the following chapters, we mainly introduce

the classic iterative decoding algorithms for binary LDPC codes, which are sum-

marized as follows.

• Sum-product algorithm (SPA) [135].

• Min-sum algorithm (MSA) [47].

• The variations of MSA [47–50]

• Weighted-BF (WBF) algorithm [74].
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Assume that the codeword x = (x1, x2, . . . xN) is transmitted through a BI-AWGN

channel and the decoder obtains the received signal y = (y1, y2, . . . yN) at the

output of the receiver match filter. Denoted by L(vn) the initial LLR for a node

vn, we have

L(vn)
∆
= log

(
Pr(yn|xn = 0)

Pr(yn|xn = 1)

)
. (3.16)

Let H(cm) and H(vn) denote the set of all VNs connected to cm and the set of

all CNs connected to vn, respectively. We also define H(cm)\vn as the set H(cm)

with vn excluded, and H(vn)\cm as the set H(vn) with cm excluded. We first

introduce the SPA and then discuss its simplified decoding algorithms.

The Sum-Product Algorithm

The SPA is a message passing algorithm that can be visualized with a factor

graph [135]. Since there always exist cycles in the Tannr graph of a practical

LDPC code, the messages computed by the SPA becomes an approximation on

the graph with cycles and is sub-optimal for decoding [52]. However, generally

speaking, the SPA can still achieve a desirable error performance.

At the l-th iteration, the SPA computes the check-to-variable (C2V) message

from cm to vn as [135]

Y (l)
mn = 2tanh−1

 ∏
vn′∈H(cm)\vn

tanh

(
Z

(l−1)
n′m

2

) , (3.17)

where 1 ≤ m ≤ M, vn ∈ H(cm), and Z
(0)
nm = L(vn). The variable-to-check (V2C)

messages from vn to cm are computed by [135]

Z(l)
nm = L(vn) +

∑
cm′∈H(vn)\cm

Y
(l)
m′n, (3.18)
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where 1 ≤ n ≤ N and cm ∈ H(vn). Meanwhile, a posterior LLR of the node vn

at each iteration is given by [135]

L(l)
n = L(vn) +

∑
cm∈H(vn)

Y (l)
mn. (3.19)

Define x̂(l) =
(
x̂

(l)
1 , x̂

(l)
2 , . . . x̂

(l)
N

)
as the temporary codeword at the l-th iteration.

The hard decision of x̂
(l)
n is made based on L

(l)
n such that x̂

(l)
n = 1 if L

(l)
n < 0, and

x̂
(l)
n = 0 if L

(l)
n ≥ 0. The decoding process terminates until x̂(l)HT = 0 or the

preset maximum number of iterations is reached.

The Conventional Min-Sum Algorithm

In practice, the CN update in Eq. (3.17) contains non-linear operations tanh(·)

which introduces a high computational complexity. To reduce the decoding com-

plexity, one method is to use approximation function for computing the V2C mes-

sages. The simplified decoding algorithm, called the min-sum algorithm (MSA)

computes the C2V message from cm to vn as [102]

Y (l)
mn =

∏
vn′∈H(cm)\vn

sign(Z
(l−1)
n′m ) · min

vn′∈H(cm)\vn

∣∣∣Z(l−1)
n′m

∣∣∣ . (3.20)

The VN update and the calculation of the decision LLRs remains as the same as

in Eqs. (3.18) and (3.19), respectively.

The Normalized MSA

It is shown in [102] that the C2V messages computed by Eq. (3.20) are inac-

curate due to the approximation, which are always overestimated in magnitude

compared to that of the SPA. This phenomenon causes performance degradation

for the conventional MSA compared to the SPA, especially for the LDPC codes
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with a large number of low-degree VNs. To improve the error performance,

the normalized MSA (NMSA) in [102] uses a scaling factor α(l) to minimize the

overestimation effect on the C2V messages, where Eq. (3.20) is modified into

Y (l)
mn = α(l) ·

∏
vn′∈H(cm)\vn

sign(Z
(l−1)
n′m ) · min

vn′∈H(cm)\vn

∣∣∣Z(l−1)
n′m

∣∣∣ . (3.21)

Note that the scaling factor can either be a constant α(l) = α or an adaptive

value, which is optimized based on iterations, SNR, or the node degrees by further

adopting some mathematical tools such as the density evolution (DE). As shown

in [48], the scaling factor can be optimized for most of LDPC codes to obtain the

best decoding threshold or to make the magnitude of the C2V messages computed

by both the NMSA and the SPA as close as possible. In practice, it is favorable

to globally optimize the scaling factor based on the Tanner graph of an LDPC

code which yields a fixed scaling factor.

The Offset MSA

An alternative method to improve the accuracy of the computed C2V messages

was introduced in [102], yielding the offset MSA (OMSA). There is a correction

term applied to the CN update by using a subtractive factor θ ∈ (0, 1). We

modify Eq. (3.20) into

Y (l)
mn =

∏
vn′∈H(cm)\vn

sign(Z
(l−1)
n′m ) · max

vn′∈H(cm)\vn

(∣∣∣Z(l−1)
n′m

∣∣∣− θ(l), 0
)
. (3.22)

Similarly to the NMSA, the scaling factor θ(l) can either be a constant or an

adaptive value and need to be carefully designed. Although the NMSA and

OMSA work well for regular LDPC codes as shown in [48], the degradation on

error performance still remains for irregular LDPC codes.
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The Two-dimensional Normalized MSA

There is one solution, so-called the two-dimensional normalized MSA (2D-NMSA),

proposed in [49] to overcome the performance loss of the NMSA and the OMSA

when decoding irregular LDPC codes. On top of the correction term for CN

update as shown in Eq. (3.21), the V2C messages are also corrected by a scaling

factor β(l) ∈ (0, 1), i.e., the Eq. (3.18) is modified as

Z(l)
nm = L(vn) + β(l) ·

∑
cm′∈H(vn)\cm

Y
(l)
m′n (3.23)

To achieve the best possible performance for decoding irregular LDPC codes,

both scaling factors α(l) and β(l) need to be optimized [49].

The Self-Corrected MSA

In [50], V. Savin proposed the self-corrected MSA (SC-MSA) for the decoding

of irregular LDPC codes. Different from the previous MS-based algorithms that

make modifications on the magnitude of the extrinsic messages, SC-MSA can

achieve an improved error performance for irregular LDPC codes by erasing the

unreliable V2C messages which have different signs between two consecutive it-

erations. To be more specific, the C2V messages in the SC-MSA is computed in

the same way as the conventional MSA, and the temporary V2C messages Ztmp
nm

at current iteration is first computed by Eq. (3.18). Then the self-correction

operations are adopted for each VN as [50]

Z(l)
nm

 Ztmp
nm , if sign

(
Z

(l−1)
nm

)
= sign (Ztmp

nm )

0, otherwise
(3.24)
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As shown in [50], the SC-MSA can outperform the SPA in the error floor region

for irregular LDPC codes with moderate block lengths. However, there is still

noticeable performance degradation for irregular LDPC codes with short block

lengths in the low SNR region.

The Conventional Weighted Bit-Flipping Algorithm

The WBF algorithm is a decoding algorithm based on flipping the hard-decision

value of the least reliable VN messages according to the computed flipping met-

ric at each iteration. Denoted by s(l) = (s
(l)
1 , s

(l)
2 , . . . s

(l)
M ) the syndrome vector

computed at the l-th iteration. The conventional WBF algorithm computes the

flipping metric for the node vn at the l-th iteration according to [74]

E(l)(vn) =
∑

cm∈H(vn)
(2s(l)

m − 1) · wm, (3.25)

where wm is a weighted factor given by wm = min
vn∈H(cm)

|r(vn)|. Then the index of

candidate bit(s) to be flipped can be determined by

F = {n|n = arg maxE(l)(vn)
1≤n≤N

}. (3.26)

The process repeats until all the parity-check equations are satisfied or a preset

maximum number of iterations is reached. As shown in [74], the conventional

WBF algorithm may flip multiple bits selected from F in one iteration. Although

the multi-bit flipping (MBF) rule leads to a fast convergence speed, carefully

designed loop removal mechanisms are required to avoid the decoding process to

be trapped in an infinite loop due to its greediness [101]. An alternative flipping

rule for the conventional WBF algorithm is to randomly flip one bit in F at

each iteration [74], which is also called the single-bit flipping WBF (SBF-WBF)
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decoding algorithm.

3.3.2 The Layered Decoding Schedule

Apart from the decoding algorithms, the decoding schedules can also affect the

convergence speed of the decoder. As show in [94], the flooding schedule is the

most straightforward decoding schedule, where all the C2V messages and all the

V2C messages are updated simultaneously at each decoding iteration. On the

contrast, the layered decoding schedules, such as layered BP (LBP) [136,137] and

shuffled BP decoding [138], update the extrinsic messages in a fixed sequential

order to accelerate the convergence speed. The basic idea of layered decoding is to

divide the parity-check matrix H of an LDPC code into multiple groups based on

its row or column, where each group can be regarded as a layer. A serial iteration

strategy is adopted between each group, and the conventional parallel iteration

strategy is adopted within the group by performing the decoding algorithms such

as the SPA, MSA, and modified MSA.

The decoding process of one iteration for the typical LBP in [136] is illustrated

in Fig. 3.7.

Note that in the layered decoding, a VN update is performed once all neigh-

boring CNs are updated. Therefore, instead of using the node information of the

last iteration, the update of the CNs in current iteration can utilize the messages

from VNs that have been updated in the previous layer of the same iteration.

This accelerates the convergence speed of the decoding. As shown in [139], these

fixed serial decoding schedules increase the convergence speed by about twice

than that of the flooding schedule.

Compared to sequential scheduling decodings that follow a fixed updating

order, informed dynamic scheduling (IDS) in [140] considers the updating order
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(a) CN update at layer 1 (b) VN update at layer 1

(c) CN update at layer 2 (d) VN update at layer 2

(e) CN update at layer 3 (f) VN update at layer 3

(g) CN update at layer 4 (h) VN update at layer 4

Figure 3.7: The decoding process of LBP

based on the residual of the messages and provides dynamic updating orders.

Other variations of IDS strategies are also proposed in [141–143] to significantly

reduce the number of iterations required for the decoding process. However, the
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challenge is how to implement the IDS in practical hardware due to the additional

computational complexity. Thus, in the later chapter, we only consider the typical

layered schedule as shown in [136].

3.3.3 The Improved Decoding Architectures

It is well-known that the smallest cycle in LDPC code graphs introduces a notable

performance loss, particularly for the LDPC codes with short block length. To

solve this problem, several QML decoding methods were proposed in [108–110],

which are based on the reprocessing. More specifically, these conventional QML

decoding methods perform the reprocessing with the maximum number of repro-

cessing stage jmax after the failure of the initial BP decoding test. At each stage of

the reprocessing, they choose unreliable VNs according to certain node selection

methods. A list of the decoder input sequences is then generated by modifying

the LLRs of the unreliable VNs in the received signal. The conventional BP

decoding is then performed with each decoder input sequence and only the valid

codewords are collected from the reprocessing. In the end, the best codeword is

selected as the decoding output based on a decision metric.

Note that the performance of a QML decoding is affected by the accuracy

of selecting unreliable VNs for the reprocessing. Moreover, the decoding com-

plexity depends on the number of decoding tests performed in the reprocessing.

Here, we briefly introduce the node selection method and the reprocessing of the

conventional QML decoding methods in [108] and [109].

Node-wise Selection (NWS) Method

For the decoding tests at the j-th stage, the ABP decoding in [108] selects j

unreliable VNs for saturation. Here the saturation of a node vn means that
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its LLR r(vn) is set to the maximum (+S) or minimum (−S) value, which is

determined by the precision or quantization of the decoder. Define T as the

index of the decoding test in the reprocessing. Denote the set of VNs saturated

for the T -th decoding test by V(T )
S . To determine V(T )

S for every T -th decoding

test at stage j reprocessing (T = 2j−1, 2j, . . . , 2j+1−2), the ABP decoder chooses

a new unreliable VN, denoted by v
(T )
s , and (j − 1) unreliable VNs which have

been selected in the
⌊
T−1

2

⌋
-th decoding test at stage (j − 1) reprocessing. Let

T ′ =
⌊
T−1

2

⌋
, the newly saturated VN v

(T )
s is selected based on the output of

the T ′-th decoding test at stage (j − 1) reprocessing. More specifically, for a

given output of the T ′-th decoding test, find all VNs connected to unsatisfied

CNs, which is defined as V(T ′). In particular, when T ′ = 0, the T ′-th decoding

test refers to the initial BP decoding. Note that an unsatisfied CN means its

associated syndrome is nonzero after the decoding. From all VNs in V(T ′), we

only consider the VN with the maximum node degree to be the candidate node.

If there are more than one VN with the same maximum node degree, the VN with

the minimal magnitude of its channel output |r(vn)| is selected with priority.

It is also shown in [110] that the proposed QML decoder computes the reliabil-

ity of each unsatisfied CN based on the LLRs. Starting from the unsatisfied CN

with the largest LLR value, two least reliable VNs with the smallest |r(vn)| con-

nected to the CN are forced to flip their hard decision with a high priority. Note

that the SMS decoding in [109] chooses the unreliable VNs for saturation solely

based on |r(vn)| for hardware considerations. It is notable that the node selection

methods in [108–110] determine the unreliable VNs based on the node reliability

|r(vn)|. Therefore, we call these node selection methods as NWS methods.
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The Reprocessing

Denote M = {m1,m2, . . . ,m2j} as the list of length-j LLR vectors for the satu-

rated VNs at stage j reprocessing, where mt∈ {+S,−S}j, t = 1, 2, . . . , 2j. The

stage j reprocessing performs 2j BP decoding tests with the modified input LLRs.

For each BP decoding test at the j-th stage, the initial LLR values of V(T )
S are

replaced by one mt from M, i.e., r(V(T )
S ) = mt, and the rest of VNs’ initial LLR

values remain the same from the channel outputs. When all vectors mt in M are

tested, the reprocessing moves to stage j+1. It stops until the maximum number

of reprocessing stage jmax is reached. Thus, there are total
∑jmax

j=1 2j=2jmax+1−2

additional decoding tests need to be performed subsequently if the conventional

BP decoding fails. In the end, the ABP decoding outputs the best codeword

which has the minimum Euclidean distance to the received sequence [108].

It is shown that the error performance of the ABP decoding for the (155, 64)

Tanner code in [108] can approach that of the ML decoding when the number of

saturated VNs is relatively large, e.g., jmax = 11, which results in high decoding

complexity. However, for a small or moderate jmax, there is still a significant per-

formance loss. In addition, the SMS decoding in [109] simplifies the reprocessing

in the sense that all the jmax unreliable VNs are selected simultaneously. There-

fore, only 2jmax decoder input sequences are tested, which reduces the decoding

complexity. However, this degrades the error performance compared to the ABP

decoding with the same jmax since the number of tested decoder input sequences

reduces by almost half from 2jmax+1−2 to 2jmax .
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3.4 The Analysis and Design Tools of LDPC Codes

For practical considerations, there are usually multiple LDPC codes that share

the same degree distribution for which we call these LDPC codes as an ensemble

of LDPC codes [52, Definition 1.15]. It is known that a good error performance

in the waterfall region is one of the essential factors that need to be considered in

the design of LDPC codes. For an ensemble of binary LDPC codes, the density

evolution (DE) [52], and the extrinsic information transfer (EXIT) chart [114,

144, 145] are the main mathematical tools to analyze and optimize its waterfall

region performance under iterative decoding algorithms. In general, the analysis

of DE methods are derived based on the following two assumptions [52]

1 A cycle-free graph: Under this assumption, the associated ensemble of

LDPC codes always has a cycle-free graph under iterative decoding algo-

rithm.

2 Symmetry: For binary inputs, we assume that P(y = q|x = +1) = P(y =

−q|x = −1), where x and y is the channel input and output, respectively.

As such, the LLRs computed by the iterative decoding algorithms are sym-

metric.

Note that the first two assumptions guarantee that the input messages at each

CN or VN are independent [52]. Then under the symmetric assumption, the

performance of an LDPC code ensemble can be modeled by sending the all-zero

codeword.

We further introduce the concept of decoding threshold to characterize the

performance of an LDPC code ensemble in the waterfall region. The decoding

threshold is defined as the point over which there is always a non-negligible error

probability even after an infinite number of iterations [52]. For convenience, we
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introduce the DE [52] and the EXIT chart [114] in the following.

3.4.1 The Density Evolution Analysis

Density evolution (DE) is a technique used to obtain the decoding threshold

for an LDPC code ensemble under iterative decoding. Assume that we adopt

SPA for decoding, and the soft information passed between CNs and VNs are

represented by LLRs. By considering an AWGN channel, we use Z to represent

the V2C messages and Y to represent the C2V messages during iterative decoding,

respectively. For a degree-dv VN, the DE performs the update rule as

Z =
dv−1∑
i=0

Yi, (3.27)

where Yi (i = 1, 2, . . . , dv − 1) is the messages from (dv − 1) its neighboring CNs,

and Y0 is the channel message.

Since these LLRs are of continuous values, we can use the probability density

function to describe the probability that an LLR takes a particular value. By

considering that the channel is memoryless and the factor graph of the LDPC

code has no cycles, Eq. (3.27) indicates the summation of dv random variables.

Therefore, the probability density of Z can be expressed as a convolution of the

density function of Yi as

pZ = ⊗dv−1
i=0 pYi , (3.28)

where ⊗ refers to the convolution. For the case of irregular LDPC codes, we

introduce the degree distribution λ(x), i.e. [52],

pZ = pY0 ⊗

(∑
d

λd⊗di=1pYi

)
. (3.29)
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For a degree-dc CN, the DE performs the operation as the MAP decoding for

a (dc, dc − 1) single parity-check code, which is given by

tanh

(
Y

2

)
=

dc−1∏
j=1

tanh

(
Zj
2

)
, (3.30)

where Yj (j = 1, 2, . . . , dc− 1) is the messages from (dc− 1) its neighboring VNs.

For the efficient calculation by using Fourier transforms, we take the logarithm on

both sides of Eq. (3.30) to convert the above product operation into a summation

as [52]

(
sgn(Y ), log

∣∣∣∣tanh

(
Y

2

)∣∣∣∣) =
dc−1∑
j=1

(
sgn(Zj), log

∣∣∣∣tanh

(
Zj
2

)∣∣∣∣), (3.31)

where sgn(·) is defined as

sgn(x) =

 0, x ≥ 0

1, otherwise
(3.32)

Define γ(x) as

γ(x) =
(

sgn(x), log
∣∣∣tanh

(x
2

)∣∣∣) . (3.33)

For the l-th iteration, Eq. (3.31) can be simplified to

γ(Y (l)) =
dc−1∑
j=1

γ(Z
(l−1)
j ). (3.34)

Further, the C2V messages can be expressed as

Y (l) = γ−1

(
dc−1∑
j=1

γ(Z
(l−1)
j )

)
. (3.35)
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This achieves the DE calculation of the CN on the Fourier domain. Note that

there are some researchers using the distribution functions to describe DE (see

the literature [146], [54]), and a discretized DE method was also proposed in [73]

for efficient numerical calculation by computing C2V messages based on a lookup

table.

3.4.2 The Extrinsic Information Transfer Chart

The DE analysis introduced in the previous section is based on the continuous

space. It is necessary to track the evolution of the density function in the infinite

dimensional space, which results in a high computational complexity. To simplify

the analysis and calculation, many researchers have proposed a low-complexity

calculation method for DE under the BI-AWGN channel in [114, 147–149]. One

of the well-known methods is called extrinsic information transfer (EXIT) chart.

Note that the EXIT chart is performed based on mutual information [114], which

can give a relatively accurate decoding threshold prediction even for irregular

LDPC codes. In the EXIT chart, it assumes that the messages transmitted on

the factor graph has an approximate Gaussian distribution.

According to the Gaussian distribution, we have

µY = E {Y0,n} =
2Es
σ2
n

, (3.36)

σY = Var {Y0,n} =
4Es
σ2
n

= 2µY . (3.37)

Thus, Y0 ∼ N (µY , 2µY ) is called consistent Gaussian random variable which has

a variance of twice of the mean. Suppose that all input messages for a CN or

VN are independent, and all messages have a consistent Gaussian probability
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Figure 3.8: The iterative decoder structure of LDPC code.

density. The iterative decoding of an LDPC code is equivalent to decoding a

serial concatenated coding system consisting of a repetition code and a SPC code

as shown in Fig. 3.8, where a repetition code is used as an inner code and a SPC

code is used as an outer code. For the l-th iteration, we take the expectation on

both side of Eq. (3.27) and obtain the update rule for a degree-dv VN as

µ
(l)
Z = µY0 + (dv − 1)µ

(l−1)
Y , (3.38)

where µ
(0)
Y = 0. Therefore, the EXIT function for the VN can be computed by

IE,v = J

(
2Es
σ2
n

+ (dv − 1)J−1(IA,v)

)
, (3.39)

where IA,v is the prior mutual information for VN and the function J(·) and

J−1(·) are given as [144]:

J(σ) ≈


AJ,1σ

3 +BJ,1σ
2 + CJ,1σ, 0 ≤ σ ≤ 1.6363

1− eAJ,2σ3+BJ,2σ
2+CJ,2+DJ,2 , 1.6363 < σ < 10

1, σ ≥ 10

(3.40)

where the parameters in the equation are given in Table. 3.4.2 [144].
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AJ,1 BJ,1 CJ,1 AJ,2 BJ,2 CJ,2 DJ,2

-0.0421061 0.209252 -0.00640081 0.00181491 -0.142675 -0.0822054 0.0549608

The inverse function J−1(·) can be obtained from

σ = J−1(I) ≈

 Aσ,1I
3 +Bσ,1I

2 + Cσ,1
√
I, 0 ≤ I ≤ 0.3646

−Aσ,2 ln [Bσ,2(1− I)]− Cσ,2I, 0.3646 < I < 1
(3.41)

where the parameters in the equation are given in Table. 3.4.2 [144].

Aσ,1 Bσ,1 Cσ,1 Aσ,2 Bσ,2 Cσ,2
1.09542 0.214217 2.33727 0.706692 0.386013 -1.75017

For the update rule of µ
(l)
Y according to [149], we have

µ
(l)
Y = J−1

(
1

ln 2

∞∑
i=1

1

(2i)(2i− 1)

(
Φi(µ

(l)
Z )
)dc−1

)
, (3.42)

where the function Φi(m) is computed by

Φi(m) ≈
∫ +1

−1

2t2i

(1− t2)
√

4πm
exp

(
−

(ln 1+t
1−t −m)

2

4m

)
dt. (3.43)

Thus, the EXIT function for the CN can be represented as

IE,c =
1

ln 2

∞∑
i=1

1

(2i)(2i− 1)

(
Φi(J

−1(IA,c))
)dc−1

, (3.44)

where IA,c is the prior mutual information for CN. As shown in [144], IE,c can be

approximately calculated as

IE,c ≈ 1− J
(√

dc − 1J−1(1− IA,c)
)
. (3.45)

In the iterative decoding process, the prior mutual information of the VN is
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the mutual information of the C2V message from its neighboring CN, and vice

versa. Therefore, we have the following relationship [114]

IA,c = IE,v, and IA,v = IE,c. (3.46)

As a result, the EXIT chart can be obtained by simultaneously drawing the EXIT

functions of the VN and CN on a graph. As shown in Fig. 3.9, the EXIT chart of

(3, 6) regular LDPC codes under the BI-AWGN channel with SNR = 1.1 dB. The

decoding threshold is defined as the SNR value at which the two EXIT function

curves intersect with each other.
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Figure 3.9: The EXIT chart of (3,6) regular LDPC code.

In addition, for irregular LDPC codes, the update formula of µ
(l)
Z and µ

(l)
Y

become [144]

µ
(l)
Z = J−1

(
dv∑
d=1

λdJ

(
2Es
σ2
n

+ (d− 1)µ
(l−1)
Y

))
. (3.47)
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µ
(l)
Y = J−1

(
dc−1∑
d=1

ρd
1

ln 2

∞∑
i=1

1

(2i)(2i− 1)

(
Φi(µ

(l)
Z )
)d−1

)
. (3.48)

Therefore, the EXIT function for VN and CN can be given by [144]

IE,v =
dv∑
d=1

λdIE,vd =
dv∑
d=1

λdJ

(
2Es
σ2
n

+ (d− 1)J(IA,v)

)
. (3.49)

IE,v =
dc∑
d=1

ρdIE,cd =
dc∑
d=1

1

ln 2

∞∑
i=1

1

(2i)(2i− 1)

(
Φi(J

−1(IA,c))
)d−1

. (3.50)

3.5 Summary

In this chapter, we present the basic knowledge and backgrounds for LDPC codes

related to the research works in the remaining Chapters in the thesis. The main

points presented in this chapter are summarized as follows.

• We briefly introduce the definitions and different representations of LDPC

codes.

• We introduce various decoding algorithms, the layered scheduling strategy,

and the decoding architecture for LDPC codes. The necessity of the im-

provement for current decoding methods is also discussed.

• We present two analytical tools to characterize the performance of LDPC

codes, which can also be used for optimizing and constructing good LDPC

codes in practice.

• We present some examples for classic LDPC codes, e.g., protograph-based

LDPC codes and the 5G LDPC codes, which are widely used in practical

applications.



Chapter 4

Euclidean Geometry Based

Spatially-Coupled LDPC Codes

and Windowed Decoding Scheme

4.1 Introduction

In the past three decades, NAND Flash memories took more and more places in

the non-volatile memory application fields for their higher throughput and lower

power consumption compared to conventional hard-disk drives (HDDs) [75]. To

reduce the cost of NAND Flash memory, many technologies such as multi-level

cell (MLC), triple-level cell (TLC), and 3D stacking are adopted [76, 77], where

more information per storage element or more storage elements are packed to-

gether. However, one of the drawbacks by using these technologies is that the

error rate of the stored information and the endurable program/erasure cycles of

the storage cells will deteriorate when more information per storage element or

more storage elements are packed in a small package. To deal with this issue, the

83
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powerful error correction codes (ECCs), such as Bose-Chaudhuri-Hocquenghem

(BCH) codes [78], concatenated codes [79] and low-density parity-check (LDPC)

codes [82] [83], were proposed in the literature. Among these ECCs, LDPC codes

took the place for their near-capacity error correction capability when soft infor-

mation is available [70] [84]. Recently, spatially-coupled (SC) LDPC codes [85]

drawn significant attentions by many researchers from the perspective of both

code construction and decoding methods [87–92] due to their universally achieving

capacity under belief propagation [101]. Since most of the channels are typically

binary in storage applications, in this work, we construct binary spatially-coupled

(SC) low-density parity-check (LDPC) codes based on Euclidean geometry (EG)

LDPC codes for storage applications, where both high error correction capability,

extremely low uncorrectable bit error rate (UBER) and low decoding complexity

are required. Then we propose a reliability-based windowed decoding (RBWD)

scheme for SC LDPC codes, where a partial message reservation (PMR) method

and a partial syndrome check (PSC) stopping rule are introduced for each decod-

ing window to mitigate the error propagation.

4.2 Problem Statement

As the convolutional counterparts of LDPC codes [86], SC LDPC codes [85,87–92]

have drawn attention of many researchers recently. It is shown in [89] that SC

LDPC codes can combine the capacity-achieving property of the irregular LDPC

codes and the linear minimum distance growth property of the regular LDPC

codes. For the same systematic decoding latency or the same decoding com-

plexity, SC LDPC codes have a considerable convolutional gain compared to the

associated block LDPC codes, especially in the low raw bit error rate (RBER)

or high signal-to-noise-ratio (SNR) regime [85]. Therefore, it is very interest-
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ing to consider SC LDPC codes for the next-generation NAND Flash memories,

which require both high error correction capability and very low uncorrectable

bit error rate (UBER). We know that the LDPC codes constructed based on

finite geometries can have near-capacity performance and low error floor [46,

150, 151]. In addition, these LDPC codes have various options of the decoding

algorithms, from majority logic decoding algorithms to iterative message-passing

decoding algorithms, from hard-decision decoding algorithms to soft-decision de-

coding algorithms [74, 152–155], which provides a wide complexity-performance

trade-off for different applications to practical systems. Among the finite geome-

try based LDPC codes, Euclidean geometry (EG) LDPC codes have superior error

performance with low complexity decoding algorithms, such as the conventional

weighted bit-flipping (WBF), as shown in [46]. Thus, it is of great potential to

consider the construction of SC LDPC codes based on Euclidean geometry with

further improved error correction capability and low UBER.

On the other hand, an applicable way to decode an SC LDPC code is to

use a sliding windowed decoder [93, 156]. Compared to the full block decoding

(FBD) which decodes the entire codeword of an SC LDPC code with full flooding

schedule [94] [91], the sliding windowed decoder shifts along the Tanner graph

and focuses on decoding only a portion of a codeword at a time, which results in a

lower decoding latency and memory requirement. Since the windowed decoding

architecture causes performance degradation compared to the FBD [97], most

of the previous work, such as [95–97], focused on improving the performance

of the sliding windowed decoder with soft-decision decoding algorithms such as

sum-product algorithm (SPA). The SPA leads to a high decoding complexity as

soft information is passed along the edges in the Tanner graph [98]. Therefore, the

reliability-based decoding algorithms, such as the conventional WBF algorithm,
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are investigated by many researchers to obtain a lower decoding complexity with

acceptable performance degradation [74, 100, 101], where only hard information

is passed along the edges in the Tanner graph. However, we observe that there

is a significantly high error floor when the conventional WBF algorithm is used

for windowed decoding of SC LDPC codes. Since a sliding windowed decoder

only covers a portion of the full Tanner graph, there exist variable nodes (VNs)

that have neighbouring check nodes (CNs) outside the decoding window. Thus,

the messages sent out from these VNs may not be reliable. Moreover, these

unreliable messages are propagated to the next window and deteriorate the error

rate performance of the code.

4.3 Main Contributions

Motivated by the advantages of the EG LDPC codes, we consider the problem

of how to construct binary SC LDPC codes based on EG LDPC block codes for

storage applications in this work, where high error correction capability, extremely

low UBER and a low complexity decoding algorithm are required. In particular,

we propose a construction method for SC LDPC codes based on EG LDPC codes.

In the proposed construction method, a two-dimensional edge-spreading process

is introduced to generate a base matrix for SC LDPC codes. More specifically, we

employ a circulant decomposition method [157] to perform the two-dimensional

edge-spreading on a protograph to obtain a base matrix. Then, instead of un-

wrapping a parity-check matrix directly, our method unwraps the base matrix of

a protograph before the lifting operation. We show that the proposed method

can be used to construct SC LDPC codes for various code lengths and code rates.

The error rate performance of the constructed SC LDPC codes is evaluated by

using a reliability-based decoding algorithm, which has much lower implemen-
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tation complexity compared to the message passing based decoding algorithms.

This is very important for future mobile data storage applications which require

low cost and low power consumption in their decoders. In addition, motivated

by the high error floor under the windowed decoding with the conventional WBF

algorithm, we propose a new approach to perform windowed decoding, called

the reliability-based windowed decoding (RBWD) scheme. We also consider an

improved stopping rule for the windowed decoding scheme. The contributions of

this work are summarized below:

• We present a systematic way to construct binary SC LDPC codes from

m-dimensional EG with m > 2. We call the proposed codes EG-based SC

(EG-SC) LDPC codes. Our proposed construction method is very flexible

in selecting the underlying block codes, and has more degrees of freedom in

optimizing the constructed SC LDPC codes. More specifically, the proposed

construction starts from an EG with K cycle classes. By decomposing the

generator vector of each cycle class into θ new generator vectors of smaller

length, one can construct a θ × θ base matrix for each cycle class. By jux-

taposing K ′ ≤ K different base matrices side-by-side and then performing

matrix unwrapping, we obtain an unwrapped base matrix. This unwrapped

base matrix is repeated periodically to construct the base matrix for a ter-

minated SC LDPC code with design code rate RSC = {1− (ms +L)/LK ′},

where ms is the syndrome former memory and L is the termination length.

• We propose a two-dimensional edge-spreading process for EG-SC LDPC

codes based on circulant decomposition [157]. The generator vector of each

cycle class is decomposed into θ generator vectors, each of which is a gen-

erator vector of a smaller cycle class. A base matrix of a cycle class can

be obtained by permuting the positions of each generator vector and its
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nonzero elements. The process irregularly spreads a regular protomatrix in

both column and row directions, such that the new base matrix satisfies a

column-and-row summation constraint.

• We compute the exact rank of the parity-check matrix of an EG LDPC code,

and use it to derive a lower bound on the rank of the parity-check matrix of

our proposed EG-SC LDPC codes. We show that the derived lower bound

is determined by the rank of the unwrapped parity-check matrix and it is

a function of Y ≥ 2, where Y is the number of times that an unwrapped

matrix is periodically repeated.

• We propose a RBWD scheme for the decoding of SC LDPC codes to signif-

icantly reduce the error floor. In the scheme, we propose the PMR method

which only reserves the reliable messages between two adjacent windows

to avoid the error propagation. We also propose the PSC stopping rule to

check the complete VNs for each decoding window. In this way, the error

floor of the SC LDPC codes with windowed decoding can be significantly

reduced.

• We evaluate the error performance of the constructed EG-SC LDPC codes

using a WBF decoding algorithm based on FBD. We show that the proposed

EG-SC LDPC codes achieve a considerable convolutional gain compared

to their EG LDPC code counterparts. We demonstrate that the UBER

performance of the proposed EG-SC LDPC codes have no error floor at the

UBER of 10−9 ∼ 10−10, whereas the protograph SC LDPC codes and the

regular LDPC codes show an error floor around the UBER of 10−8 and 10−7,

respectively. More importantly, we further evaluate the error performance of

the proposed RBWD scheme, where the bit error rate (BER) performance of
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the RBWD scheme can approach that of FBD within 0.1 dB, which is highly

desirable for applications with a low decoding complexity requirement.

4.4 A General Construction of SC LDPC Codes

from EG LDPC Codes

In this section, we present a general way to construct SC LDPC codes using

the m-dimensional EG LDPC codes, where m > 2. The proposed construction

method is performed based on the conventional matrix unwrapping technique on

regular protographs. The key feature of the proposed construction is that the base

matrix B of a protograph P undergoes a two-dimensional edge splitting process.

To illustrate our point, let us consider the base matrix B = [b0, b1, . . . , bv−1] of

size 1 × v, where {bj}1×v ∈ Z+. We first obtain W descendent base matrices[
B(0),B(1), . . . ,B(W−1)

]
juxtaposed side-by-side, where each submatrix has size

1× v such that the summation constraint
∑W−1

i=0 B(i) = B is satisfied. Next, we

obtain W − 1 permutations of
{
B(i)

}
0≤i<W by cyclicly shifting each B(i) to the

right. As a result, we obtain a W ×W array of 1× v base matrix
{
B(i,j)

}
0≤i,j<W

such that it satisfies the column-and-row summation constraint

∑W−1

i=0
B(i,j) = B for 0 ≤ j < W. (4.1)

and

∑W−1

j=0
B(i,j) = B for 0 ≤ i < W. (4.2)

Due to the fact that W may be larger than the maximum bj, 0 ≤ j < v, and

we allow each B(i) to be different. Thus, the process of two-dimensional edge
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spreading results in a base matrix that contains zero, which will be lifted by an

all-zero square matrix. To avoid any confusions, the important notations used in

this paper are summarized in TABLE 4.1.

Notation Description

B(m,2,s) B(m,2,s) =
[
B

(j)
(m,2,s)

]
0≤j<K

,

the base matrix of an EG
LDPC code with K circu-
lants.

B(m,2s) Equivalent base matrix of
B(m,2,s) after circulant de-
composition.

Buw(m,2s) Unwrapped version of
B(m,2s).

BSC(m,2s) Base matrix of the termi-
nated SC LDPC code.

H(m,2s),
H(m,2s),
Huw

(m,2s),

HSC
(m,2s)

Corresponding parity-check
matrices lifted from
B(m,2s),B(m,2s),Buw(m,2s),BSC(m,2s),
respectively.

Table 4.1: Summary of notations

4.4.1 A general construction of EG-SC LDPC codes

From the above review of in Chapter 3, it is interesting to see that the EG LDPC

codes are naturally cyclic, which, in practice, possess an efficient encoding and

decoding implementation [158]. We now provide the general construction method

of EG-SC LDPC codes.

Since each circulant H
(j)
(m,2s), 0 ≤ j < K, has column and row weights of 2s,

we denote the regular base matrix of the associated protograph as

B(m,2s) =
[
B

(0)
(m,2s),B

(1)
(m,2s), . . . ,B

(K−1)
(m,2s)

]
, (4.3)

where each B
(j)
(m,2s) = 2s for 0 ≤ j < K. Next, choose a θ ∈ Z+ such that

θ divides (2ms − 1), we perform a two-dimensional edge spreading operation on
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each B
(j)
(m,2s) to obtain a new base matrix

B(j)
(m,2s) =


b0,0

(m,2s) b0,1
(m,2s) · · · b0,θ−1

(m,2s)

b1,0
(m,2s)

. . .
...

...
. . .

...

bθ−1,0
(m,2s) · · · · · · bθ−1,θ−1

(m,2s)

 , (4.4)

such that the column-and-row summation constraints given in (4.1) and (4.2) are

satisfied. In this construction, each row summation is

∑θ−1

j=0
bi,j(m,2s) = 2s for 0 ≤ i < θ,

and each column summation is

∑θ−1

i=0
bi,j(m,2s) = 2s for 0 ≤ j < θ.

Note that B
(j)
(m,2s) = 2s and we split it into a θ × θ base matrix B(j)

(m,2s). Then, a

base matrix B(m,2s) of size θ × Kθ can be constructed by juxtapose all K base

matrices B(j)
(m,2s) side-by-side with each row summation equals to K2s and each

column summation equals to 2s.

It is notable mention that we do not specify the choice of each bi,j(m,2s) at

this stage. Instead, we shall see, from the next section that, both the choice of

each bi,j(m,2s) and the exact cyclic shifts of circulant permutation matrices (CPMs)

can be obtained after performing circulant decomposition. The process of the

circulant decomposition breaks each one of the K generator vectors into θ small

pieces of subvectors so that these subvectors are employed as a generator vector

of a smaller circulant. The cardinalities of the K sets of θ subvectors are used

as the first row of the base matrix B(m,2s), given in (4.4), whereas the rest rows

of B(m,2s) are cyclic right shift of the first row in a particular way, which will be
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further discussed in the next section.

Since the set of factors of 2ms−1 contains odd primes only and the product of

two odd numbers is still an odd number, we will set the syndrome former memory

ms = θ−1 to make sure that the periodicity of the final SC base matrix BSC(m,2s) is

θ. To this end, the base matrix B(m,2s) that contains K ′ base matrices B(j)
(m,2s) is

then unwrapped using the conventional cut-and-paste operation [86] to construct

a ‘stair-like’ diagonal base matrix Buw(m,2s) with stair width K ′. The unwrapped

base matrix Buw(m,2s) is of size (ms + θ) × K ′θ. By coupling Buw(m,2s) Y times, a

base matrix BSC(m,2s) of a terminated EG-SC LDPC code is obtained. Let γ be a

positive integer such that γθ = (2ms − 1). Then each element bi,j(m,2s) ∈ B(j)
(m,2s)

is lifted by a weight-l CPM of order U = γ. The resulting parity-check matrix

HSC
(m,2s) of size γ (ms + θY )× γK ′θY corresponds to a terminated EG-SC LDPC

code.

4.5 New Construction of EG-SC LDPC codes

In this section, we will introduce the process of circulant decomposition, which

results in an edge-spread base matrix in both column and row directions. Notice

that another feature of the resulting base matrix is that the descendent base

matrices
{
B(j)

(m,2s)

}
0≤j<K

of B(m,2s), in general, are different. This means that

the proposed construction method possesses time-varying SC LDPC codes since

each row of the base matrix of an EG-SC LDPC code could start with a different

descendent base matrix.

4.5.1 Two-dimensional edge spreading

For an Euclidean geometry EG(m, 2s) and m > 2, there are K cycle classes that

form K circulants, where each circulant can be generated by a generator vector.
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Let W = {w1, w2, . . . , wv} be the set of factors of (2ms − 1)1 such that 1 /∈ W .

Let θ be the product of a subset of W , and hj(m,2s) be the first row of the j-th

circulant. Note that hj(m,2s) is also a generator vector of the j-th circulant. Then

a set of θ new generator vectors can be obtained by having hj(m,2s) permuted. The

i-th portion of hj(m,2s) is obtained from the following index sequence

πji = [i, γ + i, 2γ + i, . . . (θ − 1)γ + i] (4.5)

for 0 ≤ i < θ and γθ = 2ms − 1. Thus, πj =
[
πj0, π

j
1, . . . , π

j
θ−1

]
gives a column

permutation of hj(m,2s), and it depends on the choices of θ and γ. Note that πj

is a sequence of binary γ-tuples. Denote by fπji
the i-th generator vector of the

j-th circulant. By cyclic shifting the elements inside πj towards right, we obtain

the base matrix of the j-th circulant that is given by

B(j)
(m,2s) =

|fπj0 | |fπj1 | · · · |fπjθ−2
| |fπjθ−1

|

|C1(fπjθ−1
)| |fπj0 | · · · |fπjθ−3

| |fπjθ−2
|

...
...

. . .
...

...

|C1(fπj2
)| |C1(fπj3

)| · · · |fπj0 | |fπj1 |

|C1(fπj1
)| |C1(fπj2

)| · · · |C1(fπjθ−1
)| |fπj0 |


, (4.6)

where |f | denotes the cardinality of a vector f and C1(fπji
) = (fπji

+ 1) mod γ rep-

resents a cyclic right shift of all the elements in fπji
by one position. Continuously

performing the above method for all K circulants, we obtain the final base matrix

B(m,2s) =
[
B(0)

(m,2s) B
(1)
(m,2s) . . .B

(K−1)
(m,2s)

]
, (4.7)

12ms−1 can be factored since 2ms−1 is divisible by 2θ−1 if and only if there exist a θ that
divides ms. Hence, it is straightforward to see that ms is divisible by both θ = m or θ = s.
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where the size of the base matrix is θ ×Kθ.

The above process of circulant decomposition [157] requires only the generator

vector of each circulant. The result of the process irregularly spreads the edges of

a regular protograph in both column and row directions. Although the elements of

each fπji
in the lower triangle of B(j)

(m,2s) are shifted, the column-and-row summation

constraints in (4.1) and (4.2) are still satisfied since each base matrix B(j)
(m,2s) is

cyclic and contains only the cardinality of each subvector fπji
. Moreover, each

fπji
contains the set of non-zero positions that can be used to generate the γ × γ

circulant. Note that the generator vector fπji
might be an empty vector, that is,

fπji
= ∅. This is due to the fact that the corresponding πji has only zero in it.

However, this will not alter the performance of a code.

4.5.2 EG-SC LDPC codes from EG(m, 2s) codes with m > 2

In the following, we construct EG-SC LDPC codes from m-dimensional Euclidean

geometry with m > 2. In this case, as described from Section 4.4-A, we have

K > 1 circulants, each of size 2ms−1. Choose a θ such that θ divides 2ms−1, and

an integer K ′, where 1 < K ′ ≤ K. Let B(m,2s) =
[
B(0)

(m,2s),B
(1)
(m,2s), . . . ,B

(K′−1)
(m,2s)

]
be the θ × K ′θ base matrix given in (4.7). Denote each element of B(m,2s) as

ei,j for 0 ≤ i < θ and 0 ≤ j < K ′θ. Recall that the syndrome former memory

ms = θ − 1. By performing the matrix unwrapping technique on B(m,2s), we

obtain the unwrapped Buw(m,2s) of size (ms + θ)×K ′θ as

Buw(m,2s) =



B0

B1
...
Bθ−1

Bθ
...

Bθ+ms−1


, (4.8)
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where

Bi = [ei,0 · · · ei,(i+1)K′−101×K′(θ−i−1)]for0 ≤ i < θ

and

Bi = [01×(i−θ+1)K′e(i−θ),(i−θ+1)K′ · · · e(i−θ),K′θ−1]forθ ≤ i < θ +ms.

Here, 01×y denotes an all-zero vector of length y. Hence, Buw(m,2s) is a stair-like

diagonal matrix with stair width K ′, which will be illustrated in Fig. 4.1 (part c).

To obtain a base matrix for EG-SC LDPC codes, we repeat Buw(m,2s) periodically

Y times in a way presented below,

BSC(m,2s) =



Y︷ ︸︸ ︷
B0

B1
...
Bθ B0
... B1

Bθ+ms−1
...
Bθ B0
... B1

. . .

Bθ+ms−1
...

. . . . . .

Bθ
. . . B0



. (4.9)

The resulting base matrix BSC(m,2s) is a periodic stair-like diagonal matrix of

size (ms + θY )×K ′θY . Since ms = θ− 1 in our design, the period of the EG-SC

LDPC codes is ms + 1 = θ, and Buw(m,2s) given in (4.8) starts to repeat after every

θ time instances. The final parity-check matrix of the EG-SC LDPC codes can

be obtained by lifting each element of BSC(m,2s) with CPM of order U = γ, where

the exact cyclic shifts are given by the corresponding generator vector fπji
. The
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resulting parity-check matrix of the EG-SC LDPC codes, denoted as HSC
(m,2s), is

of size γ(ms + θY ) × γK ′θY . The above construction method is summarized in

Algorithm 4.1, and graphically illustrated in Fig. 4.1.

It is obvious from (4.9) that the termination length is L = θY since every

column of BSC(m,2s) given in (4.9) contains θ columns of small base matrices, each

of size 1×K ′. Thus, the design code rate of the EG-SC LDPC codes is given by

RSC =
LK ′ − (ms + L)

LK ′
=
K ′θY − (ms + θY )

K ′θY
. (4.10)

Similar to the conventional design of SC LDPC codes from protographs, we can

see that as Y →∞, RSC approaches the design code rate

RBC = 1− 1

K ′
(4.11)

of the corresponding EG LDPC block codes.

Algorithm 4.1 The Construction Method for EG-SC LDPC codes

1: For a m-dimensional Euclidean geometry, find K generator vectors for the K

cycle classes.

2: Choose a θ such that θ divides 2ms − 1. Perform circulant decomposition on

each one of the K generator vectors to obtainθsubvectors
{

fπj0
, fπj1

, . . . , fπjθ−1

}
.

3: Construct the base matrix B(m,2s) given in Equation (4.7).

4: For a given K ′ such that 1 < K ′ ≤ K, construct an unwrapped base matrix

Buw(m,2s) of size (θ +ms)×K ′θ according to (4.8).

5: Construct a (ms + θY ) × K ′θY base matrix of the EG-SC LDPC code by

repeating Buw(m,2s) periodically Y times in the way shown in (4.9).

6: Lift each element of BSC(m,2s) using a CPM of size γ× γ with exact cyclic shifts

from fπji
to obtain the γ(ms + θY )× γK ′θY parity-check matrix HSC

(m,2s) of a

EG-SC LDPC code, where θγ = 2ms − 1.
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Figure 4.1: General construction of EG-SC LDPC codes. Part a) gives a base
matrix B(m,2s) =

[
|f (0)|, |f (1)|, . . . , |f (K−1)|

]
of an m-dimensional EG code, where

each f (j), for 0 ≤ j < K, is the generator vector of a weight-2s circulant. In part
b), the base matrix of a decomposed B(m,2s) is given. Each circulant is decomposed
into a θ × θ array of γ × γ circulants, where θ is an integer that divides 2ms − 1
and γθ = 2ms − 1. Part c) shows the unwrapped stair-like diagonal base matrix
Buw(m,2s) with stair width K ′, where 1 < K ′ ≤ K and the syndrome former memory

ms = θ− 1. Part d) shows the the periodic stair-like diagonal base matrix BSC(m,2s)

of an EG-SC code by coupling Y copies of Buw(m,2s).
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4.5.3 Rank analysis of EG-SC LDPC codes

In this section, we first determine the rank of the parity-check matrix of an EG

LDPC block code, and then derive a lower bound on the rank of the proposed

EG-SC LDPC codes. Denote by R
(
H(m,2s)

)
the rank of matrix H(m,2s). The

following result gives the exact R
(
H(m,2s)

)
of an EG LDPC block code.

Theorem 1. For an m-dimensional Euclidean geometry EG(m, 2s) over GF (2s),

the parity-check matrix H(m,2s) of 2ms−1 rows and
(
2(m−1)s − 1

)
(2ms − 1) / (2s − 1)

columns has a rank equal to [159]

R(H(m,2s)) = F(m, 2s)−F(m− 1, 2s)− 1, (4.12)

where

F(m, 2s) =

∑
vo

∑
v1

. . .
∑
vs−1

s−1∏
j=0

∆(vj+1,vj)∑
i=0

(−1)i
(
m+ 1

i

)(
m+ 2vj+1−vj−2i

m

)
(4.13)

and vs = v0. The summations are taken over all possible integers vj, j = 0, 1, . . . , s−

1, such that

2 ≤ vj ≤ m+ 1, (4.14)

0 ≤ 2vj+1 − vj ≤ m+ 1, (4.15)

and ∆(vj+1, vj) is the greatest integer not exceeding (2vj+1 − vj)/2, i.e.,

∆(vj+1, vj) =

⌊
2vj+1 − vj

2

⌋
. (4.16)

The proof of Theorem 1 can be found in [159,160].
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Note that, for a given EG code, the rank of the parity-check matrix H(m,2s) =[
H(i)

(m,2s)

]
0≤i<K

is R
(
H(m,2s)

)
since H(m,2s) and H(m,2s) are isomorphic up to col-

umn and row permutations. However, if H(m,2s) is a concatenation of K ′ < K

circulants, then we have R
(
H(m,2s)

)
≤ R

(
H(m,2s)

)
. In the following, we derive a

lower bound on the rank of HSC
(m,2s), and show that the rank depends on Y , where

Y is the number of times that an unwrapped matrix is periodically repeated.

Lemma 1. For m > 2 and Y ≥ 2, the rank of the parity-check matrix HSC
(m,2s) of

a terminated EG-SC LDPC code is lower bounded by

R
(
HSC

(m,2s)

)
≥ R

(
Huw

(m,2s)

)
+R

(
QSC

(m,2s)

)
(Y − 1) , (4.17)

where Huw
(m,2s) is the (θ + ms)γ × K ′θγ unwrapped matrix, and QSC

(m,2s) is the

bottom-most θγ rows of Huw
(m,2s).

The proof of Lemma 1 can be found in [91].

4.6 Constructed Codes and Numerical Results

An important advantage of the conventional EG codes is that their Tanner graphs

contain no cycles of length four and their associated parity-check matrices have

relatively high column and row weights. This allows conventional EG codes to be

decoded in various ways, such as the hard-decision and soft-decision decodings,

with a wide range of tradeoffs between decoding complexity, decoding speed and

error performance. In this section, we evaluate our constructed EG-SC LDPC

codes and the corresponding block codes using a WBF [46] decoding algorithm,

which is a reliability based decoding algorithm with performance between hard

and soft-decision decodings. We use the following example of the constructed
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codes to illustrate the construction of our proposed EG-SC LDPC codes, and

show the performance of the constructed EG-SC LDPC codes using the flooding

schedule decoding (FSD) [94].

Example 4.1. Let m=3, s=3 and p=2, an EG LDPC code can be constructed

from the 3-dimensional Euclidean geometry with parity-check matrix, denoted by

H(3,23). There are 2ms − 1 = 511 non-origin points and the number of lines

that pass through these non-origin points are
(
2(m−1)s − 1

)
(2ms − 1) / (2s − 1) =

(26 − 1) × 511/ (23 − 1) = 4599 [46]. Hence, the parity-check matrix H(3,23) is

of size 511 × 4599. Since K =
(
2(m−1)s − 1

)
/ (2s − 1) = (26 − 1) / (23 − 1) = 9,

the 4599 lines can be grouped into nine cycle classes, each of which is a circulant

matrix generated from its generator vector f (j). The nine generator vectors of

these circulants are

f (j) =



[0, 1,20, 26, 85, 108, 325, 395]

[0, 2, 40, 52, 139, 170, 216, 279]

[0, 3, 44, 246, 288, 408, 443, 501]

[0, 4, 47, 80, 104, 278, 340, 432]

[0, 5, 27, 128, 149, 209, 262, 482]

[0, 7, 132, 150, 228, 323, 339, 413]

[0, 8, 45, 94, 160, 169, 208, 353]

[0, 11, 72, 102, 253, 317, 384, 494]

[0, 14, 135, 167, 264, 300, 315, 456]

j = 0

j = 1

j = 2

j = 3

j = 4

j = 5

j = 6

j = 7

j = 8

. (4.18)

Since 511 is the product of 7 and 73, the parity-check matrix H(3,23) can be de-

composed into either a 7 × 63 array of 73 × 73 circulants or a 73 × 657 array

of 7 × 7 circulants. By choosing θ = 7 and following our construction method,

we obtain a 7 × 63 array of 73 × 73 circulants H(3,23) =
[
H(j)

(3,23)

]
0≤j<9

that can

be used to construct a family of EG-SC LDPC codes with design rates RSC =

{1 − (ms + θY )/K ′θY }2≤K′≤9. The rank of H(3,23) is computed using Equation

(4.12) with F(3, 23) = 401 and F(2, 23) = 28. Thus, R
(
H(3,23)

)
= F(3, 23) −
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F(2, 23) − 1 = 372, which is equal to R
(
H(3,23)

)
. We find that R

(
Huw

(3,23)

)
=

810 = R
(
H(3,23)

)
+ msγ = 372 + 6 × 73, and this rank remains 810 for 2 ≤

K ′ ≤ 9. Moreover, let K ′ = 7 and Y = 8, we spatially-couple eight copies of

Huw
(3,23) to obtain the parity-check matrix HSC

(3,23) of the EG-SC LDPC code with

stair-like diagonal structure. The size of HSC
(3,23) is 4526 × 28616 since there are

γ(ms + θY ) = 4526 check nodes and K ′θγY = 28616 variable nodes. We find

that R
(
HSC

(3,23)

)
= 4387, which achieves the equality of Equation (4.17), that is,

372 + 6 × 73 + 511 × (8 − 1) = 4387. Furthermore, R
(
HSC

(3,23)

)
remains 4387

for 2 ≤ K ′ ≤ 9. Hence, for Y = 8, we can construct a family of EG(3, 23)-SC

LDPC codes with different code rates determined by K ′. The exact code rates of

the EG-SC LDPC codes are R = 1− 4387/(4088K ′) for 2 ≤ K ′ ≤ 9.

Then we consider the EG(3, 23)-SC LDPC codes shown in Example 4.1 with

nine generator vectors given in (4.18). Let θ = 7, the 63 subvectors after circulant

decomposition are

[
fπj0
, fπj1

, . . . , fπjθ−1

]
=

{[0] , [0, 12] , [∅] , [15, 46, 56] , [∅] , [3] , [2]} j = 0

{[0] , [∅] , [0, 24] , [7] , [∅] , [5] , [19, 30, 39]} j = 1

{[0] , [35, 41] , [6, 58, 63] , [0] , [71] , [∅] , [∅]} j = 2

{[0] , [∅] , [∅] , [11] , [0, 48] , [6, 39, 61] , [14]} j = 3

{[0] , [∅] , [18, 21] , [37] , [∅] , [0] , [3, 29, 68]} j = 4

{[0, 1, 60] , [46] , [∅] , [21, 48] , [32] , [∅] , [18]} j = 5

{[0] , [1, 24] , [∅] , [6, 13, 50] , [∅] , [29] , [22]} j = 6

{[0] , [36] , [10, 45] , [∅] , [1, 14, 70] , [∅] , [54]} j = 7

{[0, 2, 45] , [65] , [19] , [∅] , [∅] , [37] , [23, 42]} j = 8

, (4.19)

where ‘∅’ denotes an empty set, which corresponds to an all-zero square matrix of

size U = γ when performing lifting. It can be seen that the number of non-empty

elements of each row in (4.19) is 23 = 8, while these 8 elements are irregularly
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distributed among 7 subvectors. For the j-th circulant, arrange the 7 subvectors

into a base matrix as shown in Equation (4.6) by cyclicly shifting the order of the

subvectors, and cyclicly shifting the elements of the subvectors in the lower trian-

gle. By choosing K ′ = 7, a 7×49 base matrix B(3,23) =
[
B(0)

(3,23),B
(1)

(3,23), . . . ,B
(6)

(3,23)

]
is obtained. By lifting each element of the base matrix with a CPM of size U = 73,

we have constructed the 511×3577 parity-check matrix H(3,23) of the correspond-

ing EG LDPC block code. A parity-check matrix of the EG-SC code with termi-

nation length L = θY = 56 is then obtained by lifting the corresponding stair-like

diagonal base matrix BSC(3,23) given in Equation (4.9). The resulting parity-check

matrix HSC
(3,23) of a terminated EG-SC LDPC code is of size 4526 × 28616. We

have R
(
H(3,23)

)
= 372 and R

(
HSC(3,23)

)
= 4387. Thus, the null space of HSC

(3,23)

defines a (28616, 24229) EG-SC LDPC code with code rate R = 0.847, which is

only 0.01 away from the design rate of RBC = 1− 1/7 = 0.857 and 0.005 higher

than the design code rate RSC = 0.842.

We also constructed another EG-SC LDPC codes from the EG(3, 23) code

with K ′ = 9. The resulting parity-check matrix HSC
(3,23) is of size 4526 × 36792.

Let L = 7 × 8 = 56, then R
(
HSC

(3,23)

)
= 4387. Thus, the null space of HSC

(3,23)

defines a (36792, 32405) EG-SC LDPC code with code rate R = 0.881, and it

is 0.008 away from the design rate RBC = 0.889, and only 0.004 higher than

RSC = 0.877.

Another pair of EG-SC LDPC codes are constructed from EG(3, 24) LDPC

block codes. For this geometry, we have a total of 2ms−1 = 4095 non-origin points

and M =
(
2(m−1)s − 1

)
(2ms−1)/(2s−1) = 69615 lines that do not go through the

origin. The 69615 lines can be divided into K =
(
2(m−1)s − 1

)
/(2s−1) = 17 cycle

classes, each contains 4095 lines. Since each line has 2s = 16 nonzero positions,

each cycle class is a weight-16 CPM. Let H(3,24) =
[
H

(0)

(3,24),H
(1)

(3,24), . . . ,H
(16)

(3,24)

]
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be the parity-check matrix of the EG(3, 24) LDPC block code, where each H
(j)

(3,24)

is a weight-16 CPM. Note that the null space of H(3,24) defines a (69615, 69615−

R
(
H(3,24))

)
LDPC block code with R

(
H(3,24))

)
= F(3, 24) − F(2, 24) − 1 =

2801 − 82 − 1 = 2718 computed from Equation (4.12). Choosing θ = 9, we

have γ = 4095/9 = 455 and ms = 8. Using the proposed construction method,

we construct the terminated EG-SC LDPC codes for K ′ = 7 and K ′ = 9 and

Y = 4. The results are a 20020 × 114660 parity-check matrix with K ′ = 7 and

a 20020 × 147420 parity-check matrix with K ′ = 9. The rank of the associated

parity-check matrix is 18643 for both K ′ = 7 and K ′ = 9. Thus, we obtain

a (114660, 96017) EG-SC LDPC code with rate 0.8374 and a (147420, 128777)

EG-SC LDPC code with rate 0.8735, respectively.

To evaluate the error performance of the constructed EG-SC LDPC codes

and their block code counterparts in the context of storage systems, the binary

symmetric channel (BSC) is used. Denote p < 1 as the probability for a bit to

flip its sign, where p is commonly known as the raw BER (RBER). We assume

the decoder knows this channel information and assign a constant magnitude of

log (1− p)/p to each bit as the decoder input. A maximum iteration number of

500 is used for all simulations. For comparison, the degree distributions of each

constructed code and its decoding threshold, denoted by pth, are given in TABLE

4.2. The decoding thresholds are obtained by using the Extrinsic Information

Transfer Chart (EXIT) [144] based on their variable node and check node degree

distributions. In the table, (dc, dr) represents, respectively, the column degree

and row degree of a regular LDPC block code, and (ρ (x) , λ (x)) represents, re-

spectively, the distribution of column degrees and row degrees of an SC LDPC

code.
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K′ Degree distributions (ρ(x), λ(x)) pth

SC EG(3, 23)
7

ρ(x) = 8
0.0114

λ(x) = 0.0323(x8 + x16 + x24 + x32 + x40 + x48) + 0.8062x56

9
ρ(x) = 8

0.0083
λ(x) = 0.0162(x9 + x10 + x20 + x22 + x30 + x31 + x41 + x42 + x50 + x52 + x62 + x63) + 0.806x72

SC EG(3, 24)
7

ρ(x) = 16
0.0074

λ(x) = 0.0455(x16 + x32 + x48 + x64 + x80 + x96) + 0.727x112

9
ρ(x) = 16

0.0059
λ(x) = 0.0455(x16 + x32 + x48 + x64 + x80 + x96 + x112 + x128) + 0.636x144

Proto-SC
7

ρ(x) = 7
0.0126

λ(x) = 0.0364(x7 + x14 + x21 + x28 + x35 + x42) + 0.782x49

9
ρ(x) = 7

0.0092
λ(x) = 0.0364(x9 + x18 + x27 + x36 + x45 + x54) + 0.782x63

(dc, dr)-reg
7

(8, 56) 0.0101
(16, 112) 0.0057

9
(8, 72) 0.0074
(16, 144) 0.0043

Table 4.2: Degree distributions and decoding thresholds for EG-SC LDPC codes
constructed from EG(3, 23) and EG(3, 24) with K ′ = 7 and 9, protograph SC
LDPC codes with K ′ = 7 and 9 and (dc, dr) regular LDPC codes.

1 2 3 4 5 6 7 8 9

x 10
−3

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

RBER

U
B

E
R
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Figure 4.2: UBER of the proposed terminated EG-SC LDPC codes with K ′ = 7
and 9 compared to the 3-dimensional EG(3, 23) LDPC block codes.

We first compare the constructed EG-SC LDPC codes with their EG block

code counterparts to investigate the convolutional gain. Figs. 4.2 and 4.3 show

the UBER of the four EG-SC LDPC codes constructed from Euclidean geometries

EG(3, 23) and EG(3, 24), respectively. In addition, the UBER of each associated

(8, 7K ′)-regular EG block code is also shown in the figures. It can be seen from
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Figure 4.3: UBER of the proposed terminated EG-SC LDPC codes with K ′ = 7
and 9 compared to the 3-dimensional EG(3, 24) LDPC block codes.

Fig. 4.2 that the EG-SC LDPC codes constructed from EG(3, 23) achieve a 0.0012

and 0.0009 convolutional gain in RBER over their EG block code counterparts

at the UBER level of 10−9 and 10−8 for K ′ = 7 and K ′ = 9, respectively. We can

also see from Fig. 4.3 that the EG-SC LDPC codes constructed from EG(3, 24)

achieve a 0.0012 and 0.0008 convolutional gain in RBER over their EG block

code counterparts at the UBER level of 10−9 and 10−8 for K ′ = 7 and K ′ = 9,

respectively.

We then construct protograph SC LDPC codes from (7, 7K ′) regular pro-

tographs, and compare their UBER performance to that of the constructed EG-SC

LDPC codes. We choose K ′ = 7 and 9 to make sure that the protograph SC

LDPC codes have the same RSC and ms as the EG-SC LDPC codes constructed

from EG(3, 23) with K ′ = 7 and K ′ = 9. The base matrices of the protograph

SC LDPC codes are B = [7 7 7 7 7 7 7] for K ′ = 7 and B = [7 7 7 7 7 7 7 7 7]

for K ′ = 9. Each base matrix performs edge spreading [89] such that B =
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Figure 4.4: UBER of the proposed terminated EG-SC LDPC codes with K ′ = 7
and 9 compared to the UBER of protograph SC codes.
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Figure 4.5: UBER of the proposed terminated EG-SC LDPC codes constructed
from EG(3, 23) with K ′ = 7 and 9 compared to the UBER of the (8, 8K ′) regular
LDPC codes constructed from EG(3, 24) with K ′ = 7 and K ′ = 9.
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B(0) + B(1) + . . . + B(j) for j = 6, where each B(j) = [1, 1, . . . , 1] is the 1 × K ′

all-one vector. Let L = 49, by arranging the set of {B(j)} in the form as shown in

(3.13), we obtain a terminated base matrix for a protograph SC LDPC code. The

base matrix of the terminated protograph SC code is then lifted with CPMs of

size γ = 79, where the cyclic shift of each CPM is chosen such that the resulting

γ(L + ms) × γLK ′ parity-check matrix contains no cycles of length four. For

K ′ = 7 and K ′ = 9, we obtain two parity-check matrices of size 4345×27097 and

4345×34839 with rank 4339 for both matrices. Thus, they define a (27097, 22758)

protograph SC code with rate 0.84 and a (34839, 30500) protograph SC code with

rate 0.875, respectively. The decoding thresholds for the constructed protograph

SC codes are given in TABLE 4.2. The UBER of the constructed protograph SC

LDPC codes is shown in Fig. 4.4. We can see from the figure that our proposed

EG-SC LDPC codes have better error floor performance than the constructed

protograph SC LDPC codes, though they sacrifice some decoding threshold. In

particular, the constructed EG-SC LDPC codes do not have an error floor around

the UBER of 10−9, while the constructed protograph SC LDPC codes show an

error floor around the UBER of 10−8.

Fig. 4.5 compares the UBER of the proposed EG-SC LDPC codes constructed

from Euclidean geometry EG(3, 23) with (8, 8K ′) regular LDPC codes of similar

code lengths and code rates, where K ′ = 7 and 9. In the figure, the codes denote

by ‘(8, 8K ′)-reg’ are LDPC codes constructed from Euclidean geometry EG(3, 24).

Since each line in EG(3, 24) has 24 = 16 nonzero positions, we evenly split each

column of the parity-check matrix H(3,24) =
[
H

(0)

(3,24),H
(1)

(3,24), . . . ,H
(16)

(3,24)

]
into two

different columns. Thus, we obtain 34 weight-8 CPMs. By concatenating 7

and 9 of weight-8 CPMs, a parity-check matrix HExt
(3,24) of size 4095 × 28665 and

4095 × 36855 can be constructed, respectively. Both matrices have a column
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weight of 8, which is identical to the column weight of the parity-check matrix

for the EG-SC LDPC codes constructed from EGNote that the code lengths of

(8, 8K ′) regular LDPC codes are similar to that of the EG-SC LDPC codes shown

in Fig. 4.5. Moreover, the code rates of (8, 8K ′) regular LDPC codes are 0.8571

and 0.889 for K ′ = 7 and K ′ = 9, respectively, which are similar to the rates of

the EG-SC LDPC codes. It can be seen from Fig. 4.5 that the proposed EG-SC

LDPC codes show no error floor at the UBER level of 10−9 ∼ 10−10, while the

regular LDPC codes show an error floor around the UBER of 10−6 ∼ 10−7.

4.7 Reliability-based Windowed Decoding for SC

LDPC Codes

By employing the sliding windowed decoder with the conventional WBF algo-

rithm for SC LDPC codes, we observe a considerable performance loss caused

by error floor. In this section, we propose a partial message reservation (PMR)

method and a partial syndrome check (PSC) stopping rule for the windowed

decoder to solve this problem.

4.7.1 The PMR Method

Due to the structure of the sliding windowed decoder, we observe that some

of the VNs in the decoding window have neighboring CNs outside the window.

We call these VNs as incomplete VNs and the others as complete VNs for this

decoding window. It was shown in [74] that the performance of the conventional

WBF algorithm highly relies on a large column weight of the given parity-check

matrix for an LDPC code. However, in the construction defined by Eq. (3.15),

the incomplete VNs have a lower column weight than that of complete VNs.
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Therefore, the messages passed along the edges connected to the incomplete VNs

are less reliable than that associated with the complete VNs.

It is well-known that the good performance of SC LDPC codes with windowed

decoding comes from reliable messages passed from one window to the next. To

avoid the error propagation of unreliable messages from the incomplete VNs,

we propose a PMR method for the sliding windowed decoder. Let VC and VI

represent the sets of indices for complete VNs and incomplete VNs in a decoding

window, respectively. Define zt = (zt,0, zt,1, . . . zt,n′−1) as the decoded codeword

for the current window at time index t, where n′ = W̃ ·Uc. The outgoing message

from the k-th VN in the current decoding window to the next window can be

given by

uk =

zt,k, k ∈ VC

vk, k ∈ VI

, (4.20)

where 0 ≤ k ≤ n′ − 1. This means that only the messages from complete VNs in

the t-th window are reserved for the t+1-th window. Note that the window size is

chosen to ensure that the number of complete VNs in a decoding window is larger

than that of incomplete VNs so that more reliable messages can be reserved and

propagated to the next window. We will show in Fig. 3 that this PMR method

can significantly improve the error floor performance of the proposed RBWD

scheme.

4.7.2 The PSC Stopping Rule

When decoding an LDPC code, all the parity-check equations need to be satisfied

to get a valid codeword. An efficient stopping rule based on soft bit error indica-

tors was introduced in [96] for sliding windowed decoder. However, this method

can not be directly applied to an RBWD scheme since only hard information is
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Figure 4.6: An example of sliding windowed decoder with window size W̃ = 3
at time index t = 2 (solid region). The parity-check equations considered by the
PSC stopping rule are shown in dashed region. The complete VNs are shown
in blue (vertically hatched) and the incomplete VNs are shown in red (hatched)
above the parity-check matrix.

passed along the edges in the Tanner graph.

By making use of the reliable messages, a PSC stopping rule is applied to the

windowed decoding scheme. In particular, our stopping rule only focuses on the

parity-check equations of complete VNs in a decoding window. To be specific,

define W̃ ′ as the number of parity-check equations in one decoding window con-

sidered by the PSC stopping rule. The first W̃ ′ = (W̃ − ms) · Ur parity-check

rows are checked in each decoding window. Once these parity-check equations

are satisfied or the preset maximum number of iterations is reached, the decoding

window slides to the next position. Note that a PSC stopping rule is also pro-

posed in [95]. However, it only checks a fixed number of syndromes that belong

to the target symbols. In our proposed PSC stopping rule, all reliable VNs are

considered. When W̃ > ms + 1, the number of complete VNs in one decoding

window is larger than that of target symbols, which leads to a more strict stopping

rule and ensures the messages from complete VNs to be more reliable.

An example of the proposed sliding windowed decoder with W̃ = 3 andms = 1

at time index t = 2 is illustrated in Fig. 4.6. The first 2Uc VNs are complete VNs
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and the last Uc VNs are incomplete VNs. Note that only the first 2Ur CNs are

considered for the parity-check equations since these CNs connect to the complete

VNs. The last updated messages of the first 2Uc complete VNs are reserved for

the decoding process at time index t = 3.

4.7.3 The Proposed RBWD Scheme

Denoted by Ĥ an m′ × n′ parity-check matrix for one decoding window, where

m′ = W̃ · Ur and n′ = W̃ · Uc. Let s′(l) = (s′
(l)
0 , s

′(l)
1 , . . . s

′(l)
W̃ ′−1

) be the syndrome

vector computed by the PSC stopping rule at the l-th iteration. Assume that

vector y
(l)
t = (y

(l)
t,0, y

(l)
t,1, . . . y

(l)
t,n′−1) is the decoded codeword of the l-th iteration at

time index t. Define M′(j′) and N ′(i′) as the sets of indices of all the nonzero

elements in the j′-th row and i′-th column of Ĥ, respectively. Set the maximum

number of decoding iterations as Imax. By combining the PMR and PSC with the

SBF-WBF algorithm, the proposed RBWD scheme is summarized in Algorithm

4.2.

5 10 15 20 25

Time index t

10-3

10-2

B
E

R

Complete VN-SBF
Incomplete VN-SBF
Complete VN-RBWD
Incomplete VN-RBWD

Figure 4.7: Error performance of complete and incomplete VNs for the (7, 49) SC
LDPC code at different time t, Eb/N0 = 6 dB.
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Algorithm 4.2 The proposed RBWD scheme

Inputs: Ĥ, L, W̃ , U, Imax

1: Initialize: l = 0 and t = 1
2: while t ≤ L do
3: if t = 1 then
4: set y

(0)
1 = v

5: else

6: set y
(0)
t,i′ =

{ vi′ , n′ − 1− Uc ≤ i′ < n′ − 1
ui′ , 0 ≤ i′ < n′ − 1− Uc

7: end if
8: while l ≤ Imax do
9: for j′ = 0 : (m′ − 1) do

10: wj′ = min
i′∈M(j′)

|ri′ |

11: end for
12: Update l = l + 1
13: Compute s(l) by y

(l)
t Ĥ

T

14: Determine s′(l) = (s
(l)
0 , s

(l)
1 , . . . s

(l)

W̃ ′−1
)

15: if s′(l) = 0 or l = Imax then
16: output zt = y

(l)
t and break

17: end if
18: for i′ = 0 : (n′ − 1) do

19: Estimate E
(l)
i′ as in (2)

20: end for
21: Update F as in (3)

22: Flip y
(l)
t,i′ randomly, where i′ ∈ F

23: end while
24: Perform PMR as in (4), set t = t+ 1 and l = 0
25: end while

Note that the performance gain of the proposed RBWD scheme originates

from the discarding of unreliable messages from previous decoding window to

perform message-passing decoding in the current window. To demonstrate this,

we evaluate the BER performance of complete and incomplete VNs for various

window positions. Fig. 4.7 depicts the BER for both complete and incomplete

VNs of an SC LDPC code constructed from a (7, 49)-regular protograph LDPC

code with ms = 6, L = 56 at different window positions. The decoding window

size W̃ is set to 14. It can be seen that for both the SBF-WBF algorithm and the
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proposed RBWD decoding scheme, incomplete VNs always have a higher BER

than complete VNs. For instance, the BER of incomplete VNs by using RBWD

scheme is nearly two times as that of the complete VNs for all window positions.

The difference of BER for those two types of VNs can be even larger for the

SBF-WBF algorithm. This indicates that the messages from incomplete VNs are

less reliable than that from complete VNs.

It can also be seen that the BER for both complete and incomplete VNs of

the SBF-WBF algorithm increases with the sliding of the decoding window. For

example, the BER of complete and incomplete VNs for the SBF-WBF algorithm

increases more than ten times from the first decoding window to the 25-th de-

coding window for the simulated SC LDPC code. On the other hand, the BER

of both complete and incomplete VNs for the proposed RBWD scheme remains

almost the same for all decoding window positions. This means that by only

reserving the messages from the complete VNs in the RBWD scheme, we prevent

the “contamination” of the reliable messages from the unreliable messages. As

a result, the BER performance of the proposed decoding scheme is substantially

improved.

4.8 Performance Analysis of the RBWD Scheme

In this section, we investigate the error rate performance and the decoding com-

plexity of the proposed RBWD scheme. Binary phase-shift keying (BPSK) mod-

ulation and additive Gaussian noise channels are considered in all simulations.

The maximum number of iterations is 200 for all windowed decoding schemes

and it is 2000 for FBD.
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4.8.1 Error Rate Performance

An SC LDPC code is constructed from a (7, 49)-regular protograph LDPC code

with full edge-spreading, i.e., B0 = B1 = · · · = B6 = [1 1 · · · 1]1×7. We set

the termination length L = 56, the resultant base matrix BL is expanded with

lifting size U = 97. As a result, we obtain a length-38024 (7, 49) SC LDPC code

with large VN degrees. The BER and frame error rate (FER) of the length-38024

(7, 49) SC LDPC code decoded by various decoding schemes are shown in Fig. 4.8.

Here MBF-PMR and SBF-PMR represent the RBWD scheme without applying

the proposed PSC stopping rule. The BER and FER of the FBD and the sliding

windowed decoder based on the SBF-WBF algorithm are also shown in the figure

for comparison. We see that the proposed PMR method dramatically improves

the error rate performance. Moreover, the proposed stopping rule further reduces

the error floor and achieves the BER performance within 0.1 dB from that of the

FBD.

Note that the proposed RBWD scheme also works for SC LDPC codes with

small VN degrees. To clarify the generality, we constructed an SC LDPC code

from a (3, 6)-regular protograph LDPC code. After applying the edge spreading

matrices B0 = B1 = B2 = [1 1]1×2 and set the termination length L = 108,

a length-38016 (3, 6) SC LDPC code can be obtained by graph expansion with

lifting size M = 176. As shown in Fig. 4.9, the proposed RBWD scheme works

for SC LDPC codes with small VN degrees in the sense that the BER performance

of the RBWD scheme can approach that of the FBD.
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Figure 4.8: BER/FER performance of the length-38024 (7, 49) SC LDPC code.
The window size is W̃ = 14 for windowed decoding.
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Figure 4.9: BER/FER performance of the length-38016 (3, 6) SC LDPC code.
The window size is W̃ = 6 for windowed decoding.



116
4. EUCLIDEAN GEOMETRY BASED SPATIALLY-COUPLED LDPC CODES AND

WINDOWED DECODING SCHEME

4.8.2 Complexity Comparison

In this section, we compare the complexity of the proposed RBWD scheme with

that of the MBF-PMR and the SBF-PMR schemes. Note that we only consider

the decoding schemes based on the conventional WBF algorithm since it only

exchanges one bit information between CNs and VNs, which has a lower decoding

complexity than SPA. In addition, we define Iavg as the average number of updates

processed by a VN in one decoded codeword, which can be given by

Iavg =
(∑L

t=1
It

)
/L, (4.21)

where It is defined as the total number of updates processed by a VN at the t-th

window during the decoding process. The comparison of Iavg for the length-38024

(7, 49) SC LDPC code decoded by MBF-PMR, SBF-PMR, and the proposed

RBWD scheme is shown in Table 5.14. Note that for a fair comparison, we fix

W = 14 for all windowed decoding schemes, i.e., each decoding window covers

9506 bits in order to keep the same decoding latency. It can be seen that for SNR

from 5.6 dB to 6 dB, our proposed RBWD scheme requires about half number of

updates compared to that of MBF-PMR and SBF-PMR.

Table 4.3: Average iteration comparison of the length-38024 (7, 49) SC LDPC
code decoded by various decoding schemes.

Eb/N0 (dB) 5.2 5.4 5.6 5.8 6 6.2

Iavg

MBF-PMR 132 59 29 21 17 13
SBF-PMR 132 57 29 22 18 15

RBWD 129 48 17 11 8 7
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4.9 Summary

In this chapter, we first proposed a construction method for SC LDPC codes from

the conventional EG LDPC codes. The proposed construction method yields fam-

ilies of EG-SC LDPC codes by considering m-dimensional EG LDPC block codes

as the underlying component codes, where m > 2. Various design examples for

EG-SC LDPC code are illustrated, which are decoded by a low complexity WBF

algorithm. We show that the proposed EG-SC LDPC codes achieve considerable

convolutional gain over their EG LDPC code counterparts. Compared to proto-

graph SC LDPC codes and regular LDPC codes of similar code lengths and code

rates, the EG-SC LDPC codes show no error floor at the UBER as low as 10−9,

whereas the protograph SC LDPC codes and regular LDPC codes show an error

floor around the UBER level of 10−9 and 10−7, respectively. In addition, a RBWD

scheme is also proposed for SC LDPC codes. The proposed scheme propagates

the reliable messages from complete VNs between two consecutive decoding win-

dows, which substantially improves the BER performance of the RBWD scheme

within only 0.1 dB away from that of the FBD. The stopping rule adopted in the

RBWD scheme further reduces the error floor by operating on the parity-check

equations that only involve complete VNs. Numerical results show that the PSC

method can reduce decoding complexity of the SC LDPC codes without error

floor compared to the MBF-PMR and the SBF-PMR schemes.





Chapter 5

Enhanced Quasi-Maximum

Likelihood Decoding for 5G

LDPC Codes

5.1 Introduction

Low-density parity-check (LDPC) codes [70] and their variations, e.g., [46,86,89,

91, 92, 133, 161–164], have been proposed to wide applications, such as wireless

communications, optical communications, and data storage, for their near-capacity

performance under belief propagation (BP) decoding algorithms for moderate

to long block lengths. In the coming fifth generation (5G) mobile networks,

protograph-based raptor-like (PBRL) LDPC codes [133] are determined to be

one of the channel coding technologies for the eMBB scenario [1]. Therefore, how

to develop efficient and effective decoding algorithms with low complexity and

good error performance for the 5G LDPC codes becomes an attractive research

question recently. In this chapter, we aim to improve the performance of the

119
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5G LDPC codes approaching that of their associated maximum-likelihood de-

coding. To be more specific, we firstly propose a two-dimensional scale-corrected

min-sum algorithm for the 5G LDPC codes to approach the error performance of

the sum-product algorithm. Then we propose an enhanced reprocessing method,

so-called the enhanced quasi-maximum likelihood (EQML) decoding method, which

further approaches the performance of the maximum-likelihood decoding for 5G

short LDPC codes.

5.2 Problem Statement

As we move into the era of the fifth generation (5G) mobile networks, new services

and applications, such as vehicle-to-everything and Internet of things, have been

considered in the 5G standard recently. These applications require ultra-reliability

and low decoding complexity for massive low-cost devices, which have drawn sig-

nificant research efforts for short codes with low code rates [165–167]. Compared

to the asymptotic performance for long LDPC codes, the performance limits in

finite block lengths are more important for these applications [129,168]. Although

the maximum likelihood (ML) decoding becomes possible for very short LDPC

codes, its decoding complexity becomes prohibitively high when the block length

is larger than a few tens of bits. To reduce the decoding complexity, there have

been extensive studies on simplified decoding architectures for LDPC codes and

their variations, such as [90] and [169]. However, they are commonly designed for

long block lengths. On the other hand, it is shown in [106] that the sum-product

algorithm (SPA) becomes sub-optimal and has considerable performance gap from

the ML decoding for the LDPC codes with short block lengths, which is due to the

existence of the small cycles in their associated Tanner graphs. Therefore, several

quasi-ML (QML) decoding methods have been investigated [107–110] to achieve
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near-ML performance with a tolerable decoding complexity for the LDPC codes

with short block lengths. The most common strategy adopted in these works is

to introduce multiple rounds of decoding tests, so-called the reprocessing [109],

after the failure of conventional BP decoding. More specifically, the decoder is

reinitialized with a list of different decoder inputs during the reprocessing, where

each input sequence is generated by substituting the channel outputs of the se-

lected unreliable VNs with the maximum or minimum values. The conventional

BP decoding is conducted with each input sequence, and the decoding output

is stored if it generates a valid codeword. The ‘best’ codeword is chosen from

the list of valid codewords as the decoder output according to a certain decision

metric.

One of the earliest QML decoding method is the ordered statistic decoding

(OSD) [107]. For a received signal, this decoding method chooses p most reliable

bits and generates a list of
∑p

q=1

(
p
q

)
possible error combinations for these bits.

Each combination is re-encoded into a codeword. In this way, a list of codewords

is obtained, and one of them is chosen as the decoding output. Obviously, matrix

transformation is required for different p most reliable bits in order to obtain the

corresponding generator matrix, which makes the OSD unsuitable for hardware

implementations. To avoid matrix transformation, the augmented BP (ABP)

decoding and saturated min-sum (SMS) decoding were proposed in [108] and

[109], respectively. In addition, a single bit flip-aided decoding method based on

multitree search for the unreliable VNs was proposed in [110]. For these decoding

methods, a conventional BP decoding is evoked for several rounds to generate

a list of codewords, where the decoder is fed with a different input sequence

derived from the same channel output sequence at each round of the decoding

test. Nevertheless, for all these QML decoding methods with a small list size, the
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performance gap to the ML decoding is still considerable.

5.3 Main Contributions

In this work, to obtain the decoding performance near the SPA for the 5G LDPC

codes, we propose an improved MSA-based decoding algorithm with a low de-

coding complexity compared to the SPA, where we only introduce one pair of

universal parameters for all information bit lengths K ∈ [40, 8448] and code rates

R ∈ [1/5, 8/9] in the 5G standard. To further approach the error performance of

the ML decoding for the 5G short LDPC codes, we propose an enhanced QML

decoding method with a new reprocessing architecture, which obtains a near-ML

performance with a small list size. The main contributions of this work are

summarized below:

• We propose an improved MSA-based decoding algorithm for the 5G LDPC

codes to achieve the error performance of the SPA. The proposed decoding

algorithm adopts the self-correction method, which reserves the reliable

variable-to-check (V2C) messages and reduces the sign flips. Moreover,

based on the NMSA, we use an additional scaling factor amplifies the mag-

nitude of the extrinsic messages sending to the CNs that are connected to

degree-1 VNs, which further improves the reliability of the reserved mes-

sages with the self-correction method.

• We propose an enhanced decoding architecture based on the proposed de-

coding algorithm such that the error performance of the 5G short LDPC

codes can approach that of ML decoding with a desirable decoding com-

plexity even with a small list size. By investigating the phenomenon of sign

flips for VNs’ extrinsic messages, we propose a novel node selection method
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from edge perspective to improve the accuracy of selecting unreliable VNs.

To reduce the decoding complexity, we further introduce a stopping rule,

namely partial pruning stopping (PPS) rule. The PPS rule effectively ter-

minates the decoding tests on part of reprocessing sub-branches if a valid

codeword is obtained.

• We derive the asymptotic bounds on frame error rate (FER) of the pro-

posed EQML decoding method for a given maximum number of reprocess-

ing stages and then approximate the lower bounds on FER by using a

semi-analytical method. The derived lower bound on the FER is close to

the simulation results in the low signal-to-noise ratio (SNR) region.

• We investigate the error performance of the proposed decoding algorithm

and the EQML decoding method. It demonstrates that the proposed de-

coding algorithm can approach the error performance of the SPA for the 5G

LDPC codes with small and large information bit lengths. Moreover, the

EQML decoding method outperforms the SPA with the same decoding com-

plexity for the 5G short LDPC codes and can approach the Polyanskiy-Poor-Verdú

(PPV) bound within 0.4 dB in terms of FER performance. We also analyze

the decoding complexity of the proposed EMQL decoding method with dif-

ferent stopping rules by using the average number of iterations for obtaining

one decoded codeword. Simulation results show that the PPS rule has a

lower decoding complexity compared to the list decoding stopping (LDS)

rule in [108] without sacrificing the error performance.
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5.4 The Two-Dimensional Scale-Corrected MSA

Decoding for 5G LDPC Codes

In this section, we propose an improved MSA-based decoding algorithm, so-called

the two-dimensional scale-corrected (2D-SC) MSA, to approach the error perfor-

mance of the SPA for the 5G LDPC codes. We can see from (3.11) in Chapter 3

that there is a large amount of degree-1 VNs in the parity-check matrix compared

to the LDPC codes in other standards such as the IEEE 802.11n and the IEEE

802.16e standard. This results in a severe deterioration in error performance

when the conventional BP decoding algorithms are used.

To improve the MSA-based decoding algorithms, the evolution of the sign and

magnitude for the V2C messages is utilized to facilitate the propagation of the

reliable V2C messages. In [50], the sign flips of the V2C messages are explored

to avoid the propagation of the unreliable V2C messages. In the following, we

further investigate the sign fluctuation phenomenon for the 5G LDPC codes and

propose a partial self-correction method, which reserves the reliable V2C messages

via significantly reducing the number of sign flips for the V2C messages sent from

VNs in Hcore. In addition, we amplify the magnitude of the V2C messages sent

to the CNs in Hex by a scaling factor larger than 1 to increase their reliability.

Moreover, a pair of universal scaling factors (α, β) for the 5G LDPC code families

is applied to all C2V messages and the V2C messages sent to the CNs in Hex,

respectively, such that the error performance of the proposed decoding algorithm

is close to that of the SPA for all information bit lengths K ∈ [40, 8448] and code

rates R ∈ [1/5, 8/9] in the 5G standard.
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Figure 5.1: The percentage of sign flips for the V2C messages per iteration with
the R = 1/5, K = 120 5G LDPC code under AWGN channels. Es/N0 = −2.6
dB.

5.4.1 Sign Flips Reduction

At each iteration of the BP decoding algorithm, the reliability of the V2C mes-

sages sent from the VNs in Hcore plays an important role in successful decoding

compared to the degree-1 VNs since these degree-1 VNs always send their initial

channel output as the V2C messages. Fig. 5.1 shows the percentage of sign flips

for the V2C messages sent from the VNs in Hcore per iteration. We can see that

the percentage of sign flips behaves in completely different ways for successful and

unsuccessful decoding cases. For the successful decoding case, the percentage of

sign flips for both MSA and NMSA decoding diminish to zero with the number

of iteration increases. Note that the percentage of sign flips decreases faster for

the NMSA decoding compared to the MSA decoding, which attributes to the

mitigation of the overestimation by the scaling factor in the NMSA. In contrast,

this percentage saturates to a constant value for the MSA decoding after a rapid

increase in the first few iterations for the unsuccessful decoding case. A simi-
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lar tendency is also observed by using the NMSA decoding for the unsuccessful

decoding case. When the NMSA decoding is adopted, although the percentage

of sign flips for the V2C messages reduces slightly at the first few iterations,

it saturates to a much high constant value compared to the case of successful

decoding. Therefore, we have the conjecture that there exists a high percentage

of the sign flips for the V2C messages when a decoding failure occurs.

To reduce the number of sign flips during the decoding iterations, we propose

a partial self-correction (PSC) method for the V2C messages sent from the VNs in

Hcore. Define Ncore as the number of VNs in Hcore, the self-correction is performed

as

Z(i)
nm =


Ztmp
nm , if sign(Ztmp

nm · Z
(i−1)
nm ) > 0, 1 ≤ n ≤ Ncore

0, otherwise

, (5.1)

where Ztmp
nm is the temporary V2C messages computed by Eq. (3.18). Note that

the proposed PSC method compares the signs of the V2C messages sent from

the VNs in Hcore at the current iteration with that at the previous iteration, and

the associated V2C message is only sent to its neighboring CN if the two signs

are the same. For the V2C messages with their signs contradictory with that

in the previous iteration, they are set to zero by the self-correction method. As

shown in the later section, the PSC method can reduce the number of sign flips

efficiently and improve the decoding performance.

5.4.2 Message Amplification

Note that the C2V messages sent from the CNs in Hex is upper bounded in

magnitude by the channel output of their associated degree-1 VN when the SPA
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is adopted [105]. This phenomenon also happens when the conventional MSA or

NMSA decoding is employed. Assume that a CN cm in Hex is connected to a

VN vn̂ of degree 1. At the i-th iteration, for any vn that is connected to cm and

deg(vn) 6= 1, we have

min
vn′∈H(cm)\vn

∣∣∣Z(i−1)
n′m

∣∣∣ ≤ ∣∣∣Z(i−1)
n̂m

∣∣∣ = |L(vn̂)| . (5.2)

It demonstrates a bounded effect that the magnitude of the C2V messages

from cm to any of its neighboring VNs except vn̂ is not greater than the mag-

nitude of the V2C message sent from vn̂. Since vn̂ is a degree-1 node, we have

|Zn̂m| = |L(vn̂)|. We know that the reliability of a message can be indicated by

the magnitude of its channel output. Thus, the reliability of the C2V messages

sent from the CNs in Hex highly relies on the magnitude of the channel output

received on the degree-1 VNs. Obviously, the reliability of the C2V messages

sent from a CN in Hex to their neighboring VNs in Hcore could be degraded if

its connected degree-1 VN receives the channel output with a small magnitude.

Moreover, the impact of this effect could be more severe when errors occur on the

degree-1 VNs because the erroneous VNs usually have small channel outputs.

We further explore the evolution of the V2C messages for the conventional

MSA and SPA to verify the above conjecture. Fig. 5.2 presents the percentage

of the V2C messages sent to the CNs in Hex, which is smaller in magnitude by

using the conventional MSA than the SPA. We see that there is a high percentage

of the V2C messages obtained by the conventional MSA decoder being smaller

than that of SPA decoder in magnitude at the first few iterations. With the iter-

ation increases, this value decreases dramatically to zero for the case of successful

decoding while it gradually increases to almost 100% for unsuccessful decoding

cases. This indicates that the reliability of the V2C messages sent to the CNs
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Figure 5.2: Percentage of V2C messages sent to the CNs in Hex, which is smaller
than that of SPA. R = 1/5, K = 120 and Es/N0 = −2.6 dB.

in Hex decreases with iterations increase for unsuccessful decoding cases. This is

because the associated C2V messages with bounded magnitude in the previous

iterations counteract the propagation of the reliable messages.

To reduce the disadvantage of the bounded effect, the upper bound |L(vn̂)|

need to be enlarged properly for these VNs. Therefore, we introduce a scaling

factor β, where β > 1, to amplify the magnitude of the V2C messages sent to the

CNs in Hex. In this way, the V2C messages can be computed by

Ztmp
nm =


β · [L(vn) +

∑
cm′∈H(vn)\cm

Y
(i)
m′n], Mcore + 1 ≤ m ≤M

L(vn) +
∑

cm′∈H(vn)\cm
Y

(i)
m′n, otherwise

, (5.3)

where Mcore is defined as the number of CNs in Hcore. As a result, the upper

bound of the V2C messages sent to the CNs in Hex is linearly scaled by β as

min
vn′∈H( ˆcm)\vn

∣∣∣M (i−1)
n′m

∣∣∣ ≤ ∣∣∣Z(i−1)
n′m

∣∣∣ = β · |L(vn̂)| , (5.4)
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5.4.3 The 2D-SC MSA

Set the maximum number of iterations as Imax. By combining the PSC method

and the message amplification, we propose the 2D-SC MSA, which can be sum-

marized in Algorithm 5.1.

Algorithm 5.1 The 2D-SC MSA

1: Initialize:
i = 0
For each n,m, set Z

(0)
nm = L(vn)

2: Iterations:
3: while i ≤ Imax do
4: i = i+ 1
5: for m = 1 : M and each vn ∈ H(cm) do

6: Update Y
(i)
mn as in Eq. (3.21)

7: end for
8: for n = 1 : N and each cm ∈ H(vn) do
9: Compute Ztmp

nm as in Eq. (5.3)

10: Update Z
(i)
nm as in Eq. (5.1)

11: end for
12: for n = 1 : N do
13: Compute L

(i)
n as in Eq. (3.19)

14: if L
(i)
n < 0 then

15: xn = 1
16: else
17: xn = 0
18: end if
19: end for
20: if x ·HT = 0 or i = Imax then
21: Stop and output x
22: end if
23: end while

It is notable that the scaling factor α ∈ (0, 1) used for the C2V messages is

the same as Eq. (3.21) in the NMSA. Because the NMSA demonstrates a rapid

decreasing in the number of sign flips as shown in Fig. 5.1, we expect the decoding

algorithm based on the NMSA to achieve a fast convergence speed.
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In our proposed 2D-SC MSA, the PSC operation tries to retain the reliable

V2C messages in each iteration based on their sign flips behavior. Then these

reliable V2C messages sent to the CNs in Hex are amplified by the scaling factor

β. Since the C2V messages sent from the CNs in Hex are directly affected by the

vulnerable degree-1 VNs, enlarging the magnitude of these reliable V2C messages

can further improve the reliability of these C2V messages computed in the next

iteration, which is beneficial to the decoding performance of the 5G LDPC codes.

Note that different scaling factors are applied to the conventional MSA to

decode irregular LDPC codes with long block lengths in [49] when computing

both C2V and V2C messages. However, the scaling factors used for the calcula-

tion of the V2C messages in [49] are optimized within (0, 1) by considering the

degree differences among the adjacent VNs, which aims to further reduce the

overestimation effect. For our proposed 2D-SC MSA, the scaling factor β aims

at amplifying the reliable V2C messages sent to the CNs in Hex for the next

decoding iteration, which means that the initial channel values in Eq. (3.18) are

also amplified if the associated V2C messages are considered to be reliable.

5.4.4 Comparison of FER Performance

We investigate the FER performance of the proposed 2D-SC MSA for the 5G

LDPC codes with the details listed in Table 5.1 [1]. Quadrature phase-shift

keying modulation and an AWGN channel are considered in the floating-point

simulations. We set Imax = 50. The scaling factor pair (α, β) is optimized as

(0.75, 1.25) for the 2D-SC MSA1, which can obtain nearly the optimal perfor-

mance for the 5G LDPC codes with all information bit lengths and code rates.

1The scaling factors here is searched to minimize the minimum mean-square error gap be-
tween the FER performance of the 2D-SC MSA and the SPA.
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CodeType
Information Bit

Lengths K
Code Rate

R

BG1

{56, 96, 120, 176, 216,
256, 288, 320, 336, 376,
416, 576, 752, 912, 1088,
1248, 1728, 2688, 3840}

{1/5, 1/3, 2/5, 1/2, 2/3}

BG2 {4096, 5184, 8448} {1/3, 2/5, 1/2, 2/3, 8/9}

Table 5.1: The Table of Simulated 5G LDPC Codes

Fig. 5.3 depicts the FER performance of the 5G LDPC codes with K = 120

and various code rates decoded by the proposed 2D-SC MSA and compared to

that of the SPA, NMSA, and MSA. We can see that the FER performance of

the MSA is far away from that of the SPA for code rates R = 1/5, 1/3, 2/5, 1/2,

and 2/3. Although the NMSA has nearly the same FER performance as the SPA

for high code rates, i.e., R = 1/2, 2/3, it has a significant performance gap from

the SPA for low code rates R = 1/5, 1/3, 2/5. Nevertheless, our proposed 2D-SC

MSA has nearly the same FER performance as that of the SPA for Code ensemble

1 with all simulated code rates.
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Figure 5.3: FER performance of the 5G LDPC codes decoded by different
decoding algorithms with information bit lengths K = 120 and code rate
R = 1/5, 1/3, 2/5, 1/2, 2/3.
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The FER performance of the 5G LDPC codes with K = 8448 and various code

rates, where K = 8448 is the maximum information bit lengths supported by the

5G LDPC codes, is shown in Fig. 5.4. It demonstrates that the performance

gap between the MSA and the SPA is even more significant, particularly for low

code rates, i.e., R ≤ 1/2. Similarly, the FER performance of the NMSA is about

0.35 ∼ 0.4 dB away from the SPA for R = 1/3, 2/5 and 1/2. However, the

proposed 2D-SC MSA is less than 0.2 dB away from the SPA performance for

R ≥ 1/2, and it can approach the FER performance of the SPA within 0.3 dB

for code rates R = 1/3 and 2/5.

-2 -1 0 1 2 3 4 5 6 7
E

s
/N

0
 (dB)

10-4

10-3

10-2

10-1

F
E

R

2D-SC MSA
SPA
NMSA
MSA

Rate 8/9

Rate 1/2

Rate 2/5

Rate 1/3

Rate 2/3

Figure 5.4: FER performance of the 5G LDPC codes decoded by different
decoding algorithms with information bit lengths K = 8448 and code rate
R = 1/3, 2/5, 1/2, 2/3, 8/9.

In addition, we also present the performance of the 5G LDPC codes with

various information bit lengths K and different code rates R decoded by the

proposed 2D-SC MSA and the SPA as follows. The red curves (solid lines) refer

to the FER performance by using 2D-SC MSA and the blue curves (dash lines)
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represent the FER performance by using the SPA. When K ≤ 3840, the markers

and the corresponding code rates R (from left to right) is ‘∗’: r = 1/5, ‘◦’:

r = 1/3, ‘.’: r = 2/5, ‘�’: r = 1/2, ‘�’: r = 2/3. When K > 3840, the

markers and the corresponding code rates R (from left to right) is ‘∗’: r = 1/3,

‘◦’: r = 2/5, ‘.’: r = 1/2, ‘�’: r = 2/3, ‘�’: r = 8/9.
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Figure 5.9: The FER performance of 5G LDPC codes with different information
length K by using 2D-SC MSA

From the simulation results, we can see that the performance gap between

the proposed 2D-SC MSA and the SPA, for a fixed code rate R, becomes larger

when information bit lengths K increases. For the 5G LDPC codes with the

same information bit lengths K, the performance gap enlarges as the code rate

R decreases. The universality of the selected decoding parameters can be seen

from the simulation results that the maximum performance gap of the proposed

2D-SC MSA from that of the SPA is less than 0.3 dB for all information bit
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lengths 56 ≤ K ≤ 8448 and all code rates 1/5 ≤ R ≤ 8/9.

5.5 The Enhanced QML Decoding Method

Although the proposed 2D-SC MSA improves the error performance of the 5G

LDPC codes and it approaches the performance of the SPA, there is still a notable

performance gap from the ML decoding for the 5G LDPC codes. This perfor-

mance gap is due to the presence of the cycles with small girth in the Tanner

graphs, which introduces the correlation in the messages and makes the SPA

sub-optimal in terms of the error performance. To reduce the performance gap

between the conventional BP decoding and the ML decoding for short LDPC

codes, QML decoding methods were proposed in [108] and [109]. However, there

is a high decoding complexity if we expect to obtain near-ML error performance.

Therefore, in this section, we further improve the decoding method for the 5G

short LDPC codes, aiming at approaching the error performance of the ML de-

coding with a desirable decoding complexity. In the following, we present our

proposed enhanced QML (EQML) decoding method.

5.5.1 The Edge-wise Selection (EWS) Method

In Chapter 3, we see that the NWS method [108–110] selects the unreliable VNs

based on the syndrome, which is a kind of hard information. To measure the

reliability of each VN in a more precise way, here we would like to select the

unreliable VNs based on the soft information exchanged during the conventional

BP decoding and expect an improved error performance. Therefore, instead of

focusing on the hard information given by syndrome, the sign evolution of the

V2C messages is investigated for the node selection.
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Figure 5.10: The average number of sign flips for the V2C messages per VN
degree under decoding failure. An AWGN channel is considered. R = 1/5,
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Fig. 5.10 shows the average number of sign flips for the V2C messages per

VN degree with the increase of iterations under the unsuccessful decoding case.

Compared to the percentage of total sign flips per iteration in Fig. 5.1, we can see

that the average number of sign flips per VN degree has a similar trend and the

average number of sign flips of different decoding algorithms eventually saturates

to a constant value. Apart from that, it also has a similar behavior as observed

in [108] that the VNs with higher degrees are more prone to be in errors compared

to other VNs. Although the 2D-SC MSA demonstrates its capabilities of reducing

the number of sign flips compared to other decoding algorithms, there are still

V2C messages having their sign fluctuated with the increase of iterations. Note

that we observed similar behaviors for other 5G short LDPC codes with different

block lengths.

Motivated by this observation, we propose a novel node selection method

based on this sign flips phenomenon. Let wk,n be the number of sign flips for the
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V2C message passed through the k-th edge of the n-th VN. Denoted by

w(vn) =
∑d(vn)

k=1
wk,n (5.5)

the total number of sign flips for the V2C messages of node vn, where d(vn) refers

to the degree of vn.
At stage j reprocessing, the proposed node selection method chooses a new

unreliable VN according to w(vn), which is computed from the decoding tests

at the (j−1)-th stage. Define w(T ′)(vn) as the number of sign flips for the V2C

messages of node vn obtained from the T ′-th decoding test. For the T -th decoding

test, only the node vn with the maximum number of sign flips w(T ′)(vn) is selected

as the candidate node v
(T )
s . Then we have V(T )

S =
{
V(T ′)
S ∪ v(T )

s

}
. When T ′ = 0,

w(0)(vn) is obtained from the initial BP decoding. To avoid selecting the same VN

in different reprocessing stages, we set w(T )(VS (T )) = 0 after the T -th decoding

test.

Compared to the NWS method, the proposed node selection method explores

more diversities on measuring the reliability of each VN since the selection cri-

terion relies on the edge level rather than the node level messages. Thus, we

would like to call it an EWS method. We would point out that the NWS method

in [108] cannot be directly applied to the 5G LDPC codes since a few punctured

VNs in the codeword do not have associated channel outputs. However, the EWS

method estimates the reliability of each VN by the VN’s extrinsic messages, which

does not rely on the existence of the channel output of that VN.

5.5.2 The Partial Pruning Stopping (PPS) Rule

Define r̂(T ) as the decoder input sequence for the T -th decoding test, which is

obtained by replacing r(V
(T )
S ) by mt on the channel output sequence. To collect
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Figure 5.11: The general tree of the EQML decoding method with the PPS rule.

all possible output codewords, 2jmax+1 − 2 possible input sequences need to be

tested before the decoder stops. This stopping rule is called list stopping rule

(LDS) in [108]. Although the LDS rule guarantees the completion of the output

codewords, which is beneficial to the error performance, it has a high complexity.

To reduce complexity, we propose a PPS rule to avoid some decoding tests in the

reprocessing. Define x(T ) and X as the output codeword after T decoding tests

and the set of all valid codewords collected in the reprocessing, respectively. After

the T -th decoding test, we save x(T ) in X if it is a valid codeword and perform the

PPS rule, which stops the decoding tests on its associated sub-branches thereafter.

The decoding tests on other sub-branches continue until jmax is reached, or there

is no more active decoding test.

Fig. 5.11 depicts the general tree of the proposed EQML decoding method

with the PPS rule. A branch is considered to be converged if there is a valid code-

word found in that branch. Compared to the LDS rule, the proposed PPS rule

reduces the decoding complexity by pruning the reprocessing on the sub-branches

followed by a converged branch, which is shown as dash lines in Fig. 5.11.

Note that an alternative stopping rule was proposed in [109], where the repro-
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cessing stops once the number of output codewords exceeds a preset threshold.

However, the threshold has to be optimized in advance by computer simulations

in order to obtain good performance. Compared to that, our proposed PPS

rule can make a good balance between the decoding complexity and the error

performance, which is desirable for practical applications.

Algorithm 5.2 The EQML Decoding Method

Perform BP decoding with Imax

2: if a valid codeword is found then
Output the codeword

4: else
Initialize: T = 1, j = 1,V(0)

S = ∅, TF = 2jmax+1 − 2
6: while j ≤ jmax do

for t = 1 : 2j do
8: T ′ =

⌊
T−1

2

⌋
for n = 1 : N do

10: Compute w(T ′)(vn) according to Eq. (5.5)
end for

12: Select v
(T )
s as v

(T )
s = arg max

1≤n≤N
w(T ′)(vn)

Determine VS (T ) = {V(T ′)
S ∪ v(T )

s }
14: Generate M by enumerating r(V(T )

S ) to ±S
Determine r̂(T ) by setting r(V(T )

S ) = mt

16: Perform BP decoding with r̂(T ) and Imax

Perform PPS rule
18: T = T + 1

end for
20: j = j + 1

end while
22: if X 6= ∅ then

Output xbest = arg min
x(T )∈X

N∑
n=1

∣∣r(vn)− xn(T )
∣∣2

24: else
Declare decoding failure.

26: end if
end if
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5.5.3 The EQML Decoding Method

Set the maximum number of decoding iterations as Imax for all BP decoding

process. Define the output codeword of the EQML decoding method as xbest. By

utilizing the EWS method and the PPS rule in the reprocessing, the proposed

EQML decoding method is summarized in Algorithm 5.2.

Note that the proposed node selection method can efficiently work together

with the PSC method in the 2D-SC MSA by adding the associated counters at

each VNs. Whenever a V2C message is set to zero by the self-correction method,

the counter is incremented by one. At the end of each decoding test, the number

of self-correction operations computed by the counter can be used for the EWS

method in the reprocessing if there is a decoding failure. Moreover, the complexity

of the self-correction method is associated with the size of Hcore instead of the size

of H since the PSC method only focuses on the V2C messages sent from the VNs

in Hcore. Thus, it results in only slightly increased memory demands according

to the size of Hcore, i.e., O(M ·Ncore).

5.6 Error Performance and Complexity Analy-

sis

In this section, we first derive the lower bound on FER for the proposed EQML

decoding method with a given jmax by considering different error cases. Then, the

decoding complexity of the proposed EQML decoding method with a given jmax

is evaluated through the average number of iterations performed for one decoded

codeword.
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5.6.1 Error Performance Analysis

The lower bounds on FER under the ML decoding for linear block codes have been

investigated by many researchers, e.g., [170–173]. We first present the expression

of FER for the proposed EQML decoding method and then derive its asymptotic

bound. Note that there are two cases that the proposed EQML decoding method

fails to obtain the correct codeword. That is either no valid codeword is obtained

or the output codeword is not the correct one. Define P jmax

EL as the probability

that the EQML decoding method does not obtain a valid codeword and outputs

an empty list after jmax stages of the reprocessing. We also define P jmax

UE as the

probability that the EQML decoding method obtains a wrong codeword at the

end of jmax reprocessing stages, where an undetected error happens in this case.

The FER of the EQML decoding method with jmax reprocessing stages, denoted

by P jmax
e , is given by

P jmax
e = P jmax

EL + P jmax

UE . (5.6)

In the following, we present the details of the derivation. For a given maximum

jmax reprocessing stage, the proposed EQML decoding method operates consecu-

tively from one stage to the next. To derive P jmax

EL , we need to find the probability

that the EQML decoding method misses valid codewords at each stage. Without

loss of generality, let Et
EL be the event that the t-th decoding test at the j-th

reprocessing stage fails to obtain a valid codeword. Define P j
EL as the probability

that the reprocessing at the j-th stage outputs an empty list of codewords. That

is

P j
EL = P (E1

EL, E
2
EL, · · · , E2j

EL) =
∏2j

t=1
P (Et

EL). (5.7)

Note that the EQML decoding method outputs an empty list of codewords if all

2jmax+1 − 1 decoding tests are unable to obtain a valid codeword. Referring to



5.6 Error Performance and Complexity Analysis 145

the initial BP decoding test as the stage-0 decoding, we have

P jmax

EL =

jmax∏
j=0

P j
EL =

jmax∏
j=0

2j∏
t=1

P (Et
EL), (5.8)

It is known that the EQML decoding method chooses the best codeword xbest,

which is the closest to the received sequence, among all valid codewords obtained

from the decoding tests. To derive P jmax

UE , we first discuss the probability that a

wrong codeword is obtained at each reprocessing stage. Let Et
UE be the event that

the t-th decoding test at the j-th stage reprocessing obtains a wrong codeword.

Denoted by P j
UE the probability that a wrong codeword is obtained at stage-j

reprocessing, and it is given by

P j
UE = P (Et

UE|xbest = xt) = (1− P j
EL) · P (xbest 6= z), (5.9)

where z is the transmitted codeword.

Note that the PPS rule applied to the EQML decoding method terminates

the subsequent decoding tests when a valid codeword is obtained at the j-th

reprocessing stage. As a result, the probability that the EQML decoding method

with jmax reprocessing stages obtains a wrong codeword can be given by

P jmax

UE =

jmax∑
j=0

P j
UE ·

j−1∏
j′=0

P j′

EL, (5.10)

In Fig. 5.12, a binary tree illustrates the FER performance of the proposed EQML

decoding method with the first two reprocessing stages. The probabilities of every

event associated with the decoding tests are shown in the figure. According to

Fig. 5.12, we conclude the FER of the EQML decoding method from (5.8) and
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Figure 5.12: The binary tree of the error probability for the proposed EQML
decoding method operations.

(5.10) as

P jmax
e =

jmax∏
j=0

P j
EL +

jmax∑
j=0

(1− P j
EL) · P (xbest 6= z) ·

j−1∏
j′=0

P j′

EL. (5.11)

According to (5.11), we derive the lower bound on FER performance for the

proposed EQML decoding method. Suppose that the all-zero codeword is trans-

mitted over the AWGN channel by using binary phase-shift keying (BPSK) mod-

ulation. We define the normalized SNR as 1/σ2 [74], where σ2 is the noise vari-

ance. Motivated by [173], the lower bound on FER for an LDPC code under ML

decoding over AWGN channels can be given by

PML ≥ nd ·Q

(√
dmin

σ2

)
, (5.12)

where dmin represents the minimum Hamming weight of the LDPC code and nd

is the number of codewords with dmin. Therefore, the lower bound on FER of the
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EQML decoding method is

P jmax
e ≥

jmax∏
j=0

P j
EL + nd ·Q

(√
dmin

σ2

)
·
jmax∑
j=0

(1− P j
EL) ·

j−1∏
j′=0

P j′

EL. (5.13)

5.6.2 Decoding Complexity Analysis

Apart from the error performance, the decoding complexity is also a critical issue

for practical implementation. In fact, reducing decoding complexity is signif-

icantly important for various applications, such as remote control, factory au-

tomation, and smart grid. Here we evaluate the decoding complexity of the

proposed EQML decoding method for a given jmax.

Since the conventional BP decoding is executed in multiple times in the re-

processing, we use the average number of iterations for decoding one codeword

to evaluate the decoding complexity. Define Il,f as the number of iterations used

during the l-th reprocessing test of the f -th received codeword. Let Iavg be the

average number of iterations used for decoding one codeword. Then we have

Iavg =
1

F

∑F

f=1
(I0,f +

∑(2jmax+1−2)

l=1
Il,f ), (5.14)

where F represents the total number of codewords transmitted.

Note that the decoding complexity of a transmitted codeword consists of two

parts, i.e., the iterations performed in the conventional BP decoding and the

reprocessing. If the conventional BP decoding does not converge to a valid code-

word after a preset Imax, the reprocessing is performed which largely increases the

decoding complexity. More specifically, for a preset Imax, the decoding complexity

of the proposed EQML decoding method increases exponentially with jmax and

is equal to (2jmax+1 − 2) · Imax in the worst case.
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5.7 Numerical Results

In this section, we demonstrate the FER performance of the proposed EQML

decoding method and compare it with that of the pure SPA decoding. We also

compare the decoding complexity of the EQML decoding method with different

stopping criteria and jmax. We consider the 5G LDPC codes with information bit

lengths K = 120, code rates R = 1/5 and 1/3, which have the associated code

block lengths N = 600 and 360, respectively. All the simulation settings used are

the same as shown in Section 5.4.4. Note that the 2D-SC MSA is used for each

BP decoding test in the EQML decoding method with Imax = 50.

5.7.1 The FER Performance

In Fig. 5.13 and Fig. 5.14, we investigate the FER performance of the proposed

EQML decoding method with different stopping criteria and jmax. The FER

performance of the SPA decoding is also shown in Fig. 5.13 and Fig. 5.14. For

a fair comparison, we set the maximum number of iterations performed by the

SPA decoding the same as it is used by the EQML decoding method with the

LDS rule, i.e., ISPA = (2jmax+1 − 1) · Imax. For convenience, we represent ISPA

by TF , where TF = 2jmax+1 − 1, refers to the number of the decoding tests to be

conducted.

We can see from Fig. 5.13 and Fig. 5.14 that the proposed EQML decod-

ing method with jmax = 4 outperforms the SPA decoding with TF = 31 for

N = 600 and 360 by about 0.2 dB. The performance gain increases to 0.3 dB

when jmax = 6 compared to the SPA decoder with TF = 127. Note that the

Polyanskiy-Poor-Verdú (PPV) bounds [129] for the block lengths N = 600 and

360 are also shown in Fig. 5.13 and Fig. 5.14, respectively, where the performance

gaps between the EQML decoding method with jmax = 6 and the PPV bound for
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Figure 5.13: FER performance of the EQML decoding method for the 5G LDPC
code with N = 600, R = 1/5.
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Figure 5.14: FER performance of the EQML decoding method for the 5G LDPC
code with N = 360, R = 1/3.

different block lengths are within 0.5 dB. More importantly, the EQML decoding

method with the PPS rule achieves almost the same FER performance compared

to that of the LDS rule for both jmax = 4 and 6.
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In Fig. 5.13 and Fig. 5.14, we also show the proposed lower bound on the

FER of the EQML decoding method with jmax = 4 and 6 for the two LDPC short

codes. More specifically, the number of codewords with the minimum Hamming

distance is computed by the method introduced in [174]. The average probability

of an empty list at each reprocessing stage is obtained from the simulations. In

other words, the plotted lower bound is based on a semi-analytical approach. We

can see from the figures that the gap between the lower bound and the simulation

result is close for both LDPC codes particularly in the low SNR region.

5.7.2 Decoding Complexity Comparison

We further compare the decoding complexity of the proposed EQML decoding

method with different stopping criteria and jmax in terms of the average number

of iterations Iavg.
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Figure 5.15: The comparison of Iavg for the 5G LDPC code with the LDS and
the PPS rules, N = 360 and 600.

The comparison of the average number of iterations Iavg for the block lengths
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N = 360 and 600 with the EQML decoding method for different stopping rules is

shown in Fig. 5.15. We can see that our proposed EQML decoding method with

the PPS rule requires a less number of Iavg for both jmax = 4 and 6 compared to

that with the LDS rule. In particular, there is about 15 % less Iavg required for

the Es/N0 from -3.7 dB to -3 dB with N = 600, and for the Es/N0 -1.2 dB to

-0.6 dB with N = 360. Moreover, the reduction of the decoding complexity can

be about 25 % in the SNR region from -3.7 dB to -2.8 dB and from -1 dB to -0.2

dB for N = 600 and N = 360, respectively, when jmax is equal to 6.

5.8 Summary

In this chapter, we proposed an EQML decoding method for the 5G LDPC codes.

Firstly, we proposed an improved decoding algorithm, called the 2D-SC MSA to

approach the FER performance of the SPA for the 5G LDPC codes. The proposed

2D-SC MSA adopts self-correction method and message amplification, where the

self-correction method reduces the frequency of sign flips for the V2C messages,

and the message amplification reinforces the reliability of the V2C messages,

respectively. Then we employed the EQML decoding method to further improve

the FER performance of the 5G short LDPC codes. The EQML decoding method

adopts the EWS method to improve the accuracy of the node selection for un-

reliable VNs. In addition, the PPS rule was proposed for the EQML decoding

method to reduce the decoding complexity. We also evaluated the FER per-

formance of the proposed EMQL decoding method by using the semi-analytical

method and examined the decoding complexity for different stopping criteria

and jmax. Simulation results show that the proposed 2D-SC MSA can approach

the FER performance of the SPA within 0.3 dB. The EQML decoding method

outperforms the SPA for the 5G short LDPC codes and approaches the PPV
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bound within 0.4 dB in the low SNR region when jmax = 6. In addition, the

proposed PPS rule has a lower decoding complexity compared to the LDS rule

without performance loss.



Chapter 6

The AMP-aided Decoding

Scheme of 5G LDPC Codes

6.1 Introduction

In the previous chapter, we present the design of the EQML decoding method

for the 5G LDPC codes with FER performance close to the ML decoding and

a relatively low decoding complexity. In this chapter, we consider improving

the performance of the 5G short LDPC codes with code rates R ≤ 0.5 by using

one-step reprocessing based on the approximate message passing (AMP) detector.

6.1.1 Overview of the general AMP algorithm

The AMP algorithm was first proposed in [121] and further studied in [175,176].

The algorithm exploits an iterative refining process to recover the sparse unknown

signal x from a noisy measurement y via using the Gaussian approximation dur-

ing message passing. Compared to the popular class of reconstruction schemes

based on linear programming methods, e.g., the least absolute shrinkage and

153
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selection operator (LASSO) algorithm [177], the AMP algorithm is an elegant

approach that achieves identical performance as linear programming with a lower

implementation complexity. Consider the scenario of noisy measurement, which

is modeled as

y = Mx + w, (6.1)

where M is the n×M measurement matrix and w ∼ N (0, σ2I).

The AMP algorithm starts from an initial guess x̂0 = 0 of the target signal x

and the initial residue z0 = y. The algorithm proceeds iteratively according to

x̂t+1 = ηt
(
M∗zt + x̂t

)
zt = y −Mx̂t +

1

δ
zt−1

(
N∑
i=1

η′t−1

(
M∗

i z
t−1
i + x̂t−1

i

)
N

)
. (6.2)

Here ηt(∗) is a threshold function applied componentwise to the input vector, x̂t ∈

RN is the current estimate of x at t-th iteration, x̂t−1
i is the i-th element of x̂t−1,

and zt ∈ Rn is the current residue. Further, η′t(∗) is the first derivative of ηt(∗)

with respect to the input. The term δ = n/N is known as the under-sampling

fraction, which is an important parameter for the study of sparsity-undersampling

trade-off [121]. Finally, M∗ represents the transpose of M, and Mi represents

the i-th column of the M. Note that it is commonly assume that each element

of M follows identical and independent Gaussian distribution and each column is

normalized to have unit norm, i.e., mi,j ∈ N (0, 1/n). This assumption can ensure

the measurement matrix satisfies the restricted isometry property (RIP) [178],

and facilitate the algorithm analysis.

Recall from previous that during the iterative denoising process the variance

of the operation P(x − x̂t) reduces with respect to the iteration t, assme that
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P does not correlate with x and x̂. Note that in most of the time, this is not

the case, instead x̂t after the first iteration becomes strongly dependent. The

derivation of the correction term

1

δ
zt−1

(
N∑
i=1

η′t−1

(
M∗

i z
t−1
i + x̂t−1

i

)
N

)

in (6.10) ensure that the correlations between x and x̂t at minimal [121].

6.1.2 State Evolution

For the iterative process in the AMP algorithm, a state variable τt and its evo-

lution with respect to iteration t = 1, 2, . . . are introduced to characterize the

convergence performance during the iterative process [121, 176]. In particular,

for a large-scale system, where n,N, k → ∞ with fixed n/N and k/N , and the

sparsity k denotes the number of non-zero elements in sequence x, k � N , the

state evolution of τt is given by [176]

τ 2
t = σ2 +

E [‖x̂t − x‖2
2]

δ

= σ2 +
E [‖ηt−1(M∗zt−1 + x̂t−1)− x‖2

2]

δ

≡ σ2 +
E [‖ηt−1(x + τt−1v)− x‖2

2]

δ
, (6.3)

where δ = n/N , σ2 is the variance of noise vector w and v ∼ N (0, I). The state

evolution begins with

τ 2
0 = σ2 +

E [‖x‖2
2]

δ
. (6.4)

Note that the input of the function η(∗) in the third equality of (6.3) can be

interpreted a noisy estimate of x, i.e., x + τtv. The expectation in (6.3) is taken
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over the random variables x and v.

From (6.3), it can be observed that τ 2
t characterizes the mean squared error

(MSE) of each estimate x̂t. Hence, it implies that the convergence of AMP

algorithm in terms of MSE can be tracked by exploiting the evolution of state

variable τ 2. Obtaining τt for each iteration via state evolution in (6.3) requires a

high computational complexity. Thus, an empirical estimate of τt [179], i.e.,

τt =
1√
n
‖zt‖2, (6.5)

is commonly used during the implementation of AMP algorithm.

Figure 6.1: Soft-thresholding function with threshold θ.

6.1.3 Threshold function η(∗)

The threshold function ηt(∗) described in the previous subsections depends on

iteration. For commonly used soft-threshoding denoiser [121], we have ηt(y) =

ηt(y; θt) that is given by the function

x̂ = η(y, θ) =


y − θ, if y > θ

0, if − θ ≤ y ≤ θ

y + θ, if y < −θ

. (6.6)
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Here, ηt(y; θt) takes a different θ in each iteration, which is commonly set to the

empirical τt given in (6.5). An example of soft-thresholding function is illustrated

in Figure 6.1.

6.2 Problem Statement

As shown in [107–110] and the previous chapter, the QML decoding methods

utilize the idea of list decoding in the reprocessing, where several rounds of de-

coding tests are conducted after the failure of the initial decoding test. Only the

decoding output from the successful decoding tests are collected to form a list

of the decoded codewords and the best codeword is chosen from the list as the

decoder output in the end according to certain decision metric. Although these

QML decoding methods can approach the FER performance of the ML decoding,

they still adopt exhaustive decoding tests based on all possible combinations of

the unreliable VNs. To achieve a desirable error performance, a large number

of repeated decoding tests is required to increase the probability of correcting

the unreliable VNs, especially for the LDPC codes with long block lengths. This

results in a high decoding complexity. In addition, there is no guarantee that a

valid codeword is always obtained after each decoding test. If all the decoding

tests in the reprocessing fail to obtain a valid codeword, a decoding failure is

declared and the error rate performance has no improvement in this case while

it still causes a fairly high decoding complexity due to the conducted decoding

tests.
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6.2.1 Main Contributions

In this work, we propose an AMP-aided reprocessing scheme to combat the afore-

mentioned problems with a low decoding complexity, which improves the perfor-

mance of 5G short LDPC codes with code rates R ≤ 0.5. The main contributions

of this work are summarized below:

• We formulate the decoding of LDPC codes as a compressed sensing (CS)

problem, where we use a sparse error vector to indicate the reliability of

each VN in the codeword and reconstruct the error vector by the AMP

algorithms, which are commonly used techniques to solve the CS problem.

• We proposed an improved decoding scheme based on the reprocessing for

the 5G short LDPC codes with code rates R ≤ 0.5. In the proposed de-

coding scheme, only one decoding test is conducted in the reprocessing,

where the decoder input sequence is updated by the detector based on the

AMP algorithm and the designed bit-flipping rule from the channel output

sequence. More specifically, the detector estimates the reliability of the

channel output for each node vn from the residue signal by using the AMP

algorithm [121], where the residue signal is constructed by removing the

decoded signal from the associated channel output sequence. After that,

the signs of the channel outputs on the unreliable VNs are flipped according

to the preset threshold to generate the updated decoder input sequence. A

new round of decoding test is conducted afterwards and the decoder outputs

the valid codeword if the decoding test successes.

• We further propose an AMP-Enhanced Quasi-Maximum Likelihood (EQML)

decoding scheme for the 5G LDPC codes, where the AMP detector is used

as a post-process operation for the unsuccessful decoding tests in the repro-
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cessing of the EQML decoding. In this way, we can increase the probability

of obtaining a valid codeword, and the error performance of the EQML

decoding can be further improved.

• We investigate the error performance for the AMP-aided decoding scheme

with both one-time belief-propagation (BP) decoding and the EQML de-

coding. Some properties of the proposed AMP-aided decoding scheme such

as false flip rate (FFR), the denoiser success rate over the total number of

decoding failure (DSRF) and the denoiser success rate over total transmis-

sions (DSRT) are also analyzed and discussed.

We would like to emphasis that the AMP algorithms used in the conventional

CS methods aim to recover the sparse unknown signal from a noisy measurement

via using the Gaussian approximation during message passing [175, 176]. For

example, it solves the user identification and channel estimation problems in

massive machine-type communications [180, 181]. However, the AMP algorithm

here provides the additional information about the reliability of the received sig-

nal, where the VN positions with high probability in error are determined by the

AMP algorithm for bit-flipping to obtain the updated decoder input sequence.

In this way, the number of correct VNs in the decoder input sequence increases

and the probability of the successful decoding in the next round of decoding test

can be improved.

6.3 Decoding Model

Assume that s = [s1, s2, . . . , sN ] is the modulated signal of the transmitted code-

word z with sn = (−1)zn . Let w = [w1, w2, . . . , wN ] be the noise vector with

each independent wj ∼ N (0, σ2) being a i.i.d. Gaussian random variable with
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zero-mean and variance σ2. The received signal y = [y1, y2, . . . , yN ] can be repre-

sented as

y = s + w. (6.7)

Denote the error vector for a given temporary decision of the codeword ẑ by

e = [e1, e2, . . . , eN ], where e ∈ RN . As we know that for a well-designed LDPC

code, most of the VNs tend to approach the correct values under the conventional

BP decoding within the first few iterations. Thus, the number of unreliable VNs

after the BP decoding is small compared to the block length of the codeword.

Since en 6= 0 if ẑn 6= zn, motivated by the above observations, e tends to be a

sparse vector with a small number of nonzero elements compared to the zeros

after a few iterations. Define ŝ as the modulated signal of x̂, where ŝn = (−1)ẑn .

For the given residue signal ŷ, the error vector e is obtained by

ŷ = y − ŝ = s− ŝ + w = e + w. (6.8)

Hence, the error vector e is an integer vector of length N with en ∈ {0,±2},

where en = +2 indicates that sn = 1, ŝn = −1, and en = −2 indicates that

sn = −1 and ŝn = 1.

Define M ∈ RM×N as the measurement matrix of size M ×N , we formulate

the decoding model as

u = Mŷ = M(e + w) = Me + Mw︸︷︷︸
∆
=w′

, (6.9)

where u = [u1, u2, . . . , uM ] is the vector of measurements. We can see from the

above decoding model that u is the noiseless measurements of the residual signal
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ŷ and is also the noisy measurements of the error vector e. Therefore, to recover

the error vector e from noisy measurements u is equivalent to recover the residual

signal ŷ from the noiseless measurements by considering the given noise w′.

6.4 The Proposed AMP-Aided Decoding Scheme

In this section, we introduce the general framework and the setup of the proposed

AMP-aided decoding scheme. Fig. 6.2 illustrates the general flow diagram of

the proposed decoding method. After the failure of the initial BP decoding, the

reprocessing is activated, where the reliability of the channel output for each vn is

evaluated based on e by using the AMP algorithm [121]. Then the decoder input

sequence r̂ is updated by flipping the signs of the LLR values on the unreliable

VNs. The conventional BP decoding is conducted thereafter with r̂ as the decoder

input. If a valid codeword is found output the decoded codeword, otherwise a

decoding failure is declared.

BP 

Decoder

Bit-flipping

Decision

AMP 

Detector

ẑ

No

Yes
r

r̂

ˆŷ y s 

ˆHz 0?

Figure 6.2: The flow diagram of the proposed AMP-aided decoding scheme.

Denoted by Imax, the maximum number of iterations for the conventional BP

decoding. The proposed AMP-aided decoding scheme is described in Algorithm

6.1. In the following, we would discuss the setup of the proposed AMP-aided

decoding scheme.
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6.4.1 The AMP Detector

Denote the estimate error vector ê and the residue vector at the i-th iteration by

ê(i) and y(i), respectively, where ê(i) ∈ RN and y(i) ∈ RM . The AMP algorithm

starts from an initial guess ê(0) = 0 and the initial residue y(0) = u. Let n be the

index of the column, i.e., n = 1, 2, . . . N . The AMP algorithm proceeds iteratively

according to

ê(i+1) = η
(
M∗y(i) + ê(i)

)
y(i) = u−Mê(i) +

1

δ
y(i−1)

 N∑
n=1

η′
(
M∗

ny
(i−1)
n + ê

(i−1)
n

)
N

 . (6.10)

Here M∗
n represents the transpose of M and η = M/N is known as the un-

dersampling fraction in [121]. Note that η(·) is a threshold function applied

componentwise to the input vector at the i-th iteration and η′(·) refers to the

first derivative of η(·) with respect to the input.

The Measurement matrix M

In the proposed AMP-aided decoding scheme, we set the number of measure-

ments equal to the block lengths of transmitted codewords, which guarantees the

sufficient number of measurements for each VN, i.e., M = N . This results in a

square measurement matrix M of size N ×N . Furthermore, each element in the

measurement matrix M is generated from i.i.d. real Gaussian distribution with

zero-mean and variance 1/N , i.e.,

θm,n ∼ N (0, 1/N),m, n ∈ 1, 2, . . . , N. (6.11)
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Algorithm 6.1 The Proposed AMP-Aided Decoding Algorithm

Inputs: r, Imax

Output: decoded codeword x̂

1: Perform BP decoding with Imax.

2: if Hx̂ = 0 then

3: Output the decoded codeword x̂

4: else

5: Perform AMP estimation:

6: Compute residue signal ŷ = e + w as in Eq. (6.8)

7: Perform AMP detector with M and ŷ to obtain ê

8: Flip the sign of r according to ê and generates r̂

9: Perform BP decoding with r̂ and Imax

10: if Hx̂ = 0 then

11: Output the decoded codeword x̂

12: return

13: else

14: Declare decoding fail

15: end if

16: end if

The particular choice of M is convenient for two reasons: first, it guarantees the

convergence of the AMP algorithm [121]. Secondly, each column of M has a unit

norm, i.e., M∗M is an N ×N identity matrix as the norm of each column of M

is one, which ensures that the vectors w′ = Mw and Me satisfies the restricted

isometric property [178].

Soft-threshold function

The soft-thresholding [121] is used for the AMP detector, which can be charac-

terized as

η(y, τ (i)) = sign(y) ·max
(
|y| − τ (i), 0

)
, (6.12)



164 6. THE AMP-AIDED DECODING SCHEME OF 5G LDPC CODES

where the state variable at the i-th iteration τ (i) is empirically computed based

on the current residue y(i) as

τ (i) =
‖y(i)‖2√

N
. (6.13)

6.4.2 The Bit-flipping Rule

After we obtain ê, the update decoder input is generated by flipping the sign

of the decoder input sequence r̂ on the unreliable VN positions so that some

erroneous VNs can be corrected. As indicated by ê, the node vn is considered to

be in a decoding error if

|ên| > λ, (6.14)

where λ is a predetermined threshold value optimized empirically.

After determining the VNs in error by (6.14) according to the magnitude of ên,

these VNs are further selected by considering the sign of ên and ŝn. We consider

two ideal cases of decoding errors without the effect of noise in the residue signal.

If ên has a ‘+’ sign, it implies that the transmitted sn should be +1 and ŝn = −1

since en = sn − ŝn = +1− (−1) = +2. While we have ŝn = 1 and sn = −1 if ên

has a ‘−’ sign. Therefore, for given ên and ŝn, there is a high possibility that the

node vn is unreliable if sign(ên) 6= sign(ŝn).

To further improve the accuracy of selecting unreliable VNs, we also consider

the sign of yn for the decision of the VNs which are satisfied to be flipped under

the condition of sign(ên) 6= sign(ŝn). More specifically, the n-th VN will be

flipped if sign(ên) 6= sign(yn) since in this case, we have sign(yn) = sign(ŝn) 6=

sign(ên). This means that a decoding error of ŝn most likely happens because
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the sign of the received signal is incorrect. In addition, we consider the case of

sign(ên) = sign(yn) given that sign(ên) 6= sign(ŝn). With the existence of channel

noise, there is a probability that the received yn has its sign flipped due to the

perturbations of the noise, which results in the sign of yn the same as that of ên.

Thus, in our proposed bit-flipping rule, we introduce a predetermined threshold

γ to further proceed with the decision for the unreliable VNs. If |yn| < γ and

sign(ên) = sign(yn), the sign of yn also needs to be flipped, where the decoding

error in this case is most probably caused by the small magnitude of the received

signal yn.

Based on the above discussions, we propose the bit-flipping rule to update

the decoder input sequence, which generates a modified LLR sequence for the

decoding test in the reprocessing. The detail of the flipping rule is summarized

in Algorithm 6.2.

Algorithm 6.2 The Proposed Bit-flipping Algorithm

Inputs: r, ê
Output: The modified LLR sequence r̂

1: for j = 1 : N do
2: if |ên| > λ then
3: if sign(ên) 6= sign(ŝn) and sign(ên) 6= sign(yn) then
4: r̂(vn) = −r(vn)
5: end if
6: if sign(ên) 6= sign(ŝn) and sign(ên) = sign(yn) then
7: if |yn| < γ then
8: r̂(vn) = −r(vn)
9: end if

10: end if
11: end if
12: end for

Note that the QML decoding methods, like the saturate min-sum decoding

scheme in [109], may select more than one unreliable VNs at a time based on the

node selection methods and conducts multiple decoding tests, which attempts to

obtain a better error performance by sacrificing the decoding complexity. How-
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ever, the AMP-aided decoding scheme flips multiple unreliable VNs at one time

according to the AMP detector while there is only one decoding test performed

in the reprocessing, which reduces the decoding complexity compared to the

QML decoding methods based on listing all possible combinations for part of the

codeword.

6.5 Performance Analysis of the AMP-Aided De-

coding Scheme

6.5.1 The FER Performance of the AMP-Aided Decoding

Scheme

Table 6.1: Simulation Setup and Parameters Settings

Channel AWGN
Modulation QPSK

Decoding Algorithms
SPA

2D-SC MSA
Layered 2D-SC MSA

Algorithm Coefficients (α, β) = (0.75, 1.25)
Maximum BP Iterations 50
Maximum AMP Itertions 100

AMP Algorithm soft-thresholding η(y, λ)
AMP Decision Threshold λ = 1.5, γ = 0.5
Measurement Matrix Size N ×N
Information Bit Lengths K 56, 120, 320, 752

Code Rates R 1/5, 1/3, 2/5, 1/2

In this section, we first show frame error rate (FER) performance of the AMP-aided

decoding scheme for the 5G LDPC codes with different decoding algorithms un-

der AWGN channels. We present the FER for the 2D-SC MSA proposed in the

previous chapter, the layered 2D-SC MSA, and the AMP-aided 2D-SC MSA and
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layered 2D-SC MSA. For comparison, we also demonstrate the error performance

of the SPA. For clear illustration and consistency, in all the figures presented

in this section, we denote AMP-aided 2D-SC MSA as ‘AMP-2D-SC MSA’ and

AMP-aided layered 2D-SC MSA as ‘AMP-L2D-SC MSA’, and the conventional

2D-SC MSA and layered 2D-SC MSA as ‘2D-SC MSA’ and ‘L2D-SC MSA’, re-

spectively. The code rates of the 5G LDPC codes presented in the simulations are

R = 1/5, 1/3, 2/5, 1/2. The decision threshold for the bit-flipping rule in the AMP

detector is empirically optimized as λ = 1.5 and γ = 0.5, respectively. The code

lengths and rates simulated are K = 56, 120, 320, 752 and R = 1/5, 1/3, 2/5, 1/2.

It is worth to mention that in our simulation environment, we construct the

measurement matrix M beforehand for different K, and use these measurement

matrices for multiple decodings of different channel realizations in a range of

SNR. This will make no difference in terms of average error rate compared to

the scenario where a new measurement matrix M is generated for very channel

realization. A complete list of simulation setup and parameters is given in TABLE

6.1.

Simulation results of 5G LDPC codes with R = 1/5, K = 56, 120, 320, 752

Figures 6.3 - 6.6 illustrate the FER performance of rate 1/5 BG2 LDPC codes

for information lengths K = 56, 120, 320 and 752, respectively. From the figures,

we observe that the AMP-2D-SC MSA and AMP-L2D-SC MSA outperform their

counterpart approximately 0.1 dB for all K. Compared to SPA, the improvement

of AMP-L2D-SC MSA is approximately 0.3 dB at about FER 10−2 ∼ 10−4 for

information length K = 56, where the improvement of AMP-2D-SC MSA over

SPA is approximately 0.15 dB at about FER 10−2 ∼ 10−4. Such an improve-

ment over SPA reduces as K increases. For instance, for K = 120, the gain for
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Figure 6.3: FER for BG2 LDPC code with R = 1/5, K = 56.
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Figure 6.4: FER for BG2 LDPC code with R = 1/5, K = 120.

AMP-L2D-SC MSA is approximately 0.2 dB at about FER 10−2 ∼ 10−4 and the

gain for AMP-2D-SC MSA is about 0.1 dB at about FER 10−2 ∼ 10−4. For

K = 320, the gain for AMP-LMS is approximately 0.1 dB at about FER 10−4,

and no gain for AMP-2D-SC MSA compared to the performance of SPA. For

K = 752, the performance of AMP-L2D-SC MSA approaches the performance of
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Figure 6.5: FER for BG2 LDPC code with R = 1/5, K = 320.
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Figure 6.6: FER for BG2 LDPC code with R = 1/5, K = 752.

SPA and outperforms SPA in error floor region. Furthermore, the performance

of AMP-L2D-SC MSA outperforms AMP-2D-SC MSA by approximately 0.1 dB

at about FER 10−2 ∼ 10−4 for K = 56, 120, 320 and 752. Also from the figure,

instead of using layered BP decoding, the performance of AMP-2D-SC MSA

achieves that of L2D-SC MSA decoding for K = 56, 120 and 320.
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Simulation results of 5G-LDPC codes with R = 1/3, K = 56, 120, 320, 752
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Figure 6.7: FER for BG2 LDPC code with R = 1/3, K = 56.
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Figure 6.8: FER for BG2 LDPC code with R = 1/3, K = 120.

Figures 6.7 - 6.10 illustrate the FER performance of rate 1/3 BG2 LDPC codes

for information lengths K = 56, 120, 320 and 752, respectively. The AMP-2D-SC

MSA and AMP-L2D-SC MSA outperforms their conventional counterpart by

approximately 0.05 ∼ 0.1 dB for K = 56, whereas the performance gain for
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Figure 6.9: FER for BG2 LDPC code with R = 1/3, K = 320.
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Figure 6.10: FER for BG2 LDPC code with R = 1/3, K = 752.

K = 120, 320 and 752 is 0.1 dB. In addition, the improvement of AMP-2D-SC

MSA over 2D-SC MSA is higher compared to that of AMP-2D-SC MSA over

L2D-SC MSA, in particularly, for large K. Compared to SPA, the performance

of AMP-L2D-SC MSA shows an approximately 0.3 dB gain for K = 56 at FER

10−2 ∼ 10−4, and the gain reduces as K increases. Morever, for K = 320 and
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752, the performance of both AMP-L2D-SC MSA and AMP-2D-SC MSA show

no error floor at FER 10−4, which outperforms SPA in the error floor region.

Simulation results of 5G-LDPC codes with R = 2/5, K = 56, 120, 320, 752
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Figure 6.11: FER for BG2 LDPC code with R = 2/5, K = 56.
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Figure 6.12: FER for BG2 LDPC code with R = 2/5, K = 120.
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Figure 6.13: FER for BG2 LDPC code with R = 2/5, K = 320.
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Figure 6.14: FER for BG2 LDPC code with R = 2/5, K = 752.

Figures 6.11 - 6.14 illustrate the FER performance of rate 2/5 BG2 LDPC

codes for information lengths K = 56, 120, 320 and 752, respectively. From the

figures, for K = 120, 320 and 752, the AMP-2D-SC MSA and AMP-L2D-SC MSA

outperforms their conventional counterpart by approximately 0.1 dB, whereas for

K = 56 the improvement is less than 0.05 dB.
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Simulation results of 5G-LDPC codes with R = 1/2, K = 56, 120, 320752
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Figure 6.15: FER for BG2 LDPC code with R = 1/2, K = 56.
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Figure 6.16: FER for BG2 LDPC code with R = 1/2, K = 120.

Figures 6.15 - 6.18 illustrate the FER performance of rate 1/2 BG2 LDPC

codes for information lengthsK = 56, 120, 320 and 752, respectively. The AMP-2D-SC

MSA and AMP-L2D-SC MSA is similar to their conventional counterpart for

K = 56 and has an approximately 0.05 dB gain for K = 120. For K = 320
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and 752, there is approximately 0.1 dB gain for both AMP-2D-SC MSA and

AMP-L2D-SC MSA compared to their conventional counterpart.
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Figure 6.17: FER for BG2 LDPC code with R = 1/2, K = 320.
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Figure 6.18: FER for BG2 LDPC code with R = 1/2, K = 752.



176 6. THE AMP-AIDED DECODING SCHEME OF 5G LDPC CODES

6.5.2 Other Properties of the AMP-Aided Decoding Scheme

In addition to FER performance, we further investigate other properties with

respect to the performance of AMP-aided decoding scheme such as false flip rate

(FFR), the denoiser success rate over total number of decoding failure (DSRF)

and the denoiser success rate over total transmissions (DSRT). The definition of

each metric is described in below.

Let F = {vn|n ∈ {1, 2, . . . , N}} be the set of VNs been flipped according to

the decision rule. The FFR for given thresholds λ and γ is defined as

FFR =
|{n|sign(r̂(vn)) 6= sign(xn),∀n ∈ {1, 2, . . . , N}}|

|F|
, (6.15)

where |F| is the cardinality of set F and xn is the modulated bit been transmitted.

It measures the number of times of the bits being flipped incorrectly compared

to the transmitted bits. Hence, it shows the amount of incorrectly received bits

that are corrected before feeding into the decoder for the reprocessing.

Furthermore, let SD be the number of times the second round of decoding

test succeeds after the AMP detector, and define FD as the number of times

the second round of decoding test fails. Note that FD is equivalent to the total

number of erroneous frames collected as given in Table 6.1. We define the AMP

successful rate in terms of the total times of decoding failure as

DSRF =
SD

FD + SD
. (6.16)

Similarly, the AMP successful rate in terms of the total number of transmissions

is defined as

DSRT =
SD

Total number of transmissions
. (6.17)
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We would show these proprieties of the AMP-aided decoding scheme in the fol-

lowing.

Simulation results of 5G-LDPC codes with R = 1/5, K = 56, 120, 320, 752

Figure 6.19 illustrates the relation between SNR and FFR for different K. From

the figure, the FFR decreases as SNR increases. This is reasonable as the noise

power reduces, with the same thresholds λ and γ, the accuracy of ê becomes

higher. As a consequence, the probability of decoding success after the second

round of BP decoding is increased. Note that the decreasing rate of FFR with

respect to SNR is more effective for K = 120, 320 and 752 compared to K = 56,

where the FFR for K = 56 reaches a minimal point at about Es/No = −1.5 dB.

-4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.4

Es/N0 (dB)

0.38

0.4

0.42

0.44

0.46

0.48

0.5

F
F

R

K56-AMP-L2D-SC MSA
K120-AMP-L2D-SC MSA
K320-AMP-L2D-SC MSA
K752-AMP-L2D-SC MSA
K56-AMP-2D-SC MSA
K120-AMP-2D-SC MSA
K320-AMP-2D-SC MSA
K752-AMP-2DMS

Figure 6.19: FFR of AMP-aided decoding scheme for BG2 LDPC codes with
R = 1/5, K = 56, 120, 320, 752.
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Figure 6.20: DSRF of AMP-aided decoding scheme for BG2 LDPC codes with
R = 1/5, K = 56, 120, 320, 752.

Figure 6.20 shows the DSRF performance for different K. It can be seen

from the figure that the DSRF increases as SNR increases for all K and for

both AMP-LMS and AMP-2DMS. The DSRF reaches a peak point for K = 56

and K = 120 for both AMP-2D-SC MSA and AMP-L2D-SC MSA, while the

DSRF starts to reach the peak point for K = 320. Moreover, for K = 56 and

K = 120, the peak value of DSRF for AMP-2D-SC MSA is higher than that

of AMP-L2D-SC MSA. This implies that with the assistant of AMP detector,

the conventional 2D-SC MSA decoding for short LDPC codes has a higher prob-

ability of decoding success in the second round of decoding test than that of

AMP-L2D-SC MSA.
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Figure 6.21: DSRT of AMP-aided decoding for BG2 LDPC codes with R = 1/5,
K = 56, 120, 320, 752.

The DSRT for rate 1/5 LDPC codes with K = 56, 120, 320 and 752 is plotted

in Figure 6.21. From the figure, the DSRT for all K exponentially decrease

as SNR increases, and the DSRT for AMP-2D-SC MSA shows a constant gain

compared to that of AMP-L2D-SC MSA for all SNR ranges.

Simulation results of 5G-LDPC codes with R = 1/3, K = 56, 120, 320, 752

The FFR plotted in 6.22 shows that as SNR increases, the number of times the

false flip happened is decreasing. Hence, more correct bits are provided as the

input to the BP decoder in the second round of decoding. Moreover, as also can

be seen from the figure, the FFR has a minimal point, for which the FFR will

start to increase again once the SNR value exceeds this point. We can see that the

FFR of AMP-2D-SC MSA reaches the minimal point at a faster rate compared to

that of AMP-L2D-SC MSA. In addition, the FFR of AMP-L2D-SC MSA tends

to have a lower minimal point compared to that of AMP-2D-SC MSA.

The DSRF, illustrated in Figure 6.23, for rate 1/3 LDPC codes shows that
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Figure 6.22: FFR of AMP-aided decoding scheme for BG2 LDPC codes with
R = 1/3, K = 56, 120, 320, 752.
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Figure 6.23: DSRF of AMP-aided decoding for BG2 LDPC codes with R = 1/3,
K = 56, 120, 320, 752.

the detector success rate is approximately the same for both AMP-2D-SC MSA

and AMP-L2D-SC MSA. In addition, as can be seen from the figure, for all K,

the DSRF for AMP-L2D-SC MSA is higher than that of AMP-2D-SC MSA in

a range of SNR and drop below to the DSRF of AMP-2D-SC MSAS as SNR
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passes a point. Moreover, for large K, the DSRF for AMP-2D-SC MSA and

AMP-L2D-SC MSA is approximately 0.5 and more, which indicates that the

AMP detector reduces the FER by at least a half for the LDPC codes with block

lengths at least K = 320.
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Figure 6.24: DSRT of AMP-aided decoding for BG2 LDPC codes with R = 1/3,
K = 56, 120, 320, 752.

The DSRT for rate 1/3 LDPC codes with K = 56, 120, 320 and 752 is plotted

in Figure 6.24. It shows that the DSRT for all K exponentially decreases as

SNR increases. Furthermore, the DSRT for AMP-2D-SC MSA shows a constant

gain compared to that of AMP-L2D-SC MSA for all SNR ranges, where the gain

increases when K decreases.

Simulation results of 5G-LDPC codes with R = 2/5, K = 56, 120, 320, 752

The FFR plotted in 6.25 shows that within the provided SNR ranges, the minimal

point is shown for codes with K = 56 and K = 120. It is shown that the FFR of

AMP-2D-SC MSA reaches the minimal point at a faster rate compared to that of

AMP-L2D-SC MSA. In addition, the FFR of AMP-L2D-SC MSA tends to have
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a lower minimal point compared to that of AMP-2D-SC MSA. Similar to the
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Figure 6.25: FFR of AMP-aided decoding for BG2 LDPC codes with R = 2/5,
K = 56, 120, 320, 752.
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Figure 6.26: DSRF of AMP-aided decoding for BG2 LDPC codes with R = 2/5,
K = 56, 120, 320, 752.

rate 1/3 codes, the DSRF, illustrated in Figure 6.26, for rate 2/5 LDPC codes



6.5 Performance Analysis of the AMP-Aided Decoding Scheme 183

shows that the detector success rate for AMP-2D-SC MSA and AMP-L2D-SC

MSA is approximately the same in a range of SNR for all K. The DSRF shows a

peak point for K = 320 and K = 752, and start reaching a peak for K = 56 and

K = 120. Moreover, the peak point for AMP-2D-SC MSA is higher than that of

AMP-L2D-SC MSA, and the peak value reduced compared to the peak value for

codes with rate 1/3.

The DSRT for rate 2/5 LDPC codes with K = 56, 120, 320 and 752 is plotted

in Figure 6.27. It is shown that the DSRT for all K exponentially decreases

as SNR increases, and the DSRT for AMP-2D-SC MSA shows a constant gain

compared to that of AMP-L2D-SC MSA for all SNR ranges, where the gain also

increases when K decreases.
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Figure 6.27: DSRT of AMP-aided decoding for BG2 LDPC codes with R = 2/5,
K = 56, 120, 320, 752.
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Figure 6.28: FFR of AMP-aided decoding for BG2 LDPC codes with R = 1/2,
K = 56, 120, 320, 752.

Simulation results of 5G-LDPC codes with R = 1/2, K = 56, 120, 320, 752

Similar to the performance of other code rates, the FFR presented in 6.28 shows

that within the provided SNR ranges, the minimal point is shown for both codes

with K = 56 and K = 120. In addition, the FFR of AMP-2D-SC MSA is lower

than the FFR of AMP-L2D-SC MSA.

As illustrated in Figure 6.29, the DSRF for rate 1/2 LDPC codes shows that

the detector success rate for AMP-2D-SC MSA and AMP-L2D-SC MSA is almost

the same for K = 120, 320 and 752. Also, the peak point for all K is further

reduced compared to rate-2/5 codes, and the peak point is almost the same for

both AMP-2D-SC MSA and AMP-L2D-SC MSA.
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Figure 6.29: DSRF of AMP-aided decoding for BG2 LDPC codes with R = 1/2,
K = 56, 120, 320, 752.
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Figure 6.30: DSRT of AMP-aided decoding for BG2 LDPC codes with R = 1/2,
K = 56, 120, 320, 752.

The DSRT for rate 2/5 LDPC codes with K = 56, 120, 320 and 752 is demon-

strated in Figure 6.30. We can see that the DSRT for all K exponentially de-

creases as SNR increases, and the DSRT for AMP-2D-SC MSA shows a constant

gain compared to that of AMP-L2D-SC MSA for all SNR ranges. In addition,

the gain increases as K decreases.
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6.5.3 Discussions about the AMP-Aided Decoding Scheme

As shown in Figure 6.5.1-6.5.1, several points could be drawn based on some

observations. The first point is that the relation between FER, DSRF and DSRT.

Given that the FER is computed as

FER =
FD

Total number of transmissions
. (6.18)

The radio between DSRT and DSRF is

DSRT

DSRF
=

SD
Total number of transmissions

SD
FD+SD

=
FD + SD

Total number of transmissions
= FER + DSRT.

(6.19)

Note that the result of Eq. 6.19 is equivalent to the FER of the conventional

BP decoding without the AMP detector. Thus, DSRT is the amount of gain in

terms of FER that a conventional BP decoding algorithm can get after applying

the AMP detector.

Furthermore, after rearrange (6.19), FER can be represented as

FER =
DSRT(1−DSRF)

DSRF
. (6.20)

This implies that to be able to reduce the FER for a given SNR, the most straight-

forward way is to increase the DSRF. However, several aspects also affect the

DSRF. For instance, the AMP algorithm and the thresholds λ and γ for decision

are important aspects that affect the DSRF significantly.

Based on the above discussions and the simulations results of DSRT, it can

be deduced that the amount of coding gain achieved by the 2D-SC MSA is higher

than that of L2D-SC MSA when using the AMP-aided decoding scheme. Par-
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ticularly, for a fixed R, the shorter the block length, larger the gain that 2D-SC

MSA achieved from AMP detector than that of L2D-SC MSA. Furthermore, the

proposed AMP-aided decoding scheme is more effective for BG2 5G LDPC codes

with small R. This can be seen from the DSRF plot, where for the 5G LDPC

codes with low code rate R, the successful probability of the denoiser is the highest

compared to others with the same information bit lengths K and a higher code

rate R.

6.6 The AMP-EQML Decoding Scheme

In this section, we propose an AMP-aided QML decoding scheme for the 5G

LDPC codes. We know that the QML decoding fails if and only if all the decoding

tests in the reprocessing fails, which means there is no valid codeword found and

an empty set is obtained thereafter. Due to further simulations, it is noticeable

that there exists a large number of unsuccessful decoding tests in the reprocessing,

especially when the information bit lengths K of the 5G LDPC codes increases.

Thus, the probability of obtaining an empty set becomes higher.

To verify this suspect, we show in Figure 6.31 the probability of the QML

decoding scheme outputs a valid codeword compared to that of the QML decoding

scheme outputs an empty set in terms of the total number of conducted decoding

tests. The code used here to obtain these results is the 5G LDPC code with

information bit lengths K = 320 and the code rate R = 0.2. The QML decoding

method used here is the proposed EQML decoding method in Chapter 5 with

L2D-SC MSA, and the AMP detector applied in the simulations is the same as

the one proposed in Section 6.4. We can see from the figure that the probability

of obtaining an empty set is much higher than that of obtaining a valid codeword,

and it increases with the increasing of SNR.
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Figure 6.31: The probability of the QML decoding scheme outputs a valid code-
word versus an empty set.

6.6.1 The AMP-Aided Post-Processing
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Figure 6.32: The general tree of the AMP-EQML decoding scheme.

Motivated by this observation, we introduce the AMP-aided post-processing

for each unsuccessful decoding test to increase the chances of obtaining a valid

codeword, so-called the AMP-EQML decoding scheme More specifically, the AMP

detector is adopted after the failure of the decoding test in the EQML reprocess-
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ing, where one more decoding test is performed as indicated by Fig. 6.2. If

the decoder outputs a valid codeword, we save it in the candidate set for a final

decision.

Figure 6.32 shows the general tree of the proposed AMP-EQML decoding

scheme, where the AMP detector is performed after the failure of the 2nd and

the 5th decoding test. To appropriately reduce the decoding latency, we extend

the PPS rule to the post-processing, which stops the remaining decoding tests on

the associated sub-branches if a valid codeword is obtained by the AMP-aided

post-processing. Note that we make sign flip decisions in the AMP detector

without considering the saturated VNs since they are regarded as corrected bits

in the reprocessing. The proposed AMP-EQML decoding scheme is described in

Algorithm 6.3.

To verify the benefit from the AMP detector to the EQML decoding method,

we show the probability of empty set by using the proposed AMP-EQML decoding

scheme and compared with that by using the EMQL decoding method in Figure

6.33. It can be seen that the probability of obtaining the empty set reduces by

approximately 5% when the AMP detector is adopted. Therefore, we can see

that the AMP detector plays an important role in increasing the probability of

decoding success in the reprocessing of the EQML decoding, where there are more

candidate codewords generated for the selection of the best codeword. Hence, the

probability of obtaining the correct codeword also increases consequently, which

introduces addition performance gain.
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Algorithm 6.3 The AMP-EQML Decoding Scheme

Perform BP decoding with Imax

2: if a valid codeword is found then
Output the codeword

4: else
Initialize: T = 1, j = 1,V(0)

S = ∅, TF = 2jmax+1 − 2
6: while j ≤ jmax do

for t = 1 : 2j do
8: T ′ =

⌊
T−1

2

⌋
for n = 1 : N do

10: Compute w(T ′)(vn) according to Eq. (5.5)
end for

12: Select v
(T )
s as v

(T )
s = arg max

1≤n≤N
w(T ′)(vn)

Determine VS (T ) = {V(T ′)
S ∪ v(T )

s }
14: Generate M by enumerating r(V(T )

S ) to ±S
Determine r̂(T ) by setting r(V(T )

S ) = mt

16: Perform BP decoding with r̂(T ) and Imax

if A valid codeword found then
18: Save output codeword x(T ) in X

Perform PPS rule
20: else

Perform AMP decoding scheme with r̂(T )

22: if A valid codeword found then
Save output codeword as x(T ) in X

24: Perform PPS rule
end if

26: end if
T = T + 1

28: end for
j = j + 1

30: end while
if X 6= ∅ then

32: Output xbest = arg min
x(T )∈X

N∑
n=1

∣∣r(vn)− xn(T )
∣∣2

else
34: Declare decoding failure.

end if
36: end if
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Figure 6.33: The comparison of probability for the QML decoding scheme and
the proposed AMP-EQML decoding scheme outputs an empty set.

6.6.2 FER Performance of the AMP-EQML Decoding Scheme

In this section, we present the simulation results of the proposed AMP-EQML de-

coding scheme for the 5G LDPC codes with information bit lengths K = 320, 752

and code rates R = 1/5, 1/3, 2/5 and 1/2, respectively. For the simulation setup,

it can be referred to Table 6.1.

Simulation results for codes with K = 320

Figure 6.34 to 6.37 show the FER performance of the 5G LDPC codes with

information lengths K = 320 and rate 1/5, 1/3, 2/5, 1/2, respectively. Note that

the Polyanskiy-Poor-Verdú (PPV) bounds [129] for different code rates are also

shown in the figures for comparison. We observe that the AMP-EQML decoding

scheme outperforms the EQML decoding for both jmax = 4 and 6. For example,

compared to the EQML decoding, it is approximately 0.05 dB gain for R = 1/5

by using the proposed AMP-EQML decoding scheme with jmax = 4 at about

FER 10−2 ∼ 10−4, whereas an 0.03 dB improvement of FER can also be obtained
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for information length K = 320 with jmax = 6. However, the performance gain

reduces with the increasing of the code rate. This is due to the fact that for mod-

erate to long information length K, with the maximum number of saturated VNs

jmax = 4 or 6, the portion of the saturated VNs increases compared to the length

of the whole codeword. Thus, the performance of the EQML decoding method

for the codes with high rate codes is closer to the ML performance compared to

the codes with low code rates. Therefore, the margin of the FER performance

for the EQML decoding compared to the PPV bound decreases, which means a

lower potential improvement in FER performance by using the post-processing.
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Figure 6.34: FER for BG2 LDPC code with R = 1/5, K = 320.
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Figure 6.35: FER for BG2 LDPC code with R = 1/3, K = 320.
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Figure 6.36: FER for BG2 LDPC code with R = 2/5, K = 320.
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Figure 6.37: FER for BG2 LDPC code with R = 1/2, K = 320.

Simulation results for codes with K = 752

Figures 6.38 - to 6.41 demonstrate the FER performance of BG2 LDPC codes with

information lengths K = 752 and rates 1/5, 1/3, 2/5, 1/2, respectively. Similar

to the case of K = 320, for jmax = 4, there is about 0.05 dB improvement in

FER performance for the proposed AMP-EQML decoding scheme with code rate

R = 1/5, while the performance gain reduces to about 0.04 dB for code rate R

is equal to 1/3, 2/5, and 1/2. For jmax = 6, there is still approximate 0.03 dB

gain in FER for the proposed AMP-EQML decoding scheme compared to that

of the EQML decoding with code rate R = 1/5, 1/3. However, the performance

gain decreases to 0.02 for code rate R = 2/5 and 1/2. Compared to the FER

performance with different code rates for K = 320, the proposed AMP-EQML

decoding scheme has a larger gain for high code rates, e.g. R = 2/5, 1/2, as

the improvement of the post-processing for long codeword length is larger than
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that of short ones with the insufficient number of saturated VNs. Further, for

R = 1/5, the performance of AMP-EQML with jmax = 4 can nearly achieve the

performance of EQML decoding with jmax = 6.
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Figure 6.38: FER for BG2 LDPC code with R = 1/5, K = 752.
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Figure 6.39: FER for BG2 LDPC code with R = 1/3, K = 752.
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Figure 6.40: FER for BG2 LDPC code with R = 2/5, K = 752.
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Figure 6.41: FER for BG2 LDPC code with R = 1/2, K = 752.
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6.7 Summary

In this work, we proposed a novel AMP-aided decoding scheme on top of the con-

ventional BP decoding. After the failure of the conventional BP decoding, the

AMP-BP decoding scheme utilizes the output of the conventional BP decoding,

and combines with the iterative AMP detector to estimate the positions of the

unreliable bits. The sign of the associated original LLR values on these bit posi-

tions are flipped to generate a new decoder input sequence. Then the proposed

decoding scheme performs only one round of decoding test with the modified input

LLR sequence. Simulation results show that the proposed AMP-aided decoding

scheme outperforms the counterpart of one-time BP decoding by approximately

0.1 dB for the 5G LDPC codes with various block lengths and low code rates. Sim-

ulation results show that the proposed AMP-BP decoding scheme outperforms

the conventional BP decoding approximately 0.1 dB under different BP decoding

scenarios for 5G raptor-like LDPC codes of various code rates and lengths. In

addition, the proposed AMP-aided decoding scheme is then introduced to the

EQML decoding method. We showed that with the aid from the AMP detector,

the probability of an empty set of the EQML decoding method can be reduced by

an approximately 5%. Simulation results show that the proposed AMP-EQML

decoding scheme outperforms EQML decoding approximately 0.03 ∼ 0.05 dB for

information bit length of K = 320 and 752.





Chapter 7

Conclusions and Future

Prospects

In this chapter, we first conclude this thesis and then list some future research

directions arising from our works.

7.1 Conclusions

In this thesis, the problems of constructing LDPC codes with high error cor-

rection capability and developing advanced decoding methods with good error

performance have been studied. Specifically, we have proposed a construction

method of SC LDPC codes and a reliability-based window decoding scheme to

achieve high error correction capability and low error floor. In addition, we have

also introduced novel decoding methods for 5G communication systems that re-

quire ultra-high reliability and low decoding complexity. The conclusion of this

thesis is drawn as follows.

In Chapter 1, we have presented an overview of the 5G mobile networks and

the motivations of this thesis. Afterwards, we have reviewed and discussed the

199
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related works in the literature about the construction and decoding methods

of LDPC codes. We have provided the organization of this thesis. The main

contributions of each conducted work have also been presented in this thesis.

In Chapter 2, we have introduced some basic concepts and knowledge of chan-

nel coding techniques in modern digital communication systems. It includes def-

initions, properties, decoding methods, and performance evaluation of channel

coding.

In Chapter 3, we have provided detailed background knowledge of LDPC

codes, which consists of definitions, different representations, decoding methods,

and some examples of LDPC codes.

In Chapter 4, we have developed a new construction method of binary SC

LDPC codes based on EG. In particular, we have proposed a two-dimensional

edge-spreading process to generate a base matrix for the SC LDPC codes. The

parity-check matrix of the constructed SC LDPC code is then obtained by un-

wrapping the base matrix and the lifting operation. We have evaluated the error

performance of the constructed EG-SC LDPC codes by using a WBF decoding

algorithm. It shows that the error performance of the constructed EG-SC LDPC

codes is superior to that of their EG LDPC code counterparts, and there is no

error floor compared to the constructed protograph SC LDPC codes and regular

LDPC codes. We have further proposed an RBWD scheme for the SC LDPC

codes based on a partial message reservation method and a partial syndrome

check stopping rule. It is shown that the RBWD scheme significantly improves

the error floor performance compared to the sliding window decoder with the

WBF algorithm.

In Chapter 5, we have introduced an EQML decoding method for the 5G

LDPC codes. We have proposed a two-dimensional scale-corrected min-sum al-
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gorithm based on partial self-correction and message amplification for the EQML

decoding method. This results in the error performance near the SPA. We also

have proposed a reprocessing architecture to further approach the error perfor-

mance of the maximum likelihood decoding for 5G short LDPC codes. A novel

node selection method based on the sign fluctuation of V2C messages has been

proposed for the reprocessing. We have also presented a partial pruning stopping

rule in the reprocessing to reduce the decoding complexity. A lower bound on

the error performance has been derived by using the semi-analytical method to

predict the error performance of the EQML decoding method. We have shown

that the proposed EQML decoding method also outperforms the SPA with the

same decoding complexity and approaches the PPV bound within 0.4 dB.

In Chapter 6, we have designed a detector aided decoding scheme based on

the AMP algorithm for the 5G LDPC codes with a code rate of less than 1/2.

We have proposed a decoding model for the AMP-aided decoding scheme, which

aims to recover the error vector from the output of the decoder. The AMP

algorithm has been used for selecting the unreliable VNs and flipping the sign

of their associated channel output. The updated decoder input sequence is then

generated, and one decoding test is conducted afterwards. We have shown that

the proposed AMP-aided decoding scheme achieves a 0.1 dB gain over the coun-

terpart of one-time decoding for the 5G LDPC codes with various block lengths

and low code rates. Moreover, an AMP-EQML decoding scheme has also been

presented for the decoding of the 5G LDPC codes, where the AMP algorithm

is used in the reprocessing of the EQML decoding to further improve the error

performance. We have analyzed some properties of the AMP-aided decoding

scheme and shown that it can outperform the EQML decoding approximately

0.03 ∼ 0.05 dB for information bit length of K = 320 and 752.
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7.2 Future Prospects

The explosive growth of traffic demand caused by the increasing number of smart

devices gives rise to new challenges for future communication systems in terms

of higher throughput, better quality-of-service, ultra-reliability. This thesis has

addressed some of these challenges via constructing LDPC codes with high er-

ror correction capability and improving their error performance with advanced

decoding methods. However, there are still some research issues that are worth

further being studied and investigated. In the following, we propose some future

research directions arising from the works presented in this thesis.

7.2.1 Construction of SC LDPC Codes with Large Girth

In Chapter 4, the proposed EG-SC LDPC codes are constructed by lifting and

unwrapping the base matrix of their underlying EG LDPC codes with girth 6.

The impact of spatially-coupling on the distribution of cycles for the constructed

codes needs to be studied. Although there have been a few methods to construct

LDPC block codes with large girth based on computer searching, how to develop

a systematic way to optimize an SC LDPC code with a larger girth is still a very

challenging problem. In addition, the convolutional gain and the improvement

of error performance for SC LDPC codes with large girth under low-complexity

decoding algorithms, such as WBF algorithm and BF algorithm, is also worth

further investigation.

7.2.2 Designing Decoding Algorithms with Low Complex-

ity for LDPC Codes

It is known that ultra-high-speed decoders have become a tendency to satisfy the

increase of data rate and throughput demands in future communication systems.
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This requires the decoders to have an ultra-low decoding complexity, where the

hard-decision decoding algorithms are favored by applying to this case. Moreover,

the presented decoding methods in this thesis mainly focus on improving the error

performance by using the soft-decision decoding algorithms. As a result, there

may be a large decoding latency caused by multiple times of decoding tests in the

reprocessing. Therefore, it is worth developing the more simplified reprocessing

architectures for hard-decision decoding algorithms with low complexity.
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