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ABSTRACT

Physical-layer network coding (PNC) is a technique to make use of interference

in wireless transmissions to boost the system throughput. In a PNC employed

relay network, the relay node directly recovers and transmits a linear combi-

nation of its received messages in the physical layer. It has been shown that

PNC can achieve near information-capacity rates. PNC is a new information

exchange scheme introduced in wireless transmission. In practice, transmitters

and receivers need to be designed and optimized, to achieve fast and reliable

information exchange. Thus, we would like to ask: How to design the PNC

schemes to achieve fast and reliable information exchange? In this thesis, we

address this question from the following works:

Firstly, we studied channel-uncoded PNC in two-way relay fading channels

with QPSK modulation. The computation error probability for computing

network coded messages at the relay is derived. We then optimized the network

coding functions at the relay to improve the error rate performance.

We then worked on channel coded PNC. The codes we studied include clas-

sical binary code, modern codes, and lattice codes. We analyzed the distance

spectra of channel-coded PNC schemes with classical binary codes, to derive

upper bounds for error rates of computing network coded messages at the relay.

We designed and optimized irregular repeat-accumulate coded PNC. We mod-

ified the conventional extrinsic information transfer chart in the optimization

process to suit the superimposed signal received at the relay. We analyzed and



designed Eisenstein integer based lattice coded PNC in multi-way relay fading

channels, to derive error rate performance bounds of computing network coded

messages.

Finally we extended our work to multi-way relay channels. We proposed

a opportunistic transmission scheme for a pair-wise transmission PNC in a

single-input single-output multi-way relay channel, to improve the sum-rate

at the relay. The error performance of computing network coded messages at

the relay is also improved. We optimized the uplink/downlink channel usage

for multi-input multi-output multi-way relay channels with PNC to maximize

the degrees of freedom capacity. We also showed that the system sum-rate can

be further improved by a proposed iterative optimization algorithm.
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Chapter 1

Introduction

1.1 Why Physical-Layer Network Coding

1.1.1 Challenge of Modern Wireless Communications

Physical-layer network coding (PNC) is a technique to make use of interference in

wireless transmissions to boost the throughput of wireless networks [1]. In order to

understand why PNC is an important research area in the field of wireless communi-

cations, we start with a brief introduction of wireless communications systems.

Wireless communication is the technology of transmitting and receiving infor-

mation without any connected electrical conductor. In wireless communications, a

typical characteristic is signal interference, which is introduced by the broadcast na-

ture of electromagnetic waves. Interference is usually considered as a destructive

phenomenon in many wireless communications standards, such as 3rd Generation

Partnership Project (3GPP) standards for mobile communications, 802.11 standards

for wireless local area network (WLAN). The collision of multiple signals at a receiver

can result in that none of the original signals can be correctly recovered. Therefore, in

conventional wireless communications systems, it is important to avoid or minimize

the signal interferences. Approaches to achieve this include: time division multiple

access (TDMA), frequency division multiple access (FDMA), and code division mul-

1
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tiple access (CDMA) [2]. In these approaches, communication resources assigned to

users in one system are orthogonal to each other, so that the signal from one user will

not collide with the signal from another user at the receiver.

In recent years, due to the fast-paced research innovation and development, com-

putation capability on mobile phones and tablets has dramatically increased. For

example, people are able to play high-definition video, and online gaming on their

smart phone these days. These applications on smart phones require large amount of

data exchange in the network. Hence, how to improve the data throughput of wireless

networks becomes an important issue need to be addressed.

Network coding, firstly proposed and studied by Rudolf Ahlswede, Ning Cai, Shuo-

Yen Robert Li, and Raymond W. Yeung in year 2000 [3], can improve the throughput

of multicast networks. In the next two sections, we will introduce two types of network

coding: straightforward network coding and physical-layer network coding. We will

show how they can improve the throughput of wireless networks.

1.1.2 Straightforward Network Coding

The initial study of network coding in [3] was inspired by the multicasting problem

in computer networks. In network coding, instead of simply relaying the received

packets, each node take several packets and combine them together for transmission

in a network. By doing so, bandwidth generally can be saved for transmission the

same amount of information from source to sink. Thus, network throughput can be

improved with network coding.

It has been proven that linear network coding is enough to achieve the capacity

upper bound in multicast networks with one or more sources [4]. A butterfly net-

work, as shown in Fig. 1.1, is often used to illustrate how linear network coding can

outperform routing. Two source nodes, node 1 and node 2, have information wA and

wB that must be transmitted to the two destination nodes, node 5 and node 6, and

both nodes want to know wA and wB. Each edge can carry only single information.
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We can see from Fig. 1.1 that if only routing was allowed, then the node 3 would

only be able to transmit wA or wB to node 4, but not both. Suppose node 3 sends wA

to node 4, then node 5 would receive wA twice and not receive wB. Similar problem

occurs at node 6 if node 3 sends wB to node 4. However, if node 3 transmit a simple

network coded information wA + wB to node 4, then both node 5 and node 6 can

receive wA and wB.

wA

1 2

3

4

5 6

wB

wA

wA

wA

wB

wBwAwB

wA+wB

wA+wB wA+wB

wB

Figure 1.1A Butterfly model for wired multicast network.

Network coding, as studied in multicast computer network, can be straightfor-

wardly applied to wireless communications [5, 6], and this application is termed as

straightforward network coding. In order to illustrate the straightforward network

coding, we consider a basic wireless communications system model: two-way relay

channel (TWRC). In this model, two users A and B exchange their information wA

and wB via an intermediate relay R, and there is no direct link between the two

users. Here we consider a TDMA system, where different time slots are allocated to

users and relay for transmission. All nodes are operating in half-duplex mode, i.e.,

each node cannot transmit and receive at the same time. For simplicity, we consider

channel un-coded system.
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Firstly, we show the conventional transmission scheme in a TDMA system as a

comparison baseline. In a conventional TDMA system, the relay simply transmits its

received information. In this case, a total of 4 time slots are required for user A and

user B to exchange their message symbols wA and wB via the relay R, as shown in

Fig. 1.2:

A

wA

R B

wA

wB wB

Time slot 1 Time slot 2

Time slot 4 Time slot 3

Figure 1.2A TWRC with conventional TDMA.

Time slot 1: User A transmits its message wA to the relay R.

Time slot 2: Relay R forwards the message wA to user B.

Time slot 3: User B transmits its message wB to the relay R.

Time slot 4: Relay R forwards wB to user A.

This concludes the message exchange between two users.

Now we illustrate the straightforward network coding. It has been shown in [5,6]

that straightforward network coding in TWRC can reduce the above 4 time slots to 3

time slots. The corresponding time scheduling is illustrated in Fig. 1.3 and described

here:

A

wA

R B

wB

wN wN

Time slot 1 Time slot 2

Time slot 3 Time slot 3

Figure 1.3A TWRC with straightforward network coding.
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Time slot 1: User A transmits its message wA to the relay R.

Time slot 2: User B transmits its message wB to the relay R. Upon receiving both

wA and wB, relay R computes a network coded message wN = f(wA, wB), where

f(·) is a network coding function. Note that f(·) is known at the users.

Time slot 3: Relay R broadcasts wN to two users. User A recovers wB with the

knowledge of self-message wA and network coding function f(·). This can be

denoted as wB = g(wN , wA), where g(·) is the network decoding function. Sim-

ilar procedure applies at user B.

This concludes the message exchange between user A and user B.

It is worth pointing out that the network coding function f(·) should be selected

such that g(·) exists, and there is no ambiguity for each user to recover the message

from the other user. In other words, there is only one correct solution to g(wN , wA)

and there is only one correct solution to g(wN , wB). For example, if the message is in

binary form, then the network coding function f(·) can be simply as XOR operation.

In this case, we have wN = wA ⊕ wB. The corresponding decoding function g(·) at

the users is also XOR operation. After user A receives wN , user A can deduce wB by

performing wA ⊕ wN . Similar operation applies at user B.

An example study of the network coding problem for straightforward network

coding employed two-way relay network can be found in [7], where Chen et al. inves-

tigated the network coded modulation for an asymmetric decode-and-forward two-way

relay channel, and studied the methods for maximizing the corresponding Euclidean

distance by jointly considering the network coding and modulation.

1.1.3 Physical-Layer Network Coding

Physical-layer network coding (PNC), firstly proposed in 2006 [1, 8], further reduces

the number of time slots of one round information exchange to 2 in TWRCs. Hence,

PNC improved the data throughput by 100% compared to conventional transmission
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scheme in TWRCs. In PNC, each relay node advocates directly recovering and trans-

mitting the linear combinations of relay received messages in the physical layer, as

shown in Fig. 1.4:

A

wA

R B

wB

wN wN

Time slot 1 Time slot 1

Time slot 2 Time slot 2

Figure 1.4TWRC with physical-layer network coding.

Time slot 1: User A and user B simultaneously transmit their messages wA and

wB to the relay R. Let xA be the modulated signal of wA, and let xB be the

modulated signal of wB, the relay received signal is

yR = hAxA + hBxB + nR, (1.1)

where hA and hB are the channel coefficients and nR is the noise at the relay.

Upon receiving yR, the relay deduces wN = f(wA, wB), where f(·) is a network

coding function. Note that f(·) is known at the users.

Time slot 2: Relay R broadcasts wN to two users. User A recovers wB with the

knowledge of self-message wA and network coding function f(·). This can be

denoted as wB = g(wN , wA), where g(·) is the network decoding function. Sim-

ilar procedure applies at user B.

This concludes the message exchange between user A and user B. Note that the

network coding function f(·) should be selected such that g(·) exists, and there is no

ambiguity for each user to recover the message from the other user.

There are two differences between PNC and straightforward network coding:

1. Interference at the relay. In the straightforward network coding, signal collision

at the relay is avoided by scheduling two users transmissions to the relay in
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different time slot. However, in PNC, two users are scheduled to transmit to

the relay simultaneously. Hence, relay receives superimposed signal.

2. Computation of the network coded message at the relay. In straightforward

network coding, the relay is able to straightforwardly compute the network

coded message. This is because the relay receives wA and wB in two separate

time slots. However, this is not the case for PNC. In PNC, the relay receives

the superimposed signal of the two users, as shown in (1.1). A key issue in PNC

is how the relay can effectively compute the network coded message wN from

yR. This issue will be addressed later in this thesis.

Example 1.1. We now illustrate a simple example of PNC. Consider an uncoded

Gaussian TWRC with perfect synchronization. In this case, we have hA = hB =

1 in (1.1). In this system, binary symbol and binary phase shift keying (BPSK)

modulation (0 7→ −1, 1 7→ +1) are employed at all nodes. Table 1.1 shows that, with

perfect synchronization, the relay sees a ternary signal constellation: {−2, 0, 2}, which

is formed by superimposing BPSK constellations of the two users. A possible network

coding function is also shown in Table 1.1, and it is expressed as xR = −xA × xB or

wN = wA⊕wB, where ⊕ is binary XOR operation. To implement this network coding

function at the relay, a possible approach is that the relay uses minimum distance

detection rule to find the closest superimposed constellation point to its received

signal, and then uses Table 1.1 to map the estimated superimposed constellation

point to the corresponding network coded symbol.

1.2 Motivations and Contributions

Since the invention of wireless communications technology, achieving reliable and

robust transmission is always a challenge. When a signal is transmitted from a source

to a receiver, the signal is broadcasted through a physical channel and the signal will

be scattered, reflected, diffracted. The received signal are always multi-path faded,

interfered signal with noise.



8 Chapter 1 Introduction

Table 1.1Binary PNC with BPSK modulation

xA (wA) xB (wB) xA + xB xR (wN)

1 (1) 1 (1) 2 −1 (0)

1 (1) −1 (0) 0 1 (1)

−1 (0) 1 (1) 0 1 (1)

−1 (0) −1 (0) −2 −1 (0)

However, as aforementioned that, when PNC is employed in a network, signals

from multiple transmitters are intentionally “interfered” at the receiver. The receiv-

er is required to compute network coded messages from the superimposed signals it

received. Reliable computing network coded messages at the receiver from super-

imposed signal introduce additional challenge than the conventional point-to-point

channel. A question is raised: How do we design the PNC schemes for relay

networks to achieve fast and reliable information exchange?

In point-to-point channel transmission, to overcome the channel impairments and

improve the network performance, the following areas are usually considered and

studied in the literature:

• Signal detection;

• Forward error correction;

• Network resource allocation;

• Precoder design for multi-input multi-output networks.

In this thesis, we aim to design the PNC schemes for relay networks from the above

aspects. We start with the design the channel-uncoded two-way relay networks. We

then move to the channel-coded two-way relay networks. After that, we study the

channel-coded multi-way relay networks. Then we focus on the design of the transmis-

sion scheme for multi-way relay network. The works so far are limited to single-input



1.2 Motivations and Contributions 9

single-output network. In the final work of this thesis, we study the optimization of

multi-input multi-output multi-way relay network. The main contributions in this

thesis are summarized below.

• Designed an optimal network coding function at the relay for channel-

uncoded PNC in two-way relay fading channels with QPSK modula-

tion, to improve the error rate performance of detecting the corre-

sponding network messages at the relay;

• Analyzed the distance spectrum of channel-coded PNC in Gaussian

two-way relay channels with binary classic codes, to provides error

rate upper bounds of computing the corresponding network coded

messages at the relay;

• Designed irregular repeat-accumulate coded PNC in Gaussian two-

way relay channels, to improve the error rate performance of com-

puting the corresponding network messages at the relay;

• Analyzed and designed Eisenstein integer based lattice network codes

for multi-way relay fading channels with PNC scheme, to provide

error rate performance bounds of computing the corresponding net-

work messages at the relay, and to provide designing methods for

constructing Eisenstein integer based lattice network codes;

• Designed a transmission scheme for pair-wise transmission PNC in

single-input single-output multi-way relay channels, to improve the

network sum-rate, and to improve the error rate performance of com-

puting the corresponding network coded messages at the relay;

• Optimized the uplink/downlink channel usage of multi-input multi-

output multi-way relay channels with PNC to optimize the degrees

of freedom capacity; Designed an iterative algorithm to optimize the

precoders at the users and at the relay, to optimize the sum-rate.



10 Chapter 1 Introduction

We now introduce these contributions in more details. The first main contribu-

tion of this thesis, is that we designed an optimal network coding function at

the relay for channel-uncoded PNC in two-way relay fading channels with

QPSK modulation, to improve the error rate performance of detecting the

corresponding network messages at the relay. The network coding function is

an important research area in PNC, and it will be introduced in more detail later in

this chapter. A good network coding function at the relay can improve the error rate

performance of detecting the correct network coded messages at the relay. When only

considering binary input channel with binary phase shift keying (BPSK) modulation,

there is no freedom to choose the network coding functions to suit the channel condi-

tion, as described in Example 1.1. When non-binary symbol with higher modulation

is employed in the system, we have more flexibility of selecting good linear network

coding functions depends on the channel states. Motivated by this, we investigate

the network coding function at the relay for channel-uncoded PNC in two-way relay

fading channels with QPSK modulation. This work falls in a research direction of

finding good linear network coding functions at the relay for two-way relay channels.

The detailed contributions of this work are:

• We investigated the error performance for the decoding of the network coded

messages at the relay over Rayleigh fading TWRCs when QPSK modulation is

employed at the users;

• We characterized the distance profile between any two immediate neighboring

constellation points at the relay;

• We designed and selected the optimal computation coefficients in terms of min-

imizing the computation error probability at the relay;

• We derived an error performance upper bound for the decoding of the net-

work coded messages at the relay when the optimal computation coefficients

are selected;
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• We showed that, by employing QPSK constellation, the diversity order of decod-

ing the network coded messages at the relay is 1 at the high SNR region, rather

than halved when 4-PAM constellation is considered in previous literature.

The related publication is:

• T. Huang, J. Yuan, and J. Li, “Analysis of Compute-and-Forward with QP-

SK in Two-way Relay Fading Channels,” in Proceeding of the 14th Australian

Communications Theory Workshop (AusCTW), pp. 75-80, Adelaide, Australia,

Jan. 2013.

The second main contribution of this thesis is that we analyzed the distance

spectrum of channel-coded PNC in Gaussian two-way relay channels with

binary classic codes, to provides error rate upper bounds of computing

the corresponding network coded messages at the relay. Channel coding is a

vital technique for providing reliable information transfer in noisy physical channels.

The research on channel coding is inspired by Claude Shannon’s work in 1948 [9].

The development of channel coding can be divided as classical coding, and mod-

ern coding [10]. Classic coding has the following two typical characteristics: classic

codes are designed with large minimum distance and strong algebraic structure, and

the corresponding decoding algorithms need to exploit the algebraic structure to ac-

complish bounded distance decoding efficiently [10]. The error rate performance of

classic codes in conventional point-to-point channel is characterized by the distance

spectrum. However, in PNC, the relay sees a superimposed signal from multiple

transmitters, which gives a new challenge on analyzing the distance spectrum of the

superimposed codewords at the relay. Motivated by this, we analyze the distance

spectrum of channel-coded PNC in Gaussian two-way relay channels with binary

classic codes. The detailed contributions of this work are

• We proposed a new approach to explicitly find the distance spectrum of the

binary-input channel-coded PNC scheme.



12 Chapter 1 Introduction

• We derived an asymptotically tight performance bound for the error probability

of the binary-input channel-coded PNC scheme;

• We showed that relative to the single-user scenario, the binary-input channel-

coded PNC scheme exhibits the same minimum Euclidean distance but an in-

creased number of minimum distance error events;

• We showed that at a high SNR, relative to the single-user scenario, the binary-

input channel-coded PNC has an SNR penalty of at most ln 2 in linear scale.

The related publications are:

• T. Yang, I. Land, T. Huang, J. Yuan, and Z. Chen, “Distance Properties and

Performance of Physical Layer Network Coding with Binary Linear Codes for

Gaussian Two-Way Relay Channels”, in Proceeding of IEEE International Sym-

posium on Information Theory (ISIT), pp. 2070-2074, Saint Petersburg, Russia,

Aug. 2011.

• T. Yang, I. Land, T. Huang, J. Yuan, and Z. Chen, “Distance Spectrum and Per-

formance of Channel-Coded Physical-Layer Network Coding for Binary-Input

Gaussian Two-Way Relay Channels,” IEEE Transactions on Communications,

vol. 60, no. 6, pp. 1499-1510, June 2012.

Note that this work is a collaborated work with other researchers, and I am the

sole student in this collaboration. My contribution in this work include: propose

the computation functions for network coded information at the relay and compared

their performance difference via simulations; analyze the structure of the superim-

posed codewords at the relay and formulate the distance properties; derive the union

bound in a form of the distance structure; conduct simulation to verify the derived

performance bound.

The third main contribution of this thesis is thatwe designed irregular repeat-

accumulate coded PNC in Gaussian two-way relay channels, to improve
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the error rate performance of computing the corresponding network mes-

sages at the relay. Irregular repeat-accumulate codes are a type of modern codes,

which can be graphically represented [10]. The encoding and decoding of modern

codes are performed locally. The local correlations among the coded bits are simple

but the overall code structure is complex due to the large amount of correlations.

One of the most difference between classical coding and modern coding is that the

minimum Hamming distance no longer plays an important role in modern coding

theory [10]. The design of modern codes for point-to-point channel is of great interest

because this type of code is powerful and able to achieve capacity. However, in PNC,

due to the superposition of the signals at the relay, addition challenge raised for de-

sign such modern codes with superimposed signal structure. Motivated by this, we

investigate the design of irregular repeat-accumulate coded PNC in Gaussian two-way

relay channels in this work. The detailed contributions of this work are

• We analyzed the component decoders of the irregular repeat-accumulate coded

PNC scheme and derived the generalized update rules for these components in

terms of log-likelihood ratios;

• We proposed two models for the soft information exchange among the compo-

nents decoders;

• We developed upper and lower bounds on the approximation of the extrinsic

information transfer (EXIT) functions of the irregular repeat-accumulate coded

PNC scheme;

• We carried out an EXIT chart curve-fitting technique to construct optimized

irregular repeat-accumulate codes;

• We showed that our developed irregular repeat-accumulate coded PNC schemes

have significantly improved performance compared to the existing regular repeat-

accumulate coded PNC schemes;
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• We showed that the channel-coded PNC scheme can significantly outperform

the complete decoding-based scheme if the code rate is sufficiently high.

The related publications are:

• T. Huang, T. Yang, J. Yuan, and I. Land, “Convergence Analysis for Channel-

coded Physical Layer Network Coding in Gaussian Two-way Relay Channels,”

in Proceeding of the 8th International Symposium on Wireless Communication

Systems (ISWCS), pp. 849-853, Aachen, Germany, Nov. 2011.

• T. Huang, T. Yang, J. Yuan, and I. Land, “Design of Irregular Repeat-Accumulate

Coded Physical-Layer Network Coding for Gaussian Two-way Relay Channel-

s,” IEEE Transactions on Communications, vol. 61, no. 3, pp. 897-909, Mar.

2013.

The fourth main contribution of this thesis is that we Analyzed and designed

Eisenstein integer based lattice network codes for multi-way relay fading

channels with PNC scheme, to provide error rate performance bounds

of computing the corresponding network messages at the relay, and to

provide designing methods for constructing Eisenstein integer based lattice

network codes. Lattice codes are an important class of structured modulation codes,

and they are analogue of linear block codes as convolutional codes to trellis coded

convolutional codes. It has been shown that lattice codes can achieve capacity on

the AWGN channel [12, 13, 17–20]. At the time of this study, a general framework is

developed for studying nested-lattice-based PNC schemes, termed as lattice network

coding (LNC) schemes [21]. In particular, several generalized constructions of LNC

schemes are given for Gaussian integer based lattice. Motivated by the work in [21],

we investigate the Eisenstein integer based lattice network coding. The detailed

contributions of this work are

• We presented quantization and encoding algorithms for Eisenstein integer based

LNCs;



1.2 Motivations and Contributions 15

• We derived a union bound estimation of the decoding error probability;

• We generalized the Gaussian reduction algorithm for real lattices over integers

[22] to be applicable for complex lattices over Eisenstein integers, and an optimal

coefficient vector for Eisenstein integer based LNCs can be efficiently found in

the two-transmitter single-relay system via this algorithm;

• We constructed new convolutional LNCs based on both Gaussian integers and

Eisenstein integers by Complex Construction A.

• We introduced and analyzed the construction of LNCs from linear codes by

Complex Construction A in a relaxed way and by Complex Construction B,

with nominal coding gains and union bound estimation explicitly derived;

• We derived optimal dithering method in terms of energy efficiency for LNC over

GF(4).

• We established explicit connection between parameters of the linear code and

of the corresponding LNC;

• We constructed and analyzed LNCs from convolutional, BCH, and Reed-Solomon

codes.

The related publications are:

• Q. Sun, J. Yuan, T. Huang, and W.-K. Shum, “Lattice Network Codes Based

on Eisenstein Integers,” IEEE Transactions on Communications, vol. 61, no.

7, pp. 2713-2725, July 2013.

• Q. Sun, T. Huang, and J. Yuan, “On Lattice-Partition-Based Physical-Layer

Network Coding over GF(4),” IEEE Communications Letters, vol. 10, no. 10,

pp. 1988-1991, Oct. 2013.
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Note that this work is a collaborated work with other researchers, and I am the sole

student in this collaboration. My contribution in this work include: propose detailed

design and construction methods for Eisenstein integer based lattice network codes;

conduct actual code design and search; compute related code parameters; conduct

simulations to verify the performance of the designed codes.

The fifth main contribution of this thesis is that we designed a transmission

scheme for pair-wise transmission PNC in single-input single-output multi-

way relay channels, to improve the network sum-rate, and to improve the

error rate performance of computing the corresponding network coded

messages at the relay. This work is motivated by [184–187]. The aforementioned

research works on multi-way relay channels are limited in BPSK modulation, and

the pair-wise transmission scheduling at the users side is done in a sequential order.

However, higher modulation gives more flexibility of selecting the best network coding

function at the relay for fading channel, as discussed in our first main contribution

of this thesis. Motivated by this, we investigate the pair-wise transmission scheme

PNC employed single-input single-output multi-way relay fading channels with lattice

network codes. The detailed contributions of this work are

• We proposed an opportunistic pair-wise compute-and-forward employs high lev-

el modulation with nested lattice codes to improve the sum-rate of multi-user

transmission;

• We demonstrated that this novel opportunistic pair-wise transmission has a 2

bits/s/Hz improvement in the sum-rate performance at signal-to-noise ratio of

30 dB for a 4-user multi-way relay channel;

• We showed that, for the same multi-way relay channel, up to 4.5 dB gain or

2.5 dB gain can be achieved for a channel-uncoded or a channel-coded system,

respectively, at the frame error probability of 10−2.

The related publication is:
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• T. Huang, J. Yuan, and Q. Sun, “Opportunistic Pair-wise Compute-and-Forward

in Multi-way Relay Channels,” in Proceeding of the IEEE International Con-

ference on Communications (ICC), Budapest, Hungary, June 2013.

The sixth main contribution of this thesis is that we optimized the uplink and

downlink channel usage of half-duplex multi-input multi-output multi-way

relay channels with PNC to optimize the degrees of freedom capacity, and

we designed an iterative algorithm to optimize the precoders at the users

and at the relay, to optimize the sum-rate. So far the works in this thesis

are limited to single-input single-output network. Multiple-input multiple-output

(MIMO) techniques have been introduced into the study of MWRCs to allow spatial

multiplexing [99–105, 109]. The degrees of freedom (DoF) is an important metric to

understand the capacity behavior of the MIMO MWRC. In particular, in [99–101],

the DoF analysis for MIMO MWRCs is mostly focused on pairwise data exchange.

Motivated by their work, we focus on the DoF capacity and sum-rate optimization of

the MIMO MWRC with full data exchange operated in half-duplex. Unlike pairwise

data exchange, the uplink and downlink traffic loads are asymmetric in full data

exchange. Half-duplexing allows unequal time allocation between the uplink and the

downlink gives us the flexibility to optimize the uplink/downlink time allocation to

maximize the DoF of the half-duplex system. The detailed contributions of this work

are

• We derived the DoF capacity of the MIMO MWRC with full data exchange

operated in half-duplex and full-duplex modes;

• We derived the optimal uplink/downlink time allocation to maximize the DoF

of the half-duplex system;

• We showed that a significant DoF gain can be achieved by the optimal up-

link/downlink time allocation, as compared with equal time allocation;
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• We showed that the sum-rate is a non-convex function of the user precoders

and relay precoder;

• We proposed an iterative algorithm to optimize the user precoders and the relay

precoder in an alternating fashion;

• We demonstrated that the system performance can be considerably improved

by a careful design of the user and relay precoders;

• We showed that the numerical results for sum-rate analysis agree with the DoF

analysis.

The related publications are:

• T. Huang, X. Yuan, and J. Yuan, “Half-duplex MIMOMulti-way Relay Channel

with Full Data Exchange: Degrees of Freedom and Sum-rate Optimization,”

submitted to IEEE Transactions on Wireless Communications.

• T. Huang, X. Yuan, and J. Yuan, “Degrees of Freedom of Half-duplex MIMO

Multi-way Relay Channel with Full Data Exchange,” IEEE GLOBECOM, 2014,

accepted.

In addition to these main work, the following work are also related to PNC

schemes, such as error performance analysis of nested convolutional lattice codes

for multi-way relay fading channels, outage performance analysis of analog network

coding in generalized two-way multi-hop networks. These works has been published

as:

• Y. Ma, T. Huang, J. Li, J. Yuan, Z. Lin, and B. Vucetic, “Novel Nested Convo-

lutional Lattice Codes for Multi-Way Relaying Systems over Fading Channel-

s,” IEEE Wireless Communications and Networking Conference (WCNC), pp.

2671-2676, Shanghai, China, Apr. 2013.
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• G. Wang, W. Xiang, J. Yuan, and T. Huang, “Outage Performance of Analog

Network Coding in Generalized Two-Way Multi-Hop Networks,” in Proceeding

of IEEE Wireless Communications and Networking Conference (WCNC), pp.

1988-1993, Quintana-Roo, Mexico, Mar. 2011. (Best Academic Paper Award)

• G.Wang, W. Xiang, J. Yuan, and T. Huang, “Outage Analysis of Non-Regenerative

Analog Network Coding for Two-Way Multi-Hop Networks”, IEEE Communi-

cations Letters, vol. 15, no. 6, pp. 662-664, June 2011.

1.3 Literature Review on PNC

Since PNC was first introduced in 2006, it has attracted much research intension.

Many researches have been done in the literature to advance the understanding of

PNC. In this section, we will review the research on PNC from various aspects.

1.3.1 Network Coding Functions for PNC

A key study area in PNC is about the network coding functions at the relay. As afore-

mentioned that, in PNC, the relay directly recovers the network coded information

from its received superimposed signals. A good network coding function allows the

relay to effectively compute the corresponding network coded information. There are

many network coding functions have been studied in the literature, such as denoise-

and-forward [8], amplify-and-forward [11], and compute-and-forward [23]. Usually

the study in this area is focus on channel un-coded system, and the network coding

function is done at the symbol level.

In denoise-and-forward [8], the network coding function is to map the received

signal into a quantized signal. The signal constellation seen at the relay is a su-

perimposed signal constellation of the users. The superimposed signal constellation

points need to be clustered into groups, and the superimposed constellation points

in each group are mapped to a common network coded message. Thus, the map-
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ping is usually many-to-one. Depends on the type of modulation used at the user

side and transmission channel, the clustering and mapping technique can be quite

different. The clustering rule is to try to map the closest superimposed constellation

points to common network coded information, as well as to maximize the minimum

distance among the clusters. For a Gaussian TWRC with BPSK modulation, the

denoise mapping is XOR operation as shown in Example 1.1 [1]. However, in fading

channels, the mapping can be tricky. Usually the different clustering group is formed

based on the instantaneous channel state of the users. The work in [14] studies a

denoise-and-forward technique, termed linear PNC scheme for real Rayleigh fading

TWRCs. The authors focused on q-pulse amplitude modulation (PAM) where the

relay selects some integer coefficients and computes the linear combination of two user

messages. Our work in [24] extended the study of linear PNC with quadrature phase

shift keying (QPSK) for real Rayleigh fading TWRCs. In the case of complex Relay

fading TWRCs, the study in [26] pointed out that sometimes the relay needs to use

5-quadrature amplitude modulation (QAM) rather than the same QPSK modulation

at the relay to avoid the ambiguity of decoding at the user side. The work in [25]

further extended the work in [14,24] and studies a linear PNC scheme for fading two-

way relay channels. The study is limited to QAM-modulation. In this work, the relay

computes the finite-set integer combinations of its received superimposed messages.

It has been shown that, in order to minimize the computation error probability of

network coded messages at the relay, the chosen integer coefficients actually resemble

the fading channel coefficients.

The use of nested lattice codes (compute-and-forward) can also be viewed as a

type of denoise-and-forward network coding function [23,27]. In their work, structured

nested lattice codes are utilized. The transmitted signals from the users are lattice

points in a multi-dimensional lattice over integers. The relay decodes and forwards an

integer valued linear combination of transmitted signals to maximize the computation

rate. It has been shown that this scheme can achieve an asymptotic gain from the

information-theoretic prospective.
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The amplify-and-forward scheme is also known as analog network coding (ANC)

[11] in the literature. In this scheme, the relay amplifies its received superimposed

signals in its transmission phase. The broadcasted signal from the relay retains the

noise received at the relay. If the system is channel coded, then the relay amplifies its

received signals symbol-by-symbol, and cannot exploit the correlations introduced by

the channel coding. The work in [28] discussed this issue by investigating a soft-input

soft-output decoder at the relay node, which computes an estimated minimum mean

square error (MMSE) packet for forwarding back to the end nodes. Their work has

been proven that can improve the end user performance.

From the information theoretic perspective, it has been shown in [29] that PNC

with finite-field mapping schemes can achieve near information-capacity rates. Fur-

ther, [27] found that PNC with finite field mapping can achieve within 1/2 bit of the

capacity of the Gaussian TWRCs. It also has been found that infinite-set mapping

function cannot achieve near information capacity rates [11,30].

1.3.2 Channel-Coded PNC

In wireless communications, forward error control codes or channel codes play a vital

role of achieving reliable information transmission. So far the discussions of PNC are

mainly for channel un-coded systems, where the network coding function is operated

at symbol level. Channel coding introduces a correlation among the transmitted

symbols within a data packet. Integrating channel coding with PNC scheme is an

interesting research topic. The research in this area is focused on linear codes. This

is because that in the coding theory, a linear code has the characteristic that any

linear combination of codewords is also a codeword. In this case, the network coding

function at the relay is also a linear function.

In [46], a regular repeat-accumulate (RA) coded PNC scheme with BPSK modula-

tion for Gaussian TWRCs is firstly investigated. Two interesting decoding approach-

es have been studied in their work. We now briefly describe these two decoding
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approaches here.

The first decoding approach can be summarized into two steps:

Step 1: PNC mapping. In this step, the relay firstly uses a minimum distance de-

tection rule to find the closest superimposed signal constellation point to its

received signal for each received symbol, and then maps it to the corresponding

network coded symbol. Note that in this step, the relay can make hard decision

on the network coded symbol value, or obtain a soft-information of the network

coded symbol value, e.g., posterior probabilities.

Step 2: Point-to-point channel decoding. In this step, the relay feeds the outputs of

Step 1, either hard decision or soft-information, into a point-to-point channel

decoder to compute the network coded data packet.

This decoding approach was also studied in [31, 32]. Similar decoding approach

was also studied in [27,33,34] where lattice coded PNC was considered.

The second decoding approach can also be summarized into two steps:

Step 1: Superimposed channel decoding. In this step, the relay firstly needs to

construct a Tanner graph of a superimposed encoder. Then the relay directly

decodes the superimposed data packet from its received signal on the Tanner

graph of the superimposed encoder. After this step, the relay obtains a hard-

decision of the superimposed data packet.

Step 2: PNC mapping. In this step, the relay maps the estimated superimposed

data packet to the network coded message symbol-by-symbol.

As discussed in [46] that there exists information loss when mapping from the

superimposed constellation points to the network coded symbol value, e.g., the Step

1 of the first decoding approach. We can also see this from the Example 1.1. In

Example 1.1, the cardinality of superimposed two BPSK constellation points is 3, but

the cardinality of the network coded symbol is 2. Thus, information loss occurs when
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mapping from the superimposed signal constellation to the network coded symbol

value. Therefore, the second decoding approach has better performance than then

the first decoding approach.

A convolutional coded PNC scheme with modified Viterbi and BCJR algorithms

for TWRCs was studied in [35]. The BER performance of convolutional coded P-

NC at the relay can be characterized by their corresponding point-to-point channel

performance, where conventional decoding algorithms was used at the relay [37, 38].

A nearly optimal decoding performance for element-wise XORed messages can be

achieved at the relay node when a two-user joint trellis was used. The number of the

states in the two-user joint trellis is the product of numbers of states for individu-

al codes. Hence, the superimposed trellis of two users’ codes can be very complex

which makes it infeasible to practical decoders. A reduced-state trellis was proposed

to reduce decoding complexity. The complexity of the reduced-state decoding is

approximately the square root of that of the full-state decoding, but there was a

performance loss of approximately 2 dB in SNR paying for reducing the complexity

reduction. The work in [39, 40] applied the reduced-state trellis technique in turbo

codes decoding at the relay.

Asynchronous PNC with Convolutional Codes was also studied in the literature

[41, 42]. In [41], a channel coding scheme based on linear convolutional codes was

proposed to relax the strict synchronization requirement. However, this scheme can

only deal with integer symbol misalignment. Further, the framework proposed in [42]

can deal with phase asynchrony and symbol arrival-time asynchrony between the

signals simultaneously transmitted by multiple sources. In particular, this proposed

scheme can handle both integer and fractional symbol misalignment.

Structured codes, such as the nested lattice codes, have been studied in PNC

[21,23,27,119,121,126]. In [27], an achievable scheme composed of nested lattice codes

for the uplink and structured binning for the downlink was proposed. Unlike conven-

tional nested lattice codes, their codes utilize two different shaping lattices for source

nodes based on a three-stage lattice partition chain. It has been shown in [27] that,
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the achievable rate region of this scheme is within 1/2 bit from the capacity region for

each user and its sum rate is within log (3/2) bit from the sum capacity. In [23], the

messages from the users were taken from a prime-sized finite field, and then mapped

onto lattice points for transmission. Each relay observes a linear combination of these

lattice points and attempts to decode an integer combination of them in the same

filed. The underlying codes were based on lattice partitions. The achievable rates

for sending equations over a finite field from transmitters to relays over real-valued

channel models and complex-valued channel models were given. It also discussed the

sufficient conditions on the equation coefficients so that a destination can recover one

or more of the original messages. The work in [23] is more an information-theoretic

approach, where the work in [21] is more an algebraic approach. In [21], a general

framework is developed for studying nested-lattice-based PNC schemes, termed as

lattice network coding (LNC) schemes. In particular, several generalized construc-

tions of LNC schemes are given. Further, the performance/complexity tradeoffs of

LNC schemes are discussed. Our work in [119,121] investigated the Eisenstein Integer

based LNC.

The work in [51, 52] investigated LDPC coded PNC. In particular, [52] studied

cyclic LDPC coded PNC, and a decoder was proposed to deal with general asynchrony.

Our work [120, 127] further investigated Repeat Accumulate (RA) coded PNC [46],

where convergence behaviour of the relay decoder was analyzed and a code design

based on extrinsic information transfer (EXIT) chart was proposed. The designed

codes significantly outperform the corresponding regular codes.

In [45], CPNC with non-binary phase shift keying (PSK) modulation was stud-

ied. Working over non-binary fields allows the relay to attempt to decode different

network-coded combinations. In particular, the authors compared different mappings

between selected message field and the PSK constellation, the drawn conclusion is

that many mapping have identical performance in terms of frame error rate (FER).

In [91], a scheme, termed as superimposed XOR, was proposed to consider asym-

metry of the channel and information flow of the TWRC in practical system. The
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proposed relay operation was based on both bitwise XOR and symbol-level superposi-

tion coding. This work showed that supposition coding has better performance than

conventional XOR in PNC in the broadcast phase when the relay-to-user channels

are asymmetrical.

1.3.3 MIMO PNC

In modern wireless communications, multiple-input and multiple-output (MIMO) is

an important technique to boost the system performance by exploiting wireless multi-

path fading, i.e., increased data throughput (via multiplexing gain) and reliability

(via diversity gain). In a MIMO system, multiple antennas are used at both the

transmitter and receiver. The transmitter can transmit multiple data streams over

the antennas to achieve a multiplexing gain that improves the spectral efficiency, as

well as a diversity gain that improves the link reliability. MIMO as a mature technique

has now been included in many standards such as IEEE 802.11n (Wi-Fi), 4G, 3GPP

Long Term Evolution, WiMAX and HSPA+. To this end, MIMO PNC attracts much

research attention.

In [48], the authors proposed a scheme where the relay extracts the summation

and difference of the two end packets and then converts them to the network-coded

form. A linear detection technique is used in this work to reduce the processing

complexity. Further, this work shows that MIMO PNC significantly outperforms

MIMO with straightforward network coding scheme under random Rayleigh fading

channel.

In [98], a network coding scheme was proposed for MIMO TWRC with PNC, where

a maximum likelihood algorithm was used to decode the XOR of the superimposed

signals received at the relay. In addition, an optimized beamforming algorithm was

proposed to maximize the effective channel gains for the two users. This approach

was shown to outperform ANC and was able to achieve full diversity gain.

Alamouti codes are the first invented space-time block codes for a point-to-point
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two-transmit antenna system. The work in [49] analyzed the symbol error rate of a

system in which the two end nodes are equipped with two antennas and the relay has

only one antenna. With the use of Alamouti codes, it shows that a diversity order of

2 can be achieved. The work in [50] studied the Alamouti codes in a TWRC where

all nodes were equipped with two antennas.

The authors in [53–55] studied linear precoding techniques for MIMO PNC. In [53],

a reduced-dimension cooperative precoding scheme is proposed for MIMO TWRCs.

The analytical result in [53] shows that, in the worst case, the proposed scheme is

within a half bit per transmit antenna of the asymptotic sum-capacity of MIMO

TWRCs. In [54, 55], an eigen-direction alignment precoding scheme is proposed for

MIMO TWRCs. The proposed precoding scheme efficiently aligns the two-user’s

eigen-modes into the same set of orthogonal directions, and multiple independent

PNC streams are implemented over the aligned eigen-modes. In [74], linear decoder

of PNC with Alamouti scheme was investigated.

The ANC-based MIMO TWRC was investigated in [63–65]. In [63], each user is

equipped with one antenna and the relay is equipped with multiple antennas. The

capacity region at the relay was analyzed, and an optimal relay beamforming structure

was given to achieve the capacity region. Further, two suboptimal beamforming

schemes, based on the matched-filter and zero-forcing (ZF) techniques, were given

to lower the relay complexity. In [64], a minimum mean-square-error bidirectional

amplify-and-forward relaying protocol was introduced at the relay in a TWRC. In

the broadcast phase, the relay selects a single antenna for downlink transmission.

The work in [65] considers the application of PNC in a practical cellular system,

where the base station and the relay have multiple antennas, and all mobile stations

only have a single antenna. In this system, precoding can only be performed at the

base station.

MIMO TWRC with multiple relays also attracted much research attention [66–72].

One strategy is to select the appropriate relay to maximize a performance metric

[67,70], where [70] focused on ANC and [67] focused on decode-and-forward. Another
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strategy is to use the multiple relays as a distributed MIMO system [66,68,69,71,72].

The work in [73,75] investigated MIMO PNC with user transmit antenna selection

strategy, where each user selects the strongest transmit antenna for the transmission.

It was shown in this work that the PNC with user transmit antenna selection out-

performs the PNC with space-time block codes significantly.

The degrees of freedom (DoF) is an important metric to understand the capacity

behavior of the MIMO systems. The DoF analysis for PNC employed MIMO multi-

way relay networks has received much attention, such as the work in [99–101], which

are mostly focused on pairwise data exchange. In pairwise data exchange, users

exchange messages in pairwise fashion. The work in [100] considered a three-user

MWRC, termed the MIMO Y channel, and the DoF capacity of the MIMO Y channel

was derived under certain relay/user antenna setups. The work in [99] generalized the

result of [100] to the case of an arbitrary number of users. Later, the authors in [101]

considered MWRCs with clustered data exchange, i.e., the users in the network are

grouped into clusters, and only the users in the same cluster communicate with each

other. It’s worth noting that, in pairwise data exchange, the traffic loads of the

uplink and the downlink are symmetric. This uplink/downlink symmetry further

implies that the signal space alignment for the uplink straightforwardly carries over

to the downlink. This property is used in [99–101] to simplify the beamforming design

for MIMO MWRCs with pairwise data exchange. In our work [123,124], we focus on

the DoF optimization and sum-rate maximization of MIMO MWRCs with full data

exchange. In full data exchange, each user broadcasts their messages to all the other

users in the system through the relay, and decodes all the messages from the other

users in the network. Therefore, compared to pair-wise data exchange, the uplink

and downlink traffic loads are asymmetric in full data exchange. Our work [123,124]

showed that a significant DoF gain can be achieved by the optimal uplink/downlink

time allocation, as compared with equal time allocation.
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1.3.4 Other Topics on PNC

Besides the above introduced research on PNC, there exist many other interested

topics such as PNC for orthogonal frequency-division multiplexing (OFDM) schemes,

synchronization, and Network topology, etc.

Implementation The very first implementation of a PNC system was introduced

in [76, 78]. In this implementation, the network coding was performed in the

frequency domain of an OFDM PNC system to eliminate symbol misalign-

ment [31]. This system employed the convolutional code defined in the 802.11

standard.

OFDM-PNC Applying PNC for OFDM systems is firstly studied in [31], and im-

plemented in [76]. The basic idea of OFDM is to carry the symbols on multiple

sub-bands. If the sub-bands are smaller than coherent bandwidth of the chan-

nel, then the fading in each sub-band is flat. Apply PNC for OFDM provides

the ability to deal with symbol offset and non-flat fading. An interesting re-

search direction in OFDM PNC is channel estimation [81–84]. The work in [85]

investigated the performance of OFDM systems with imperfect self-information

removal at the users, which can be caused by the difference between the esti-

mated CSI and true CSI.

Asynchrony Since the invention of PNC in [1], a question was raised about whether

PNC is practical when the system is asynchronous. In reality, signals trans-

mitted by the end users could arrive at the receiver with symbol misalignmen-

t, carrier phase offset, and frequency offset. Asynchronous PNC is studied

in [77, 88–90]. In [77], the authors pointed out in PNC systems operated with

QPSK modulation, there is a significantly power penalty of 6 dB when the car-

rier phases of the two end nodes are not synchronized and offset by π/4. This

issue was further studied in [90], where a general framework for decoding at the

receiver based on belief propagation (BP) was proposed to effectively deal with
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symbol and phase asynchronies while incorporating channel coding at the same

time. Their work shows that the phase penalty can be significantly reduced in

channel-coded PNC with a proper receiver algorithm.

Network In general, PNC can be adopted in many types of network topologies

other than TWRCs. In [1, 122, 128], the application of PNC in linear networks

were investigated, where two end users exchange information through a serial of

relay nodes in between. Another interested type of network is called multi-way

relay channels (MWRCs) [93], where more than two users exchange information

via a common relay. The works in [92, 94, 95] studied MWRCs with PNC in

packet level. The works in [96,97,106–109] focused on the MWRCs where users

equipped with single antenna and the relay equipped with multiple antennas.

The works in [99–103,123] investigated Multiple-input multiple-output (MIMO)

MWRCs with PNC. Our work in [125] investigated the scheduling issue in an

MWRC where only two users are allowed for transmission at one time.

Modulation In [43], a modified high-order PAMs for binary coded PNC was investi-

gated. In particular, a non-uniform M -PAM (M > 2) signal constellations was

proposed to lower the complexity of the PNC with high-order PAMs by utilizing

binary codes. In [44], the design of modulation schemes for the PNC when the

end nodes use square QAM constellation was studied. In [87], the design of

relay receiver was investigated when noncoherent PNC with FSK modulation

was employed.

Channel Estimation Channel state information (CSI) is an important parameter

in wireless communications. This parameter measures how the transmitted sig-

nal been affected by the wireless channel, such as fading, scattering, etc. With

the knowledge of CSI, the transmitter can actively adapt its transmission strat-

egy to suit the current channel condition. The work in [79, 80] focused on the

channel estimation for PNC. In [79], the channel estimation of a TWRC where
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each node equipped with one antenna was investigated under AF relay oper-

ation. A linear maximum SNR channel estimator was proposed and designed

to maximize the average effective SNR. The work in [80] focused on the same

system model as in [79]. In [80] the author suggested that the relay can actually

estimate the channel first and then system power allocation can be processed.

By doing so, the final data detection at the users can be optimized. Two dif-

ferent power allocation schemes to the training signals were proposed in their

work. The corresponding optimization targets were to maximize the average

effective SNR ratio of the data detection and minimize the mean-square-error

(MSE) of the channel estimation, respectively. In [86], a technique termed blind

known-interference cancellation was proposed to estimate the channel of the su-

perimposed signals at the relay. It has been shown that it can almost achieve

the performance of a conventional point-to-point channel.

1.4 Brief Review of Channel Coding Theory

Since most of my time in PhD study is investigate the channel-coded PNC, and the

majority part of this thesis is about the channel-coded PNC, we also provide a brief

review of channel coding theory here.

The research on channel coding is inspired by Claude Shannon’s paper “A Mathe-

matical Theory of Communication” in 1948 [9]. In this paper, it states that, for trans-

mitting information in a noisy channel, there exist encoding and decoding schemes

that can be used to ensure that the probability of decoding error goes to arbitrarily

small for a sufficiently large code block length, provided that the code rate does not

exceed the capacity of the channel.

Since the publish of [9], great efforts have been devoted by researchers to develop

channel codes for point-to-point channels. Later, it was shown in [114] that simple

structure of linear codes can achieve channel capacity. The development of channel

coding can be divided as classical coding, and modern coding [10].
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Classic coding has the following two typical characteristics: classic codes are de-

signed with large minimum distance and strong algebraic structure, and the corre-

sponding decoding algorithms need to exploit the algebraic structure to accomplish

bounded distance decoding efficiently [10]. As pointed out in [10], classical coding

cannot achieve the capacity.

Some examples of classic codes include: Hamming codes [111], BCH codes [112,

113], convolutional codes [114], Reed-Solomon codes [115], and concatenated codes

[116], etc. Among them, Hamming codes, BCH codes, and Reed Solomon codes are

classified as block codes due to the fact that the coding is operated block by block.

On the contrary, convolutional codes can have an arbitrary length. This is because a

convolutional code is generated by passing the information sequence to a finite-state

filter with memory register. Each encoded output is a function of the present input

and previous inputs.

In modern coding, codes can be graphically represented [10]. The encoding and

decoding of modern codes are performed locally. The local correlations among the

coded bits are simple but the overall code structure is complex due to the large amount

of correlations. This type of code structure is powerful and able to achieve capacity.

One of the most difference between classical coding and modern coding is that the

minimum Hamming distance no longer plays an important role in modern coding

theory [10]. Examples of modern codes are turbo codes, low-density parity-check

(LDPC) codes, and repeat-accumulate (RA) codes.

Turbo codes was introduced by Berrou, Glavieux, and Thitimajshima in their

paper “Near Shannon Limit Error-correcting Coding and Decoding: Turbo-codes” in

1993 [129], and this type of codes are the first practical codes to closely approach the

channel capacity. A detailed review of the turbo principles, and the classic maximum

a posteriori probability decoder can be found in [60]. The study in [60] also covers

the iterative turbo receivers.

LDPC codes are a class of recently re-discovered highly efficient linear block codes

[117]. LDPC codes were first introduced by Robert G. Gallager in his PhD thesis in
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1960, but been ignored by the research community due to the computation complexity

of implementing the encoder and decoder. LDPC codes have been shown to be able

approach the channel capacity using an iterated soft-decision decoding approach [118].

The survey study in [62] extensively reviewed the literature on the family of low-

density parity-check LDPC codes and their rateless relative codes. Dariush et al.

introduced RA codes in [130]. RA codes can be viewed as special LDPC codes with

a simpler encoder than general LDPC codes but with similar performance.

Polar code, firstly introduced by Erdal Arikan [131] is the first code with an explic-

it construction to provably capacity achieving on binary-input memoryless output-

symmetric channels, and this is the most recent development in the coding theory.

The minimum distance of polar codes is proportional to the square root of their block

length, and hence no error floor occurs. The encoding and decoding complexity of

polar codes is also low.

Lattice codes are an important class of structured modulation codes, and they are

analogue of linear block codes as convolutional codes to trellis coded convolutional

codes. It has been shown that lattice codes can achieve capacity on the AWGN

channel [12, 13, 17–20]. The construction of lattice codes is in the Euclidean space

and the construction process is algebraic in nature.

The study of coding in TWRCs also attracted much research attention. Here

we give two examples of study coding in TWRCs [15, 16]. In [15], Aljohani et al.

proposed and studied a joints source-coding, channel coding and modulation scheme

for a two-way relaying system, and the authors have demonstrated that a significant

coding gain can be achieved when comparing the proposed scheme to the conventional

scheme. In [16], a novel power and bandwidth-efficient turbo trellis coded modulation

assisted space division multiple access based two-way relaying scheme was proposed.

This scheme was designed by Liang et al. for enhancing the throughput, reliability

and coverage area in a cooperative communication system [16].
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1.5 Outline of the Thesis

This thesis is focus on the analysis, design, and optimization of PNC employed relay

networks. The aforementioned contributions will be included in this thesis. We

will start with the study on the network coding function of channel-uncoded PNC

employed two-way relay networks. We then focus on the error performance of the

channel-coded PNC employed two-way relay networks with classic codes. We then

investigate the design of the channel-coded PNC employed two-way relay networks

with modern codes. We then shift our focus to the analysis and design of channel-

coded PNC employed multi-way relay networks with lattice network codes. We then

study the user scheduling problem in channel-uncoded/channel-coded PNC employed

multi-way relay networks. At the end, we investigate the degrees of freedom and

sum-rate optimization in PNC employed multi-way relay networks. The following is

a description of the organization of this thesis.

In Chapter 1, we start by introducing the concept of PNC, and its benefit to the

wireless communications. We then focus on the motivations and contributions of this

thesis. At the end of this chapter, We provides a literature review of current research

progress on PNC, as well as a brief literature on channel coding theory.

In Chapter 2, we focus on the design of optimal network coding function at

the relay for channel-uncoded PNC in two-way relay fading channels with QPSK

modulation, to improve the error rate performance of detecting the channel-uncoded

network messages at the relay. This chapter begins by presenting the system model,

including the detailed network computation process at the relay. We then derive the

computation error probability for computing network coded messages at the relay.

We then investigate the selection of optimal computation coefficients depends on

the channel condition to maximize the interested minimum distance. At the end of

this chapter, we will show the comparison between the analytical results and the

simulation results.

In Chapter 3, we analyze the distance spectrum of channel-coded PNC in Gaus-
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sian two-way relay channels with binary classic codes, to provides error rate upper

bounds of applying classic binary codes in PNC employed relay networks. This chap-

ter begins by presenting the preliminary knowledge of classic codes. We then study

the structure of the superimposed codewords, and analyze the distance spectrum. At

the end, we show the error rate performance bound and demonstrate by simulations.

In Chapter 4, we shift our focus to the design of irregular repeat-accumulate

coded PNC in Gaussian two-way relay channels, to improve the error rate performance

of computing the channel-coded network messages at the relay. This chapter firstly

introduces code and extrinsic information transfer (EXIT) chart. Then we move onto

the irregular repeat-accumulate coded PNC scheme and analyze the corresponding

component decoders and derive the generalized update rules for these components.

We then develop bounds on the approximation of the EXIT functions of the irregular

repeat-accumulate coded PNC and further utilize the developed bounds to optimize

the irregular repeat-accumulate codes. At the end, we demonstrate the significant

gain obtained via simulations.

In Chapter 5, we analyze and design Eisenstein integer based lattice network

codes for PNC employed multi-way relay fading channels, to provide error rate per-

formance bounds and to provide construction methods for constructing Eisenstein

integer based lattice network codes. This chapter begins by visiting the basic models

of compute-and-forward and lattice network coding. We then derive the error perfor-

mance bound. We then focus on construction methods for Eisenstein integer based

lattice network codes with general lattice partition. We then focus on construction

of Eisenstein integer based lattice network codes with over GF(4). At the end of

this chapter, we demonstrate the error rate bound, and show the performance of the

constructed codes.

In Chapter 6, we design a transmission scheme for pair-wise transmission PNC in

single-input single-output multi-way relay channels, to improve the network sum-rate

and to improve the error rate performance at the relay. This chapter begins by intro-

duce the background of this study. We then give detailed description of the system
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model. We then introduce the conventional successive pair-wise transmission scheme

in the considered MWRCs. After that, we study the proposed opportunistic pair-

wise transmission. In the simulation results, we show the performance improvement

in both sum-rate and error rate at the relay.

In Chapter 7, we optimize the uplink/downlink channel usage of multi-input

multi-output multi-way relay channels with PNC to maximize the degrees of free-

dom, and design an iterative optimization algorithm to maximize the sum-rate. This

chapter begins by brief review the related work. We then introduce the detailed

system model. After that, we derive the DoF capacity of the considered MIMO

MWRCs with fixed channel uses. We then focus on the optimization of the DoF and

corresponding uplink/downlink channel allocation. We then focus on the sum-rate

optimization. In the end of this chapter, we demonstrate the optimization results via

simulations.

In Chapter 8, we conclude this thesis and discuss possible extensions and future

work.
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Chapter 2

Design of Channel-Uncoded PNC

in TWRCs

2.1 Introduction

In this chapter, we focus our study on the design of network coding functions in

PNC employed two-way relay fading channels, where quadrature phase shift keying

(QPSK) modulation is employed at the users. As introduced in Section 1.3.1 that an

effective network function is important for a relay, in a physical-layer network cod-

ing (PNC) employed network, to compute reliable network coded information. This

work falls in a more general linear PNC with higher modulation employed at the

users and the relay. With higher modulation, the relay has more freedom to choose

good linear coefficients for different users depends on their channel condition, which

is the motivation of this work. Previous work in [14] investigated the asymptotically

optimal error-rate performance when pulse amplitude modulation (PAM) was con-

sidered. Different from the approach in [14], we focus on the distance profile between

any two immediate neighboring constellation points at the relay. Base on that, we

select the optimal computation coefficients in terms of minimizing the computation

error probability at the relay.

37
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This chapter begins by presenting the system model, including the detailed net-

work computation process at the relay. Then we derive the computation error proba-

bility for computing network coded messages at the relay, and the computation error

probability is a function of a special minimum distance on the superimposed con-

stellation seen by the relay. We then investigate how to select optimal computation

coefficients depends on the channel condition to maximize the interested minimum

distance. At the end of this chapter, we will show the comparison between the ana-

lytical results and the simulation results.

2.2 System Model

2.2.1 System Overview

The system model is depicted in Fig. 2.1. Two single-antenna users, denoted by

A and B, exchange information via a single-antenna relay R. The users and the

relay operate in a half-duplex mode and there is no direct link between the users.

The complete information exchange between the users is performed in the multiple

access phase followed by the broadcast phase. In the multiple access phase, two users

transmit simultaneously to the relay. We assume that the relay knows the channel

state information of the users. When the relay receives the superimposed signal from

the two users, it computes the corresponding network coded message. In the broadcast

phase, the relay broadcasts the computed message back to the users. After the users

receive the network coded message from the relay, each user can retrieve each other’s

message by canceling its own message. The complete information exchange between

the two users is accomplished in two time slots.

A R B 
A
h

B
h

'

A
h

'

B
h

Figure 2.1System model of a TWRC.
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2.2.2 Multiple Access Phase

In this work, we consider an uncoded system with QPSK signaling. Let wA denote

the message of user A. The message is uniformly generated from a Galois field of size

4, i.e., wA ∈ GF (22). Note that when constructing the GF (22), one may form a set

of elements {0, 1, α, α2}. For the ease of representation, we map α to value 2, and

map α2 to value 3. Then the message set becomes {0, 1, 2, 3}. Let MA(·) denote the

signal constellation mapper for node A, and xA denote the mapped signal. We have

xA = MA(wA). The same procedure also applies to user B.

Assuming perfect synchronization at the relay and equal transmission power at

the two end users, the signal received by the relay is

yR = hA

√
ExA + hB

√
ExB + nR, (2.1)

where E is the average transmission energy per symbol, hA and hB are the corre-

sponding channel coefficients. In this study, we follow the study in [14], where only

amplitude distribution is considered. The introducing of the phase distribution fur-

ther complicates the system model, and will be studied in future. In this expression,

nR is a complex circularly-symmetric additive white Gaussian noise with zero mean

and power spectrum density N0.

The goal for the relay is to compute a network coded message from its received

signal yR, and then broadcast it to the two users. Given a computation coefficient

vector a = [aA aB] ∈ GF (22) \ {0}, i.e., aA, aB ∈ {1, 2, 3}, the network coded message

is defined as

wa
R , (aA ⊗ wA)⊕ (aB ⊗ wB) ∈ GF (22) (2.2)

where ⊗ and ⊕ denote the addition and multiplication in GF (22), respectively. Note

that wB can be uniquely determined via (2.2) when given a, wa
R, and wA, so that

there will be no ambiguity when recovering user B’s information at user A. The same

holds for user B. A computation error at the relay is declared if ŵa
R ̸= wa

R.
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2.2.3 Broadcast Phase

In the downlink phase, the relay modulates the computed network coded message

xR = MR(w
a
R), and then broadcasts it to the two users. The received signal at user

A is yA = h
′
A

√
ExR + nA, where h

′
A is the channel coefficient from the relay to user

A. We assume the users know the computation vector a. After recovering wa
R from

the received signal, user A can extract user B’s message by canceling its own message

wA. This also holds for user B.

2.3 Computation at Relay and Error Probability

2.3.1 Computation at the Relay

The received signal at the relay is a superimposed signal corrupted with noise. Let

us define the superimposed signal as

xS , hA

√
ExA + hB

√
ExB. (2.3)

Given a channel realization vector h = [hA hB], a superimposed signal constellation

is defined as a collection of all possible superimposed signals

XS , {xS|h}. (2.4)

Given a QPSK constellation as shown in Fig. 2.2(a), an example of a superimposed

signal constellation for QPSK is shown in Fig. 2.2(b). For the ease of referencing,

we label the superimposed constellation points sequentially from xS,1 to xS,16. The

cardinality of XS is 16.

We now consider the connection between the superimposed signal constellation

points and the network coded messages. For a given computation coefficient vector

a = [aA aB], define the following set

XS(w
a
R) , {xS : wa

R = (aA ⊗ wA)⊕ (aB ⊗ wB)}, (2.5)
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Figure 2.2Example of QPSK constellation and superimposed two QPSK
modulation with different computation coefficient vector a. In (a), it is a
normalized QPSK constellation with unit symbol energy and Gray coded
symbol value. In (b) and (c), h = [1 0.8]. In (b), a = [1 1]. In (c), a = [1 2].

which collects all the superimposed signal constellation points xS corresponding to

the same network coded message wa
R. We see from (2.5) that, there are only 4 possible

xS corresponding to a given network coded message wa
R. Hence, the cardinality of

a set XS(w
a
R) is 4, and p(xS|wa

R) =
1
4
, xS ∈ XS(w

a
R). Note that XS =

∪
wa

R
XS(w

a
R).

Fig. 2.2(b) and Fig. 2.2(c) show the examples for a superimposed QPSK constel-

lation with computation coefficient vector a = [1 1], and a = [1 2], respectively.

The superimposed constellation points xS corresponding to the same network coded
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message wa
R is marked out by the same legend. We can see from these two figures

that, different computation coefficient vector can result in different mappings from

the superimposed signals to the network coded messages.

After receiving yR, the relay can employ two rules to compute the network coded

message: optimal maximum likelihood computation rule and sub-optimal minimum

distance computation rule, see [37]. In this paper, we consider the minimum distance

computation rule. In the minimum distance computation rule, the relay firstly finds

out the most likely superimposed signal which has the smallest Euclidean distance

from the received signal, that is

x̂S = argmin
xS∈XS

|y − xS|2. (2.6)

Then, the corresponding network coded message can be determined by

ŵa
R = x̂S ∈ XS(w

a
R). (2.7)

2.3.2 Computation Error Probability

Given a computation coefficient vector a and a genuine network coded message wa
R,

a decoding error occurs if the computed network coded message ŵa
R ̸= wa

R. With the

MD computation rule, and p(xS|wa
R) =

1
4
, xS ∈ X (wa

R), the pair-wise error probability

between wa
R and ŵa

R is upper bounded by

pe(ŵ
a
R|wa

R) 6
∑

xS∈XS(w
a
R)

x̂S∈XS(ŵ
a
R)

1

4
pe(x̂S|xS). (2.8)

We now consider the pair-wise error probability between two superimposed signals

x̂S and xS

pe(x̂S|xS) = Q

√(x̂S − xS)2

2N0

 . (2.9)
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The average network coded symbol error probability is

pe =
∑
wa

R

p(wa
R)

∑
ŵa

R ̸=wa
R

pe(ŵ
a
R|wa

R), (2.10)

≤
∑
wa

R

p(wa
R)

∑
ŵa

R ̸=wa
R

∑
xS∈XS(w

a
R)

x̂S∈XS(ŵ
a
R)

1

4
pe(x̂S|xS), (2.11)

(a)
=

1

42

∑
wa

R

∑
ŵa

R ̸=wa
R

∑
xS∈XS(w

a
R)

x̂S∈XS(ŵ
a
R)

Q

√(x̂S − xS)
2

2N0

, (2.12)

where step (a) follows from the fact p(wa
R) =

1
4
. Let d2min(w

a
R) denote the minimum

inter-set squared Euclidean distance (SED) to the superimposed signals corresponding

to network coded message wa
R, we have

d2min(w
a
R)

∆
= min

xS∈XS(w
a
R)

x̂S∈XS\XS(w
a
R)

(x̂S − xS)
2, (2.13)

where XS\XS(w
a
R) denotes the set of all superimposed signals excluding the ones

corresponding to the network coded message wa
R. Then the minimum inter-set SED

among all wa
R is defined as

D2
min

∆
= min

wa
R

d2min(w
a
R). (2.14)

In the high signal-to-noise (SNR) region, the D2
min dominates the error probability of

computing wa
R [14]. Let A denote the multiplicity for D2

min. The bound in (2.12) can

be simplified to

pe ≤
1

42
AQ

√D2
min

2N0

 . (2.15)

From (2.14) and (2.15), we see that this upper bound is related to the computation

coefficient vector a. This is illustrated in Fig. 2.2(b) and Fig. 2.2(c). For the given

channel coefficient vector h = [1 0.8], the D2
min obtained by selecting a = [1 1] is larger

than theD2
min obtained by selecting a = [1 2]. In this case, the computation coefficient

vector a = [1 1] can result in a better decoding performance than a = [1 2]. This

suggests that for each pair of channel realization, an optimal computation coefficient
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vector aopt can be found to maximize the D2
min, which in turn minimizes the average

computation error probability.
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Figure 2.3(a) Superimposed two QPSK constellations when η = 1.25. (b)
Superimposed two QPSK constellations when η = 4. (c) Interested distances
in a superimposed constellation.

2.4 Distance Analysis and Performance Bound

In this work, we select the QPSK constellation with points 1√
2
{−1 + i, 1 + i,−1 −

i, 1− i}. The symbol value can be mapped to the constellation points by using Gray

coding as shown in Fig.2.2(a).
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2.4.1 Distance Analysis

Let us define η , hA

hB
. We focus on the case when hA ≥ hB, and this gives η ≥ 1. We

note that the case when 0 < η < 1 is the same as η > 1. Two typical examples of the

superimposed constellation are shown in Fig. 2.3(a) and Fig. 2.3(b) where η = 1.25

and η = 4, respectively. The two user’s messages embedded in each superimposed

constellation points are listed in Table 2.1.

Table 2.1Embedded two users’ message for each superimposed constellation
points

xS xS,1 xS,2 xS,3 xS,4 xS,5 xS,6 xS,7 xS,8

wA 0 0 1 1 0 0 1 1

wB 0 1 0 1 2 3 2 3

xS xS,9 xS,10 xS,11 xS,12 xS,13 xS,14 xS,15 xS,16

wA 2 2 3 3 2 2 3 3

wB 0 1 0 1 2 3 2 3

The error probability upper bound in (2.15) is determined by the minimum inter-

set SED D2
min. The value of D2

min is determined by the distances between the neigh-

boring points of the superimposed signal constellation. For the QPSK modulation,

there are five different neighboring distances between the superimposed signal points

as illustrated in Fig. 2.3(c). Now let us define these five distances: d1 is the distance

between xS,6 and xS,10, d2 is the distance between xS,6 and xS,11, d3 is the distance

between xS,6 and xS,3, d4 is the distance between xS,6 and xS,2, and d5 is the distance

between xS,6 and xS,1. Using geometry, we calculate d21 as

d21 = 2(hA − hB)
2E. (2.16)

Here, we introduce a normalization factor Eh2
B, and divide this on both sides of

(2.16), we have

d21,norm = 2η2 − 4η + 2. (2.17)
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Similarly, other interested normalized SED can be calculated:

d22,norm = 4η2 − 8η + 4, (2.18)

d23,norm = 2η2 − 4η + 4, (2.19)

d24,norm = 2, (2.20)

d25,norm = 2
√
2. (2.21)

Fig. 2.4 shows the normalized SED against η.

We now illustrate the procedure to find the optimum computation coefficient

vector to maximize D2
min. Fig. 2.4 shows that when 1 < η < 1 +

√√
2− 1, we have

d21,norm < d22,norm < d24,norm < d23,norm < d25,norm, where 1+
√√

2− 1 is the η value when

d23,norm = d25,norm. We firstly try to group any two superimposed signal points that

have the smallest distance d1 in Fig. 2.3(c), in order to increase the minimum inter-

set distance. This suggests that (xS,6, xS,10) should be mapped to the same network

coded message. This also applies to other pairs of points that have the same distance,

such as (xS,6, xS,7), (xS,10, xS,11), (xS,7, xS,11), (xS,2, xS,3), (xS,8, xS,12), (xS,14, xS,15),

and (xS,5, xS,9). Interestingly this means that the four points in the middle of the

superimposed constellation (xS,6, xS,7, xS,10, xS,11) should be grouped together. The

exact grouping is shown as the circles with labels from G1 to G5 in Fig. 2.3(a). Let

wA(xS) denote the user A’s embedded message in a superimposed constellation point

xS. For G1 we have wA(xS,8) = wB(xS,12), and wB(xS,8) = wA(xS,12) as illustrated in

Table 2.1. G2, G3, and G4 also have the same relationship of their embedded users’

messages. This requires the computation coefficients aA = aB ∈ GF (22) \ {0} for

G1, G2, G3, and G4 to map to their corresponding common network coded messages.

One can verify that the same computation coefficient aA = aB ∈ GF (22) \ {0} will

also enable the superimposed points in G5 to be mapped to a common network coded

message.

After finishing grouping any two superimposed constellation points with the s-

mallest distance d1, we now proceed to grouping any two superimposed constellation
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points with the second smallest distance d2, to further increase the minimum inter-set

distance. The distance d2 exists in the following pairs of constellation points: (xS,6,

xS,11) and (xS,7, xS,10). Note that these two pairs of constellation points have been

grouped in the grouping process for distance d1. This means that d2 is already an

intra-set distance.

Next, we group any pair of superimposed constellation points with distance d4.

There are in total 16 pairs of superimposed constellation points having distance d4, 4

pairs of superimposed constellation points in each quadrant. Take the points in the

first quadrant as an example. The 4 pairs of points are: (xS,3, xS,4), (xS,4, xS,8), (xS,8,

xS,7), (xS,7, xS,3). Notice that grouping each pair means that the 4 points xS,3, xS,4,

xS,7, and xS,8 should be grouped and mapped to the same network coded message.

The grouping for distance d4 is shown in Fig. 2.3(b) with labels from G6 to G9.

However, this grouping cannot be achieved. For example, for the 4 superimposed

constellation points in G7, they have a common embedded message from user A

and 4 different embedded message from user B as shown in Table 2.1. In this case,

a computation coefficient vector a cannot be found to allow these 4 superimposed

constellation points to map to a common network coded message via (2.2). In fact,

with any possible computation coefficient vector a, the 4 points in G7 always map

to 4 different network coded messages. This is also true for G6, G8, and G9. This

suggests that any two superimposed constellation points with distance d4 cannot be

grouped and mapped to a common network coded message. Then d4 becomes Dmin,

and the corresponding multiplicity amounts to A = 32.

With the above discussion and the observation in Fig. 2.4, we conclude the fol-

lowing two cases:

Case 1) 1 < η < 2: In this case, d1 is the smallest distances and any pair of

superimposed points with this distance can be grouped and mapped to the same

network coded message. This grouping process can proceed up to the distance d4.

Recall that any pair of superimposed points with distance d4 cannot be grouped, and

this suggests that Dmin = d4. The requirement for the optimum coefficients is simply
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η

Figure 2.4Normalized SED.

aA = aB ∈ GF (22) \ {0}. An example of the grouping result is shown in Fig. 2.3(a),

where different mapped network coded messages are denoted by different marks.

Case 2) η > 2: In this case, the minimum distance is d4. Previous analysis

shows that any pair of the superimposed constellation points with distance d4 cannot

be grouped and mapped to the same network coded message. This suggests that

there is no optimum computation coefficient vector to improve the computation error

performance at the relay. An example of this case is shown in Fig. 2.3(b), where

different mapped network coded messages are denoted by different markers.

2.4.2 Computation Performance Bound

Firstly, We derive the statistic characteristic of η. With the definition of η, its cumu-

lative distribution function (CDF) can be written as

F (η) =

∫ hB=∞

hB=0

∫ hA=ηhB

hA=0

P (hA, hB)dhAdhB, (2.22)

(b)
=

∫ hB=∞

hB=0

∫ hA=ηhB

hA=0

P (hA)P (hB)dhAdhB, (2.23)
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where step (b) follows the fact that any two user channels are independently faded,

and P (hA) = 2hA exp (−h2
A), P (hB) = 2hB exp (−h2

B). Substituting P (hA), and

P (hB) into (2.23), we have

F (η) = 1− 1

1 + η2
, η > 0. (2.24)

Its probability density function (PDF) can be derived as

f(η) =
dF (η)

dη
=

2η

(1 + η2)2
. (2.25)

We now study the average Error probability for w
aopt

R . We firstly consider the

case when 1 < η < 2. From the previous distance analysis with optimal computation

coefficient aopt, we have

pe(1 < η < 2) ≤
∫ hB=∞

hB=0

1

42
AQ

√2h2
BE

2N0

 p(hB)dhB. (2.26)

When η > 2, we have

pe(2 < η) ≤
∫ hB=∞

hB=0

1

42
AQ

√2h2
BE

2N0

 p(hB)dhB. (2.27)

Note that for both (2.26) and (2.27) we have A = 32.

Then the average error probability upper bound for w
aopt

R when η ≥ 1 can be

expressed as

pe(1 ≤ η) = pe(1 < η < 2)p(1 < η < 2|1 ≤ η)

+ pe(2 < η)p(2 < η|1 ≤ η),
(2.28)

where

p(1 < η < 2|1 ≤ η) =
F (2)− F (1)

1− F (1)
, (2.29)

and

p(2 < η|1 ≤ η) =
1− F (2)

1− F (1)
, (2.30)

Note that (2.28) follows from that p(η = 1|1 ≤ η) = 0 and p(η = 2|1 ≤ η) = 0.
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Now, we present the computation error probability upper bound for all η value:

pe = pe(1 ≤ η) + pe(0 < η < 1), (2.31)

= 2pe(1 ≤ η), (2.32)

≤ 2

(
1−

√
ρ

ρ+ 2

)
, (2.33)

where ρ = E
N0

, and (2.32) follows from the fact that 0 < η < 1 is the symmetric case

of η ≥ 1. When ρ becomes large (at high SNR region), (2.33) can be approximated

to:

pe ≤ 2ρ−1. (2.34)

Hence the diversity order is 1 at high SNR region, when the optimum compute coef-

ficient vector aopt is selected.

2.5 Numerical Results

We firstly compare the derived error rate upper bound to the simulation results for

the decoding of the network coded messages at the relay when QPSK are considered.

The optimal computation coefficient vectors aopt in the simulation are obtained via

exhaustive search. Fig. 2.5 shows that the simulation results closely match with the

analytical results, and the derived upper bound is a tight upper bound.

For comparison, we show the error performance of decoding the network cod-

ed message when 4-PAM is considered, where the corresponding diversity order was

reported as 1
2
in [14]. We see that, QPSK outperforms 4-PAM significantly. The

diversity order for decoding the network coded message at the relay is 1 with QPSK,

doubling the case with 4-PAM. Our scheme is about 15 dB better than the corre-

sponding 4-PAM scheme at the symbol error rate of 10−2.
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4-PAM in [14]

Figure 2.5The Monte-Carlo simulation results and the analytical upper
bound.

2.6 Conclusions

In this work, we designed the optimal network coding function at the relay when QP-

SK constellation is considered, and we analyzed the corresponding error performance

at the relay. We discussed the approach to analyze the distance profile which con-

tributes to the error events of the computer-and-forward at the relay when optimal

computation coefficient vector is considered. We derived a tight computation error

upper bound at the relay in a closed form. We showed that the diversity order of

this scheme is 1 when optimum computation coefficients are selected. This proposed

scheme outperforms the corresponding 4-PAM scheme reported in the literature by

15 dB at the symbol error rate of 10−2.
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Chapter 3

Analysis of CPNC in TWRCs with

Binary Classic Codes

3.1 Introduction

Starting from the chapter, we investigate the channel-coded PNC (CPNC) scheme.

In this chapter, we focus on the error performance of CPNC scheme for binary-input

Gaussian two-way relay channels, where linear classical codes are adopted. Linear

codes are important for achieving network coding function at the relay. This is because

that the component-wise modulo-2 sum of two codewords is another codeword. In

general, codes can be divided into two categories: block codes and convolutional codes.

Block codes have fixed length due to the fact that its coding is operated block by

block. Convolutional codes, on the contrary, can have arbitrary lengths. As pointed

out in [10] that classic codes are designed with large minimum distance and strong

algebraic structure. The error probability performance of classic codes in point-to-

point channel relies on their minimum distance and distance distributions [132,133].

However, unlike the point-to-point channel, the challenge in PNC is that the relay sees

53
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superimposed signals which can be transformed to superimposed codewords, and the

relay is required to decode a network coded codewords directly from the superimposed

signals it received. Thus conventional distance analysis for point-to-point channel no

longer applies for PNC.

This chapter begins by presenting the preliminary knowledge of classic codes,

where we focus on block codes. The introduced Hamming distance and performance

upper bound are important for understanding the later analysis for PNC scheme.

After that, we shift our focus on studying the structure of the superimposed codewords

in PNC. We then introduce an asymptotically tight performance bound for the error

probability. Finally, we demonstrate the derived performance bounds by Monte-Carlo

simulations.

The work in this chapter is a collaborated work with other researchers, and I

am the sole student in this collaboration. My contribution in this work includes:

propose the computation functions for network coded information at the relay and

compared their performance difference via simulations; analyze the structure of the

superimposed codewords at the relay and formulate the distance properties; derive

the union bound in a form of the distance structure; conduct simulation to verify the

derived performance bound.

3.2 Preliminary: Linear Block Codes

3.2.1 Encoding of Block Codes

Block codes have fixed length due to the fact that it coding is operated block by block.

An important feature of block coding is that the encoded codeword only depends on

the current input information sequence of an encoder. In other words, the encoder of

block codes is memoryless. Examples of block codes include Hamming codes, BCH

codes, and Reed Solomon codes.

Given an (n, k) block code, the length of the input information sequence is k and
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the length of the output codeword is n, and n > k. The code rate is defined as

R = k/n which indicates the amount of information per coded digit. From now on,

we focus our discussion on binary codes unless otherwise specified. For a binary (n, k)

block code, there should be 2k possible distinct messages and 2k distinct codewords,

since there should be a one-to-one correspondence between a message and a codeword.

A block code is linear if the following two conditions are satisfied:

1. The modulo-2 sum of two codewords is another codewords;

2. All-zero codeword is included in the code.

As a matter of fact, the first condition is important for achieving linear network

coding in PNC, which we will see later in this chapter.

In linear algebra, an (n, k) linear block code is a k-dimensional subspace of the

vector space Vn of all the binary n-tuples. Given k linearly independent binary n-

tuples {g0,g1, · · · ,gk−1}, an (n, k) linear block code can be constructed by:

c = b0g0 + b1g1 + · · ·+ bk−1gk−1,

where b = (b0, b1, · · · , bk−1) is the message sequence. The k linearly independent

n-tuples {g0,g1, · · · ,gk−1} for an (n, k) code can be organized in a matrix form

G =


g0

g1

...

gk−1

 =


g00 g01 · · · g0,n−1

g10 g11 · · · g1,n−1

...
...

. . .
...

gk−1,0 gk−1,0 · · · gk−1,n−1

 .

This matrix G is called the generator matrix of the block code. Thus, given a message

sequence b, the encoding process can be represented as

c = b ·G = b0g0 + b1g1 + · · ·+ bk−1gk−1.
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Example 3.1. A commonly used example in the literature is (7, 4) code. One form

of its generate matrix is

G =


1 0 0 0 1 0 1

0 1 0 0 0 1 1

0 0 1 0 1 1 1

0 0 0 1 1 1 0

 .

Thus, given a message b = (1101), the encoding process is as follows:

c = b ·G

= 1 · (1000101) + 1 · (0100011) + 0 · (0010111) + 1 · (0001110)

= (1101000)

where the operations are modulo-2 addition and multiplication. Table 3.1 shows the

complete messages and corresponding codewords for the (7, 4) linear block code in

this example, and in total there are 24 distinct codewords in this code.

3.2.2 The Minimum Distance of a Block Code

Given a block code, its error detection and correction capability is determined by

its code minimum distance [10, 132, 133]. We start with the definition of Hamming

distance. Given an (n, k) linear block code C, the Hamming distance (or distance)

between any two codewords c1 and c2, d(c1, c2), is defined as the number of different

places between these two codewords. Take the (7, 4) linear block codes in Table 3.1

as an example. If c1 = (0001110) and c2 = (0010111), then we have d(c1, c2) = 3.

Another important definition in linear block code is Hamming weight (or weight).

The Hamming weight of a codeword is defined as the total number of nonzero places

in the codeword. For example, the Hamming weight of c1 = (0001110) is 3, and the

Hamming weight of c2 = (0010111) is 4.

Recall that an important property of linear block codes is that the modulo-2 sum

of two codewords is still a valid codeword. Now we can see that the Hamming distance
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Table 3.1A (7, 4) linear block code

Messages b Codewords c Hamming Weight

0000 0000000 0

0001 0001110 3

0010 0010111 4

0011 0011001 3

0100 0100011 3

0101 0101101 4

0110 0110100 3

0111 0111010 4

1000 1000101 3

1001 1001011 4

1010 1010010 3

1011 1011100 4

1100 1100110 4

1101 1101000 3

1110 1110001 4

1111 1111111 7

between two codewords of a linear block code is the Hamming weight of the modulo-

2 sum of these two codewords. For example, the modulo-2 sum of c1 = (0001110)

and c2 = (0010111) in Table 3.1 is (0011001), which is also a valid codeword with

Hamming weight 3. The minimum Hamming distance (or minimum distance) of a

code is defined as the smallest Hamming distance between any two different codewords

in the code. Thus, the minimum Hamming distance of a linear block code is the

smallest Hamming weight of the nonzero codewords in that code. For example, the

minimum Hamming distance of the (7, 4) code in Table 3.1 is 3. Ref. [132, 133]

contains more details on how to derive the minimum Hamming distance from the
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parity-check matrix of a block code.

3.2.3 Performance Upper Bounds of Block Codes

We focus on the word error probability of block codes on AWGN channels here.

Ref. [132,133] contains more details on this topic, as well as the bit error rate upper

bounds.

The word error probability of a block code on AWGN channels can be upper-

bounded by a union bound which is a sum of all error events with various Hamming

distances. To this end, the weight distribution of a block code is important for

calculating the performance upper bound. Given an (n, k) block code, its weight

distribution can be expressed by the code weight enumerating function [136], which

is given by

W (X) =
n∑

i=0

WiX
i,

where Wi is the number of codewords that have Hamming weight i and X is a dummy

variable. For example, the weight enumerating function of the (7, 4) code in Table

3.1 is

W (X) = 1 + 7X3 + 7X4 +X7.

The weight distribution or the weight spectrum of a (n, k) block code with minimum

Hamming distance dmin is given by the following set

{Wdmin
,Wdmin+1, · · · ,Wn}.

We now consider the pairwise error probability. The pairwise error probability

is to describe the error events when a wrong codewords is selected in the decoding

process. Assume BPSK modulation is used and AWGN channel. The pairwise error

probability for a binary block code is given by [137]

Pd = Q

(√
2dR

Eb

N0

)
,
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where d is the Hamming distance between two codewords, R = k/n is the code rate,

Eb is the signal energy per bit, N0 is the single sided power spectral density of the

Gaussian noise, and Q(·) is the complementary error function. Thus, the word error

probability of union bound is a summation of all contributions from all error events

with all Hamming distances, given by

Pe ≤
∑

d=dmin

WdPd

=
∑

d=dmin

WdQ

(√
2dR

Eb

N0

)
where dmin is the minimum Hamming distance of the code, and Wd is the number

of error events with Hamming distance d. Usually all-zero codeword is assumed for

the ease of analysis, and Wd becomes the number of codewords with weight d in this

case, which can be obtained from the weight enumerating function W (X).

3.3 System Model

We consider a binary-input Gaussian two-way relay channel (TWRC) where two

single-antenna users, denoted by A and B, exchange information via an intermediate

single-antenna relay. The users and the relay operate in half-duplex mode and there is

no direct link between the users. The transmission protocol employs two consecutive

equal-duration time-slots for each round of information exchange. In the first time-

slot (uplink phase), the users transmit simultaneously and the relay remains silent.

In the second time-slot (downlink phase), the relay broadcasts to the two silent users.

At each node, the received signal is corrupted by AWGN.

3.3.1 Transmitter Architecture of the Two Users

The transmitter architecture of the uplink phase is depicted in Fig. 3.1. Let bA ∈

{0, 1}k and bB ∈ {0, 1}k denote the length-k binary message sequences of user A and

B, respectively. A common
(
2k, n

)
binary linear code of rate R = k/n is employed
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Figure 3.1Architecture of a two-way relay system operated with channel-
coded PNC. The relay computes the network-coded message bN = bA ⊕ bB

without explicit decoding of both users’ individual messages. Here, “+”
denotes in the linear addition in real values and “⊕” denotes the modulo-2
addition.

to encode the messages of both users, where k = nR. For a binary linear code,

this encoding operation can be written as cm = bmG, m ∈ {A,B}, where G is

the generator matrix. We exhibit the 2nR codewords as the rows of a matrix C ∈

{0, 1}2
nR×n which is referred to as the “codebook” matrix. The set of 2nR codewords is

denoted by C which is referred to as the “code”. The Hamming weight of a codeword

c ∈ C is denoted by wH (c). The minimum Hamming distance between any two

codewords in C is denoted by dmin (C).

Let a ⊕ b denote the modulo-2 addition (XOR) of a and b for a, b ∈ {0, 1}. For

binary sequences bA and bB, the XOR-ed message sequence is denoted by bN , bA

⊕ bB ∈ {0, 1}k. We refer to bN as a network-coded (NC) message [3]. Similarly, for

codeword-pair cA and cB, their XOR is cN , cA ⊕ cB ∈ {0, 1}n which is referred

to as a NC codeword. Due to the linearity of the code, we have cN ∈ C, that is, the

NC codeword set is identical to C. There is a one-to-one mapping between a NC
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codeword cN and a NC message bN , given by cN = bNG.

Note that in general, the relay can encode the network coded message bN using

a different code in the downlink transmission rather than the same code used by the

users in the uplink. For example, the relay can transmit in a different code rate to

suit the downlink channel condition in its transmission. In this work, we assume

that the relay is using the same codebook as the user. Thus, the relay combines the

two operations “Relay computation” and “Encoder” in Fig. 3.1 together and directly

compute the network coded codeword from its received superimposed signal.

In the uplink phase, the codewords of the two users are modulated via BPSK

(0 7→ −1, 1 7→ +1), resulting in coded signal sequences

xm = 2cm − 1 ∈ {−1, 1}n ,m ∈ {A,B}, (3.1)

that are simultaneously transmitted. Assuming perfect synchronization, the relay

receives

yR =
√

EAxA +
√

EBxB + nR, (3.2)

where Em denotes the received symbol energy of user m,m ∈ {A,B}, and nR is the

AWGN sequence. The variance of the noise is σ2 = N0

2
where N0 is the one-sided

noise power spectral density. It is noteworthy that, in general, the two users in a

CPNC scheme may have different data rates and different signal power. In this work,

however, we will follow the pioneering work [46] by limiting our discussion to the cases

where the two users have identical data rates and the same received symbol energies,

i.e., EA = EB = Es. Then, the signal received by the relay is

yR =
√
EAxA +

√
EBxB + nR =

√
Esxs + nR, (3.3)

where xs , xA + xB ∈ {−2, 0, 2}n. We refer to xs as a superimposed (SI) codeword.

Since the code C is linear, the SI codewords exhibit important features that will

be exploited to recover the NC codeword at the relay, as we will see momentarily. To

characterize those features, the following definition is required.
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Definition 3.1. Given a NC codeword cN , we define a set Xs(cN) which collects all

the distinct SI codewords xs that correspond to cN , given as

Xs(cN) , {xs = xA + xB : xA = 2cA − 1,xB = 2cB − 1,

cA, cB ∈ C, cA ⊕ cB = cN}. (3.4)

The union of the sets Xs(cN) for all cN is given as

Xs =
∪

cN∈C

Xs(cN) (3.5)

which collects all possible sets of SI codewords. Here, (3.4) and (3.5) partition the

entire SI codeword space into a number of sets Xs(cN), cN ∈ C, where each set

corresponds to a specific NC codeword cN . The mapping from those SI codewords

xN ∈ Xs(cN) to cN is multiple-to-one if |Xs(cN)| > 1.

3.3.2 Computation Rules at the Relay

Upon receiving yR, the first task of the relay is to recover the NC codeword cN =

cA ⊕ cB. Since the relay does not decode both individual codewords cA and cB, but

only computes their modulo-2 sum cN , we consider following two computation rules.

Maximum Likelihood Computation

Previously, (3.4) and (3.5) have partitioned the entire SI codeword space into sets

Xs(cN), cN ∈ C. Upon receiving yR, the relay will distinguish these sets, according

to their set likelihood functions given by

p (yR|cN) = p (yR|Xs(cN)) , cN ∈ C,

to determine the NC codeword cN . This is different from the conventional single-user

decoding. The optimal maximum likelihood (ML) computation rule is performed via

the following two steps:

Step 1. Calculate the set likelihood functions p (yR|Xs(cN)) for all cN ∈ C.
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Step 2. Select the most likely set and determine the estimation of the NC code-

word, i.e.,

ĉN = arg max
cN∈C

p (yR|Xs(cN)) . (3.6)

Minimum Distance Computation

As an alternative, we can employ a suboptimal minimum distance (MD) computation

via the following two steps:

Step 1. The estimated SI codeword x̂s with minimum squared Euclidean distance

to yR is found by

x̂s = arg max
xs∈Xs

p (yR|xs) = arg min
xs∈Xs

∥yR − xs∥2 . (3.7)

Step 2. The estimation of the NC codeword is determined by finding

ĉN : x̂s ∈ Xs(ĉN). (3.8)

A computation error is declared if ĉN ̸= cN .

Remark 3.1. The suboptimal MD computation, also known as “lattice decoding” [20],

is of particular importance in a practical CPNC scheme. It is at the moment the only

practically feasible computation method. Specifically, [46] estimates the “nearest”

SI codeword using iterative believe propagation based on the “superimposed Tanner

graph”, and [35] estimates the nearest SI codeword via the Viterbi algorithm based

on the “super-trellis”. In contrast, at the moment, it is infeasible to apply the optimal

ML computation in a practical CPNC scheme, due to the difficulty in calculating the

set likelihood functions in (3.6).

Remark 3.2. Here, cN is directly computed from the physically received signal. The

complete decoding of both individual codewords cA and cB are circumvented and the

multiplexing loss can be avoided [27].

In the downlink phase, after the NC codeword is computed, the relay broadcasts

the BPSK-modulated NC codeword to the two users. Then, user A (or B) can recover
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its desired message bB (or bA) with the help of the knowledge on its own message.

More details about the downlink phase can be found in [46].

It is noteworthy that the operations of the uplink and downlink phases can be

decoupled [46]. Since the decoding operation at each user in the downlink phase is

standard, we will only focus on the probability of computation error Pr (ĉN ̸= cN) at

the relay. Given that, the analysis of the downlink phase is straightforward.

3.4 Structure of the Superimposed Codewords

In this section, we investigate the structural properties of the superimposed (SI)

codewords xs ∈ Xs(cN) for cN ∈ C. The results in this section are necessary to prove

the distance properties and to derive the error probability of the CPNC scheme in

the subsequent sections.

3.4.1 Properties of Superimposed Codewords

We first present some simple properties on the SI codewords in Xs(cN). Let cN (t) , t =

1, · · · , n, be the t-th entry of cN . Define a support set

S (cN) , {t ∈ {1, 2, · · · , n} : cs (t) = 1} ,

which collects the positions of cN whose entry is 1. The complementary set of S (cN)

is denoted by Sc (cN).

Property 3.1. For any NC codeword cN and any SI codeword xs ∈ Xs(cN), we have

xs (t) =

 0, t ∈ S (cN) (or t : cN (t) = 1)

2 or − 2, t ∈ Sc (cN) (or t : cN (t) = 0)
. (3.9)

Explanation: For t ∈ S (cN), we have cN (t) = 1 which means that cA (t) ̸= cB (t).

This leads to xA (t) ̸= xB (t) and xs (t) = xA (t) + xB (t) = 0. For t ∈ Sc (cN), we

have cA (t) = cB (t) and xA (t) = xB (t), thus xs (t) = xA (t) + xB (t) = 2xA (t). Since

xA (t) is either 1 or −1, xs (t) is either 2 or −2 for t ∈ Sc (cN). �
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Property 3.2. Only t ∈ Sc (cN) are required in distinguishing different SI codewords

in a given set Xs(cN).

Explanation: From Property 3.1, for xs ∈ Xs(cN), xs (t) = 0 for t ∈ S (cN). Thus,

there is no difference between any two SI codewords in Xs(cN) for the positions t ∈

S (cN). In other words, only the positions t ∈ Sc (cN) are relevant to distinguishing

different SI codewords in Xs(cN). �

Property 3.3. For any cN ̸= c′N , we have Xs(cN) ∩ Xs(c
′
N) = ∅, where ∅ denotes the

empty set.

Explanation: If cN ̸= c′N , one can find at least one position, say t
∗
, such that cN (t∗) ̸=

c′N (t∗). Let xs ∈ Xs(cN) and x′
s ∈ Xs(c

′
N), cN ̸= c′N . From Property 3.1, we have

xs (t
∗) ̸= x′

s (t
∗). This yields Xs(cN) ∩ Xs(c

′
N) = ∅. �

3.4.2 Punctured Codebook

Now, we define a punctured codebook which will be repetitively used in this chapter.

In the sequel, we use aI to denote the entries of a indexed by I, where I ⊂ {1, · · · , n}

and n is the length of the vector a. Similarly, we use AI to denote the matrix which

consists of the columns of A that are indexed by I.

Definition 3.2 (Punctured Codebook). A punctured generator matrix GSc(cN ) is

obtained by removing the columns indexed by t ∈ S (cN), and keeping those indexed

by t ∈ Sc (cN), from the original generator matrix G. Similarly, a punctured codebook

CSc(cN ) is obtained by removing all the columns indexed by t ∈ S (cN), and keeping

those indexed by t ∈ Sc (cN), from the original codebook C.

Example 3.2. Consider a (7, 4) Hamming code with

G =


1 0 0 0 1 1 0

0 1 0 0 0 1 1

0 0 1 0 1 1 1

0 0 0 1 1 0 1

 . (3.10)
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Let c′N be a certain codeword in C, e.g., c′N = G· [0 0 1 1] = [0 0 1 1 0 1 0]. Then,

S (c′N)={3, 4, 6} and

GSc(c′N) =


1 0 1 0

0 1 0 1

0 0 1 1

0 0 1 1

 . (3.11)

obtained by deleting Column 3, 4 and 6 of G. Then, the punctured codebook is

CSc(c′N) = BGSc(c′N).

Property 3.4. The linearity remains in CSc(cN ): the XOR of any two rows of CSc(cN )

is a row in CSc(cN ).

3.4.3 Cardinality of Xs(cs)

Now we show that the cardinalities of Xs(cN), cN ∈ C, can be determined by using

the punctured codebook. Let r (A) denote the number of distinct rows of a matrix

A and let Rank(A) denote the rank of A. Then, we have the following results.

Proposition 3.1. Each distinct row of CSc(cN ) yields a distinct SI codeword in

Xs(cN). Identical rows in CSc(cN ) corresponds to the same SI codeword in Xs(cN).

Proof. From Property 3.1, xs (t) = 0 for t ∈ S (cN). Therefore, it suffices to consider

only the positions t ∈ Sc (cN) , which are completely reflected in CSc(cN ). By defini-

tion, we have c
Sc(cN )
N = 0n−wH(cN ) which is equivalent to c

Sc(cN )
A = c

Sc(cN )
B . Therefore,

for t ∈ Sc (cN), we have

xSc(cN )
s = x

Sc(cN )
A + x

Sc(cN )
B = 4c

Sc(cN )
A − 2. (3.12)

Since c
Sc(cN )
A ∈ CSc(cN ), each distinct row of CSc(cN ) will give a distinct c

Sc(cN )
A and a

distinct x
Sc(cN )
s from (3.12). Moreover, identical rows of CSc(cN ) will map to the same

x
Sc(cN )
s . Since the entries of x

S(cN )
s are all-zero, they will map to the same xs. �
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Corollary 3.1. The cardinality of Xs(cN) is given by

|Xs(cN)| = r
(
CSc(cN )

)
. (3.13)

Proof. This follows from Proposition 3.1 and the definition of r (·). �

Proposition 3.2. Let r0
(
CSc(cN )

)
denote the number of all-zero rows in CSc(cN ).

Then, we have

r
(
CSc(cN )

)
=

2nR

r0 (CSc(cN ))
. (3.14)

Proof. Let the ith row of CSc(cN ) be denoted by C
Sc(cN )
i . Consider that C

Sc(cN )
i is not

an all-zero row. Then, besides C
Sc(cN )
i itself, there exist other r0

(
CSc(cN )

)
− 1 rows

in CSc(cN ) whose XOR with C
Sc(cN )
i are all-zero, since there are r0

(
CSc(cN )

)
all-zero

rows in CSc(cN ). This means that there are r0
(
CSc(cN )

)
− 1 rows identical to C

Sc(cN )
i ,

due to the linearity of the punctured codebook. Next, consider a row of CSc(cN ), say

C
Sc(cN )
i′ , that is different from C

Sc(cN )
i , i.e., C

Sc(cN )
i ̸= C

Sc(cN )
i′ . Then, besides C

Sc(cN )
i′

itself, there exist other r0
(
CSc(cN )

)
−1 rows in CSc(cN ) which are identical to C

Sc(cN )
i′ .

Thus, for every distinct non-zero row of CSc(cN ), there exists r0
(
CSc(cN )

)
− 1 other

rows that are identical to it. Since there are 2nR rows in CSc(cN ) in total, the number

of distinct rows is given by (3.14). �

Corollary 3.2. Assume that the codeword for each user is picked uniformly among

all possible codewords. Then, for any cN ∈ C, all SI codewords of Xs(cN) have the

same probability, i.e.,

p (xs|Xs(cN)) =
1

|Xs(cN)|
,∀ xs ∈ Xs(cN). (3.15)

This follows from Proposition 3.2 and its proof.

Proposition 3.3. The number of all-zero rows in CSc(cN ) is

r0
(
CSc(cN )

)
= 2

nR−Rank
(
GSc(cN )

)
. (3.16)
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Proof. To find the number of all-zero rows r0
(
CSc(cN )

)
, one only needs to enumerate

all the binary message vectors b ∈{0, 1}nR satisfying

bGSc(cN ) = 0n−wH(cN ). (3.17)

Note that (3.17) can be viewed as Rank
(
GSc(cN )

)
independent binary equations with

nR unknown variables. The number of distinct solutions satisfying (3.17) is exactly

2
nR−Rank

(
GSc(cN )

)
. �

Theorem 3.1. The cardinality of the set Xs(cN) is given by

|Xs(cN)| = 2
Rank

(
GSc(cN )

)
(3.18)

Proof. This follows from Corollary 3.1 and Propositions 3.2 and 3.3, equations (3.13) ,

(3.14) and (3.16). �

From Theorem 3.1, we have the following observation: For any cN ∈ C, there are

2nR codeword-pairs (cA, cB) with cA ⊕ cB = cN . In the domain of SI codewords,

however, the number of distinct elements is |Xs(cN)| = 2
Rank

(
GSc(cN )

)
, which can be

less than 2nR. Moreover, from Corollary 3.2, the SI codewords of Xs(cN) have equal

probabilities p (xs|Xs(cN)) = 1/ |Xs(cN)|. Thus, there are

2
nR−Rank

(
GSc(cN )

)
(3.19)

different codeword-pairs (cA, cB), whose NC codewords are equal to cN , overlap to

the same SI codeword xs. Notice that this overlapping does not cause ambiguity in

computing the NC codeword cN , since the different codeword-pairs (cA, cB) have the

same cN . This is similar to the case of uncoded PNC in the pioneering work [1].

3.4.4 Overlapping Factor

To characterize the “overlapping” described above, we will use the following definition.
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Definition 3.3 (Overlapping Factor). The overlapping factor w.r.t. any SI codeword

xs ∈ Xs(cN), cN ∈ C, is defined as

O (xs) , |{cA, cB ∈ C : cA ⊕ cB = cN ,xA + xB = xs}| .

Remark 3.3. Due to Corollary 3.2, the overlapping factor is the same for all SI code-

words xs in the set Xs(cN). Thus, we may write O (cN) instead of O (xs). The

overlapping factor O (cN) is generally different for various cN ∈ C.

Proposition 3.4. For cN ∈ C, from (3.19), we have

O (cN) = 2
nR−Rank

(
GSc(cN )

)
.

(3.20)

Example 3.3. For c′N = [0, . . . , 0], we have S (cN) = ∅, thus GSc(cN ) = G and

Rank
(
GSc(cN )

)
= nR. This results in O (c′N) = 1 from (3.20) which means that

every codeword-pair (c′A, c
′
B) : c′A ⊕ c′B = c′N maps to a distinct SI codeword. For

c′N = [1, . . . , 1], we have Rank
(
GSc(cN )

)
= 0. This results in O (c′N) = 2nR, which

means that all codeword-pairs (c′A, c
′
B) : c

′
A⊕c′B = c′N map to the same SI codeword.

The overlapping effect described above distinguishes the CPNC scheme from the

conventional complete DF-based scheme. In the complete DF-based scheme, the

codeword-pair (cA, cB) must be completely decoded. If different codeword-pairs are

overlapped, there will be an ambiguity and the decoding of both individual codewords

will fail. Therefore, multiple-access techniques such as code-division multiple-access

(CDMA), or interleave-division multiple-access (IDMA) [134,135], is employed which

can avoid the above ambiguity. In the CPNC scheme, however, we only need to recover

the NC codeword cN rather than the complete (cA, cB). Thus, the overlapping effect

will not affect the recovery of the NC codeword cN . Meanwhile, the introduction of

the overlapping of the SI codewords may lead to a more efficient usage of the entire

codeword space, e.g., an improved minimum distance (as we will see in the next

section), in a similar fashion as in the channel un-coded PNC case [1]. The improved

minimum distance of the CPNC scheme may give rise to an improved high-SNR error

performance relative to the complete DF based scheme.
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3.5 Distance Spectrum of CPNC

In this section, we proceed to find the distance spectrum of the CPNC scheme based

on the results in the previous section. The results in this section hold for CPNC

schemes with general binary linear channel codes.

3.5.1 Formulation of Pairwise Distance Spectrum

Assume that the genuine transmitted signal sequences of the two users are xA and

xB, and that their SI codeword is xs = xA + xB ∈ Xs(cN), where cN is the genuine

NC codeword. For an erroneous NC codeword c′N ̸= cN , let Xs(c
′
N) be referred to as

a competing set. Since there are |Xs(c
′
N)| SI codewords in this competing set, there

will be |Xs(c
′
N)| error events of confusing the genuine NC codeword cN with c′N .

We now investigate the set of squared Euclidean distances (SEDs) between the

genuine SI codeword xs and those in the competing set, i.e., x′
s ∈ Xs(c

′
N). To do this,

we partition Xs(c
′
N) into subsets

X d
s (xs, c

′
N) , {x′

s ∈ Xs(c
′
N) : ∥x′

s − xs∥2 = d2}, (3.21)

where min
x′
s∈Xs(c′N )

∥x′
s − xs∥2 ≤ d2 ≤ max

x′
s∈Xs(c′N )

∥x′
s − xs∥2, such that all SI codewords x′

s

in a subset X d
s (xs, c

′
N) have the same SED d2 to xs. We have the following result on

the SEDs.

Lemma 3.1. All possible SEDs between the genuine transmitted SI codeword xs ∈

Xs(cN) and any SI codeword in a given competing set Xs(c
′
N), denoted by ∥x′

s − xs∥2,

x′
s ∈ Xs(c

′
N), are given by

d2i = 4EsdH (cN , c
′
N) + i · 16Es, (3.22)

where i is an integer of 0 ≤ i ≤ |Sc (cN) ∩ Sc (c′N)| and dH (cN , c
′
N) is the Hamming

distance between cN and c′N . In particular, we have

d20 = min
x′
s∈Xs(c′N )

∥x′
s − xs∥2 = 4EsdH (cN , c

′
N) . (3.23)
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Proof of Lemma 3.1. For t ∈ Sc (cN) ∩ S (c′N) and t ∈ S (cN) ∩ Sc (c′N), we have

cN(t) ̸= c′N(t) and xs(t) ̸= x′
s (t), Thus, |xs(t)− x′

s (t)|
2 = 4. Since |Sc (cN) ∩ S (c′N)|+

|S (cN) ∩ Sc (c′N)| = dH (cN , c
′
N), the total contribution from these positions to the

squared Euclidean distance is 4EsdH (cN , c
′
N). Note that the contribution from

dH (cN , c
′
N) to ∥xs − x′

s∥
2 is exclusively in this case. For positions t ∈ S (cN)∩S (c′N),

we have cN(t) = c′N(t) = 1 and thus xs(t) = x′
s (t) = 0. The contribution from these

positions to the squared Euclidean distance is zero. For positions t ∈ Sc (cN)∩Sc (c′N)

and t : xs(t) = x′
s (t), the contribution to the squared Euclidean distance is zero. Fi-

nally, for position t such that cN(t) = c′N(t) = 0 and xs(t) = −x′
s (t) = ±2, we have

|xs(t)− x′
s (t)|

2 = 16. Let i be the number of such positions, then,

∥xs − x′
s∥

2
= 4EsdH (cN , c

′
N) + i · 16Es. (3.24)

The parameter i is upper-bounded by the maximum number of such positions,

|Sc (cN) ∩ Sc (c′N)| .

�

Using (3.22), the subsets of the competing set Xs(c
′
N) w.r.t. xs can also be written

as

X di
s (xs, c

′
N) ,

{
x′
s ∈ Xs(c

′
N) : ∥xs − x′

s∥
2
= d2i

}
(3.25)

where i = 0, · · · , N , |Sc (cN) ∩ Sc (c′N)|. We refer to the subset X d0
s (xs, c

′
N), whose

elements have the minimum SED to xs, as the minimum distance subset w.r.t. xs

and Xs(c
′
N). The corresponding error events are referred to as the minimum distance

error events w.r.t. xs and Xs(c
′
N).

Remark 3.4. In conventional single-user point-to-point transmission over AWGN chan-

nel, the distance between the BPSK-modulated codewords xs=2cN−1 and x′
s=2c′N−1

is determined by the Hamming distance dH (cN , c
′
N) between the binary codewords.

In the CPNC scheme for a TWRC, for NC codewords cN and c′N , the effective dis-

tances between the genuine SI codeword xs and x′
s, x

′
s ∈ Xs(c

′
N), are determined by
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a set of Euclidean distances as shown in (3.22). In particular, the set of Euclidean

distances is not solely determined by the Hamming distance dH (cN , c
′
N) and can not

be described with a single value.

To characterize the set of distances between the genuine SI codeword xs and those

in the competing set Xs(c
′
N), we will use the following definition.

Definition 3.4 (Pair-wise Distance Spectrum). Denote by

J di (xs, c
′
N) ,

∣∣X di
s (xs, c

′
N)
∣∣ , i = 0, 1, · · · , N.

The cardinalities of the subsets X di
s (xs, c

′
N) , i = 0, 1, · · · , N , are collected as

J (xs, c
′
N) ,

[
J d0 (xs, c

′
N) , · · · ,J dN (xs, c

′
N)
]
. (3.26)

We refer to J (xs, c
′
N) as the pair-wise distance spectrum (PDS) between the genuine

transmitted SI codeword xs and the SI codewords in the competing set Xs(c
′
N).

Here, the PDS J (xs, c
′
N) specifies the SED spectrum w.r.t. all error events of

sending xs ∈ Xs(cN) but the receiver recovers c′N ̸= cN .

3.5.2 Determination of the Pair-Wise Distance Spectrum

Now, we show that our previously proposed punctured codebook method can be

utilized to determine the PDS. To this end, the following corollary is needed.

Corollary 3.3. For xs ∈ Xs(cN), the PDS J (xs, c
′
N) can be completely determined

by evaluating the positions t ∈ Sc (cN) ∩ Sc (c′N) only.

Corollary 3.3 follows from Lemma 3.1 (and its proof). It suggests that we can

focus on the positions t ∈ Sc (cN) ∩ Sc (c′N) to find the PDS. Let GSc(cN )∩Sc(c′N) be

the punctured generator matrix determined by deleting the columns of G indexed

by t ∈ S (cN) ∪ S (c′N) and keeping those indexed by t ∈ Sc (cN) ∩ Sc (c′N). Let

CSc(cN )∩Sc(c′N) be the associated punctured codebook. Define

A
(
CSc(cN )∩Sc(c′N)

)
,
[
A0

(
CSc(cN )∩Sc(c′N)

)
, · · · , AN

(
CSc(cN )∩Sc(c′N)

)]
(3.27)



3.5 Distance Spectrum of CPNC 73

where Ai

(
CSc(cN )∩Sc(c′N)

)
denotes the number of rows in CSc(cN )∩Sc(c′N) with Ham-

ming weight i. The result on the PDS is given in the following theorem.

Theorem 3.2. The PDS w.r.t. the genuine SI codeword xs ∈ Xs(cN) and Xs(c
′
N) is

given by

J (xs, c
′
N) =

A
(
CSc(cN )∩Sc(c′N)

)
O (c′N)

. (3.28)

where O (c′N) is the overlapping factor given in (3.20).

Proof. For t ∈ Sc (cN) ∩ Sc (c′N), we have cN(t) = c′N(t) = 0. Thus c
Sc(c′N)∩Sc(cs)

A =

c
Sc(c′N)∩Sc(cN )

B and (c′A)
Sc(c′N)∩Sc(cN ) = (c′B)

Sc(c′N)∩Sc(cN ). From this, we obtain

x
Sc(c′N)∩Sc(cN )
s = 4c

Sc(c′N)∩Sc(cN )

A − 2, (3.29)

which is certain given the genuine SI codeword xs. In addition,(
x

′

N

)Sc(c′N)∩Sc(cN )

= 4 (c′A)
Sc(c′N)∩Sc(cN ) − 2 (3.30)

which has |XN(c
′
N)| events. Since (c′A)

Sc(c′N)∩Sc(cN ) ∈ CSc(cN )∩Sc(c′N), there are

Ai

(
CSc(cN )∩Sc(c′N)

)
rows in CSc(cN )∩Sc(c′N) which differs from c

Sc(c′N)∩Sc(cN )

A in i po-

sitions, where we have used the linearity of the punctured codebook. Notice that

these Ai

(
CSc(cN )∩Sc(c′N)

)
rows are mapped to Ai

(
CSc(cN )∩Sc(c′N)

)
/O (c′N) distinct

SI codewords in XN(c
′
N), due to the overlapping effect. Thus, we have

J di (xs, c
′
N) ,

∣∣X di
s (xs, c

′
N)
∣∣ = Ai

(
CSc(cN )∩Sc(c′N)

)
/O (c′N) ,

where the division of O (c′N) is due to the overlapping effect. From (3.26), (3.28) is

obtained. �

Corollary 3.4. Theorem 3.2 suggests that the PDS between the SI codeword xs ∈

Xs(cN) and those in Xs(c
′
N) depends only on cN and c′N , not xs. Thus, we may write

J (cN , c
′
N) instead of J (xs, c

′
N) for all xs ∈ Xs(cN). Also, we may write J di (cN , c

′
N)

instead of J di (xs, c
′
N), i = 0, · · · , N , for the terms in the PDS.
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Example 3.4. We again use the (7, 4) Hamming code to show how to utilize the

punctured codebook to determine the PDS. Assume that the genuine SI codeword is

xs ∈ Xs(cN), where cN = G· [1 0 0 0] = [1 0 0 0 1 1 0] ∈ C. Let Xs(c
′
N), c

′
N =

G· [0 0 1 1] = [0 0 1 1 0 1 0] , be the competing set (as in Example 3.2. Then,

S (cN) ∪ S (c′N) = {1, 3, 4, 5, 6} and we obtain

GSc(cN )∩Sc(c′N) =

 0 1 0 0

0 1 1 1

T

(3.31)

by removing Column 1, 3, 4, 5, 6 fromG. Now, one can easily find A
(
CSc(cN )∩Sc(c′N)

)
by examining the rows of CSc(cN )∩Sc(c′N) = BGSc(cN )∩Sc(c′N). For this example,

A
(
CSc(cN )∩Sc(c′N)

)
= [4, 8, 4]. Finally, given O (c′N) = 2 (see Example 3.4), the PDS

is given by

J (cN , c
′
N) =

A
(
CSc(cN )∩Sc(c′N)

)
O (c′N)

= [2, 4, 2]. (3.32)

The above procedure can be used to find the PDS J (cN , c
′
N) for any pair of codewords

in C.

We next show some results on the minimum distance subset, which will be useful

in the performance analysis in the next section.

Corollary 3.5. The cardinality of the minimum distance subset X d0
s (xs, c

′
N), i.e.,

the first term of the PDS J (cN , c
′
N), is given by

J d0 (cN , c
′
N) = 2

Rank
(
GSc(c′N )

)
−Rank

(
GSc(cN )∩Sc(c′N )

)
. (3.33)

Proof: From Proposition 3.3, the number of all-zero rows in CSc(cN )∩Sc(c′N) is

A0

(
CSc(cN )∩Sc(c′N)

)
= 2

nR−Rank
(
GSc(cN )∩Sc(c′N )

)
. Then, from (3.28), we obtain

J d0 (cN , c
′
N) =

A0

(
CSc(cN )∩Sc(c′N)

)
O (c′N)

= 2
Rank

(
GSc(c′N )

)
−Rank

(
GSc(cN )∩Sc(c′N )

)
. (3.34)
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Lemma 3.2. Let d10 (cN , c
′
N) , |S (cN) ∩ Sc (c′N)|. We have the following upper

bound on J d0 (cN , c
′
N)

J d0 (cN , c
′
N) ≤ 2d10(cN ,c′N). (3.35)

Proof. First of all, note that GSc(cN )∩Sc(c′N) can be obtained by puncturing

|S (cN) ∩ Sc (c′N)|

columns from GSc(c′N) . Thus, the reduction in the rank is at most |S (cN) ∩ Sc (c′N)|,

that is,

Rank
(
GSc(c′N)

)
− Rank

(
GSc(cN )∩Sc(c′N)

)
≤ |S (cN) ∩ Sc (c′N)| (3.36)

where the equality is satisfied if GSc(c′N) has full column rank. Using (3.36) in (3.34),

we obtain (3.35). �

3.5.3 Overall Distance Spectrum

So far, we have obtained the distance spectrum w.r.t. the genuine NC codeword cN

and a specific competing set Xs(c
′
N). Based on that, the overall distance spectrum

w.r.t. cN and all competing sets Xs(c
′
N), c

′
N ∈ C, c′N ̸= cN , can be straightforward-

ly found. In particular, from Lemma 3.1, the minimum SED between the genuine

transmitted SI codeword xs ∈ Xs(cN) and any erroneous SI codeword is given by

min
x′
s∈Xs(c′N ),

c′N∈C,c′N ̸=cN

∥xs − x′
s∥

2
= 4Esdmin (C) ,

where dmin (C) is the minimum Hamming distance of the underlying channel code C.

This suggests that the minimum Euclidean distance of the CPNC scheme is the same

as that of the conventional single-user case, which extends the minimum distance

property of a channel un-coded PNC scheme [1] to channel-coded cases. Yet, relative

to the single-user case, there is an extra multiplicity, i.e., J d0 (cN , c
′
N), in counting

the minimum distance error events. This effect may lead to an SNR penalty relative

to the single-user scenario, as we will see in the next section.
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3.6 Performance Analysis at the Relay

In previous sections, we have shown the pairwise distance spectrum of a CPNC scheme

with a general binary linear code. Now, we are ready to analyze the computation

error probability at the relay.

3.6.1 Pair-wise Error Probability

Consider the genuine SI codeword is x∗
s = x∗

A + x∗
B ∈ Xs(c

∗
N). With the optimal ML

computation, the pair-wise error probability (PEP) that the relay recovers cN = c′N ,

c′N ̸= c∗N , is given by

PML
e (x∗

s ∈ Xs(c
∗
N) → c′N) = Pr

[
p (yR|c∗N) ≤ p

(
yR|c

′

N

)]
(a)
= Pr

[
p (c∗N |yR) ≤ p

(
c

′

N |yR

)]
(b)
= Pr

 ∑
xs∈Xs(c∗N )

p (xs|yR) ≤
∑

xs∈Xs(c
′
N )

p (xs|yR)


(c)
= Pr

 ∑
xs∈Xs(c∗N )

p (yR|xs) p (xs)

p (yR)
≤

∑
xs∈Xs(c

′
N )

p (yR|xs) p (xs)

p (yR)


(d)
= Pr


∑

xs∈Xs(c∗N )

p (yR|xs)

|Xs(c∗N)|
≤

∑
xs∈Xs(c′N )

p (yR|xs)

|Xs(c′N)|

 . (3.37)

In the above “(a)” uses the fact that p(cN) =
1

2nR for all cN ∈ C; “(b)” is from the

“total probability” rule; “(c)” follows from the Bayes’ rule;“(d)” is from Corollary

3.2.

With the suboptimal MD computation rule, the PEP is given by

PMD
e (x∗

s ∈ Xs(c
∗
N) → c′N)

= Pr

[
max

xs∈Xs(c∗N )
p (yR|xs) ≤ max

xs∈Xs(c
′
N )

p (yR|xs)

]
. (3.38)

Comparing the above two PEPs, we see that the sub-optimal MD computation rule

uses the likelihood function of the nearest SI codeword, given by max
xs∈Xs(cN )

p (yR|xs)
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in (3.38), to approximate the average likelihood function 1
|Xs(cN )|

∑
xs∈Xs(cN )

p (yR|xs) in

(3.37). Then we have

PML
e (x∗

s ∈ Xs(c
∗
N) → c′N) ≤ PMD

e (x∗
s ∈ Xs(c

∗
N) → c′N) , (3.39)

since the PEP with the sub-optimal MD computation can not be smaller than that

with the optimal ML computation. The PEP with the MD computation yields an

upper bound on the PEP of the CPNC scheme.

3.6.2 Union Bound

Recall (3.38), the PEP of the CPNC scheme is upper-bounded by

Pe (x
∗
s ∈ Xs(c

∗
N) → c′N)

(a)

≤ Pr

[
max

xs∈Xs(c∗N )
p (yR|xs) ≤ max

xs∈Xs(c
′
N )

p (yR|xs)

]
(b)

≤ Pr

[
p (yR|x∗

s) ≤ max
xs∈Xs(c

′
N )

p (yR|xs)

]
(c)

≤
∑

xs∈Xs(c
′
N )

Pr [p (yR|x∗
s) ≤ p (yR|xs)]

(d)
=

N∑
i=0

J di (c∗N , c
′
N)Q

(√
EsdH (c∗N , c

′
N) + i · 4Es

σ2

)
(3.40)

where N = |Sc (c∗N) ∩ Sc (c′N)|. In the above, “(a)” follows from (3.39); “(b)” follows

from the fact that p (yR|x∗
s) ≤ max

xs∈Xs(c∗N )
p (yR|xs); “(c)” is from the union bound; and

“(d)” has used the definition of J di (·) and Corollary 3.4. From (3.40), we can see that

the PEP Pe (x
∗
s ∈ Xs(c

∗
N) → c′N) is only dependent on c∗N and c′N for all x∗

s ∈ Xs(c
∗
N).

Thus, Pe (x
∗
s ∈ Xs(c

∗
N) → c′N) will be replaced by Pe (c

∗
N → c′N) in the sequel.

Remark 3.5. From (3.40), it is clear that the PEP Pe (c
∗
N → c′N) is determined by

both the Hamming distance wH (c∗N , c
′
N) and the PDS J (c∗N , c

′
N). This is different

from the conventional single-user scenario and the PDS of the CPNC scheme generally

results in an extra multiplicity in the PEP (3.40).
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Given the PEP, the word error probability (WEP) conditioned on c∗N is upper

bounded by

Pe (c
∗
N) ≤

∑
c′N∈C,c′N ̸=c∗N

Pe (c
∗
N → c′N)

≤
∑
c′N∈C,
c′N ̸=c∗N

N∑
i=0

J di (c∗N , c
′
N)Q

(√
EsdH (c∗N , c

′
N) + i4Es

σ2

)
(3.41)

and the average WEP is

Pe =
1

|C|
∑
cN∈C

Pe (cN) . (3.42)

To compute the WEP (3.42), the PDS J (c∗N , c
′
N) is required. For a short code,

J (c∗N , c
′
N) can be determined by using the proposed punctured codebook method

together with Theorem 3.2, as in Example 3. However, as the codeword length

n increases, the number of distinct rows in CSc(c∗N)∩Sc(c′N) increases exponentially

with n and the task becomes prohibitive. To simplify this task, we next provide an

approximate performance bound for the CPNC scheme.

3.6.3 An Approximate Performance Bound

As mentioned previously, determining the complete J (c∗N , c
′
N) is not practical for a

medium-to-large n. To solve this problem, we derive an upper bound for the high

SNR case by using the following lemma. Here, the SNR under consideration is the

per-user SNR of the uplink phase, given by Es

σ2 .

Lemma 3.3. For a finite codeword length n, we have

lim
σ2→0

N∑
i=1

J di (c∗N , c
′
N)Q

(√
EsdH(c∗N ,c′N)+i·4Es

σ2

)
J d0 (c∗N , c

′
N)Q

(√
EsdH(c∗N ,c′N)

σ2

) = 0. (3.43)

Given Lemma 3.3, we have the following theorem.
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Theorem 3.3. At high SNRs, i.e., σ2 → 0, we have

lim
σ2→0

Pe (c
∗
N → c′N) ≤ 2d10(c

∗
N ,c′N)Q

(√
EsdH (c∗N , c

′
N)

σ2

)
(3.44)

where d10 (c
∗
N , c

′
N) , |S (c∗N) ∩ Sc (c′N)| .

For convenience, (3.44) is written as

Pe (c
∗
N → c′N)

σ2→0

. 2d10(c
∗
N ,c′N)Q

(√
EsdH (c∗N , c

′
N)

σ2

)
. (3.45)

Proof. From Lemma 3.3, we have

lim
σ2→0

Pe (c
∗
N → c′N) ≤ J d0 (c∗N , c

′
N)Q

(√
EsdH (c∗N , c

′
N)

σ2

)
. (3.46)

Using (3.35) of Lemma 3.2 in (3.46), (3.44) is obtained. �

From (3.46), we notice that only the events corresponding to the minimum dis-

tance set, whose cardinality is J d0 (c∗N , c
′
N), are relevant to the PEP. The error prob-

abilities from other events vanish at high SNRs. The cardinality of the minimum

distance subset give rises to a multiplicity of J d0 (c∗N , c
′
N) ≤ 2d10(c

∗
N ,c′N) in the error

probability in (3.45).

Remark 3.6. From Theorem 3.3, at high SNRs, (3.45) is an upper bound of Pr (c∗N → c′N).

Later in Section V, numerical results will demonstrate that (3.45) leads to a tight up-

per bound at high SNRs. Furthermore, we will see from numerical results that (3.45)

is an upper bound for the entire range of SNRs.

For more insight, consider a single-user (SU) one-way relay (OWRC) case, where

the relay is required to decode the message. The PEP (at the relay) of this SU case,

Pr
(
c∗N

SU→ c′N

)
, is given by

Pr
(
c∗N

SU→ c′N

)
= Q

(√
EsdH (c∗N , c

′
N)

σ2

)
. (3.47)

Comparing (3.45) and (3.47), at high SNRs, the PEP (upper bound) of the CPNC

two-way relay scheme is approximately increased by a factor of 2d10(c
∗
N ,c′N) relative to

that of the single-user OWRC case.
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Next, given the PEP of the CPNC scheme, the WEP conditioned on cN is ap-

proximated as

Pe (c
∗
N)

σ2→0

.
∑

c′N∈C,c′N ̸=c∗N

2d10(c
∗
N ,c′N)Q

(√
EsdH (c∗N , c

′
N)

σ2

)
. (3.48)

At this stage, we need to determine d10 (c
∗
N , c

′
N) which is dependent on c∗N . For

a short code, this can be found by examining all codewords in C. For long codes,

evaluating d10 (c
∗
N , c

′
N) for all codewords is prohibitive and we will use the following

approximation for d10 (c
∗
N , c

′
N).

Let us consider a capacity-achieving random code with a large codeword length n.

We choose two codewords at random, selecting each digit of each word independently

as 0 or 1 with equal probability. Then for large n the two codewords will, with

high probability, differ in about half the positions in the block. This was shown

in [138, pp. 134]. Now let cN and c′N denote these two codewords. Then we have

Pr{|dH(c∗N , c′N)−n/2| < ε1}
n→∞→ 1 for an arbitrarily small ε1 > 0. Similarly, for large

n, the two codewords will, with high probability, have a quarter of the position in the

block that c∗N is 1 and c′N is 0. Then we have Pr{|d10(c∗N , c′N)−n/4| < ε2}
n→∞→ 1 for

an arbitrarily small ε2 > 0. This will give rise to

Pr

{∣∣∣∣d10(c∗N , c′N)dH(c∗N , c
′
N)

− 1

2

∣∣∣∣ < ε

}
n→∞→ 1

for an arbitrarily small ε > 0. This means that for random codes, d10(c
∗
N , c

′
N) ap-

proaches dH(c
∗
N , c

′
N)/2 with probability 1, as n approaches infinity. We assume that

this behavior also exists for practical long linear codes and use the following approx-

imation

d10 (c
∗
N , c

′
N) ≈

dH (c∗N , c
′
N)

2
. (3.49)

Later, we will see from numerical results that this approximation characterizes d10 (c
∗
N , c

′
N)

very well.
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Now, substituting d10 (c
∗
N , c

′
N) with

dH(c∗N ,c′N)
2

in (3.48), we obtain

Pe (c
∗
N)

σ2→0

.
∑

c′N∈C,c′N ̸=c∗N

2
dH(c∗N,c′N )

2 Q

(√
ENdH (c∗N , c

′
N)

σ2

)

=

dmax(C)∑
d=dmin(C)

Ad (C) 2
d
2Q

(√
Esd

σ2

)
(3.50)

where Ad (C), d = dmin, · · · , dmax, denotes the number of codewords in C with Ham-

ming weights d, i.e., the weight enumerating function (WEF) [136,139,140].

It is clear that, with the approximation (3.49), Pe (cN) is now only dependent on

the codebook C and independent of cN . The averaged WEP is

Pe =
1

|C|
∑
cN∈C

Pe (cN)
σ2→0

.
dmax(C)∑

d=dmin(C)

Ad (C) 2
d
2Q

(√
Esd

σ2

)

≤ 1

2

dmax(C)∑
d=dmin(C)

Ad (C) exp

(
−d

2

(
Es

σ2
− ln 2

))
(3.51)

where we have used Q (
√
x) ≤ 1

2
exp

(
−x

2

)
. The bit error probability (BEP) can be

given as

Pb

σ2→0

.
dmax(C)∑

d=dmin(C)

Bd (C) 2
d
2Q

(√
Esd

σ2

)

≤ 1

2

dmax(C)∑
d=dmin(C)

Bd (C) exp

(
−d

2

(
Es

σ2
− ln 2

))
(3.52)

where Bd (C) is the average information weight w.r.t. all codewords of weight d [132].

Comparing (3.52) with the BEP of the single-user OWRC case

P SU
b ≤ 1

2

dmax(C)∑
d=dmin(C)

Bd (C) exp

(
−d

2

Es

σ2

)
, (3.53)

at high SNRs, the CPNC scheme exhibits an SNR degradation relative to the single-

user case. This SNR degradation is at most ln 2 in linear scale. A look-up table

between this SNR degradation of ln 2 in linear scale and that in logarithmic (dB)

scale is presented in Table 3.2 for several values of SNR in dB. This loss is essentially

due to the multiple error events w.r.t. the minimum distance subset in (3.40).
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3.7 Numerical Results

In this section, we show the error-rate performance of CPNC schemes, based on

Monte-Carlo simulations, to verify the analysis given in previous sections. Two types

of binary linear codes are considered: Hamming codes and convolutional codes. For

reference purpose, the performance of a single-user OWRC case with the same codes

are also included. Note that all the error rates refer to those at the relay, which

follows [46].
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Figure 3.2Performance of a CPNC scheme with a (7, 4) Hamming Code.

Fig. 3.2 presents the word error rate (WER) of a CPNC scheme with C being a

(7,4) Hamming code. The union bound (3.41) and (3.42), the approximated bound

(3.51), and the simulated results are depicted. It is shown that, as SNR increases,

the simulated curve asymptotically approaches both (3.42) and (3.51), which are tight

upper bounds. It is also observed that the two-user CPNC is inferior to the single-user

case with a SNR degradation less than ln 2 (linear scale) at high SNRs. For example,

for SNR=6 dB of the single-user case, to achieve the same WER, the two-user CPNC

scheme carries an SNR penalty of 0.56 dB. From Table 3.2 at SNR=6 dB, an SNR
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Figure 3.3Performance of a CPNC scheme with a (15, 11) Hamming Code.

loss of ln 2 (linear scale) is equivalent to a SNR loss of 0.70 dB. This suggests the SNR

loss in linear scale is less than ln 2, which validates our analysis. The performance of

a CPNC scheme with C being a (15,11) Hamming code is shown in Fig. 3.3. Similar

observations are made which lead to the similar conclusions to those w.r.t. Fig. 3.2.

In addition, we observe that the SNR loss is (almost) identical to ln 2 for the scenario

with a (15,11) Hamming code at a high SNR.

Table 3.2Relationship between an SNR loss in linear scale and that in Deci-
bel

10log10SNR 10log10
(
SNR+ln 2

SNR

)
0 dB 2.29 dB

1 dB 1.90 dB

2 dB 1.58 dB
...

...

6 dB 0.7 dB

10 dB 0.29 dB
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Figure 3.4Performance of a CPNC scheme with a [5,7]8 convolutional code.
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Figure 3.5Performance of a CPNC scheme with a [23,35]8 convolutional
code.

In Fig. 3.4, the BER of the CPNC scheme is plotted where C is a convolutional

code with generator polynomials [5, 7]8. In the simulations, we construct a “super

trellis” and use the Viterbi algorithm to compute cs at the relay. The details can be
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found in [35]. Here, we use (3.52) as the performance bound where dmax (C) is set to

9 according to [141]. Fig. 3.4 shows that the bound (3.52) is asymptotically tight at

high SNRs. Again, the SNR loss of the CPNC scheme relative to single-user case is

shown to follow the analysis in Section IV. In Fig. 3.5, similar comparisons are carried

out with a “stronger” convolutional code with generator polynomials [23, 35]8. The

same conclusions can be drawn in terms of the tightness of bound (3.52), as well as the

SNR loss of the two-user CPNC scheme relative to the single-user case. In Fig. 3.6,
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R=3/4

R=2/3

R=1/2

Figure 3.6Performance of a CPNC scheme with convolutional codes with
various rates.

we plot the BERs of CPNC schemes with convolutional codes of rates 1/2, 2/3 and

3/4, with the generator polynomials [23, 35]8, [27, 75, 72]8, [36, 14, 32, 07]8, respectively

[142]. For each code, the numerical result of the CPNC scheme is compared to the

performance bound as well as to the performance of the single-user case. We observe

that the analytical results match very well with the BERs for all code rates under

consideration. The SNR degradation of the CPNC scheme relative to the single-user

case is less than ln 2 (linear scale) for these convolutional codes, and the SNR loss

approaches ln 2 as the code rate increases. In summary, the performance bounds



86 Chapter 3 Analysis of CPNC in TWRCs with Binary Classic Codes

developed have been substantiated in Figures 3.2-3.6 to be asymptotically tight ones

for Hamming codes and convolutional codes. In addition, the analytical result on the

SNR loss of the two-user CPNC scheme relative to the single-user case is also shown

to be accurate. These results, in turn, confirm the distance property analysis of a

CPNC scheme in this chapter.

3.8 Conclusions

In this work, we found that the minimum Euclidean distance of the CPNC scheme

remains the same as that of the single-user case. This extends the minimum distance

property of a channel un-coded PNC scheme to channel-coded cases. Yet, our analysis

showed that the CPNC scheme is subjected to an increased multiplicity of minimum

distance error events. At a high SNR, this leads to an SNR penalty of at most ln 2

in linear scale, relative to the single-user scenario. The findings in this work suggest

that, when designing a channel-coded PNC in a Gaussian two-way relay channel

with binary classic codes, the error performance of computing the network coded

information at the relay can be predicted by the error performance of the same codes

in a conventional point-to-point channel.



Chapter 4

Design of CPNC in TWRCs with

Binary Modern Codes

4.1 Introduction

In previous chapter, we analyzed the error performance of the channel-coded PNC

(CPNC) for binary input Gaussian two-way relay channels (TWRCs) with classic

codes. In this chapter, we investigate the design of modern channel codes coded PNC

scheme. In particular, we study the design of Irregular repeat-accumulate (IRA)

coded PNC in Gaussian two-way relay channels. There are many different ways to

design IRA codes for conventional point-to-point channels. For example, the IRA code

can be optimized using density evolution technique, or using extrinsic information

transfer (EXIT) chart. In this chapter, we focus on the design of IRA codes with

EXIT chart. Our goal is to design IRA codes for the CPNC scheme such that it

performs close to the capacity limit of a binary-input Gaussian TWRC. In the IRA-

PNC scheme under consideration, the relay computes a binary network codeword,

from its received noisy ternary superimposed signal sequence, which is then forwarded

87
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to the users. To carry out this computation, it is required to extend the conventional

Tanner graph [154] to an equivalent Tanner graph (ETG), defined over a ternary

superimposed signal domain [46]. The presence of the ternary signal leads to the

challenges in the convergence analysis and design of a capacity-approaching IRA-

PNC scheme.

This chapter begins by presenting the background of channel coding theory. We

then give preliminary knowledge of IRA codes, and EXIT charts. We will focus on the

IRA-PNC scheme, and analyze the corresponding component decoders and derive the

generalized update rules for these components in terms of log-likelihood ratios (LLRs).

Two models for the soft information exchanged among the components decoders will

be discussed and bounds on the approximation of the EXIT functions of the IRA-

PNC scheme will be developed. Based on that, we will carry out an EXIT chart

curve-fitting technique to construct optimized IRA codes. In the simulation section,

we will compare our developed to the existing regular RA coded PNC schemes. We

will also compare our developed IRA-PNC scheme with a complete decoding-based

network coding scheme, in which the relay completely decodes both users’ messages,

using iterative multi-user detection and decoding, and then form the network-coded

message.

4.2 Preliminary: Repeat-Accumulate Codes and

EXIT Charts

4.2.1 Repeat-Accumulate Codes

RA codes is firstly introduced in [130], and can be graphically presented by Tanner

graph [154]. RA codes can be classified as systematic RA codes and non-systematic

RA codes. Non-systematic RA codes transmit only the parity bits, and can be seen

as a class of serially concatenated codes, where outer code is repetition code and inner

code is an accumulator. Systematic RA codes transmit both the message bits and
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parity bits, and they are not serially concatenated codes because both the inner and

outer decoders receive channel information.

The encoding process for a rate 1/q non-systematic RA code is shown in Fig.

4.1, where q is the number of repetition at the outer code. A higher rate RA code

can be obtained by placing a combiner just before the accumulator, or puncturing

the output of the accumulator [155]. The encoding process is described as follow:

The information sequence b1, · · · , bk, are repeated q times after the repeater. The

repeated qk bits are then randomly interleaved. The randomly interleaved qk bits

are then passed through a 1
1+D

accumulator, which can also be called a differential

encoder. A non-systematic RA code only transmits the parity bits, where a systematic

RA code transmits both information bits and parity bits.

Repeater Interleaver

Delay

Inner CodeOuter Code

b1 bk c1 cn

Figure 4.1Block diagram of the encoding process of non-systematic RA
codes.

Irregular RA (IRA) codes were firstly described in [153]. The difference between

regular RA codes and IRA codes is that the outer code of an IRA code is a mixture

of repetition codes. Compare to the regular RA codes, IRA codes are more flexible

to design, and are able to achieve channel capacity. Compare to low-density parity-

check (LDPC) codes, IRA codes offers competitive performance, but with much more

simpler encoder. It is easier to present IRA codes using Tanner graph [154]. An

example of Tanner graph of an IRA code is shown in Fig. 4.2.

The message sequence bits bi, i = 1, · · · , k, are repeated dv times, where dv ∈

{2, 3, · · · } specifies the length of repetition. The repetition, or variable node, degree

distribution is given by λ(dv), dv ∈ {2, 3, · · · } where λ(dv) is the portion of message
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Interleaver

Repetition Code

with various

repetition length

(Variable Nodes)

Combiner with

various check

degrees

(Check Nodes)

Accumulator

Figure 4.2Tanner graph presentation of an IRA code.

bits with repetition length dv. Notice that λ(dv) ≥ 0,
∑∞

dv=2 λ(dv) = 1. The repeated

bit sequence is permuted by a random interleaver. The interleaved sequence is encoded

by a series of parity-check codes (combiner) of degrees dc, where dc ∈ {1, 2, · · · }.

The check node degree distribution is given by ρ(dc), dc ∈ {1, 2, · · · } where ρ(dc) is

the portion of CNs whose number of connected edges is dc + 1, which includes dc

edges connected to the interleaver and 1 edge connected to the Accumulator. The

parity-check coded bits are then passed through an accumulator, generating the coded

sequence cj, j = 1, · · · , n.

The decoding of IRA codes in AWGN channel can be performed on their Tanner

graph with Belief propagation technique, which also known as sum-product message

passing decoding algorithm. More details related to decoding of IRA codes can be

found in [155].

4.2.2 Extrinsic Information Transfer Chart

Extrinsic Information Transfer (EXIT) Chart is firstly introduced by Stephan ten

Brink in 1999 [156]. The motivation of introducing EXIT chart was to visualizing

the convergence behaviour of the iterative decoding process of a given code. The

EXIT chart is a technique that can simplify the design and construction of good, and

capacity achieving codes with iterative decoding algorithm [143,144,146,150].
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Figure 4.3Information exchange between constitute decoders, where IA de-
notes the a priori input and IE denotes the extrinsic output.
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Outer Decoder
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Decoding trajectory

Figure 4.4Example of an EXIT chart for an non-systematic binary IRA
code.

Fig. 4.3 illustrates the information exchange of the iterative decoding process

of a concatenate code. The extrinsic output of a constitute decoder becomes the

a priori input of the other constitute decoder. Fig. 4.4 shows an example of an

EXIT chart for the concatenated code in Fig. 4.3. The EXIT curve of the outer

decoder starts from 0. This is because the outer decoder has no channel input. On

the contrary, the start point of inner decoder EXIT curve is a non-zero point, since

it has channel input. We can see that the decoding path is like a stepping function

between the EXIT curves of the inner decoder and the outer decoder. Therefore,

an open tunnel is required between the two EXIT function curves for a code can
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be decoded. To design an optimal code, the two EXIT curves need to lie close to

each other, and a large number of iterations will be required. More detail of EXIT

chart and designing codes with EXIT chart for point-to-point channel can be found in

[15,56–59,61,132,143,144,146,150,155]. In addition, Hanzo et al. studied an extensive

range of channel codes in [59], such as convolutional codes, block codes, and turbo

codes. The authors also compared the following coded modulations under various

channel conditions: Trellis Coded Modulation, Turbo Trellis Coded Modulation, Bit-

Interleaved Coded Modulation (BICM) and Iterative BICM.

4.3 System Model

We consider a Gaussian TWRC where two single-antenna users, denoted by A and

B, exchange information via an intermediate single-antenna relay. The users and the

relay operate in half-duplex mode and there is no direct link between the users. The

transmission protocol under consideration employs two time-slots for each round of

information exchange. In the first time-slot (uplink phase), the users transmit their

signals to the relay. In the second time-slot (downlink phase), the relay broadcasts

to the two users. At each node, the received signal is corrupted by additive white

Gaussian noise (AWGN).

Now we illustrate the CPNC scheme for the binary-input Gaussian TWRC. The

block diagrams of the CPNC scheme is depicted in Fig. 4.5, which follows [46]. We

first consider the uplink phase. Let bA = [bA (1) , · · · , bA (k)] ∈ {0, 1}k denote the

length-k binary message sequences of user A. This message sequence is encoded

with a binary linear channel code and the resulting codeword is denoted by cA =

[cA (1) , · · · , cA (n)] ∈ {0, 1}n, where n denotes the length of the codeword. The code

rate per user is given by R = k/n. The users’ codewords are modulated via binary

phase shift keying (BPSK) (0 7→ −1, 1 7→ +1), resulting in the signal sequences

xA = 2cA − 1 ∈ {−1,+1}n. The encoder and modulation for user B are the same

as user A, with similar notations. The signal sequences of user A and user B are
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Figure 4.5Architecture of a two-way relay system operated with CPNC. The
relay computes the network-coded message bN = bA ⊕ bB without explicit
decoding of both users’ individual messages. Here, “+” denotes in the linear
addition in real values and “⊕” denotes the modulo-2 addition.

transmitted simultaneously.

It is noteworthy that, in general, the two users in a CPNC scheme of a TWRC

may have different data rates and different signal power. In this chapter, however, we

will follow the pioneering work [46] by limiting our discussion to the cases where the

two users have identical data rates and the same received symbol energies. Assuming

perfect synchronization [46], the signal received by the relay is

yR =
√

EsxA +
√

EsxB + nR =
√
Es(xA + xB) + nR, (4.1)

where Es is the received symbol energy per-user and nR is the AWGN vector at the

relay. The variance of the noise is σ2 and the per-user SNR in the uplink phase is

given by Es/σ
2. The perfect synchronization assumption here means that the phase

and amplitude are fully synchronized at the receiver side. This assumption serves as

a start point on the researching of modern channel coding in PNC.

In light of the notion of network coding [3], the relay needs to deliver a network-
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coded message to the two users. In this chapter, we define the network-coded (NC)

message sequence as bN , bA ⊕ bB, where “⊕” denotes the element-wise modulo-2

addition operation. Upon receiving yR, the task of the relay is to compute an estimate

of the NC message sequence bN , given as

b̂N = FR (yR) . (4.2)

A computation error at the relay is declared if b̂N ̸= bN .

In the downlink phase, as shown in Fig. 4.5, the relay re-encodes the computed NC

message sequence b̂N into a codeword cR, which is then BPSK-modulated, resulting

signal sequence xR. This signal is broadcast to the two users. Then, user A first

decodes the NC message b̂N . If the NC message is correctly recovered by both the

relay and user A, user A can correctly recover user B’s message by performing

b̂B = bA ⊕ b̂N , (4.3)

with the help of its own knowledge of bA. In contrast, if a computation error happens

at the relay, a decoding error will happen. Note that there could be a minor case

where the NC message bN is wrongly computed by the relay but the final decoding

result at a user is correct. However, the probability of such a case vanishes as k

increases. We will not consider this trivial case in this chapter. The operation at user

B is similar to that of user A. This completes one round of information exchange.

More details about the downlink phase operation can be found in [46].

In the above CPNC scheme, the operation of decoding the NC message bN at each

user in the downlink phase is a standard single-user decoding. Thus, the key issue in

the decoding of the CPNC scheme is to efficiently compute the NC message bN at

the relay in the uplink phase, i.e., Eq. (4.2). In this chapter, we will only investigate

the computation of the NC message bN at the relay (as in [46]).
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4.4 Irregular Repeat-Accumulate Coded PNC

In general, any binary linear channel code, such as a convolutional code [35], a turbo

code and a low-density parity-check (LDPC) code [51], can be employed in the CPNC

scheme. In this work, we consider IRA codes, since their encoding is simpler than

that of LDPC codes, and their structure allows a more flexible design than Turbo-

codes. In particular, IRA codes have a flexible code structure, defined by the degree

distribution of the variable nodes and check nodes, which allows for convenient design

by curve-fitting in EXIT charts [143]. Here we consider non-systematic IRA codes.

Our analysis and design also apply to a CPNC scheme with systematic IRA codes or

other types of codes.

4.4.1 Encoding with an IRA Code

Consider the system in this chapter. In the uplink phase, user A’s message bits bA(t),

t = 1, · · · , k, are repeated dv times, where dv ∈ {2, 3, · · · } specifies the length of

repetition. The repetition, or variable node (VN), degree distribution is given by

λ(dv), dv ∈ {2, 3, · · · } where λ(dv) is the portion of message bits with repetition

length dv. Notice that λ(dv) ≥ 0,
∑∞

dv=2 λ(dv) = 1. The repeated bit sequence is

permuted by a random interleaver, denoted by π(·). The interleaved sequence is

encoded by a series of parity-check codes of degrees dc, where dc ∈ {1, 2, · · · }. The

check node (CN) degree distribution is given by ρ(dc), dc ∈ {1, 2, · · · } where ρ(dc)

is the portion of CNs whose number of connected edges is dc + 1. We denote the

average CN and VN degrees by d̄c and d̄v, respectively. The parity-check coded bits

are then passed through an accumulator (ACC), generating the coded sequence cA.

The same operation is performed at user B. The irregularity of this code resides in

various repetition lengths (VN degrees) and various CN degrees.

It is noteworthy that when the two users transmit with the same rate, the same

code is employed [46]. Then, the modulo-sum of the two users’ codewords is still a

codeword of the code. This is to ensure that the relay is able to compute the linear
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network coded codeword without decoding individual user’s codeword, as we will see

later.

4.4.2 Iterative Computation of the NC message at the Relay

The algorithm in [46] only applies to VNs of degree 3 and CNs of degree 2. Here,

we develop a computation algorithm that applies to VNs and CNs of any degree.

Then, we represent this algorithm in a log-likelihood ratio (LLR) format which will

be required in the subsequent EXIT chart analysis.

Let us define bs , bA + bB ∈ {0, 1, 2}k and cs , cA + cB ∈ {0, 1, 2}n as a

superimposed message sequence and a superimposed codeword, respectively. Consider

the following linear processing

y′
R = yR + 2

√
Es = 2

√
Es(cA + cB) + nR, (4.4)

where y′
R is equivalent to yR for the purpose of computing bN . From (4.4) we see

that the signal y′
R is a noisy copy of the superimposed codeword cs. To compute the

desired NC message, a “virtual encoding” process [46], which maps each superimposed

message bs to a superimposed codeword cs, is required. For an IRA coded PNC

scheme, specifically, this “virtual encoding” process can be described via an equivalent

Tanner graph (ETG), formed by superimposing two conventional Tanner graphs [46]

of the same single-user IRA code, as shown in Fig. 4.6. The structure of the ETG

resembles that of the single-user IRA code. However, there are two major differences:

1. The inputs and outputs have ternary symbols, i.e., bs ∈ {0, 1, 2}k and cs ∈

{0, 1, 2}n. The message exchanged between the component nodes consists of

the probabilities for the ternary symbols.

2. The ETG features an equivalent CN function and an equivalent VN function,

denoted by fCN (·) and fVN (·), respectively, which are different from those of

the single-user case.
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Figure 4.6Equivalent Tanner graph of an IRA-PNC scheme.

Given y′
R, the relay first exploits the ETG to compute an estimate of the ternary

superimposed message sequence, denoted by b̂s. Next, given b̂s, the estimated NC

message sequence b̂N is obtained by calculating the modulo-2 of b̂s, i.e.,

b̂N(t) =

0 if b̂s(t) = 0 or 2,

1 if b̂s(t) = 1,

(4.5)

for t = 1, · · · , k.

Now we briefly illustrate how to iteratively compute the superimposed message

sequence bs, based on the ETG given above. Consider a node in the ETG which has

L edges. The ternary a priori message to the lth edge of this node, l = 1, · · · , L, is

denoted by P (l) = [p
(l)
0 , p

(l)
1 , p

(l)
2 ], in which p

(l)
θ is the probability that the lth edge

takes on the value of θ, θ ∈ {0, 1, 2}. The collection of P (l) of all edges is denoted

by P , {P (1), · · · , P (L)}. In the iterative computation process, a node takes the a

priori probabilities P to calculate the extrinsic probabilities, according to its update

rule. For the lth edge, l = 1, · · · , L, the ternary extrinsic probabilities are denoted

by Q(l) = [q
(l)
0 , q

(l)
1 , q

(l)
2 ], and the collection of them for all edges is denoted by

Q , {Q(1), · · · , Q(L)}. The update rule can then be generally written as

Q = f(P ). (4.6)
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Here, we use “P” and “Q” to distinguish the a priori probabilities from the extrinsic

probabilities.

Initially, the relay calculates the ternary intrinsic probabilities based on the chan-

nel observation y′
R:

pCH
θ = p(cs = θ|y′R),

=

 γ exp
(
− (y′R−θ·(2

√
Es))2

2σ2

)
, θ = 0, 2,

2γ exp
(
− (y′R−θ·(2

√
Es))2

2σ2

)
, θ = 1,

(4.7)

where we have omitted the time-index, and γ is a normalization factor to ensure

that pCH
0 + pCH

1 + pCH
2 = 1. These intrinsic probabilities are collected as PCH =

[pCH
0 , pCH

1 , pCH
2 ], and they are only available to the accumulator. For the component

decoders, the initialized a priori probabilities of each edge are P (l) = [1/4, 1/2, 1/4],

l = 1, · · · , L [46].

In the process of computing bs, the ternary messages are iteratively exchanged

among the component nodes in the ETG, in a similar fashion as the conventional

iterative decoding of the single-user IRA code. As the receiver iterates, the ternary

messages are refined using the update rules (4.6) of the component nodes, which will

be detailed next. After a number of iterations, the computation process converges

and a decision is made towards the estimated superimposed message sequence b̂s.

Then the estimated NC message b̂N can be obtained according to (4.5).

4.4.3 Update Rules with Probabilities

Let us first consider a CN with degree dc = 2. There are L = 3 edges connected

to this CN. Following the common approach in literature for IRA codes [143], a

CN with degree dc has dc edges connected to the interleaver and one additional edge

connected to the ACC. A VN with degree dv has dv edges connected to the interleaver.

Recall that the a priori messages available to the first and second edge are given

by P (1) =
[
p
(1)
0 , p

(1)
1 , p

(1)
2

]
and P (2) =

[
p
(2)
0 , p

(2)
1 , p

(2)
2

]
, respectively. The extrinsic

message of the third edge, denoted by Q(3) =
[
q
(3)
0 , q

(3)
1 , q

(3)
2

]
, can be obtained as
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Q(3) = f 2
CN

(
P (1), P (2)

)
, where the update rule f 2

CN(·) for a CN of degree 2 is given

by [46]

q
(3)
0 = γ

(
p
(1)
0 p

(2)
0 +

p
(1)
1 p

(2)
1

2
+ p

(1)
2 p

(2)
2

)
, (4.8)

q
(3)
1 = γ

(
p
(1)
1 p

(2)
2 + p

(1)
2 p

(2)
1 + p

(1)
1 p

(2)
0 + p

(1)
0 p

(2)
1

)
, (4.9)

q
(3)
2 = γ

(
p
(1)
0 p

(2)
2 +

p
(1)
1 p

(2)
1

2
+ p

(1)
2 p

(2)
0

)
. (4.10)

Here, γ is a normalization factor to ensure that q
(3)
0 + q

(3)
1 + q

(3)
2 = 1.

In general, for a CN with a degree dc > 2, the update function fdc
CN (·) can be

obtained by successively utilizing the degree-2 CN update rule, given by

Γ(2) = f 2
CN(P

(1), P (2)),

...

Γ(l) = f 2
CN(Γ

(l−1), P (l)),

...

Q(dc+1) = Γ(dc) = f 2
CN(Γ

(dc−1), P (dc)).

We refer to the above approach as a successive update.

4.4.4 Update Rules with LLRs

The ternary probabilities exchanged in the CPNC decoders put challenges on the

analysis and design of the scheme. We next represent the update rule in terms of

LLRs, which will be required in our subsequent EXIT chart analysis. For the lth

edge of a component node in the ETG, the LLR couple associated with the a priori

(ternary) probabilities are defined as

Λ
(l)
P , log

(
p
(l)
0 + p

(l)
2

p
(l)
1

)
and Ω

(l)
P , log

(
p
(l)
0

p
(l)
2

)
, (4.11)

which are sufficient statistics of p0, p1, p2.
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From (4.5), we see that values bs(t) = 0 and bs(t) = 2 of the superimposed

message are both mapped to the NC message bit bN(t) = 0. Therefore, Λ
(l)
P is related

to the LLR of the binary NC message bit, and it has a pivotal role in the iterative

computation process. To distinguish the two LLR values in (4.11), we refer to Λ
(l)
P as

the primary LLR and Ω
(l)
P as the secondary LLR. Similarly, the primary and secondary

LLRs associated with the extrinsic probabilities are defined as

Λ
(l)
Q , log

(
q
(l)
0 + q

(l)
2

q
(l)
1

)
and Ω

(l)
Q , log

(
q
(l)
0

q
(l)
2

)
. (4.12)

Consider a CN with dc = 2. The primary extrinsic LLR of the third edge is

calculated by

Λ
(3)
Q = log

(
q
(3)
0 + q

(3)
2

q
(3)
1

)

(a)
= log

p
(1)
0 p

(2)
0 +

p
(1)
1 p

(2)
1

2
+ p

(1)
2 p

(2)
2 + p

(1)
0 p

(2)
2 +

p
(1)
1 p

(2)
1

2
+ p

(1)
2 p

(2)
0

p
(1)
1 p

(2)
2 + p

(1)
2 p

(2)
1 + p

(1)
1 p

(2)
0 + p

(1)
0 p

(2)
1

 ,

= log

1 + exp
(
Λ

(1)
P

)
exp

(
Λ

(2)
P

)
exp

(
Λ

(1)
P

)
+ exp

(
Λ

(2)
P

)
 . (4.13)

where
(a)
= follows from (4.8)-(4.10). The secondary extrinsic LLR is calculated as

Ω
(3)
Q = log

(
q
(3)
0

q
(3)
2

)
,

= log

1 + exp
(
Ω

(1)
P

)
exp

(
Ω

(2)
P

)
+KCN

exp
(
Ω

(2)
P

)
+ exp

(
Ω

(1)
P

)
+KCN

 , (4.14)

where

KCN =

[
1 + exp

(
Ω

(1)
P

)] [
1 + exp

(
Ω

(2)
P

)]
2 exp

(
Λ

(1)
P

)
exp

(
Λ

(2)
P

) . (4.15)

Now, the update rule in terms of LLRs of a CN of dc = 2 is given by[
Λ

(3)
Q ,Ω

(3)
Q

]
= f 2

CN

([
Λ

(1)
P ,Ω

(1)
P

]
,
[
Λ

(2)
P ,Ω

(2)
P

])
,

=

log
1 + exp
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 .
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The update rule of a CN with dc > 2 can be calculated using the successive update

approach described previously. In the sequel, we will use fdc
CN (·) to denote the update

rule of a CN of degree dc in LLRs. A property of the update rule of a CN is presented

next, which will be used later in the next section.

Property 4.1. For a CN with degree dc, we have the output secondary LLR Ω
(l)
Q = 0

as long as there exists an edge l′, l′ ̸= l, such that the input secondary LLR Ω
(l′)
P = 0.

Explanation: In (4.14), if any of Ω
(1)
P or Ω

(2)
P equals to zero, the term Ω

(3)
Q will be zero.

Consider the successive update rule, we obtain Property 4.1. �

The derivation of the VN update rule fVN (·) in LLRs is similar and it is given by[
Λ

(l)
Q , Ω

(l)
Q

]
= fdv

VN

([
Λ

(1)
P ,Ω

(1)
P

]
, · · · ,

[
Λ

(l−1)
P ,Ω

(l−1)
P

]
,
[
Λ

(l+1)
P ,Ω

(l+1)
P

]
, · · · ,

[
Λ

(dv+1)
P ,Ω

(dv+1)
P

])
,

=

[
(dv − 2) log 2 +

dv∑
l′=1,l′ ̸=l

Λ
(l′)
P +KVN,

dv∑
l′=1,l′ ̸=l

Ω
(l′)
P

]
. (4.16)

where

KVN = log


1 +

dv∏
l′=1,l′ ̸=l

exp
(
Ω

(l′)
P

)
dv∏

l′=1,l′ ̸=l

(
1 + exp

(
Ω

(l′)
P

))
 . (4.17)

The detailed derivation is given in the Appendix B.

4.5 Convergence Behavior Analysis and Optimiza-

tion of IRA-PNC

It is well-known that in the conventional single-user AWGN channel, the performance

of an iteratively decoded IRA code is largely affected by its VN degree distribu-

tion λ(dv), and the CN degree distribution ρ(dc). The optimal performance can be

achieved using the EXIT chart curve-fitting technique [143]. Now, we adopt this
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methodology in designing the IRA-PNC scheme, so as to approach the capacity limit

of the binary-input Gaussian TWRC. However, for the two-user CPNC scheme, there

lacks a method to characterize the EXIT behaviors w.r.t. the ternary probabilities

that are exchanged in the iterative computation process.

In this section, we first propose a method to model the soft information exchanged

among the components of the IRA-PNC scheme. This will enable us to obtain upper

and lower bounds on the approximation of the EXIT functions. Based on that, we

design optimal component codes via curve-fitting.

4.5.1 Modeling of EXIT Functions

To carry out convergence behavior analysis, we partition the ETG of the IRA-PNC

scheme into two parts: an inner component decoder consisting of the combined CN

and ACC (CN-ACC) decoder, and an outer component decoder consisting of the VN

decoder. The idea of the EXIT chart technique is to predict the behavior of the

iterative process by solely looking at the input/output mutual information of the two

individual component decoders of the CPNC scheme.

Unlike the decoding of a conventional binary IRA code where binary probabilities

are exchanged between the component decoders, the soft information exchanged be-

tween the CPNC component decoders have a ternary form. The ternary probabilities

(or soft information) of the CPNC scheme can also be written in terms of the prima-

ry LLR Λ and the secondary LLR Ω, as in the previous section. In particular, the

primary LLR Λ is related to the NC message b̂N to be computed. For simplicity, we

omit the time index here. We denote bN the random variable w.r.t. the NC message

bit and denote Λ the random variable w.r.t. the primary LLR. Thus, the mutual in-

formation between bN and the input primary LLR ΛP , IA = I (bN ; ΛP ), will be used

for tracking the a priori information of a component decoder of the CPNC scheme.

Similarly, the mutual information between bN and the output primary extrinsic LLR

ΛQ, IE = I (bN ; ΛQ), will be used for tracking the corresponding extrinsic informa-
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Figure 4.7Histogram of the one-side extrinsic primary LLR output and His-
togram of the extrinsic secondary LLR output from the VN decoder during
iterative computation process.

tion. An output mutual information of IE = 1 means that all NC message bits bN

can be decoded error free.

The relationship of the input-output mutual information, i.e., the EXIT function,

of the inner component decoder (CN-ACC decoder) with CN degree distribution ρ(dc)

can be written as

IE = TInner

(
IA,P(ΩP ), ρ(dc), Es/σ

2
)
, (4.18)

where P(ΩP ) denotes the probability density function (PDF) of the secondary LLR

ΩP . We remark that, unlike the conventional single-user case, the EXIT function of

the CPNC scheme is also affected by the PDF of the secondary LLR ΩP . Similarly,

the EXIT function of the outer component decoder (VN decoder) with VN degree

distribution λ(dv) can be written as

IE = TOuter (IA,P(ΩP ), λ(dv)) . (4.19)

Notice that the EXIT function of the VN decoder is not affected by the SNR, since

it is not directly connected to the channel observation.
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Numerical results show that the PDF of the primary LLR approaches a consistent

Gaussian-like distribution [144] with its mean equal to half of its variance, with the

increasing number of iterations, as shown in Fig. 4.7. Thus, similar to [144], we can

approximate the primary a priori LLR as

ΛP =
σ2
Λ

2
(1− 2bN) + nΛ, (4.20)

where nΛ is a Gaussian random variable with variance σ2
Λ, and we omit the time-index

here for simplicity.. However, the PDF of the secondary LLR, as shown in Fig. 4.7,

is not a Gaussian-like distribution. This makes the analytical treatment of the EXIT

functions difficult. In order to tackle this problem, we propose two models for the

secondary a priori information.

Model I : We assume that perfect secondary LLR is available in this model, that

is,

Ω̇P =


+Ψ if bs = 0,

0 if bs = 1,

−Ψ if bs = 2,

(4.21)

where Ψ denotes a large positive value, e.g., 30, used in our simulation. Since the

actual decoding process does not have perfect a priori information on the secondary

LLR ΩP for the component decoders, we have

IE = TInner

(
IA,P(ΩP ), ρ(dc), Es/σ

2
)
≤ TInner

(
IA,P(Ω̇P ), ρ(dc), Es/σ

2
)

for the inner component decoder (CN-ACC decoder). Thus, we can obtain an upper

bound for the approximation of the EXIT function of the inner component decoder

by using Model I. Similarly, we can obtain an upper bound on the approximation of

the EXIT function of the outer component decoder using Model I.

Model II : We assume the a priori secondary LLR ΩP is completely absent, i.e.,

Ω̈P = 0.

As the actual decoding retains certain a priori information on the secondary LL-

R ΩP for the component decoders, setting ΩP to zero will result in an information loss.



4.5 Convergence Behavior Analysis and Optimization of IRA-PNC 105

Following the data processing inequality [145], we have IE = TInner (IA,P(ΩP ), ρ(dc), Es/σ
2) ≥

TInner

(
IA,P(Ω̈P ), ρ(dc), Es/σ

2
)
for the inner component decoder and this also applies

to the outer component decoder. Thus, a lower bound of the approximation of the

EXIT function can be obtained using Model II.

4.5.2 EXIT Charts

We next show the EXIT functions of the component decoders of the IRA-PNC scheme

using the two a prior information models developed earlier. The EXIT functions of

the inner CN-ACC decoder with CN degrees dc = 1, · · · , 5 are shown in Fig. 4.8.

These EXIT functions are obtained via simulations where Model I and Model II are

used to construct the a priori information. Clearly, the EXIT function obtained with

Model I is always higher than with Model II. This suggests that the availability of

the secondary LLR ΩP can contribute to a higher output extrinsic information. From

Fig. 4.8, we also observe that the gap between the EXIT functions with Model I

and with Model II diminishes as the CN degree dc increases. When dc ≥ 2, the gap

is almost unnoticeable. Here we give an intuitive explanation for this behavior. Let

us consider the a priori information model I, the probability of ΩP = 0 is 0.5 since

50% of message bits have bN = 1. Recall Property 4.1 which states that the output

secondary LLR of a CN is zero as long as one of its input edges has the secondary

LLR equal to zero. As the CN degree dc increases, the probability of this event (there

exists one edge whose secondary LLR is zero) also increases. As a result, there will

be more zero-secondary LLR at the output of the CN nodes. This will restrain the

propagation of the secondary LLR from the CN to the ACC of the inner decoder. As

the CN degree becomes very high, the propagation of the secondary LLR becomes

minimal and Model I and Model II tends to be identical.

From [143], it is known that to minimize the area between the EXIT functions of

the component decoders, a capacity achieving IRA code tends to have a fairly large

average CN degree, i.e., d̄c > 2. In this circumstance, for inner component decoder,
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Figure 4.8Comparison between Model I and Model II for inner CN-ACC
decoder with various CN degrees. The code rate is 1/3, and the per-user
SNR is Eb/N0 = 2.2 dB.

the upper bound (Model I) and lower bound (Model II) of the approximation of the

EXIT functions overlaps with each other. Therefore, either Model I or II can be used

to obtain the approximation of the EXIT function of the inner component. Similarly,

we can also use Model I or Model II to obtain the upper and lower bounds on the

approximation of the EXIT function of the outer component decoder. We remark

that since Model II gives a lower bound on the approximation of the EXIT function

for either the inner or the outer component decoder, an optimal code based on Model

II can always have its convergence guaranteed when the SNR is above its designed

threshold.

Example 4.1. We consider an IRA-PNC scheme with per-user code rate of R = 1/3.

In particular, the IRA under consideration has an average CN degree d̄c = 2.4 and

an average VN degree d̄v = 7.2. The code parameters are given in Table A.1. In Fig.

4.9, we plot the EXIT function obtained by using the a priori information Model II

and the actual decoding trajectory obtained from simulation. We observe that using
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Figure 4.9Comparison between EXIT Model II and actual decoding trajec-
tory for an IRA code at R = 1/3 and Eb/N0 = 4 dB.

the a priori information Model II, the EXIT functions of the component decoders of

the IRA-PNC scheme can be accurately characterized. In the sequel, we will focus

on using a priori information Model II for the design of the IRA-PNC scheme.

4.5.3 Code Optimization

Based on the developed EXIT functions of the component decoders of the IRA-PNC

scheme, we now adopt the EXIT chart curve-fitting technique to design optimal IRA

codes. The goal is to find CN and VN degree distributions such that the gap between

the EXIT curves of the inner component decoder and the outer component decoder

is minimized. Similar to [143], we first select an appropriate CN degree distribution.

Then, we fit the EXIT curve of VN decoder to that of the CN-ACC decoder, by

optimizing the degree distribution of the VN decoder via linear programming.

We next show two examples of the code design via EXIT curve-fitting for the IRA-

PNC scheme. To avoid redundancy, the implementation details of the curve-fitting

are omitted and can be found in [143]. In this chapter, we restrict ourselves to the
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Figure 4.10EXIT charts of the bi-regular coded PNC scheme and the opti-
mized IRA-PNC scheme, where R = 3/4.

commonly used concentrated check degree distributions [10, Section 3.17].

Example 4.2. We consider an IRA-PNC scheme where the code rate of each user is

R = 3/4. In a conventional single-user case, it is known that, for a non-systematic

RA code, a non-zero fraction of the CNs should have degree one to ensure that its

decoder makes progress in the first iteration [143, 146]. From the check node update

rule described in Section 4.4.4, we notice that in the IRA-PNC scheme, the CN

degree distribution should contain a non-zero fraction for degree one CNs, similar to

the conventional single-user RA codes case. In this design example, the choice of the

portion of dc = 1 CNs follows from the convention in [143]. The details are provided

in Table A.1. In addition, to carry out EXIT curve-fitting, flexibility of the VN nodes

are required so that the average VN degree cannot be too small, e.g., d̄v > 3. Then,

for a code rate of 3/4, the average CN degree should be large enough, e.g., d̄c > 2. In

this setting, the EXIT function of the bi-regular code can be characterized by Model

II.

Fig. 4.10 shows the EXIT chart of a bi-regular RA coded PNC scheme whose de-
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Figure 4.11EXIT charts of the regular coded PNC scheme and the opti-
mized IRA-PNC scheme, where R = 1/3.

gree distributions are given in Table A.1. The decoding threshold for this benchmark

scheme is found to be at Eb/N0 = 6 dB. The EXIT chart of our optimized IRA-PNC

scheme is also shown in Fig. 4.10, whose degree distributions are given in Table

A.1. The decoding threshold of our optimized IRA-PNC scheme is found to be at

Eb/N0 = 3.4 dB. This shows that our developed IRA-PNC scheme can significantly

outperform the bi-regular RA coded PNC scheme. The performance improvement

is obtained from fitting the EXIT functions, and we refer to this performance im-

provement as a curve-fitting gain. In this example, the curve-fitting gain is about 2.6

dB.

Example 4.3. We consider another case where R = 1/3. For a regular RA coded

PNC scheme, the threshold is found to be at Eb/N0 = 2.2 dB, as shown in Fig. 4.11.

We construct an IRA code for the CPNC scheme, using the curve-fitting technique

based on our developed EXIT functions. The decoding threshold is found to be at

Eb/N0 = 2.1 dB. The degree distributions of our designed IRA code for the CPNC

scheme are also given in Table A.1. We see that for the case of R = 1/3, the CPNC
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scheme with the designed IRA code only slightly outperforms that with a regular

code. We next explain why the performance improvement is slight in this case.

Consider a simplified computation approach in which the secondary LLR ΩP is

always set to zero in the iterative computation process. Then, from (4.11), the soft

information exchanged in the CPNC components can be completely specified by [p0+

p2, p1], which has two elements. Here, we refer to this simplified approach as iterative

computation with binary information exchange. In contrast, we refer to the approach

utilizing both the primary and secondary LLRs as iterative computation with ternary

information exchange, since the exchanged soft information has three elements, see

(4.11). The performance improvement of using ternary information exchange (which

utilizes the secondary LLR), over that with binary information exchange (which does

not use the secondary LLR), is referred to as the secondary LLR gain. For the CPNC

scheme of per-user coding rate R = 1/3, it is shown that the secondary LLR gain is as

much as 0.5 dB when a regular RA code is utilized (see Fig. 4.12). In the process of

optimizing the degree distributions of the IRA code to obtain the curve-fitting gain,

the inner component decoder tends to have a relatively large average CN degree. This

results in a reduced secondary LLR gain, as discussed in Section IV.B. For a relatively

large CN degree, the secondary LLR gain vanishes. Finally, the combined effect of

increased curve-fitting gain and reduced secondary LLR gain leads to only a slight

performance improvement.

In contrast, in Example 4.2 where R = 3/4, the average degree of the CN of

the CPNC scheme with a regular/biregular RA code is already relatively large, e.g.,

d̄c ≥ 2. In this case, the secondary gain is already fairly small, as we can see in Fig.

4.8. Therefore, as we carry out the curve-fitting, there is no loss in the secondary

LLR gain and the curve-fitting gain leads to a significant performance improvement.

It is noteworthy that IRA codes are special LDPC codes with a simpler encoder

than general LDPC codes but with similar performance. The code optimization

technique proposed in this chapter may apply to general LDPC codes.
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4.6 Simulation Results

In the previous section, we have designed IRA-PNC schemes based on EXIT chart

analysis and curve-fitting techniques. In this section, we present numerical result-

s to show the benefits of our designed IRA-PNC schemes for finite code lengths.

Specifically, we first compare the bit-error rate (BER) performance of our developed

IRA-PNC schemes to the existing CPNC schemes with regular (or bi-regular) RA

codes. Next, we compare the performance of our developed IRA-PNC scheme to the

capacity limits, as well as to the complete decoding-based scheme.

In the simulations, we consider the BER performance of computing the NC mes-

sage bN at the relay. In all simulations, the length of the binary message sequence

of each user is set to k = 32768. In the iterative computation process, the maximum

number of iterations is set to 200.

4.6.1 IRA-PNC versus Regular/Bi-regular Coded PNC

Per-user Code Rate R = 3/4

The BER simulation results of the CPNC scheme with this code rate are shown in

Fig. 4.12. At a BER of 10−4, our developed IRA coded PNC scheme performs about

2.6 dB better than the bi-regular RA coded PNC scheme. This is in line with our

EXIT chart analysis. From this result, we can conclude that IRA codes designed

based on our EXIT analysis can significantly improve the performance of the CPNC

scheme. We also notice that there is no performance degradation when the iterative

computation with ternary information exchange is replaced by that with the binary

information exchange.

Per-user Code Rate R = 1/3

The BER simulation results of the CPNC scheme with this code rate are shown in Fig.

4.12. When the iterative computation with binary information exchange is utilized,
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Figure 4.12Simulation results of the designed IRA-PNC scheme where R =
3/4, 1/3.

our IRA-PNC scheme is about 0.5 dB better than the existing PNC scheme with the

regular code in [46]. The performance improvement is from the full realization of

the curve-fitting gain. When ternary information exchange is utilized, the designed

IRA-PNC scheme is about 0.1 dB better than that with the regular RA code. These

results are also in line with our EXIT chart analysis.

Other Code Rates

Fig. 4.13 shows the performance of the optimized IRA-PNC scheme with various

code rates, where ternary information exchange is utilized. For code rates of 1/2 and

2/3, at a BER of 10−4, we observe that the performance improvement over regular

RA-PNC schemes are 1.6 dB and 1.9 dB, respectively. The code parameters are given

in Table A.1.
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Figure 4.13Performance of optimized IRA-PNC schemes at various code
rates, where ternary information exchange decoding is utilized.

4.6.2 CPNC Versus Complete Decoding-Based Network Cod-

ing

Now, we compare the performance of the CPNC scheme to the scheme which performs

complete decoding to generate the NC message at the relay. For a fair comparison,

the optimized IRA-PNC scheme and the optimized complete decoding-based scheme

are considered. In particular, given a total power constraint, equal power allocation is

the best for a PNC scheme, see [14,46]. On the other hand, unequal power allocation

is optimal for the complete decoding-based scheme [147, 149], as this facilitates the

complete separation of two users’ codewords.

For the scheme with complete decoding, we employ iterative multi-user detection

and decoding (IDD) [147] to fully decode both user A and user B’s messages b̂A

and b̂B, and then determine the NC message as b̂A ⊕ b̂B. In an IDD algorithm,

soft information is iteratively exchanged between multiple single user decoders and a

multi-user detector; details for code optimization using IDD algorithm can be found

in [149, 150]. We emphasize that the “CNC1” scheme in [46] is equivalent to the
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Figure 4.14Comparison between the CPNC scheme and the complete
decoding-based scheme where R = 3/4.

complete decoding scheme (considered in this chapter) with no iteration between the

multi-user detector and the decoder. The performance loss of not using the IDD,

however, can be up to several dB in power efficiency. For a fair comparison, in the

scheme with complete decoding at the relay, we use the optimal power allocation

between the two users [145, 149] and optimize its IRA code for degree distributions.

The optimized code is provided in Table A.1.

In Fig. 4.14, we compare the performance of our IRA-PNC scheme and the

complete decoding-based scheme, with R = 3/4. The optimized power allocation

ratio for the complete decoding-based scheme is 3.2 at this code rate. The capacity

limit for the complete decoding-based scheme is found to be at Eb/N0 = 4.3 dB.

The limit from the cut-set capacity upper bound1 [27] of a Gaussian TWRC with

binary inputs is found to be at Eb/N0 = 1.67 dB. Note that the capacity limits for

both schemes are for binary inputs with BPSK modulation. At BER = 10−4, our

1The actual capacity limit of a binary-input Gaussian TWRC is still an open problem. Therefore,

we use the upper bound as a reference.
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Figure 4.15Comparison between CPNC scheme the complete decoding-
based scheme where R = 1/3.

developed IRA-PNC scheme is about 1.7 dB away from the capacity upper bound.

At BER = 10−4, the IRA-PNC scheme is about 2 dB better than the optimized

complete decoding-based scheme. Note that, for this case, our designed IRA-PNC

scheme clearly outperforms the capacity limit of the complete decoding-based scheme.

In Fig. 4.15, we compare the performance of the IRA-PNC scheme and the com-

plete decoding-based scheme where R = 1/3. The optimized power allocation ratio

for the complete decoding-based scheme is 1.6 at this code rate. At BER = 10−4,

the optimized complete decoding-based scheme with IDD is about 0.6 dB better than

the optimized IRA-PNC scheme. This shows that PNC with compute-and-forward

may not be a good choice when the code rate is low. This is in line with the infor-

mation theoretic result [27, 33], which shows that complete decoding-based scheme

can outperform the CPNC scheme in terms of their achievable rates, as the SNR

or coding rate becomes small. In Fig. 4.15, we also include the performance of the

CNC1 scheme discussed in [46], which is equivalent to the complete decoding-based

scheme but without iteration between the detector and decoders. The CNC1 suffers
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from a loss of about 1 dB relative to the complete decoding-based scheme with IDD.

Due to this loss, the CNC1 scheme performs worse than the IRA-PNC scheme. We

emphasize that when the complete decoding-based scheme is properly designed, it

outperforms the CPNC scheme at R = 1/3.

4.7 Conclusion

In this chapter, we developed an IRA coded PNC scheme for binary input Gaussian

TWRCs. We extended the EXIT chart technique to analyze the convergence behav-

ior of the iterative computation process of the IRA-PNC scheme. Based on that, we

optimized the degree distributions of the components of the IRA-PNC scheme. Our

optimized IRA-PNC scheme significantly outperforms existing regular (or bi-regular)

RA coded PNC schemes. We also showed that a CPNC scheme has the most signifi-

cant benefit when the code rate is high. Interestingly, in a high coding rate regime,

the performance improvement of using our EXIT curve-fitting to design an IRA cod-

ed PNC scheme is most significant. We also noted that, for a very low SNR or code

rate, CPNC scheme is worse than the complete decoding based scheme with iterative

multi-user detection and decoding. This agrees with existing information theoretic

analysis results.



Chapter 5

Design of CPNC in MWRCs with

Lattice Codes

5.1 Introduction

In Chapter 3 and Chapter 4, we focused on the analysis and design of binary coded

PNC in two-way relay channels. In this chapter, we extend our study to design non-

binary codes for a more general network, namely, multi-way relay channels (MWRC).

In particular, we investigate the error performance of lattice network coded PNC

scheme and its construction methods.

Nazer and Gastpar generalized the PNC scheme to a compute-and-forward scheme

for multi-way relay networks [23]. This novel scheme utilizes structured nested lattice

codes. The transmitted signals are lattice points in a multi-dimensional lattice over

integers. Based on noisy observations of transmitted signals, the relay decodes and

forwards an integer valued linear combination of transmitted signals to maximize

the computation rate. It is shown that an asymptotic gain can be achieved from

the information-theoretic perspective by a compute-and-forward scheme based on an

117
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infinite sequence of structured nested lattices.

In order to design and implement practical compute-and-forward schemes, a gen-

eral algebraic framework, called lattice network coding, is developed in [21] for lattice

partition based PNC schemes. Based on this framework, a variety of lattice net-

work coding schemes can be constructed based on a principal ideal domain R in the

complex field C [21, 165–167]. For a lattice network code (LNC) with a hypercube

shaping region, such as in the Gaussian integer case, the probability of decoding error

is derived in [21] by using the union bound estimation (UBE). This UBE implies

that the choice of an optimal compute-and-forward coefficient vector over R abides

by the minimum variance criterion of effective noise [21]. Consequently, the lattice

reduction algorithms over Gaussian integers, such as the ones in [168] and [169] can

be applied to find an optimal coefficient vector.

Motivated by the work in [21], we investigate the practical LNC design and de-

coding error performance analysis to Eisenstein integer based LNCs in this chapter.

We start with the preliminary of the compute-and-forward model proposed in [23].

We then introduce the Eisenstein integer based lattice network codes. In the perfor-

mance analysis, we will discuss the decoding error probability of Eisenstein integer

based lattice network codes, and how to find the optimal scaling factor and optimal

coefficient vector. Following that, we will discuss various designs of Eisenstein integer

based lattice network codes. In the latter part of this chapter, we will focus on the

construction of Eisenstein integer based lattice network codes over GF(22), which is

more practical for real world implementation. We will show the simulation results in

the end of this chapter for the error performance of our constructed codes.

The work in this chapter is a collaborated work with other researchers, and I am

the sole student in this collaboration. My contribution in this work includes: propose

detailed design and construction methods for Eisenstein integer based lattice network

codes; conduct actual code design and search; compute related code parameters;

conduct simulations to verify the performance of the designed codes.
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5.2 Preliminaries: Computer-and-Forward

5.2.1 System Model

In this chapter, we consider a compute-and-forward scheme for a single relay system

with L transmitters. We adopt the system model as in [23] and it is shown in Fig.

5.1. In the compute-and-forward scheme, each of L independent transmitters sends a

message via a Gaussian multiple-access channel (MAC). Each message belongs to the

message space W defined over a subring R of C. For the transmitter l, it first maps

the message wl ∈ W to an n-dimensional complex-valued signal xl by the encoding

function

E : W → Cn,

and then transmits it through the Gaussian MAC. The transmitted signal xl is under

the average energy constraint

1

n
E[∥E(wl)∥2] ≤ P,

where the message wl is assumed to be uniformly selected in the message space W .
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Figure 5.1The compute-and-forward model

The received signal at the relay is given by a row vector

y =
∑L

l=1
hlxl + n (5.1)

where hl is the fading coefficient for the channel from transmitter l to the receiver

at the relay and it follows a complex Gaussian distribution with mean zero and
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variance one. The channel vector h = (h1, · · · , hL) ∈ CL is assumed to be known

at the receiver but unknown at the transmitters. In (5.1), n represents a complex

circularly-symmetric additive white Gaussian noise (AWGN) vector with zero mean

and power spectrum density N0. Here we define the signal-to-noise-ratio (SNR) as

P/N0, where P is the symbol energy at each transmitter.

Given a coefficient vector a , (a1, · · · , aL) over R and a scaling factor α ∈ C,

the goal of the relay receiver is to reliably decode an R-linear combination of the

transmitted messages u =
∑L

l=1 alwl based on the scaled version of the received

signal αy. Let D: Cn×CL×CL → W denote the decoding function and û denote the

decoded message D(αy | h, a). Then, a pairwise decoding error occurs when û ̸= u.

We denote the conditional pairwise decoding error probability by Pe(u → û | h, a).

Since the scaled received signal can be written as

αy =
∑L

l=1
alxl +

∑L

l=1
(αhl − al)xl + αn,

the R-linear combination
∑L

l=1 alxl has an effective noise

neff ,
∑L

l=1
(αhl − al)xl + αn.

5.2.2 Lattice Network Coding

We now give a brief review of the basic concept of lattice network codes (LNCs) [21].

Let R ⊂ C be a principal ideal domain (PID), which is a commutative ring such

that

• Whenever ab = 0 for a, b ∈ R, either a = 0 or b = 0;

• Every ideal in R can be written as aR = {ar : r ∈ R} for some a ∈ R.

Note that an ideal in a commutative ring R means a set of elements in R that is

closed under addition and under multiplication by an arbitrary element in R. Well-

known PIDs in C include the ring of integers Z and the ring of Gaussian integers

Z[i] = {a+ bi : a, b ∈ Z}.
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Definition 5.1. Let N ≤ n. A subset Λ of Cn is called an N -dimensional R-lattice

if it forms an R-module of rank N , that is, Λ is closed under addition and under

multiplication by scalars in the ring R, and there are N linearly independent vectors

b1, ...,bN ∈ Λ such that Λ = {
∑

1≤j≤N rjbj : rj ∈ R ∀j}. A subset Λ′ of Λ is called

a sublattice of Λ if it is an R-module.

Given an R-lattice Λ and a sublattice Λ′ of Λ, the quotient group Λ/Λ′ = {λ+Λ′ :

λ ∈ Λ} naturally forms a partition of Λ. For an LNC, the message space isW = Λ/Λ′,

which can also be regarded as an R-module. As a simple example, consider the PID

Z of integers, which itself can be regarded as a 1-dimensional Z-lattice. Every integer

corresponds to a lattice point. The set 2Z of even integers forms a sublattice of

Z, but the set of odd integers is not a sublattice of Z since it is not closed under

multiplication by an even integer. The quotient group Z/2Z = {2Z, 2Z+ 1} forms a

partition of Z into two sets of lattice points, i.e., the set of even integers and the set

of odd integers.

Throughout this chapter, we shall assume that |Λ/Λ′| has finite cardinality. The

implementation of both encoding and decoding of an LNC involves a lattice quantizer.

A lattice quantizer of a lattice Λ means a mapping DΛ : Cn → Λ, which sends a vector

x ∈ Cn to a nearest lattice point in Λ in terms of the Euclidean distance, that is,

DΛ(x) , argminλ∈Λ∥x− λ∥. (5.2)

The set of points in Cn that are mapped to a lattice point λ ∈ Λ by DΛ is called the

Voronoi region of λ. The Voronoi region of the origin 0 of Λ is called the fundamental

Voronoi region of Λ and it is denoted by V(Λ).

The encoding function E : W → Λ of an LNC Λ/Λ′ maps each coset λ+Λ′ in Λ/Λ′

to a coset leader, which is a lattice point contained both in the coset λ + Λ′ and in

the Voronoi region V(Λ′) of the origin of Λ′. This Voronoi region V(Λ′) is also called

the shaping region of the LNC. Let φ̄ be an embedding mapping from Λ/Λ′ into Λ

such that φ̄(λ+Λ′) and λ are in the same coset λ+Λ′. Then, E can be represented
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as

xl = E(wl) = φ̄(wl)−DΛ′(φ̄(wl)).

The image of E is also referred to as constellations of the LNC.

The decoding function of an LNC is described by

û = D(αy | h, a) = φ(DΛ(αy)), (5.3)

where φ is the natural projection mapping from Λ onto Λ/Λ′ via φ(λ) = λ + Λ′.

It has been shown in [21] that the decoding error probability Pe(u → û | h, a) =

Pr[DΛ(n) /∈ Λ′]. When the shaping region of an LNC is a (rotated) hypercube in Cn,

a union bound estimation (UBE) of Pe(u → û | h, a) is derived in [21] in terms of the

minimum inter-coset distance d(Λ/Λ′), which is equal to the length of shortest vectors

in the complement Λ\Λ′ of Λ′ in Λ, and the numberK(Λ/Λ′) of these shortest vectors.

One consequence of this UBE is that in hypercube shaped LNCs, the choice of both

the optimal scaling factor αopt and an optimal coefficient vector aopt is prescribed by

the minimum variance criterion of effective noise [21].

5.3 Fundamentals on Eisenstein Integer Based Lat-

tice Network Codes

5.3.1 Eisenstein Integers

In this section we first introduce some basic algebraic and geometric properties of

Eisenstein integers. Let ω = −1+
√
−3

2
. A complex number is called an Eisenstein

integer when it can be written in the form of a+ bω, where a, b are integers. The ring

Z[ω] of Eisenstein integers not only forms a PID, but also a Euclidean domain [171].

The norm of an Eisenstein integer a+b is equal to |a+bω|2, i.e., the squared absolute

value, and it can be represented by a2+b2−ab. In consequence, we have the following

two properties [172].
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• There are six units in Z[ω], i.e.,±1,±ω,±(1 + ω);

• An Eisenstein integer a+bω is prime in Z[ω], iff it is the product of an Eisenstein

unit and a rational prime congruent to 2 modulo 3, or |a + bω|2 is a rational

prime.

Note that an element p in a PID R is said to be prime if it is not a unit, and for any

r, s ∈ R such that p divides rs, p divides either r or s.

The reasons for investigation of Eisenstein integer based LNCs are highlighted as

follows. First, since the Voronoi region of Z[ω] is a regular hexagon, the analysis

in [21] based on hypercube shaping does not apply to the case of Z[ω]. In addition,

note that if a finite field Fq is representable by lattice partitions over Z[ω], then q

is either equal to 3, or congruent to 1 modulo 6, or the square of a rational prime

that is congruent to 2 modulo 3. On the other hand, if Fq can be represented by

lattice partitions over Z[i], then q is either equal to 2, or congruent to 1 modulo 4,

or the square of a rational prime that is congruent to 3 modulo 4. Therefore, lattice

partitions over Z[ω] enrich the candidates of finite fields for LNC design. For example,

F4 can be represented by the lattice partition Z[ω]/2Z[ω] but not Z[i]/2Z[i]. Actually,

F2
∼= Z/2Z is the only field of characteristic 2 that can be represented by Z[i]/βZ[i],

where β ∈ Z[i].

Furthermore, as illustrated in the next example, even if the Z[i]- and Z[ω]-based

message spaces are (field) isomorphic to each other, their constellations do not form

a linear bijection. Therefore, even if a same linear code is adopted to construct a

Z[i]-based and a Z[ω]-based LNC, different constellations of the message spaces need

to be considered.

Example 5.1. A finite field Fq is isomorphic to both Z[i]/βZ[i] and Z[ω]/γZ[ω] for

some β ∈ Z[i] and γ ∈ Z[ω] only if q is congruent to 1 modulo 12. Write β = 2 + 3i

and γ = 4 + 3ω. Consider a message space W = F13
∼= Z[i]/βZ[i] ∼= Z[ω]/γZ[ω].

Fig. 5.2(a) and Fig. 5.2(b) depict the sublattices βZ[i] of Z[i] and γZ[ω] of Z[ω],

respectively. The fundamental Voronoi regions of βZ[i] or γZ[ω] and constellations of
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Z[i]/βZ[i] or Z[ω]/γZ[ω] are also shown in Fig. 5.2(a) or Fig. 5.2(b). Observe that

EZ[i](W ) = {0,±1,±i,±(1 + i),±(1− i),±2,±2i}

and

EZ[ω](W ) = {0,±1,±ω,±(1 + ω),±(1− ω),±(1 + 2ω),±(2 + ω)}.

Since both elements 1 and 2 are in EZ[i](W ) whereas there are no two elements in

EZ[ω](W ) such that one is twice the other, for any linear bijection ϕ : Z[i] → Z[ω],

ϕ(EZ[i](W )) ̸= EZ[ω](W ).

i

Figure 5.2Different constellations of a message space W = F13. In diagram
(a), W ∼= Z[i]/βZ[i], where β = 2 + 3i. In diagram (b), W ∼= Z[ω]/γZ[ω],
where γ = 4 + 3ω. In either diagram, squares represent elements in the
sublattice, triangles represent the constellation points, and the shaded region
is the Voronoi region of the origin of the sublattice.

Since Z[ω] is a PID, every sublattice of Z[ω], which is essentially an ideal, is

generated by a nonzero Eisenstein integer. Since the six Eisenstein units are those

nonzero elements in Z[ω] closest to the origin, the Voronoi region of every sublattice

of Z[ω] is also a hexagon.

An R-lattice Λ1 is said to be equivalent to another R-lattice Λ2 when Λ1 can be

obtained from Λ2 by possibly rotation, reflection and change of scale [170]. In the

remainder of the paper, for all Λ/Λ′, the lattice Λ′ is assumed to be equivalent to
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either Z[i]N or Z[ω]N , that is, the shaping region of the LNC is either a hypercube or

a product of regular hexagons.

Proposition 5.1. Assume that Λ′ is equivalent to Z[ω]N with a scaling factor γ. The

volume V (Λ′) of V(Λ′) is (
√
3
2
|γ|2)N . Moreover, via continuous approximation [173],

the average power for the constellation of Λ/Λ′ is 5N
36n

|γ|2.

Proof. V (Λ′) =
∫
V((γZ[ω])N )

dx =
(∫

V(γZ[ω]) dx
)N

= (
√
3
2
|γ|2)N . Via continuous approx-

imation, the average power for Λ/Λ′ can be approximated by the average power of a

random vector x uniformly distributed over V(Λ′). Thus,

1

n
E[∥E(wl)∥2] =

∫
V(γZ[ω])N ∥x∥2dx

nV (Λ′)

=
N
∫
V(γZ[ω]) |x|

2dx
∫
V(γZ[ω])N−1 dx

n
∫
V(γZ[ω])N dx

=
N 5

√
3

72
|γ|4

n
√
3
2
|γ|2

=
5N

36n
|γ|2.

�

The two basic attributes of LNCs over Z[ω] in Proposition 5.1 are important for

the analysis of decoding error probability in Section 5.4. In comparison, for an LNC

Λ/Λ′ over Z[i], where Λ′ is equivalent to Z[i]N with a scaling factor γ, the volume of

V(Λ′) is 1 and the average power for the message space Λ/Λ′ is N
6n
|γ|2.

5.3.2 Lattice Quantization and Encoding Over Z[ω]

In the design of an efficient encoder and decoder for a general Z[ω]-based LNC scheme,

the 1-dimensional baseline case plays a fundamental role. In the following, we will

focus on the 1-dimensional baseline system. In particular, we now introduce the

quantization over Λ and Λ′, as well as encoding of Λ/Λ′, where Λ = Z[ω] and Λ′ =

γZ[ω], γ ∈ Z[ω].
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The quantization DΛ of a complex value x to an Eisenstein integer can be done

as follows. Note that the lattice points in Z[ω] can be divided into two sets:

1. Z[
√
−3] = {a+

√
−3b : a, b ∈ Z};

2. ω + Z[
√
−3] = {ω + a+

√
−3b : a, b ∈ Z}.

Let

β1 = ⌊Re{x}⌉+
√
−3⌊Im{x}/

√
3⌉ (5.4)

β2 = ⌊Re{x− ω}⌉+
√
−3⌊Im{x− ω}/

√
3⌉+ ω (5.5)

where ⌊·⌉ denotes rounding to nearest integer. The Eisenstein integers β1 and β2 are,

respectively, a nearest point in Z[
√
−3] and ω+Z[

√
−3] to x in terms of the Euclidean

distance. The quantizer DΛ then maps x to the one in {β1, β2} which is closer to x.

Based on the quantizer DΛ, the quantization of a complex value x over Λ′ can be

realized by

DΛ′ = γDΛ(γ
−1x),

where the inverse of γ is taken in C.

Since Z[ω] is a Euclidean domain, it has a division algorithm such that every

λ ∈ Z[ω] can be written as qγ + r with q, r ∈ Z[ω] and |r| < |γ|. Thus, the design

of the encoding function E : W → Λ is equivalent to propose an appropriate division

algorithm such that

1. There is a unique output remainder for all elements in a same coset divided by

γ;

2. The remainder is in the fundamental Voronoi region of γZ[ω].

We next propose one such possible division algorithm, which is adapted from the

one in [174].
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Algorithm 5.1 Division Algorithm

Initialization: Given λ, γ ∈ Z[ω], the following routine outputs a unique remainder

r ∈ Z[ω] of λ′ divided by γ for any λ′ ∈ λ+ γZ[ω].

1: Compute the rational number x = λ/γ;

2: Compute the nearest Eisenstein integer β1 (resp. β2) in Z[
√
−3] (resp. ω +

Z[
√
−3]) to x by (5.4) (resp. by (5.5));

3: Let r1 denote λ− β1γ and r2 denote λ− β2γ;

4: r = r1 if either |r1| < |r2| or |r1| = |r2| and Re{β1} < Re{β2};

5: r = r2 if either |r2| < |r1| or |r1| = |r2| and Re{β2} < Re{β1}.

After Step (3) of Algorithm 5.1, the computed r1 and r2 are, respectively, the

Eisenstein integers in γZ[
√
−3] and in γ(Z[

√
−3]+ω) closest to λ. Because |r1|, |r2| <

|γ| and |β1−β2| ≥ |γ| for all β1 ∈ γ[Z
√
−3] and β2 ∈ γ(Z[

√
−3]+ω), it can be shown

that when |r1| ̸= |r2|, either r1 or r2 is in V(γZ[ω]), and when |r1| = |r2|, both r1

and r2 are in V(γZ[ω]). Thus, when |r1| ̸= |r2|, the one in r1 and r2 with smaller

norm is the unique output r for all inputs belonging to λ+ γZ[ω]. When |r1| = |r2|,

since Re{β1} ̸= Re{β2} for all β1 ∈ Z[
√
−3] and β2 ∈ Z[

√
−3] +ω, the selection rules

in steps (iv) and (v) of the algorithm guarantee the unique output r for all inputs

belonging to λ+ γZ[ω].

It is interesting to point out that the computational complexity of quantization

and constellations over Z[ω] is in the same order as those over Z[i].

For a Z[ω]-based LNC, after the decoding error probability is derived in next

section, we shall see that the minimum variance criterion of effective noise also applies

to choosing the optimal scaling factor αopt and an optimal coefficient vector aopt.
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5.4 Performance Analysis

5.4.1 Decoding Error Probability

In this section, we analyze the probability of decoding error for the compute-and-

forward scheme with Z[ω]-Based LNCs. Recall that the error probability of a general

LNC system is shown in [21] and it is equal to Pr[DΛ(n) /∈ Λ′], where DΛ is a lattice

quantizer and neff is the effective noise
∑L

l=1 (αhl − al)xl + αn. As a counterpart of

the error probability upper bound of hypercube shaped LNCs derived in [21], we have

the following theorem for the error probability upper bound of LNCs with shaping

regions to be product of regular hexagons.

Theorem 5.1. Consider an LNC Λ/Λ′ in which Λ′ ⊂ Cn is equivalent to Z[ω]N . The

union bound estimation (UBE) on the probability of decoding error for Λ/Λ′ is

Pe(u → û | h, a) / K(Λ/Λ′) exp

(
− d2(Λ/Λ′)

4N0Q(α, a)

)
(5.6)

where d(Λ/Λ′) is the length of shortest vectors in Λ\Λ′, K(Λ/Λ′) is the number of

these shortest vectors, and Q(α, a) = |α|2+ n
N
SNR∥αh−a∥2. Moreover, when n = N ,

N0Q(α, a) represents the variance of uncorrelated components in the effective noise

vector neff .

The proof of the theorem is given in Appendix C.1. Its main flow is analogous to

the one used in [21] but the detailed derivations require careful manipulation of the

algebraic and geometric properties of Eisenstein integers. It is worthwhile to note that

the UBE in this theorem holds when N ≤ n. In comparison, the UBE on the decoding

error probability for hypercube shaped LNCs in [21] is under the assumption N = n.

The UBE for hypercube shaped LNCs over Z[i] could be extended to be applicable

over the case N < n by the same technique adopted here. Moreover, to show the

variance of each component in neff equal to N0Q(α, a) when N = n, the theorem

above makes use of the uncorrelated property. When N < n, the components in neff

are not necessarily uncorrelated, and hence N0Q(α, a) does not necessarily represent
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the variance of components in neff . It is also intriguing to note that the UBE on the

decoding error probability is in the same form for the hypercube shaped case and for

the case with shaping region to be product of regular hexagons.

As the constellations in a Z[ω]-based LNC is different from that in a Z[i]-based

one, in the following, we shall give a general representation of the UBE on the de-

coding error probability. This general representation will highlight the performance

improvement of Z[ω]-based LNCs over Z[i]-based ones in terms of the coding gain

and shaping gain.

Define the nominal coding gain of an LNC in a similar way as in [173] for a lattice

code:

γc(Λ/Λ
′) =

d2(Λ/Λ′)

V (Λ)1/n

where V (Λ) is the volume of the fundamental Voronoi region V(Λ). Let M be an

N × n generator matrix for Λ. According to [170], when Λ is a Z[i]-lattice, V (Λ) =

det(MMH), and when Λ is a Z[ω]-lattice, V (Λ) =
(√

3
2

)N
det(MMH). The nominal

coding gain measures the increase in density of Λ over the baseline Gaussian integer

lattice Z[i]. As Λ′ is a sublattice of Λ, we may consider Λ′ to be a coarse lattice of

the fine lattice Λ. The second moment or average energy per dimension of a uniform

distribution over the fundamental Voronoi region V(Λ′) is P (Λ′), and its normalized

second moment is G(Λ′) = P (Λ′)/[V (Λ′)1/n]. For the Voronoi region of Z[i], the

normalized second moment is 1/6. The shaping gain of the region V(Λ′) is defined

as [173] γs(Λ
′) = 1/6

G(Λ′)
= V (Λ′)1/n

6P (Λ′)
. By continuous approximation, P (Λ′) is regarded

as the average power for the message space Λ/Λ′, so we can write γs(Λ/Λ
′) = γs(Λ

′).

The shaping gain measures how much less is the average energy of V(Λ′) relative to

a hypercube centered at the origin.

Now the UBE on the probability of decoding error for the LNC Λ/Λ′ can be

approximated using the following corollary.

Corollary 5.1. Let R denote either Z[ω] or Z[i]. Consider an LNC Λ/Λ′ in which

the N-dimensional lattice Λ′ is equivalent to RN . We have the UBE for the LNC
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Λ/Λ′:

Pe(u → û | h, a) / K(Λ/Λ′) exp

(
−γc(Λ/Λ

′)γs(Λ/Λ
′)3SENRnorm

2

)
where the normalized signal-to-effective-noise ratio (SENRnorm) is defined as

SENRnorm , SENR

2ρ
,

1
n
E[∥xl∥2]

2ρN0Q(α, a)
≈ P (Λ′)

2ρN0Q(α, a)

and ρ measures the spectral efficiency or the rate of the code, and it is given by

ρ =
1

n
log2 |Λ/Λ′| = 1

n
log2

V (Λ′)

V (Λ)
.

For the Z[i]-based baseline LNC, that is, Λ = Z[i]n and Λ′ = (βZ[i])n, where β is

a nonzero Gaussian integer, both the nominal coding gain and the shaping gain are

equal to 1 (0 dB). In comparison, for the Z[ω]-based baseline LNC, that is, Λ = Z[ω]n

and Λ′ = (βZ[ω])n, where β is a nonzero Eisenstein integer, by Proposition 5.1, the

nominal coding gain can be calculated to be 2
√
3/3 (0.625 dB), and the shaping gain

γs(Λ/Λ
′) = 1/6

G(Λ′)
= 3

√
3/5 (0.167 dB).

5.4.2 Optimal Scaling Factor and Optimal Coefficient Vector

According to Theorem 5.1, for an LNC Λ/Λ′ over Z[ω], different selection of scal-

ing factor α and coefficient vector a at the relay will yield different decoding error

probabilities. Therefore, in order to obtain the optimal performance of Λ/Λ′ in terms

of decoding error probability, we discuss the optimal selection of α and a in this

subsection.

For hypercube shaped LNCs, in order to minimize the decoding error probability,

the choice of the scaling factor α and coefficient vector a is prescribed by theminimum

variance criterion [21], that is, to minimize the variance N0Q(α, a) of components in

the effective noise vector neff . Consequently, the optimal scaling factor is equal to

αopt =
ahHSNR

SNR∥h∥2 + 1
, (5.7)
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which was first derived in [23] as the MMSE coefficient to maximize the computation

rate, and finding an optimal coefficient vector aopt is equivalent to solving the shortest

vector problem

aopt = argmin
a̸=0

∥aL∥, (5.8)

where L is a lower triangular matrix (over C) such that

LLH = SNRIL − SNR2

SNR∥h∥2 + 1
hHh.

(See [21]) Thus, we can apply any lattice reduction algorithms, such as the Gaussian

reduction algorithm over Z[i] in [175] for 2-dimensional case as well as the approximate

suboptimal algorithms in [168] and [169] for higher dimensional cases, to solving (5.8)

over Z[i].

Consider an LNC Λ/Λ′ in which the N -dimensional lattice Λ′ is equivalent to

Z[ω]N . Justified by Theorem 5.1, the minimum variance criterion also applies to

Λ/Λ′ so as to minimize the decoding error probability. Hence, for a Z[ω]-based LNC,

αopt can also be calculated by (5.7), and aopt can be found by solving (5.8) too.

To the best of our knowledge, there is no efficient lattice reduction algorithm to

find an exact solution for the shortest vector problem (5.8) over Z[ω]. The generalized

LLL algorithm proposed by Napias in [176] can be applied to yield an approximate

solution for (5.8) over Z[ω]. For the special case L = 2, since an exact solution of

(5.8) can be efficiently found by the Gaussian reduction algorithm for lattices over

Z[i] (See [175]), it is natural to ask whether an exact solution of (5.8) can also be

efficiently found for lattices over Z[ω]. In the remaining part of this section, we shall

give an affirmative answer by extending the Gaussian reduction algorithm to work

for Z[ω]-based lattices.

Recall that given two vectors v1,v2 over the field R of real numbers, the Gaussian

reduction algorithm for real lattices over Z (See [22] for example) will yield a shortest

vector u1 in the Z-lattice generated by v1 and v2, as well as another vector u2 which

has the shortest length in the same lattice excluding those vectors generated by u1.

Thus, if the lower triangular matrix L in (5.8) is over R, then an optimal solution
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aopt of (5.8) over Z could be found by applying the Gaussian reduction algorithm to

row vectors in L and then taking aopt = u1 · L−1.

To the best of our knowledge, there is no reference with sufficient details to jus-

tify whether the Gaussian reduction algorithm can be adapted for complex lattices

over Eisenstein integers. With formal justification, we next generalize the Gaussian

reduction algorithm for real lattices over Z to be applicable to complex lattices over

Z[ω], so that it can induce an optimal coefficient vector aopt over Z[ω]. Recall that

DΛ denotes a quantizer of a complex lattice Λ subject to (5.2).

Algorithm 5.2 Gaussian Reduction for a Complex Z[ω]-Lattice
Initialization: Given a basis (v1,v2) of a 2-dimensional complex lattice Λ over

Z[ω], where ∥v1∥ ≤ ∥v2∥, the following routine returns a shortest nonzero vector

u1 in Λ and a shortest vector u2 in Λ\{βu1 : β ∈ Z[ω]}.

1: Set u1 := v1, u2 := v2, and finished := 0;

2: while finished == 0 do

3: Set u′
2 := u2 −DZ[ω](u1u

H
2 /∥u1∥2)u1;

4: if ∥u1∥ > ∥u′
2∥ then

5: Set u2 := u1, u1 := u′
2;

6: else

7: Set u2 := u′
2, finished := 1;

8: end if

9: end while

In the algorithm above, the magnitude of vector u1 is strictly decreasing in each

iteration. As there are finitely many lattice points in Λ with magnitude smaller than

or equal to ∥v1∥, the algorithm terminates in finitely many steps. Moreover, {u1,u2}

keeps to be a basis of Λ throughout the algorithm, because each iteration updates

[ u1
u2 ] by either settingu1

u2

 :=

−DZ[ω](u1u
H
2 /∥u1∥2) 1

1 0

 ·

u1

u2
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or u1

u2

 :=

 1 0

−DZ[ω](u1u
H
2 /∥u1∥2) 1

 ·

u1

u2


where the 2× 2 matrices have determinants ±1.

It will be justified in Appendix C.2 that the output u1 of Algorithm 5.2 is a shortest

nonzero vector in Λ and the output vector u2 is a shortest vector in Λ\{βu1 : β ∈

Z[ω]}.

5.5 Construction of Z[ω]-Based LNCs with General

Lattice Partition

For both Z[ω]-based and Z[i]-based LNCs Λ/Λ′, the nominal coding gain

γc(Λ/Λ
′) =

d2(Λ/Λ′)

V (Λ)1/n

and the shaping gain

γs(Λ/Λ
′) =

V (Λ′)1/n

6P (Λ′)

are two important parameters in UBE of decoding error probabilities. In Z[ω] case,

the nominal coding gain and the shaping gain of a baseline LNC are, respectively,

0.625 dB and 0.167 dB, in contrast to the Z[i] case, where both gains are 0 dB. In this

section, we will discuss constructions of LNCs from linear codes. Let π be a prime

element in a PID R ⊂ C. Given an [n, k] linear code C over the field R/πR, denote

by wmin
E (C) the minimum squared Euclidean norm of non-zero codewords of C.

5.5.1 LNC From a Linear Code by Complex Construction A

Complex Construction A [170] is a method to construct a complex R-lattice. It

is adapted in [21] to design an LNC Λ/Λ′ as follows: Λ is constructed from C by

Complex Construction A and Λ′ is set to be (πR)n. In our opinion, to adapt Complex

Construction A in the framework of lattice network coding, it would be natural to
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set the coarse lattice Λ′ in a more relaxed manner, that is, in the form (πrR)n, where

r ≥ 1.

Algorithm 5.3 Complex Construction A

1: Consider a linear code C of length n over the finite field R/πR. An LNC Λ/Λ′

can be constructed by Complex Construction A via

Λ = {λ ∈ Rn : σ(λ) ∈ C}

where σ is the natural projection from Rn to (R/πR)n, and Λ′ = (πrR)n, where

r ≥ 1.

Algorithm 5.3 gives a lattice partition Λ/Λ′ from a linear code C. It is worthwhile

to note that this lattice partition can also be got from Complex Construction D in [21]

by setting a sequence of nested linear codes C0 ⊇ C1 ⊇ ... ⊇ Cr−1 ⊇ Cr over R/πR

with C0, ..., Cr−1 as [n, n] trivial codes and Cr as the given code C in Algorithm 5.3.

Now we specify the generator matrices for lattices Λ and Λ′ and their relationship.

Proposition 5.2. Let Λ/Λ′ be the LNC constructed by Algorithm 5.3 from a lin-

ear code C over R/πR. Let [Ik Bk×(n−k)] be a k × n matrix over R such that

σ([Ik Bk×(n−k)]) is a generator matrix for C. The respective generator matrices MΛ

for Λ and MΛ′ for Λ′ can be described by

MΛ =

Ik Bk×(n−k)

0 πIn−k


and

MΛ′ =

πrIk πrBk×(n−k)

0 πrIn−k

 .

Since

MΛ′ =

πrIk 0

0 πr−1In−k

MΛ,

we have

Λ/Λ′ ∼= (R/πrR)k ⊕ (R/πr−1R)n−k,
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where ⊕ represents the direct sum of two R-modules. Moreover, in the special case

R = Z[i] or Z[ω], d2(Λ/Λ′) and K(Λ/Λ′) can be respectively expressed as

d2(Λ/Λ′) =

 wmin
E (C), when r = 1

d2(Λ) = min(|π|2, wmin
E (C)), when r > 1

,

K(Λ/Λ′) = K(Λ) when r > 1, where K(Λ) is the number of shortest nonzero vectors

in Λ.

When r = 1, the constructed LNC Λ/Λ′ is isomorphic to the linear code C. In this

case, instead of decoding û by quantization over the fine lattice Λ as in formula (5.3),

we can find û by a generally suboptimal but more efficient hard-decision method

as follows. The scaled received signal αy is first quantized to a vector λ ∈ Rn by

symbol-based quantization over R. Then, û is set to be the element in C found by

any decoding algorithm of C with input σ(λ) ∈ (R/πR)n. This decoding method has

been considered in [177] for decoding integer-based compute-and-forward schemes.

Now we discuss the UBE of the decoding error probability for the Z[ω]-based

LNCs constructed by Algorithm 5.3.

Corollary 5.2. Let Λ/Λ′ be the LNC constructed by Algorithm 5.3 from a linear code

C over R/πR. When R = Z[ω], the nominal coding gain of Λ/Λ′ is

γc(Λ/Λ
′) =


wmin

E (C)
√

3
2
|π|2(1−k/n)

, when r = 1

min(|π|2,wmin
E (C))

√
3

2
|π|2(1−k/n)

, when r > 1
. (5.9)

The UBE on the decoding error probability can be written as

Pe(u → û | h,a)

/

 K(Λ/Λ′) exp
(
−9

5
wmin

E (C)

|π|2(1−k/n)SENRnorm

)
, when r = 1

K(Λ) exp
(
−9

5
min(|π|2,wmin

E (C))

|π|2(1−k/n) SENRnorm

)
, when r > 1

.

When R = Z[i], the nominal coding gain of Λ/Λ′ is

γc(Λ/Λ
′) =


wmin

E (C)

|π|2(1−k/n) , when r = 1

min(|π|2,wmin
E (C))

|π|2(1−k/n) , when r > 1
.
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The UBE on the decoding error probability can be written as

Pe(u → û | h, a) /

 K(Λ/Λ′) exp
(
−3

2

wmin
E (C)

|π|2(1−k/n)SENRnorm

)
, when r = 1

K(Λ) exp
(
−3

2

min(|π|2,wmin
E (C))

|π|2(1−k/n) SENRnorm

)
, when r > 1

.

The above UBE provides design criteria for constructing optimal LNCs or lattice

partitions. More specifically, in order to minimize the decoding error probability, one

needs to (1) maximize wmin
E (C); and (2) minimize K(Λ/Λ′) or K(Λ).

5.5.2 Convolutional LNCs by Complex Construction A

We now discuss construction of LNCs by Algorithm 5.3 from rate-1/2 feed-forward

convolutional codes over F13 with memory order v, 1 ≤ v ≤ 5. Write β = 2 + 3i and

γ = 4 + 3ω. The message space W = F13 can be represented by either Z[i]/βZ[i]

or Z[ω]/γZ[ω]. We adopt the encoding functions EZ[i] : Z[i]/βZ[i] → Z[i] and EZ[ω] :

Z[ω]/γZ[ω] → Z[ω], whose constellations are depicted in Fig. 5.2 in Section 5.3. The

corresponding mappings from F13 into Z[i] and into Z[ω] are summarized in Table D.1.

By computer search, we find generator polynomials g(D) to generate rate-1/2 feed-

forward convolutional codes C over Z[i]/βZ[i] and over Z[ω]/γZ[ω] with maximum

wmin
E (C) and smallest K(Λ/Λ′), and list them respectively in Table D.2 and Table

D.3. Due to computational limitation, the search for the cases v = 4 and 5 are not

exhaustive and hence the parameters listed in Table D.2 and D.3 are sub-optimal.

Both tables also list the nominal coding gain γc(Λ/Λ
′) and the number K(Λ/Λ′) of

shortest vectors in Λ\Λ′ of the corresponding LNCs Λ/Λ′ constructed from C by

applying Algorithm 5.3 with r = 1. We can see that when the memory order of the

convolutional code C increases from 1 to 4, the minimum squared Euclidean norm

wmin
E (C) of non-zero codewords in C and the nominal coding gain also increase under

both Z[ω]-based and the Z[i]-based constellations. Moreover, the minimum squared

norm wmin
E (C) is same under both constellations for all the cases 1 ≤ v ≤ 4. Thus,

according to Corollary 5.2, a Z[ω]-based LNC can be correspondingly constructed

from a rate-1/2 F13-convolutional code such that its nominal coding gain is 0.625 dB
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higher than the Z[i]-based one constructed from an F13 convolutional code of same

rate and memory. With the additional 0.167 dB shaping gain, Corollary 5.1 asserts

that the Z[ω]-based LNC will have a better performance than the Z[i]-based one,

despite of the larger number K(Λ/Λ′) as listed in the tables. This will be illustrated

by simulation in next section.

The rate of an LNC Λ/Λ′ is equal to 1
n
log2|Λ/Λ′|. Assume that Λ/Λ′ is a Z[ω]-

based LNC constructed by Algorithm 5.3 from a linear code C over Z[ω]/πZ[ω].

Thus, a larger r could yield a higher rate LNC. On the other hand, when r ≥ 2,

the length d(Λ/Λ′) of the shortest vectors in Λ\Λ′ is equal to the length d(Λ) of the

shortest nonzero vectors in Λ, which is upper bounded by |π|. Since the decoding

error probability will decrease exponentially with respect to the nominal coding gain,

which is the ratio of d2(Λ/Λ′) over the nth root of the volume of Λ, the increase of

the code rate by increasing r is at the cost of code performance. To compensate this

to some extent, we are motivated to design LNCs by Complex Construction B, which

is another method to construct a complex R-lattice [170].

5.5.3 LNC From a Linear Code by Complex Construction B

We now describe a lattice partition algorithm based on Complex Construction B. Now

we obtain another lattice partition Λ/Λ′ from a linear code C. In terms of Complex

Construction D in [21], this lattice partition can also be regarded as constructed

from a sequence of nested linear codes C0 ⊇ C1 ⊇ ... ⊇ Cr−1 ⊇ Cr over R/πR with

C0, ..., Cr−2 as [n, n] trivial codes, Cr−1 as the [n, n− 1] single-parity-check code, and

Cr as the given code C in Algorithm 5.4. Next, we show the generator matrices for

lattices Λ and Λ′ and their relationship.
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Algorithm 5.4 Complex Construction B

1: Consider a linear code C of length n over R/πR subject to
∑

1≤i≤n ci = 0 for each

(c1, · · · , cn) ∈ C. Define

Λ = {λ , (λ1, · · · , λn) ∈ Rn : σ(λ) ∈ C,
∑n

i=1
λi ≡ 0 mod π2} (5.10)

where σ is the natural projection from R to (R/πR)n, and Λ′ = (πrR)n, where

r ≥ 2. In this way, Λ is an n-dimensional R-lattice and Λ′ is a sublattice of Λ.

An LNC Λ/Λ′ is thus constructed from C by Complex Construction B.

Theorem 5.2. Let Λ/Λ′ be an LNC constructed from an [n, k] linear code C over

R/πR by Algorithm 5.4. There exists a generator matrix MΛ for Λ and MΛ′ for Λ′

in the form

MΛ =



Ik Bk×(n−k)

0

π −π 0 ... 0
. . .

0 ... 0 π −π

0 0 ... 0 π2


,MΛ′ =



πrIk πrBk×(n−k)

0

πr −πr 0 ... 0
. . .

0 ... 0 πr −πr

0 0 ... 0 πr


(5.11)

Consequently,

MΛ′ =


πrIk 0 0

0 πr−1In−k−1 0

0 0 πr−2

MΛ,

and hence

Λ/Λ′ ∼= (R/πrR)k ⊕ (R/πr−1R)n−k−1 ⊕ (R/πr−2R).

Moreover, in the special case that R = Z[i] or Z[ω],

d2(Λ/Λ′) = d2(Λ) = min(2|π|2, wmin
E (C))

K(Λ/Λ′) = K(Λ), when |π|2 ̸= 2

Proof. See Appendix C.3. �
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We next give explicit UBE of the decoding error probability for Z[ω]-based LNCs

constructed by Complex Construction B.

Corollary 5.3. When R = Z[ω], the nominal coding gain of the LNC Λ/Λ′ con-

structed from a linear code over R/πR by Algorithm 5.4 is

γc(Λ/Λ
′) =

min(2|π|2, wmin
E (C))

√
3
2
|π|2(1−(k−1)/n)

.

The UBE on the decoding error probability can be written as

Pe(u → û | h, a) / K(Λ) exp

(
−9

5

min(2|π|2, wmin
E (C))

|π|2(1−(k−1)/n)
SENRnorm

)
.

This UBE also gives design guidelines for constructing optimal LNCs in terms of

the minimal error probability: the LNC should have maximum wmin
E (C) and minimum

K(Λ).

It is of particular interest to discuss Complex Construction B over Eisenstein

integers. For instance, the well-known complex Leech lattice can be constructed based

on it (See Example 12 of Chapter 7 in [170].) As discussed in the next example, the

associated LNC of complex Leech lattice has a good tradeoff between code rate and

nominal coding gain among the LNCs constructed from ternary Golay code.

Example 5.2. Let π = 1 + 2ω and C represent the [12, 6, 6] extended Golay code

over F3
∼= Z[ω]/πZ[ω]. Table D.4 compares several attributes of LNCs Λ/Λ′ with

the 12-dimensional lattice Λ constructed from C by different methods. When Λ/Λ′

is constructed by Complex Construction A, there is a tradeoff between the rate and

the nominal coding gain of the LNC. For example, assume that Λ is constructed by

Complex Construction A (Formula (5.9)). When Λ′ is changed from (Z[ω]/πZ[ω])12

to (Z[ω]/π2Z[ω])12, the rate of the LNC Λ/Λ′ can be increased by three times from

1
2
log2 3 to 3

2
log2 3, but the nominal coding gain is decreased from 6.02 dB to 3.01 dB.

However, when Λ′ is kept to be (Z[ω]/π2Z[ω])12 while Λ is constructed by Complex

Construction B (Formula (5.10)), the LNC Λ/Λ′ has rate 17
12
log2 3, which is close to

3
2
log2 3, and the nominal coding gain 5.62 dB, which is much better than 3.01 dB
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obtained by Complex Construction A at rate 3
2
log2 3. If we further choose Λ to be

the complex Leech lattice, which is constructed based on complex Construction B,

and set Λ′ to be (Z[ω]/π3Z[ω])12, the rate of the LNC can be increased to 3
2
log2 3 and

the nominal coding gain to 6.02 dB.

The example above demonstrates that Complex Construction B is possible to yield

LNCs with higher rates without sacrificing the nominal coding gain much.

5.6 Construction of Z[ω]-Based LNCs over GF(4)

5.6.1 Why Interested in GF(4)

We now focus on the construction of Z[ω]-Based LNCs over GF(4). The motivation

of studying this particular lattice partition is that signal constellations of size to

be a power of 2 are always preferred in real world implementation. Thus, for the

practical design of LNCs, it will be more convenient to adopt a lattice partition

R/πR that is isomorphic to a finite field of size 2m. Unfortunately, the only finite

fields of characteristic 2 that can be represented by R/πR for some π ∈ R when

R = Z,Z[i], or Z[ω] include

• GF(2) ∼= Z/2Z ∼= Z[i]/(1 + i)Z[i];

• GF(22) ∼= Z[ω]/2Z[ω].

Since GF(2) can be represented over Z, it is no longer desirable to consider its constel-

lation over the complex plane. Moreover, compared with over GF(2), the flexibility is

higher over GF(4) to design LNCs with a large minimum inter-coset distance. In this

letter, we aim at examining the practical design of GF(4)-based LNCs from linear

codes over GF(4m), where m ≥ 1.

In this section, we will incorporate the dithering method at the users and show

how to design the optimal dither at the transmitters to save the average transmission

power.
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5.6.2 Dithering in the System Model

With dithering is considered in the user transmission, the encoding function E be-

comes

E(wl) , φ̄(wl) + d−DΛ′(φ̄(wl) + d),

where

φ̄ : Λ/Λ′ → Λ

is an embedding mapping, d ∈ Cn is a dither vector, and DΛ′ : Cn → Λ′ is the

lattice quantizer of the coarse lattice Λ′. The estimated R-linear combination of the

transmitted messages at the relay becomes

û = φ(DΛ(αy −
∑L

l=1
ald)),

where φ is the natural projection from Λ onto Λ/Λ′ via φ(λ) = λ + Λ′, and the DΛ

is the lattice quantizer of the fine lattice Λ.

5.6.3 Baseline LNCs over GF(4)

The set Z[ω] of Eisenstein integers is depicted in Fig. 5.3(a). It is naturally qualified

as a lattice in the complex plane. We next examine the field structure of Z[ω]/2Z[ω].

The four cosets in Z[ω]/2Z[ω] are labeled by differently shaped points in Fig. 5.3(a),

each of which can be assigned a coset leader 0, 1, ω and ω2 respectively. Noting

that ω2 + ω + 1 = 0, the arithmetic of addition and multiplication among these four

cosets can be easily computed and is summarized in Table 5.1, where each coset is

represented by the assigned coset leader. It is easy to check that equipped with this

arithmetic, Z[ω]/2Z[ω] is indeed isomorphic to the finite field GF(4).

The message space of the baseline LNC over GF(4) is W = γ(Z[ω]/2Z[ω])n,

where γ is a scaling factor to control the transmission power. It can be regarded

as an n-dimensional vector space over GF(4). If the encoding function E maps a

message wl ∈ W to its coset leader whose entry elements are in {0, γ, γω, γω2},

then the average power of the message space is 1
n
E[∥E(wl)∥2] = 3

4
|γ|2. From an
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Table 5.1The arithmetic in cosets of Z[ω]/2Z[ω]

+ 0 1 ω ω2

0 0 1 ω ω2

1 1 0 ω2 ω

ω ω ω2 0 1

ω2 ω2 ω 1 0

× 0 1 ω ω2

0 0 0 0 0

1 0 1 ω ω2

ω 0 ω ω2 1

ω2 0 ω2 1 ω

Figure 5.3(a) The set Z[ω] of Eisenstein integers in the complex plane is
partitioned into four cosets by modulo 2, each of which is depicted in a
different shape and is labeled with a coset leader. (b) A constellation of
Z[ω]/2Z[ω] to achieve the optimal average power 1

2
is depicted by star points.

information theoretical point of view, random dither is required in encoding in order to

make the quantization noise to be uniformly distributed and independent of encoded

signals [178]. For the sake of energy-efficiency in practical systems, a fixed dither

is required in order to minimize the average transmission power or error probability

under a transmission power constraint [21]. We next design an optimal dither vector

for the encoding function E in terms of energy efficiency.

Proposition 5.3. The optimum average power for the baseline LNC is 1
2
|γ|2, which

can be obtained by dither vectors d = γ(d1, · · · , dn), where dj ∈ {±ω
2
,±ω2

2
,±1

2
} ∀1 ≤

j ≤ n.



5.6 Construction of Z[ω]-Based LNCs over GF(4) 143

Proof. It suffices to show the case when γ = 1 and n = 1. Write d = dR + dIi,

where dR and dI are real numbers. By symmetry, without loss of generality, assume

−1 ≤ dR ≤ 0 ≤ dI ≤
√
3. Based on different d, the encoding function E maps a coset

into different values:

1. E(0 + 2Z[ω]) is d when dI ≤
√
3
3
dR + 2

√
3

3
and is −2ω + d otherwise;

2. E(1 + 2Z[ω]) is 1 + d when dI ≤ −
√
3
3
dR +

√
3
3

and is −1− 2ω + d otherwise;

3. E(ω + 2Z[ω]) is −ω + d;

4. E(ω2 + 2Z[ω]) is ω2 + d when dI ≥ −
√
3
3
dR and dR ≥ −1

2
, is 1 − ω + d when

dI ≥
√
3
3
dR +

√
3
3

and dR ≤ −1
2
, and is −ω2 + d otherwise.

After enumerating all the possibilities above, we can find that E[∥E(Z[ω]/2Z[ω])∥2]

is minimized to be 1
2
only when d = −1

2
and d = −1

4
+

√
3
4
i. Say, for example, when

−1
2
≤ dR ≤ 0 and −

√
3

3
dR ≤ dI ≤

√
3
3
dR +

√
3
3
, E(Z[ω]/2Z[ω]) = 1

4
(|d|2 + |1 + d|2 + | −

ω+ d|2 + |ω2 + d|2) = 4d2R + 4d2I + 2dR − 2
√
3dI + 3, which is minimized to be 1

2
with

dR = −1
4
and dI =

√
3
4
. �

It is worthwhile to note that both the Conway-Sloane (CS) method [179] and the

maximally biased method [180] can be applied to find a good dither vector for a gen-

eral real lattice partition in terms of low average power. When Z[ω] is regarded as a

two-dimensional real lattice, both methods can yield an optimal dither vector for the

baseline LNC. Fig. 5.3(b) depicts an optimally dithered constellation of Z[ω]/2Z[ω]

in the complex plane, according to d = ω
2
. When an LNC has a large constellation,

its average power is always computed by continuous approximation [121], which as-

sumes the encoded messages continuously uniformly distributed over the fundamental

Voronoi region of the coarse lattice. In comparison, the average power of the base-

line LNC over GF(4) computed by continuous approximation is equal to 5
9
|γ|2, which

underestimates the average power 3
4
|γ|2 in the non-dithered case and overestimates

the average power 1
2
|γ|2 in the optimally dithered case. Therefore, the optimal dither
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reduces the average power of a baseline LNC over GF(4) by 1/3, that is, from 3
4
|γ|2

to 1
2
|γ|2.

5.6.4 Design of LNCs over GF(4)

Let C be an [n, k] linear code over GF(4). We now investigate the rate-2k
n
LNC Λ/Λ′

constructed from different classes of C by Complex Construction A [21]:

Λ = {λ ∈ γZ[ω]n : σ(γ−1λ) ∈ C},Λ′ = γ(2Z[ω])n (5.12)

where the scaling factor γ controls the transmission power, and σ is the natural

projection from Z[ω]n onto (Z[ω]/2Z[ω])n. An important property of the LNC thus

constructed is

Λ/Λ′ ∼= (Z[ω]/2Z[ω])k ∼= C.

Consequently, the optimal dither vector derived in Proposition 5.3 for baseline LNCs

is also optimal here.

Proposition 5.4. The optimum average power for the LNC Λ/Λ′ constructed from

C by (5.12) is 1
2
|γ|2, which can be obtained by the dither vectors in Proposition 5.3.

When the LNC is constructed by complex Construction A from a linear code C

over a field represented by a large lattice partition in the complex plane, d2(Λ/Λ′)

is equal to the minimum squared Euclidean weight of nonzero codewords in C [21],

which is in general larger than the minimum Hamming distance wH(C) of C. In

the special case of GF(4), however, since every nonzero coset in Z[ω]/2Z[ω] contains

exactly two units in Z[ω], which have Euclidean norm 1, we have the following simple

characterization.

Proposition 5.5. For the LNC constructed by (5.12), we have

d2(Λ/Λ′) = |γ|2wH(C) and K(Λ/Λ′) = 2wH(C)K(C),

where K(C) is the number of codewords with weight wH(C).
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Thus, the characterization of d2(Λ/Λ′) and K(Λ/Λ′) of LNCs Λ/Λ′ over GF(4)

is much easier to determine than other lattice partitions with large constellation.

Here, we only need to determine the minimum Hamming distance wH(C) and its

multiplicity K(C) of the linear code C, rather than its Euclidean distance of the code

constellations.

Example 5.3. In practice, the LNC should be such constructed that the relay receiver

is able to decode a linear combination of transmitted messages not only reliably but

also relatively efficiently. Since both convolutional codes and BCH codes are known

to have efficient hard-decision and soft-decision decoding algorithms, we next provide

a parameter characterization for C being a convolutional code and a BCH code, as a

reference for practical design of LNCs by (5.12).

The parameters of rate-1/2 feed-forward convolutional codes over GF(4) with

memory order v, 1 ≤ v ≤ 5, are obtained by computer search and summarized in

Table 5.2. The coefficient vectors of the generator polynomials for those convolutional

codes C with maximum wH(C) are listed in the table in descending order of associated

degrees. The table also lists the nominal coding gains γc(Λ/Λ
′) = d2(Λ/Λ′)√

3
2
41−k/n

(See [121])

of the LNCs Λ/Λ′ constructed from these convolutional codes via (5.12). The nominal

coding gain measures the increase in density of Λ/Λ′ over the baseline LNC. Compared

with the convolutional LNCs over GF(13) which have larger constellation in [121],

the convolutional LNCs over GF(4) have similar nominal coding gains.

Table 5.3 summarizes the parameters of several BCH codes over GF(4) of length

15 and 63. The coefficient vectors of the generator polynomials g(X) are listed in

the table in descending order of associated degrees. We obtain wH(C) and K(C) by

computer enumeration (with the use of MacWilliams identity in the case n = 63.)

It is worthwhile to point out that the real minimum distance wH(C) is same as the

designed distance of all BCH codes listed in the table, but this equivalence is not

generally true.

Besides the design of an LNC from a linear code over GF(4), more generally, we
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Table 5.2Parameters of rate-1/2 convolutional codes over GF(4)

v g(D) wH(C) γc(Λ/Λ
′)

1 [1 1], [ω 1] 4 3.63 dB

2 [1 1 1], [1 ω 1] 6 5.40 dB

3 [1 ω2 ω ω2], [ω ω2 ω2 ω2] 8 6.65 dB

4 [ω ω2 ω2 ω ω2], [ω2 0 1 ω2 ω2] 9 7.16 dB

5 [ω 0 1 ω2 ω2 1], [ω ω2 ω2 ω2 ω 1] 11 8.03 dB

Table 5.3Parameters of BCH codes over GF(4)

n k g(X) wH(C) γc(Λ/Λ
′) K(C)

15
9 [1 ω2 1 1 ω ω 1] 5 5.21 dB 189

7 [1 0 1 ω2 ω2 1 ω2 0 ω] 7 5.86 dB 405

63
54 [1 0 ω2 1 0 1 1 ω2 ω 1] 5 6.76 dB 8505

50 [1 ω ω 1 ω ω2 0 ω2 ω2 ω2 0 1 0 ω2] 7 7.83 dB 3591

can also construct an LNC from a linear code C over GF(4m) for m > 1, by adapting

C’s expanded linear code Ce over GF(4) to formula (5.12). Specifically, let β denote

a primitive element of GF(4m), that is, β, · · · , β4m−1 constitute all nonzero elements

in GF(4m). Then, {1, β, · · · , βm−1} forms a natural basis of GF(4m) over the subfield

GF(4) = {0, 1, β 4m−1
3 , β

2(4m−1)
3 } ⊂ GF(4m). Denote by ϕ the natural mapping from

GF(4m) onto the m-dimensional vector space GF(4m) via

ϕ(
∑m−1

j=0
cjβ

j) = (c0, · · · , cm−1).

Applying component-wise, the bijection ϕ also extends to a bijection from GF(4m)n

onto GF(2)mn. An [n, k] linear code C over GF(4m) can then be expanded to an

[mn,mk] code Ce over GF(4) in terms of the basis {1, β, · · · , βm−1} by Ce = {ϕ(c) :

c ∈ C}. It is easy to verify that the expanded code Ce is linear. Concomitantly, an
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mn-dimensional, rate-2k
n

LNC Λ/Λ′ can be constructed from C by

Λ = {λ ∈ γZ[ω]mn : σ(γ−1λ) = ϕ(c) for some c ∈ C}

Λ′ = γ(2Z[ω])mn (5.13)

Proposition 5.6. For the LNC constructed from a linear code C over GF(4m) by

(5.13), the following propositions hold:

• Λ/Λ′ ∼= GF(4)mk ∼= ϕ(C)

• The optimum average power for Λ/Λ′ is 1
2
|γ|2, which can be obtained by the

dither vectors in Proposition 5.3.

• |γ|2wH(C) ≤ d2(Λ/Λ′) = |γ|2wH(Ce) < |γ|2mwH(C)

• K(Λ/Λ′) = 2wH(Ce)K(Ce)

An application of (5.13) is to construct Λ/Λ′ from Reed-Solomon (RS) codes over

GF(4m). As an example, we design a length-30 rate-22
15

LNC Λ/Λ′ constructed by

(5.13) from a [15, 11, 5] RS code C over GF(16). If the generator polynomial for C

is selected to be (X − β) · · · (X − β4), that is, C is a narrow-sense RS code, then the

LNC has parameters d2(Λ/Λ′) = 5 and K(Λ/Λ′) = 25 · 648. On the other hand, if

the generator polynomial for C is changed to (X − β2) · · · (X − β5), d2(Λ/Λ′) will be

increased to 6, but K(Λ/Λ′) is also increased to 26 · 9480. Thus, the LNC parameters

depend on the selection of generator polynomials of the RS code. Since expanded

codes Ce can be treated as generalized concatenated codes [181], some lower bounds

can be derived for wH(Ce) based on this structure (See, for example, [182]). Along

this line, it will be an interesting future work to derive new bounds on d(Λ/Λ′) for

the LNCs constructed by (5.13).
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5.7 Simulation Results

5.7.1 Construction with General Lattice Partition

In this section, we evaluate via simulations the error performance of LNCs to decode

a linear combination of the messages sent from L transmitters, where L = 2. In

this case, the optimal coefficient vector a can be efficiently found by the generalized

Gaussian reduction algorithm in Algorithm 5.2.

We first evaluate the performance of three baseline LNC schemes designed over

Z[ω]/πZ[ω] ∼= F|π|2 , where π is an Eisenstein prime with norm 13, 37 and 61. We

compare it with the baseline LNC schemes over Z[i]/πZ[i] ∼= F|π|2 , where π is a

Gaussian prime with norm 13, 37 and 61. Fig. 5.4 plots the average symbol error

probability (SEP) of the schemes as a function of SNR, where the channel gains

are fixed and the receiver chooses a single linear function. For better comparison,

it also depicts the SEP derived by UBE in (5.6) for baseline LNCs over Z[ω] with

constellation sizes 13 and 61. The results show that for the same constellation size,

the LNC schemes over Z[ω] are about 0.5-0.6 dB better than the ones over Z[i], and

their UBE gives a good upper bound approximate over high SNR for the decoding

error probability. These results are consistent with the analysis in Section 5.4.1.

Now we consider a time-varying fading channel in the simulation. In Fig. 5.5,

we show the average SER of the baseline LNC schemes Z[i]/(2 + 3i)Z[i] ∼= F13 and

Z[ω]/(4 + 3ω)Z[ω] ∼= F13 over a Rayleigh fading channel. Here each scheme adopts

an optimal coefficient vector aopt, which can be found based on [175] in the Z[i] case

and on Algorithm 5.2 of Section 5.4.2 in the Z[ω] case. It is clear to see that the SNR

of the Z[ω]-based LNC outperforms the Z[i]-based LNC by about 0.6 dB at the SER

of 10−2, consistent with the analysis in Section 5.4.1.

We next compare the performance of LNCs constructed from convolutional codes

over F13
∼= Z[i]/(2+3i)Z[i] ∼= Z[ω]/(4+3ω)Z[ω] with memory order v = 1, 2 as listed in

Table D.2 and Table D.3 in Appendix D. The length of the information sequence is set



5.7 Simulation Results 149

14 16 18 20 22 24 26

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

S
E

P

Z[i]

Z[ω]

UBE

F
61

F
13

F
37

10
−5

Figure 5.4Average SEP of baseline LNC schemes under a fixed channel gain.

to 99 when v = 1 and to 98 when v = 2. The code rate of the LNCs thus constructed

is 99
200

log2 13 when v = 1 and 98
200

log2 13 when v = 2. Fig. 5.6 depicts the average

frame error rate (FER) under the fixed channel gain h = [−1.17 + 2.15i 1.25− 1.63i]

as a function of SENRnorm. This fixed channel gain has been adopted in [23] and [21]

for evaluating the performance of different hypercube shaped LNC schemes. We can

see that for both memory order v = 1, 2, the Z[ω]-based LNC has better frame error

performance, which is about 0.2 to 0.3 dB at FER = 10−4. Fig. 5.7 compares the

average FER of these LNCs over a Rayleigh fading channel, in which an optimal

coefficient vector is adopted. At FER = 10−2, the performance gap in terms of SNR

between Z[ω]-based and Z[i]-based LNCs is about 1 dB for memory order v = 1

and 0.5 dB for memory order v = 2. Fig. 5.7 also compares these LNCs with

the generic compute-and-forward schemes, denoted by ‘Nazer-Gastpar’, constructed

by the approach proposed in [23] for Z[i] case and then extended in [188] to Z[ω]

case. Note that the Nazer-Gastpar schemes involve an infinite sequence of structured

lattice partitions. They are not implementable in practice but can be regarded as a

theoretical guideline for the error probability at a given achievable computation rate
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Figure 5.5Average symbol error probability of different baseline LNC
schemes over Rayleigh fading channels.

of compute-and-forward schemes. This shows how practical schemes can perform

compared to theoretical benchmark. Both Z[i]-based and Z[ω]-based Nazer-Gastpar

schemes are set to have rate 1
2
log2 13 and adopt the decoding criterion that a frame

error occurs iff 1
2
log2 13 ≥ log2

SNR
Q(α,a)

. It is clear that the Z[ω]-based Nazer-Gastpar

scheme is better than the Z[i]-based one, and that for both Z[i] and Z[ω] cases, the

memory order-2 convolutional LNC is just about 4 dB away from the Nazer-Gastpar

scheme.
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5.7.2 Construction over GF(4)

We now evaluate the error performance of LNCs over GF(4) via simulations. Again,

we assume the number of user is 2.

Fig. 5.8 depicts the average frame error rate (FER) of four 15-dimensional LNCs

as a function of normalized SNR ,
1
n
E[∥x∥2]
2ρN0

, where ρ = 1
n
log2 |Λ/Λ′| represents the

spectral efficiency or the rate of the LNC. We can first observe that the performance

of the optimally dithered baseline LNC is around 3.5 dB better than the non-dithered

baseline LNC at the FER 10−2. For the LNCs constructed by (5.12) from the 15-

dimensional BCH codes listed in Table 5.3, optimal dither is also taken into account,

and the hard-decision decoding (and thus suboptimal) is adopted at the relay. At

the FER 10−2, a performance gain of around 3 dB for the rate-18
15

LNC and 4 dB for

rate-14
15

LNC can be observed.

 

Figure 5.8Average frame error rate of 15-dimensional LNCs over GF(22)
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Figure 5.9Average frame error rate of 189-dimensional LNCs over GF(22)

Fig. 5.9 depicts the FER of four 189-dimensional LNCs. Compared with the non-

dithered baseline LNC, at the FER 10−2, the rate-86
63

LNC constructed by (5.13) from

the [63, 43] RS code and the rate-1 LNC constructed by (5.12) from the convolutional

code in Table 5.2 with v = 1, both optimally dithered, can respectively obtain around

7.5 dB and 9.5 dB performance gain. Suboptimal hard-decision decoding is adopted

for the LNC constructed from the RS code whereas is the Viterbi decoding algorithm

is adopted for the convolutional LNC.

5.8 Conclusion

In this chapter, we focused on Eisenstein integers based lattice network codes (LNCs).

We first present Z[ω]-based quantization and encoding algorithms, whose computa-

tional complexity is in the same order as the case over the PID Z[i] of Gaussian

integers. Then, a union bound estimation (UBE) of the decoding error probability of

Z[ω]-based LNC is derived. Next, we generalize the Gaussian reduction algorithm to

be applicable for complex lattices over Z[ω], such that it is able to find an optimal

coefficient vector for a Z[ω]-based LNC in the two-transmitter single-relay system. In
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addition, based on the UBE, design criteria for optimal LNCs with minimum decoding

error probability are also formulated and applied to construct both Gaussian integer

based and Eisenstein integer based good rate-1/2 convolutional LNCs by Complex

Construction A. The constructed LNCs provide up to 7.65 dB nominal coding gains

over Rayleigh fading channels. Furthermore, we introduce the construction of LNCs

from linear codes by Complex Construction B, and explicitly formulate the nominal

coding gains and error performance of the LNCs thus constructed. We also illustrate

by examples that the LNCs constructed by Complex Construction B provide a better

tradeoff between code rate and nominal coding gain.

In addition to the construction of Eisenstein integers based LNCs for general

lattice partition, we also particularly interested in constructing LNCs over the finite

field GF(22), whose quaternary constellation has practical interests. We derived the

optimal dither method for LNCs over GF(4), so that 1/3 average transmission power

can be saved. Construction methods of LNCs from linear codes over GF(4m), where

m ≥ 1, are also introduced with explicit parameter characterization provided. As

design examples, parameters of LNCs constructed from convolutional, BCH, and

Reed-Solomon codes are presented and analyzed. Numerical results illustrate that at

the frame error rate 10−2, these LNCs, after optimally dithered, can provide up to 9.5

dB gain in terms of normalized SNR compared with the baseline LNCs over GF(4).



Chapter 6

Design of Pair-Wise Transmission

PNC in SISO MWRCs

6.1 Introduction

So far we have studied the design of PNC from the signal detection and forward

error correction perspective. In this chapter, we study the transmission scheduling

problem in single-input single-output (SISO) multi-way relay channels (MWRCs).

An MWRC is a multi-cast network where all users exchange their information via a

single relay, without any direct link among the users. A typical example is a satellite

communication system where multiple ground stations that geographically located

far away, communicate with each other via a common satellite. In this work, we aim

to design a user pair-wise transmission scheme in the uplink phase (from users to the

relay) to improve the computation rate of the network coded information at the relay.

This chapter begins by introducing the background of this study. We then give

detailed description of the system model, and we introduce the computation of net-

work coded information at the relay when linear lattice codes are employed. Then we

155
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introduce the conventional successive pair-wise transmission scheme in the considered

MWRCs. After that, we study the proposed opportunistic pair-wise transmission. In

the simulation results, we show the performance improvement in both sum-rate and

error rate at the relay. Then we conclude this chapter.

6.2 Background

In [183], the MWRC on Gaussian channel is firstly investigated. The achievable rate

region with amplify-and-forward, decode-and-forward, and compress-and-forward has

been characterized. In [184], the authors derived the capacity of the binary MWRC,

where multiple users exchange information at a common rate via a relay. A pair-wise

time division multiple access (TDMA) functional-decoding-forward coding strategy

is proposed. It has been shown that this approach achieves the common-rate capac-

ity [184]. The error propagation effect at the relay decoding with binary phase shift

keying (BPSK) modulation has been analyzed in [185, 186]. The work in [187] pro-

posed a joint decoding strategy at the relay through the belief propagation algorithm.

This proposed technique utilized the correlation between the adjacent network coded

symbols to mitigate the error propagation as investigated in [185,186]. This work has

been further extended to other channel imperfection cases.

The aforementioned research works on MWRCs are limited in BPSK modulation.

The pair-wise transmission scheduling at the users side is done in a sequential order.

In this chapter, we investigate the pair-wise compute-and-forward transmission for

multi-way relay fading channels. In order to improve the sum-rate of multi-user

transmission, we consider high level modulation with nested lattice codes, where

the relay computes integer linear combinations of the users’ messages rather than

decoding individual messages. In addition, we propose an opportunistic pair-wise

compute-and-forward by exploiting the multi-user fading channels. We show that

by choosing the pair-wise transmission scheduling appropriately, we can achieve a

significant improvement for the sum-rate of the multi-user transmission. We further
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demonstrate the practical benefit of this proposed scheme by using both uncoded and

channel-coded systems for small scale MWRCs.

6.3 System Model of a MWRC

6.3.1 System Overview

We consider an MWRC with L users and a single relay, as shown in Fig. 6.1. The

L users exchange their information via the relay, and there is no direct link among

the users [183]. The complete information exchange among the users is performed

via multiple access phase and broadcast phase. We investigate the case where two

users transmit simultaneously at one time in the multiple access phase as shown in

Fig. 6.1 (a). We also assume that the relay knows all the channel state information

of all the users. This transmission model is similar to that of [184, 185]. When

the relay receives the superimposed signal from each pair of users, it computes their

corresponding network coded messages. In the broadcast phase, the relay broadcasts

the computed messages to the users as shown in Fig. 6.1 (b). After the users receive

all the network coded messages from the relay, the relay can retrieve all other users’

messages by canceling its own message. In the following, we will focus on the user

transmission in the multiple access phase.

In order to let each user decode all other users’ messages, an L-user MWRC

requires at least L − 1 pair-wise uplink transmission in the multiple access phase.

The number of downlink transmissions in the broadcast phase is same as the number

of uplink transmissions in the multiple access phase. We assume that the channel is

in block fading. This means that the channels among the users and the relay remain

unchanged during the multiple access phase and the broadcast phase.



158 Chapter 6 Design of Pair-Wise Transmission PNC in SISO MWRCs

R 

User 1 User 2 User L 

1
h

2
h L

h

R 

User 1 User 2 User L 

'

1
h

'

2
h

'

L
h

(a) Multiple access phase (b) Broadcast phase 

User  l

l
h

User  l

'

l
h

Figure 6.1System model for both multiple access phase and broadcast phase.
In diagram (a), only 2 users transmit simultaneously at one time in the
multiple access phase. The solid arrows represent the transmitting user-pair,
and the dashed arrows represent that the other users are silent. In diagram
(b), the broadcasted messages can be received by all the L users.

6.3.2 Compute-and-Forward in a Pair-Wise MWRC

In this work, we employ nested lattice codes at the users, which follow Section 5.2.

Given a transmission user-pair (j, k) in the multiple access phase, let the message

for user j be wj, where bold letters here are used to represent row vectors. The

corresponding transmitted signal be xj = E(wj), with an average power constraint

1
n
E[||E(wj)||2] ≤ P . The received signal at the relay is

y(j,k) = hjxj + hkxk + n (6.1)

where n is a complex circularly-symmetric additive white Gaussian noise vector with

zero mean and power spectrum density N0. Let a = [aj, ak] denote the computation

vector for user-pair (j, k), aj, ak ∈ Λ and aj, ak /∈ Λ′. The goal for the relay is to

decode an R-linear combination of transmitted message

w(j,k) = ajwj + akwk. (6.2)

This computation is based on a scaled version of the received signal αy. Let us define

φ as the natural projection mapping from Λ onto Λ/Λ′ via φ(λ) = λ + Λ′. The

decoder of the LNC can be described by

ŵ(j,k) = D(αy|h,a) = φ(DΛ(αy)) (6.3)
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where h = [hj, hk], and D is the lattice quantizer. It has been shown in [23] that the

optimum scaling factor is the minimum mean square error (MMSE) coefficient given

by

αMMSE =
ahHρ

(1 + ||h||2ρ)
(6.4)

where ρ is the SNR defined as P/N0, and “H” denotes Hermitian transpose. For a

computation vector a, the corresponding computation rate is [21,23]

RC
j,k(h,a) = log+2

((
||a||2 − ρ|ahH|2

1 + ρ||h||2

)−1
)
. (6.5)

6.4 Successive Pair-Wise Transmission

Conventional pair-wise transmission in an MWRC is done in a sequential order [184–

187]. We term this type of transmission as successive pair-wise transmission. We now

briefly discuss this conventional transmission scheduling scheme.

Given an L-user single relay MWRC, the users are labeled from 1 to L. At the

i-th time slot of the multiple access phase, the scheduled transmission user-pair is

(i, i+ 1). The received signal at time slot i is

y(i,i+1) = hixi + hi+1xi+1 + n.

Then the relay computes the R-linear combination of transmitted message for user-

pair (i, i+ 1) as

w(i,i+1) = aiwi + ai+1wi+1.

There will be in total L − 1 time slots in the multiple access phase. We can define

a pair-wise transmission scheduling matrix S with size (L − 1) × L to represent this

scheme

S =



1 1 0 · · · 0 0 0

0 1 1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 1 1 0

0 0 0 · · · 0 1 1





160 Chapter 6 Design of Pair-Wise Transmission PNC in SISO MWRCs

where the (i, j)-th element si,j denotes whether user j is activated for transmission

at time slot i. Here, si,j = 0 represent silent, and si,j = 1 represent active. After the

relay broadcasts all L − 1 network coded messages to the users, each user is able to

decode all other users’ messages.

For the ease of representation, in the following, we omit h and a in the notation of

the computation rate for each pair of users. For this transmission scheduling scheme,

we can obtain each user’s transmission rate. That is

Rl <


RC

1,2 if l = 1

min{RC
l−1,l, R

C
l,l+1} if l = 2, · · · , (L− 1)

RC
L−1,L if l = L

(6.6)

where Rl is the transmission rate for user l, and RC
j,k is given in (6.5). The explanation

of (6.6) is as follows: User 1 only transmits in time slot 1 with user 2, so we have

R1 < RC
1,2. User L only transmits in time slot L−1 with user L−1, so we have RL <

RC
L−1,L. For user l ∈ {2, 3, · · · , L−1}, it transmits in the (l−1)-th and l-th time slots,

with previous user and next user respectively. So we have Rl < min{RC
l−1,l, R

C
l,l+1}.

The sum-rate for an MWRC uplink can be expressed as

Rsum =
L∑
l=1

Rl. (6.7)

6.5 Opportunistic Pair-Wise Transmission

Successive pair-wise transmission is very simple. However, it does not consider the

effect of time-vary fading channel. In this section, we present an opportunistic pair-

wise transmission. The key idea is that at each time slot, a pair of users, which has

the maximum computation rate, is selected for transmission. In order for the users to

recover all others messages from L− 1 network codewords forwarded from the relay,

the scheduled user-pairs during L− 1 time slots should be linearly independent with

each other.
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We now present the opportunistic pair-wise scheduling algorithm for an L-user

single relay MWRC, which is given in Algorithm 6.1.

After L − 1 times user-pair selection, we can construct a pair-wise transmission

scheduling matrix

S = [s1 s2 · · · sL−1]
T (6.15)

where T denotes transpose operation. This matrix has a rank of L − 1 due to the

subjected conditions (6.11) and (6.14) during the selection process. This ensures that

the users can decode all other users’ messages after received these L − 1 network

coded messages.

By employing this opportunistic pair-wise transmission, the transmission rate for

user l must be less than the minimum computation rate, of which the l-th user was

scheduled for transmission. That is,

Rl < min{RC
j1,l

, RC
j2,l

, · · · , RC
l,k1

, RC
l,k2

, · · · } (6.16)

where 1 ≤ j1, j2, · · · ≤ l − 1, and l + 1 ≤ k1, k2, · · · ≤ L. The users’ sum-rate can be

expressed as

Rsum =
L∑
l=1

Rl. (6.17)

This opportunistic pair-wise transmission can be further extended to scheduling

more than two users to transmit in each time slot, to take the advantage of the

compute-and-forward scheme for multi-user systems.

6.6 Simulation Results

6.6.1 Linear Network Codes

In this part, we consider two linear network codes: Gaussian integer based LNC and

Eisenstein integer based LNC. A Gaussian integer is such a complex number that its

real and imaginary part are both integers. It can be represented as

Z[i] = {a+ bi|a, b ∈ Z} (6.18)
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Algorithm 6.1 Opportunistic pair-wise transmission

1: We label the users from 1 to L.

2: For time slot 1, we select user-pair l1 and l2 such that

(l1, l2) = argmax{RC
l1,l2 |l1, l2 ∈ {1, · · · , L}, l1 < l2} (6.8)

where RC
l1,l2

is given in (6.5). Note that for each user-pair (l1, l2), the computation rate RC
l1,l2

should be also maximized by choosing optimal a = [al1 , al2 ]. This can be effectively done via

Gaussian reduction algorithm [21].

3: We form a row vector with length L

s1 = [0 · · · 0 1
↑
l1

0 · · · 0 1
↑
l2

0 · · · 0] (6.9)

where s1[l1] = s1[l2] = 1 and s1[l] = 0, l ∈ {1, · · · , L}, l ̸= l1, l ̸= l2. Note that this row vector

is binary, which is referred to as pair-wise user selection vector (PSV).

4: For time slot 2, we select user-pair l3 and l4 such that

(l3, l4) = argmax{RC
l3,l4 |l3, l4 ∈ {1, · · · , L}, l3 < l4} (6.10)

s.t.

s2 = [0 · · · 0 1
↑
l3

0 · · · 0 1
↑
l4

0 · · · 0] and s2 ̸= s1. (6.11)

5: We now define the following set

F(s1, s2, · · · , si) =

{
i∑

t=1

κtst, κt ∈ {0, 1}

}
(6.12)

where the summation is modulo-2 addition. This set forms an i-dimensional subspace over

binary field, which is spanned by the binary PSVs s1, s2,· · · , si.

6: For the i-th time slot, 2 < i ≤ L− 1, we select the pair of users, such that

(j, k) = argmax{RC
j,k|j, k ∈ {1, · · · , L}, j < k} (6.13)

s.t.

si /∈ F(s1, s2, · · · , si−1). (6.14)

The constraint in (6.14) ensures that the PSV of the user-pair selected in the i-th time slot can

not belong to the subspace spanned by s1, s2, · · · , si−1. That is, new message will be received

by the relay for the i-th time slot.

7: After L− 1 selection, stop.
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where i =
√
−1. The norm of a Gaussian integer can be calculated as a2 + b2. A

Z[i]-based LNC is hypercube shaped.

An Eisenstein integer can be written as

Z[ω] = {a+ bω|a, b ∈ Z} (6.19)

where ω = −1+
√
−3

2
. The norm of an Eisenstein integer is a2 + b2 − ab. A Z[ω]-based

LNC is hexagonal shaped. More details of Z[i]-based and Z[ω]-based LNC and their

quantization operation can be found in [21].

In this part, we consider a message space W = F13
∼= Z[i]/βZ[i] ∼= Z[ω]/γZ[ω],

where β = 2+3i and γ = 4+3ω. The corresponding lattice, sublattice, and fundamen-

tal Voronoi regions of βZ[i] or γZ[ω] and constellations of Z[i]/βZ[i] or Z[ω]/γZ[ω]

are shown in Fig. 5.2(a) or 5.2(b). In this case, we have

EZ[i](W ) = {0,±1,±i,±(1 + i),±(1− i),±2,±2i}

and

EZ[ω](W ) = {0,±1,±ω,±(1 + ω),±(1− ω),±(1 + 2ω),±(2 + ω)}.

6.6.2 Users Transmission Sum-Rate

We compare the users’ average uplink transmission sum-rate between successive pair-

wise transmission and proposed opportunistic pair-wise transmission for 3-user and

4-user cases. We assume Rayleigh faded channels. At each SNR, the sum-rate is

averaged over 105 channel realizations. Fig. 6.2 and Fig. 6.3 show the sum-rate

for Z[i]-based and Z[ω]-based LNCs in MWRCs, respectively, with 3 and 4 users.

We can see that the proposed opportunistic pair-wise transmission has significantly

improved sum-rate compared to the successive pair-wise transmission. For example,

for a 4-user MWRC, a 2 bits/s/Hz improvement is observed at 30 dB, and a 1.25

bits/s/Hz improvement is observed for a 3-user MWRC. Larger improvements can be

achieved at higher SNR.
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Figure 6.2Users transmission sum-rate for the Z[i]-based LNC in MWRCs.

Figure 6.3Users transmission sum-rate for the Z[ω]-based LNC in MWRCs.
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6.6.3 Error Performance

We firstly compare uncoded MWRCs. We compare the symbol-error-rate (SER)

performance between the opportunistic pair-wise transmission and the successive pair-

wise transmission at the relay. A computation error for the user-pair (j, k) is declared

if the computation result ŵj,k ̸= wj,k. For each SNR, we collect 200 symbol errors.

Note that in this paper we consider a disjointed decoding strategy at the relay. If a

joint decoding strategy is employed, better performance may be achieved [187].

Fig. 6.4 and Fig. 6.5 show the SER performance for Z[i]-based LNC in uncoded

3-user and 4-user MWRCs, respectively. The figures illustrate that the opportunistic

pair-wise transmission has a 3 dB gain for an uncoded 3-user system and a 4.5 dB gain

for an uncoded 4-user system at the 10−2 SER level, when compared to successive

pair-wise transmission. Fig. 6.6 and Fig. 6.7 show the SER performance for Z[ω]-

based LNC in uncoded 3-user and 4-user MWRCs, respectively. Similar performance

improvements are observed for Z[ω]-based LNC.

Figure 6.4SER for the Z[i]-based LNC in an uncoded 3-user MWRC.
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Figure 6.5SER for the Z[i]-based LNC in an uncoded 4-user MWRC.

We now incorporate the LNCs into this system. We construct rate-1/2 convolu-

tional codes C over Z[i]/(2 + 3i)Z[i] ∼= F13 and over Z[ω]/(4 + 3ω)Z[ω] ∼= F13 with

memory order v = 1 and 2. The construction method is based on Complex Construc-

tion A. The constructed codes have maximized minimum squared Euclidean norm

of non-zero codewords of C (wmin
E (C)) and minimized K, representing the number of

codewords with wmin
E (C). The codes parameters are listed in Table 6.1.

We now compare the frame error rate (FER) when the designed convolutional

LNCs with memory order-1 are employed. The information sequence length is set to

99. We collect 200 frame errors at each SNR. Fig. 6.8 and Fig. 6.9 show the FER

performance for Z[i]-based and Z[ω]-based LNCs, respectively, in a channel-coded

4-user MWRC. We can see that even the memory order-1 linear lattice network codes

can provide a significant performance improvement. Specifically, a 2.5 dB gain at the

10−2 FER level is observed for the 4-user system.
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Table 6.1Rate-1/2 convolutional codes over F13

v Type g(D) wmin
E (C) K

1

Z[i]
(1) + (2i)D

8 4
(1− i) + (i)D

Z[ω]
(−1 + w) + (w)D

8 12
(1 + w) + (2 + w)D

2

Z[i]
(1− i) + (−2)D + (−i)D2

12 4
(i) + (2)D + (1 + i)D2

Z[ω]
(−2− ω) + (2 + ω)D + (−1− 2ω)D2

12 24
(−1) + (−ω)D + (−1− ω)D2

Figure 6.6SER for the Z[ω]-based LNC in an uncoded 3-user MWRC.
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Figure 6.7SER for the Z[ω]-based LNC in an uncoded 4-user MWRC.

Figure 6.8FER for the Z[i]-based LNC in a channel-coded 4-user MWRC.
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Figure 6.9FER for the Z[ω]-based LNC in a channel-coded 4-user MWRC.

6.7 Conclusion

In this chapter, we focus on design a transmission scheme that can improve the sys-

tem sum-rate and error-rate performance in the uplink phase. We proposed an oppor-

tunistic pair-wise transmission in MWRCs based on pair-wise compute-and-forward

relaying. High level modulation with nested lattice codes is considered to improve the

sum-rate of multi-user transmission. The comparison between the opportunistic pair-

wise transmission and the successive pair-wise transmission shows a 1.25 bits/s/Hz

and a 2 bits/s/Hz sum-rate improvement at 30 dB for 3-user and 4-user MWRCs

respectively. We also demonstrated that, this novel transmission scheme can achieve

3 ∼ 4.5 dB gain at the 10−2 SER level for uncoded small scale MWRCs with 3 to 4

users, and 2.5 dB gain at the 10−2 FER level for channel-coded 4-user MWRCs.
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Chapter 7

Optimization of MIMO MWRCs

with PNC

7.1 Introduction

In this chapter, we extend our study in Chapter 6 from single-input single-output

multi-way relay channels (MWRCs) to multi-input multi-output (MIMO) MWRCs

with PNC. In particular, we investigate the degrees of freedom and sum-rate opti-

mization of half-duplex MIMO MWRC with full data exchange.

This chapter starts by introducing the background of this work. We then describe

the detailed system model. After that, we focus on the DoF capacity of the considered

MIMO MWRCs with fixed channel uses. We optimize the DoF results with channel

use allocations for uplink phase and downlink phase. Following the DoF analysis, we

shift our focus to the system sum-rate optimization. Finally, we conclude this chapter

with some highlights on our results.

171
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7.2 Background

As studied in previous section, in an MWRC, multiple users with no direct links

exchange information with the help of a single relay node. In [93], two data exchange

models, namely, full data exchange and pairwise data exchange were introduced in

MWRCs. In full data exchange, each user wants to decode all the messages in the

system. In pairwise data exchange, users in the system are grouped into pairs, and

the two users in each pair exchange private messages via the relay node. These data

exchange models have been studied, e.g., in [92,189,190].

Multiple-input multiple-output (MIMO) techniques have been introduced into

MWRCs to allow spatial multiplexing [99–105,109]. The degrees of freedom (DoF) is

an important metric to understand the capacity behavior of the MIMO MWRC. The

DoF analysis for MIMO MWRCs in the existing literature [99–101] is mostly focused

on pairwise data exchange. In particular, the authors in [100] considered a three-user

MWRC, termed the MIMO Y channel, and the DoF capacity of the MIMO Y channel

was derived under certain relay/user antenna setups. The work in [99] generalized

the result of [100] to the case of an arbitrary number of users. Later, the authors

in [101] considered MWRCs with clustered data exchange, i.e., the users in the net-

work are grouped into clusters, and only the users in the same cluster communicate

with each other. It’s worth noting that, in pairwise data exchange, the traffic loads of

the uplink and the downlink are symmetric. This uplink/downlink symmetry further

implies that the signal space alignment for the uplink straightforwardly carries over to

the downlink. This property is used in [99–101] to simplify the beamforming design

for MIMO MWRCs with pairwise data exchange.

In this chapter, we focus on the design of communication mechanisms over MIMO

MWRCs with full data exchange. We derive the DoF capacity of the MIMO MWRC

with full data exchange operated in half-duplex and full-duplex modes. For many

communication networks, the half-duplex DoF capacity is simply one half of the full-

duplex capacity; see, e.g., [99–101]. Interestingly, this is not the case for MIMO
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MWRCs with full data exchange. The fundamental reason is that, unlike pairwise

data exchange, the uplink and downlink traffic loads are asymmetric in full data

exchange. More specifically, in full data exchange, as every user wants to learn all the

messages from the other users, the downlink is usually the throughput bottleneck.

Half-duplexing allows unequal time allocation between the uplink and the downlink,

and therefore enables a DoF higher than half of the corresponding full-duplex DoF

capacity. We derive the optimal uplink/downlink time allocation to maximize the DoF

of the half-duplex system. We show that a significant DoF gain can be achieved by

the optimal uplink/downlink time allocation, as compared with equal time allocation.

Further, we investigate the achievable rates of the considered MIMO MWRCs.

We show that the sum-rate is a non-convex function of the user precoders and relay

precoder. Thus, the sum-rate maximization problem cannot be tackled trivially. In

this chapter, we propose an iterative algorithm to optimize the user precoders and

the relay precoder in an alternating fashion. Numerical results demonstrate that the

system performance can be considerably improved by a careful design of the user and

relay precoders. We also show that the numerical results agree with the DoF analysis

obtained in this chapter.

7.3 System Model

7.3.1 System Overview

In this chapter, we consider a MIMO MWRC, in which K users exchange information

with the help of a single relay, as illustrated in Fig. 7.1. There is no direct link

between any two users. Each user is equipped with M antennas, and the relay with

N antennas. The information exchange model is assumed to be full data exchange,

i.e., each user broadcasts its message to all the other users in the network, and wants

to decode all the messages in the system. Throughout this chapter, we assume that

perfect channel state information (CSI) is available at all nodes.
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Uplink

Downlink

M

User 1

M

User K-1

MN

User KRelay

Figure 7.1A MIMO MWRC with full data exchange, where each user wants
to learn all the messages in the system.

The system operates in the half-duplex mode, i.e., a node cannot transmit and

receive signals simultaneously. Each round of information exchange consists of two

phases, namely, an uplink phase and a downlink phase. In the uplink phase, all

users transmit to the relay simultaneously using a common frequency band. In the

downlink phase, the relay broadcasts to the users. More details are described below.

7.3.2 Uplink Phase

Assume that the uplink phase consists of Tu channel uses. In the tu-th channel use,

the received signal vector yR(tu) at the relay is given by

yR(tu) =
K∑
i=1

Hi(tu)xi(tu) + nR(tu), tu = 1, · · · , Tu,

where Hi(tu) ∈ CN×M denotes the channel matrix from user i to relay R in the tu-th

uplink channel use and its elements are i.i.d. drawn from CN (0, 1), xi(tu) ∈ CM×1

is the transmitted signal from user i, and nR(tu) is an additive circularly-symmetric

Gaussian noise vector drawn from CN (0, σ2I).

Denote yR = [yT
R(1) · · ·yT

R(Tu)]
T, xi = [xT

i (1) · · ·xT
i (Tu)]

T, nR = [nT
R(1) · · ·nT

R(Tu)]
T,
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and

Hi = diag{Hi(1), · · · ,Hi(Tu)}

=


Hi(1) · · · 0

...
. . .

...

0 · · · Hi(Tu)

 .

Then

yR =
K∑
i=1

Hixi + nR (7.1)

= Hx+ nR, (7.2)

where x = [xT
1 · · ·xT

K ]
T, and H = [H1 · · ·HK ]. The transmission power of each user

is limited to PU per channel use, i.e.

1

Tu

Tr(xix
H
i ) ≤ PU, i ∈ {1, · · · , K}. (7.3)

7.3.3 Downlink Phase

We now consider the downlink phase which, without loss of generality, consists of

Td channel uses. In the td-th downlink channel use, the received signal at user i,

i = 1, · · · , K, is

yi(td) = Gi(td)xR(td) + ni(td), td = 1, · · · , Td,

where xR(td) is the signal transmitted at the relay in the td-th downlink channel

use, Gi(td) ∈ CM×N denotes the channel matrix from the relay to user i in the td-th

downlink channel use and its entries are i.i.d. drawn from CN (0, 1), and ni(td) is an

additive circularly-symmetric Gaussian noise vector drawn from CN (0, σ2I).

Let yi be the received signal at user i in the downlink phase, i = 1, · · · , K. It can

be written as

yi = GixR + ni, i = 1, · · · , K, (7.4)
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where

xR = [xT
R(1) · · ·xT

R(Td)]
T,

and

yi = [yT
i (1) · · ·yT

i (Td)]
T.

Gi = diag{Gi(1), · · · ,Gi(Td)} is a block diagonal matrix which contains all the

channel matrixes from the relay to the user i in the downlink phase. The ni =

[nT
i (1) · · ·nT

i (Td)]
T is the noise vector at user i in the downlink phase. The transmis-

sion power of the relay is limited to PR per channel use, i.e.

1

Td

Tr(xRx
H
R) ≤ PR.

At the end of the downlink phase, each user i, i = 1, · · · , K, firstly removes self-

information from its received signal yi. Let yī be the received signal at user i with

its self-information removed. Let xī = [xT
1 · · ·xT

i−1x
T
i+1 · · ·xT

K ]
T be the true signal

vector that targeted to decode at user i. Each user i decodes an estimated signal

x̂ī = [x̂T
1 · · · x̂T

i−1x̂
T
i+1 · · · x̂T

K ]
T of all the other users from yī. The detailed information

flows are illustrated in Fig. 7.2, where virtual antennas are used at each node to

represent multiple channel uses in the uplink phase and the downlink phase.

Note that all entries of the uplink/downlink channel matrices are independently

drawn from CN (0, 1). This ensures that all the channel matrices are of full rank with

probability one. For example, rank(Hi(tu)) = min{M,N}.

7.3.4 Linear Precoding Techniques

For ease of further exposition, we focus on the linear precoding techniques for the

transmitters. We firstly consider the linear precoding at the users. Let si ∈ CL×1 be

the information vector transmitted from user i, i = 1, · · · , K, in the uplink phase,

where L ≤ MTu. Assume the entries of the information vector for each user are

independent and identically distributed (i.i.d.) drawn from CN (0, 1). Let Pi ∈
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Figure 7.2Information flows in the uplink phase and the downlink phase. In
this figure, the relay node is artificially separated into 2 nodes, with a perfect
link (i.e., the output of the perfect link is equal to the input of this link).

CMTu×L be the linear precoder at user i, i = 1, · · · , K, in the uplink phase. Then the

signal xi transmitted at each user i for the uplink phase is

xi = Pisi. (7.5)

In this chapter, we assume amplify-and-forward (AF) relaying. Later we will show

that AF relay operation achieves the optimal DoF for the MIMO MWRC with full

data exchange. With AF relaying, the transmitted signal xR at the relay in the

downlink phase is given by

xR = FyR, (7.6)

where F ∈ CNTd×NTu is the relay precoder. Substitute (7.6) into (7.4), the received
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signal of user i, i = 1, · · · , K, is written as

yi = GiFHx+GiFnR + ni

= GiFHīxī︸ ︷︷ ︸
Target Signal

+ GiFHixi︸ ︷︷ ︸
Self interference

+GiFnR + ni︸ ︷︷ ︸
Effective noise

, (7.7)

where Hī = [H1 · · ·Hi−1Hi+1 · · ·HK ], and xī = [xT
1 · · ·xT

i−1x
T
i+1 · · ·xT

K ]
T. The signal

received at user i after self interference cancellation can be written as

yī = GiFHīxī +GiFnR + ni. (7.8)

Substitute (7.5) into (7.8), we have

yī = GiFHīPīsī +GiFnR + ni (7.9)

=
K∑

j=1,j ̸=i

GiFHjPjsj +GiFnR + ni, (7.10)

where Pī = diag{P1, · · · ,Pi−1,Pi+1, · · · ,PK} and sī = [sT1 · · · sTi−1s
T
i+1 · · · sTK ]T.

7.3.5 Achievable Rate Region

It is worth noting that, the overall channel seen at user i in one round of information

exchange, i = 1, · · · , K, is an equivalent multiple access channel, since each user wants

to decode all the messages from the other K − 1 users, as shown in (7.10). Thus,

there are 2K−1 − 1 rate constraints for each index i. In total, there are K · (2K−1 − 1)

rate constraints in the network. The corresponding achievable rate region is detailed

as follows.

At user i, i = 1, · · · , K, define

Ii , {1, · · · , i− 1, i+ 1, · · · , K}.

For a subset S ⊆ Ii, its complementary set is denoted by Sc. Then, the achievable
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rate region at user i , i = 1, · · · , K, is given by

Ri :
∑
j,j∈S

Rj ≤
1

T
I ({sj|j ∈ S};yī|{sj′|j′ ∈ Sc})

=
1

T
log


∣∣∣∣∣ ∑j,j∈S GiFHjPjP

H
j H

H
j F

HGH
i + σ2(GiFF

HGH
i + I)

∣∣∣∣∣
|σ2(GiFFHGH

i + I)|

 , S ⊆ Ii,

(7.11)

where T = Tu + Td is the total number of channel uses in one round of information

exchange.

An achievable rate region R for the considered system is then given as

R :
K
∩
i=1

Ri. (7.12)

7.3.6 Degrees of Freedom (DoF)

For notational convenience, we assume PU = PR = P and denote the signal-to-noise

ratio (SNR) as ρ = P/σ2 without compromising the generality of the DoF results in

this chapter.

Denote the decoding rate at user i, i = 1, · · · , K, at SNR ρ, as

Rr,i(ρ) ,
K∑

j=1, j ̸=i

Rj(ρ),

where Rj(ρ) is the rate of user j. The decoding rate Rr,i(ρ) is achievable if user i

decodes the messages from all the other K − 1 users with vanishing error probability,

i.e., Pr(ŝī ̸= sī) → 0 when T → ∞, i ∈ {1, · · · , K}, where ŝī = [̂sT1 · · · ŝTi−1ŝ
T
i+1 · · · ŝTK ]T

is the estimated version of sī at user i. In other words, Rr,i(ρ) falls into the rate region

Ri defined in (7.11).

The sum-rate per channel use is defined as

R(ρ) ,
K∑
i=1

Rr,i(ρ), (7.13)
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where achievable rate tuple (Rr,1, · · · , Rr,K) falls into the rate region R defined in

(7.12). Define an achievable total DoF as

d
∆
= lim

ρ→∞

R(ρ)

log ρ
. (7.14)

The maximum of d in (7.14) over all achievable schemes is referred to as the sum-DoF

capacity, or simply, the DoF capacity.

7.4 Degrees of Freedom with Fixed Channel Uses

In this section, we present the DoF analysis of the half-duplex MIMO MWRC with

fixed uplink/downlink time allocation, i.e., Tu and Td are fixed.

7.4.1 Main Result

Theorem 7.1. For the K-user half-duplex MIMO MWRC described in Section 7.3,

the DoF capacity is given by

d =



K

T
min{(K − 1)MTu,MTd},

M

N
∈
(
0,

1

K − 1

]
(7.15)

K

T
min{NTu,MTd},

M

N
∈
(

1

K − 1
, 1

)
(7.16)

K

T
min{NTu, NTd},

M

N
∈ [1,∞) . (7.17)

Remark 7.1. With slight modification, Theorem 7.1 can be applied to the full-duplex

case. As a key difference from the half-duplex case, a full-duplex node transmits and

receives signals simultaneously, which implies that the uplink and downlink phases al-

ways have same time duration. Therefore, for the full duplex MIMO MWRC with full

data exchange, we only need to set T = Tu = Td in Theorem 7.1. The corresponding

DoF is given as

d = Kmin{M,N}. (7.18)

The Remark 7.18 can be obtained from the following two factors: Firstly, the

system is assumed to perform full data exchange in this work, meaning that each
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user will need to recover all the information transmitted from all other users in the

system. Secondly, in a full-duplex system, the uplink transmission and download

transmission can be performed in different frequency band, to make the uplink and

downlink interference free. In half-duplex system, the maximum DoF is the minimum

of the DoF of the uplink transmission and downlink transmission, as shown in Theorm

7.1. Thus, in full-duplex transmission, the DoF is obtained by setting equal number

of uplink transmission and downlink transmission.

Remark 7.2. It is interesting to compare the DoFs of the MIMO MWRCs operating

in full data exchange and in pairwise data exchange (by assuming that both are full-

duplex systems). From Remark 7.1, the DoF for full data exchange is given by (7.18).

The DoF capacity for pairwise data exchange is in general unknown. A DoF outer

bound is given in [99,100] as

d ≤ min{MK, 2N}.

That is, the DoF for pairwise data exchange is always limited by 2N . This is different

from the DoF for full data exchange in (7.18) which is unbounded as K → ∞. The

reason is that, in full data exchange, each spatial stream going through the relay is

forwarded to K−1 users, and thus achieves a DoF of K−1; however, in pairwise data

exchange, each spatial stream through the relay is desirable only by one particular

user, and therefore, achieves only a DoF of one.

Remark 7.3. From Theorem 7.1, we can see the DoF bottleneck of the network in

different antenna configurations. In the case of M
N

∈
(
0, 1

K−1

]
, we see from (7.15)

that the DoF is bottlenecked at the users. The reason is that (7.15) depends on the

user’s antenna number M , but not on the relay’s antenna number N . In this case, to

increase the number of antenna at the relay cannot further increase the system DoF

capacity. On the other hand, in the case of M
N

∈ [1,∞), we see from (7.17) that the

DoF depends on N but not on M , implying that the DoF is bottlenecked at the relay.

In this case, to increase the number of antenna at the user cannot further increase

the system DoF capacity. In the remaining case of M
N

∈
(

1
K−1

, 1
)
, we see from (7.16)
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that the DoF depends on both M and N . We also see that the DoF depends on the

uplink/downlink time durations Tu and Td.

7.4.2 Achievability Proof of Theorem 7.1

A key difficulty in the proof is that it is not easy to determine the boundary of the

achievable rate region R in (7.12). This complicates the analysis of the achievable

DoF. To circumvent this difficulty, we first establish a lower bound on the achievable

sum-rate by replacing the downlink channel matrix Gi of each user i with a common

“worse” channel matrix G0, satisfying

G0G
H
0 ≼ GiG

H
i , i ∈ {1, · · · , K}, (7.19)

andG0 is a full rank matrix. Clearly, asK is finite and {Gi|i = 1, · · · , K} are random,

such a G0 exists with probability one. With the above downgrading operation, the

received signal at each user i becomes the same, i ∈ {1, · · · , K}, and can be written

as

y0 =
K∑
j=1

G0FHjPjsj +G0FnR + ni. (7.20)

The corresponding achievable rate regionR0 of the MIMOmulti-way channel in (7.20)

is given as follow. Denote the index set I , {1, · · · , K}. Then, an achievable rate

region is given by

R0 :
∑
j,j∈S

Rj ≤
1

T
I ({sj|j ∈ S};y0|{sj′|j′ ∈ Sc})

=
1

T
log


∣∣∣∣∣ ∑j,j∈S G0FHjPjP

H
j H

H
j F

HGH
0 + σ2(G0FF

HGH
0 + I)

∣∣∣∣∣
|σ2(G0FFHGH

0 + I)|

 , S ⊂ I.

(7.21)

From (7.19), we see that the original channel in (7.7) for each user i, i = 1, · · · , K, is

always better than the one in (7.20), and therefore R0 ⊆ R. Note that R0 in (7.21) is
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actually the rate region of the K-user multiple access channel in (7.20) by excluding

the sum-rate constraint (i.e., the inequality in (7.21) by letting S = I ).

It can be shown that the maximum sum-rate of R0 is achieved at the interception

of the hyperplanes specified by the inequalities in (7.21) by letting S ∈ {Ii|i =

1, · · · , K}. Therefore, noting R0 ⊆ R, we obtain

K∑
i=1

Rr,i ≥
∑

S, S∈{Ii|i=1,··· ,K}

1

T
log


∣∣∣∣∣ ∑j, j∈S

G0FHjPjP
H
j H

H
j F

HGH
0 + σ2(G0FF

HGH
0 + I)

∣∣∣∣∣
|σ2(G0FFHGH

0 + I)|


=

K∑
i=1

1

T
log

(∣∣ P
M
G0FHīH

H
ī F

HGH
0 + σ2(G0FF

HGH
0 + I)

∣∣
|σ2(G0FFHGH

0 + I)|

)
, (7.22)

where the last step follows by setting Pi =
√
P/MI, i = 1, · · · , K, without affecting

the achievability proof.

With the definition of the DoF in (7.14), we have

d ≥
K∑
i=1

1

T
rank(G0FHī). (7.23)

Recall that G0 is chosen of full rank, and Hī are randomly generated. Also, we

randomly choose the precoder F ∈ CNTd×NTu at the relay. Then, we have

rank(G0FHī)=min{MTd, NTd, NTu, (K − 1)MTu}

with probability one.

Case 1) M
N

≤ 1
K−1

: By noting (K − 1)M ≤ N and M < N , we obtain

rank(G0FHī) = min{(K − 1)MTu,MTd} (7.24)

with high probability.

Case 2) 1
K−1

< M
N

< 1: In this case, (K − 1)M > N and M < N . Then, (7.24)

reduces to

rank(G0FHī) = min{NTu,MTd}. (7.25)
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Case 3) M
N

≥ 1: In this case, (K − 1)M > N and M ≥ N , and hence

rank(G0FHī) = min{NTu, NTd} (7.26)

with high probability.

Substitute the three cases (7.24) (7.25), and (7.26) into (7.23), we completes the

proof of the achievability.

7.4.3 Converse Proof of Theorem 7.1

The converse of Theorem 7.1 is given in this subsection. The proof is built upon the

cut-set theorem in [145]. Without loss of generality, we firstly consider the information

flow from users 1, · · · , K − 1 to user K, as illustrated in Fig. 7.2. We also assume

the elements of the signal vector xi transmitted from each user i and the relay are

Gaussian distributed and are independently drawn from CN (0, P ). In this case, the

received signal at the relay for the uplink phase can be written as

yR = HK̄xK̄ +HKxK + nR, (7.27)

where HK̄ = [H1 · · ·HK−1], xK̄ = [xT
1 · · ·xT

K−1]
T. The received signal at user K in

the downlink phase is

yK = GKxR + nK . (7.28)

Applying the cut-set theorem in [145] on the considered information flow, as shown

in Fig. 7.2, the cut-set bounds of this user cooperation scenario in this MIMO MWRC

are given as

Cut 1 : Rr,K ≤ 1

T
I(xK̄ ;yR|xK), (7.29)

Cut 2 : Rr,K ≤ 1

T
I(xR;yK), (7.30)

where

Rr,K =
K−1∑
i=1

Ri
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is the decoding rate at the user K, and Ri is the information rate of user i per channel

use. The I(·; ·) stands for the mutual information function. Therefore, we have the

decoding rate at user K

Rr,K ≤ 1

T
min {I(xK̄ ;yR|xK), I(xR;yK)} . (7.31)

For Cut 1, we write the mutual information part of the right hand side of (7.29)

as

I(xK̄ ;yR|xK) = h(yR|xK)− h(yR|xK ,xK̄), (7.32)

where h(·) stands for the entropy function. Since we assume that perfect CSI is

available at all nodes, the first term of (7.32) can be written as

h(yR|xK) = h(HK̄xK̄ + nR). (7.33)

Similarly, we have the second term in (7.32) written as

h(yR|xK ,xK̄) = h(nR). (7.34)

From the results of (7.33) and (7.34), we have

I(xK̄ ;yR|xK) = h(HK̄xK̄ + nR)− h(nR)

= log

(
det

(
I+

(K − 1)Tuρ

min{(K − 1)MTu, NTu}
HK̄H

H
K̄

))
=

min{(K−1)MTu,NTu}∑
j=1

log

(
1 +

(K − 1)Tuρκj

min{(K − 1)MTu, NTu}

)
, (7.35)

where κj is the j-th eigenvalue of the matrix HK̄H
H
K̄
.

Similarly, for Cut 2, we have

I(xR;yK) = h(GKxR + nK)− h(nK)

= log

(
det

(
I+

Tdρ

min{NTd,MTd}
GK̄G

H
K̄

))
=

min{MTd,NTd}∑
j=1

log

(
1 +

Tdργj
min{MTd, NTd}

)
, (7.36)
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where γj is the j-th eigenvalue of the matrix GK̄G
H
K̄
.

Using the results in (7.35) and (7.36), together with (7.31), we have the DoF for

information transfer from user group consisting of {1, · · · , K − 1} to user K as

dK ≤ 1

T
lim
ρ→∞

min{I(xK̄ ;yR|xK), I(xR;yK)}
log ρ

=
1

T
min{min{(K − 1)MTu, NTu},min{MTd, NTd}}

=
1

T
min{(K − 1)MTu, NTu,MTd, NTd}.

The above DoF upper bound is for user K. From the symmetry of the users, we

immediately obtain (7.15).

7.5 DoF Optimization with Uplink/Downlink Time

Allocation

We now consider optimizing the uplink/downlink time allocation to maximize the DoF

of the MIMO MWRC. Given the total time duration T , this problem is formulated

as

maximize
Tu,Td

d (7.37a)

subject to Tu + Td = T, (7.37b)

where d is given in (7.15) of Theorem 7.1.

7.5.1 Optimal Uplink/Downlink Time Allocation

The solution to (7.37) is given by the Theorem below.

Theorem 7.2. For the half-duplex MWRC (M,N,K), the DoF capacity with optimal
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uplink/downlink time allocation is given by

dmax =



(K − 1)M,
M

N
∈
(
0,

1

K − 1

]
(7.38)

KMN

M +N
,

M

N
∈
(

1

K − 1
, 1

)
(7.39)

KN

2
,

M

N
∈ [1,∞) . (7.40)

The corresponding optimal uplink/downlink time allocation is

Tu

Td

=



1

K − 1
,

M

N
∈
(
0,

1

K − 1

]
(7.41)

M

N
,

M

N
∈
(

1

K − 1
, 1

)
(7.42)

1,
M

N
∈ [1,∞) . (7.43)

Note that T is selected such that Tu and Td computed from (7.41) are integers.

Proof. Case 1) M
N

≤ 1
K−1

: In this case, d is given by (7.15). We substitute Tu = T−Td

into (7.15), yielding

d =
K

T
min{(K − 1)M(T − Td),MTd}, (7.44)

where d is a piecewise linear function of Td for 1 ≤ Td < T . Specifically, d in

(7.44) is monotonically increasing in Td ∈
[
1, K−1

K
T
]
, and monotonically decreasing

in Td ∈
[
K−1
K

T, T
)
. Therefore, the maximum of d in this case is given by (7.38), which

is achieved at Td = K−1
K

T , with the corresponding ratio Tu

Td
given by (7.41).

Case 2) 1
K−1

< M
N

< 1: In this case, d is given by (7.16). We substitute Tu = T−Td

into (7.16), yielding

d =
K

T
min{N(T − Td),MTd}, (7.45)

where d is a piecewise linear function of Td for 1 ≤ Td < T . Clearly, d in (7.45) is

maximized when N(T −Td) = MTd, with the corresponding ratio Tu

Td
given by (7.42).

Case 3) M
N

≥ 1: In this case, d is given by (7.17). We substitute Tu = T − Td into

(7.17), yielding

d =
K

T
min{N(T − Td), NTd}. (7.46)
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Note that d is a piecewise linear function of Td for 1 ≤ Td < T . The maximum of d

in (7.46) is achieved when N(T −Td) = NTd, and the corresponding ratio Tu

Td
is given

by (7.43). This completes the proof. �

Remark 7.4. In (7.38), dmax/N is not a piecewise linear function of M
N

∈
(

1
K−1

, 1
)
.

This non-linearity is due to the uplink/downlink time allocation (which is a function

of M
N

given in (7.42)).

7.5.2 Alternative Approaches

For comparison, we consider the case of uplink/downlink equal time allocation. By

letting Tu = Td = T
2

in Theorem 7.1, we obtain that the DoF with equal time

allocation is given by

deq =


KM

2
,

M

N
∈ (0, 1) (7.47)

KN

2
,

M

N
∈ [1,∞) . (7.48)

Define the DoF gain of the proposed scheme over the scheme with uplink/downlink

equal time allocation as

∆d , dmax − deq, (7.49)

where dmax is given in (7.38). We have following result.

Proposition 7.1. For the half-duplex MWRC (M,N,K), the maximal DoF gain is

achieved at M
N

= 1
2
for K = 3, and achieved at M

N
=

√
2− 1 for K ≥ 4.

Proof. Substituting (7.38) and (7.47) into the (7.49) we obtain the DoF gain per relay

dimension as

∆d

N
=



(
K

2
− 1

)
M

N
,

M

N
∈
(
0,

1

K − 1

]
(7.50)

K

2

M
N

−
(
M
N

)2
1 + M

N

,
M

N
∈
(

1

K − 1
, 1

)
(7.51)

0,
M

N
∈ [1,∞) . (7.52)
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Eqn. (7.50) is a continuous function when M
N

> 0. More specifically, (7.50) is a

monotonically increasing function of M
N

since
(
K
2
− 1
)
> 0; (7.51) is a concave function

within the range of [0, 1], and its maximum is achieved at M
N

=
√
2− 1. As (7.50) is

a continuous function, the maximal DoF gain is achieved at M
N

= 1
2
for K = 3. For

other cases when K ≥ 4, we have 1
K−1

≤ 1
3
<

√
2 − 1. The maximal DoF gain is

achieved at M
N

=
√
2− 1. �

Remark 7.5. Alternatively, we can quantify the relative DoF gain by evaluating ∆d
deq

.

For K = 3, the relative DoF gain is 33.33% at M
N

= 1
2
, and for K ≥ 4, the relative

DoF gain is 41.42% at M
N

=
√
2 − 1. We see that significant DoF improvement is

obtained by the optimal time allocation.

Remark 7.6. For asymptotic cases when there is a large number of users K → ∞ and

the relay has a much larger number of antennas than the user’s M
N

→ 0, the relative

DoF gain ∆d
deq

can achieve its maximum value of 100%. To see this, we first note that

1
K−1

→ 0 as K → ∞. Thus, ∆d is given by (7.51) for M
N

∈ (0, 1). Letting M
N

→ 0, we

obtain from (7.47) and (7.51) that

lim
M
N

→0

∆d

deq
= lim

M
N

→0

1− M
N

1 + M
N

= 100%.

An intuitive explanation is as follows. When K → ∞, the optimal time allocation is

given by Tu

Td
= M

N
in (7.42) for any M

N
∈ (0, 1). Together with the condition of M

N
→ 0,

we see that the optimal time allocation strategy is to allocate almost all the time for

downlink transmission, which leads to a DoF gain of 100%, as compared with equal

time allocation.

Another approach for comparison is TDMA. In a conventional TDMA system, K

users are scheduled to transmit in K orthogonal time slots. Hence, the DoF capacity

with TDMA scheme is given by

dTDMA =


(K − 1)M

2
,

M

N
∈ (0, 1) (7.53)

(K − 1)N

2
,

M

N
∈ [1,∞) . (7.54)
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Figure 7.3Comparison of the DoF capacity for the MWRC with K = 3
users.

Eqn. (7.53) can be intuitively explained as follows. For example, when M < N ,

the relay can receive at most M independent signal streams from each user. On the

other hand, the relay can broadcast at most M signal streams to the users. Thus, the

total independent signal streams received in the system is at most (K − 1)M . Due

to the symmetric characteristic of the system, the DoF result when M < N is given

by (7.53).

7.5.3 Numerical Comparisons

In this subsection, we illustrate numerical results for the DoF analysis. Fig. 7.3 shows

the DoF per channel use of the MIMO MWRC with K = 3 against the user/relay

antenna ratio M
N
. We see that the maximal DoF per channel use is not a piece-wise

linear function of M
N
, as discussed in Remark 7.4. The performance gain is achieved

when the number of user antenna is less than the relay antenna. When M
N

≥ 1, the

DoF per channel use remains constant, and equal time allocation is optimal. This is
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because when M
N

≥ 1, the bottleneck of the information flow is the relay, as discussed

in Remark 7.3. In this case, further increasing the number of user antennas cannot

increase the DoF. We also see from Fig. 7.3 that the maximum DoF gain is obtained

at M
N

= 1
2
, which is consistent with Proposition 7.1. We also illustrate the DoF

of a conventional TDMA system in Fig. 7.3 for the case of K = 3. We can see

the significant DoF improvement obtained by allowing multiple users transmitting

simultaneously in the uplink phase and performing network coding at the relay.
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M/N achieves the maximal DoF gain 

Figure 7.4The DoF capacity of the MWRC against the antenna ratio M
N
.

The number of users is set as K = 3, 6, 9.

We next examine a specific antenna setup of this 3-user system, i.e., M
N

= 1
2
, or

equivalently, N = 2M . In each uplink channel use, the relay receives 2M linear

equations of 3M signal streams from the users. In each downlink channel use, each

user only receives M linear equations from the relay due to the limited number of

receiving antennas. In order for each user to decode the messages of the other two

users with the cancellation of their self-message, each user needs at least 2M linear

equations. In this case, two downlink channel uses are required for each uplink channel
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Figure 7.5The DoF capacity of the MWRC with different antenna ratio M
N
,

against the number of users K. The antenna ratio is set as M
N

= 1
3
, 2
3
, and

M
N

≥ 1. When M
N

≥ 1, the equal time allocation becomes optimal for all
integers K ≥ 2.

use. This gives 3 channel use in total for one round of information exchange. Thus,

d = 2M × (3 users)/(3 channel uses) = 2M = N , which agrees with the Fig. 7.3.

We now compare the DoF with different number of users. Fig. 7.4 shows the

comparison of the DoF per channel use with K = 3, 6, and 9. We see that the total

DoF per channel use increases with the increasing number of users. The antenna

configuration that achieves the maximal DoF gain for each K is marked out in Fig.

7.4, which agrees with the analytical results in Proposition 7.1. Fig. 7.5 shows the

DoF capacity against the number of users K for given antenna ratios of M
N

= 1
3
, 2
3
and

M
N

≥ 1. Fig. 7.6 shows the specific case when M
N

= 1
3
in Fig. 7.5, and we added the

DoF with TDMA scheme for comparison. When M
N

< 1, the optimized DoF is equal

to the DoF obtained with equal time allocation for K = 2. This is because MWRC

becomes TWRC for K = 2, and the information flows for uplink and downlink are

symmetric. In addition, Fig. 7.5 suggests that the optimized DoF is a piecewise linear
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Figure 7.6The DoF capacity of the MWRC with fixed antenna ratio M
N

= 1
3
,

against the number of users K.

function of K when M
N

< 1. This can be seen from (7.38) and (7.39). We can also see

from Fig. 7.5 and Fig. 7.6 that, the DoF with equal time allocation and with TDMA

are both linear functions of K for any given antenna ratio M
N
, and they have the same

slope. To achieve the same DoF, equal time allocation always requires one less user

in the system than the TDMA scheme. This can be seen from (7.47) and (7.53).

Furthermore, we see from Fig. 7.5 that the DoF gain increases with the increase of

K when M
N

< 1. In the case when M
N

≥ 1, Fig. 7.5 shows that the optimized DoF is

a linear function of K. This can be seen from (7.40). In addition, we see from Fig.

7.5 that equal time allocation becomes optimal for all integers K ≥ 2. This can be

seen from (7.40) and (7.48).

7.6 Sum-Rate Maximization

In this section, we study the sum-rate optimization. We show that, the system sum-

rate can be maximized by iteratively updating the precoder at the relay and the
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precoders at the users.

7.6.1 Problem Formulation

The achievable sum-rate R defined in (7.13) is confined within the rate region R in

(7.12) which consists of K(2K−1 − 1) rate constraints. Hence, it is difficult to obtain

an explicit expression of the achievable sum-rate. Following [148], we only consider

those rate constraints involving K − 1 users. Then, an upper bound of the sum-rate

can be written as

RUB =
1

T

K∑
i=1

log


∣∣∣∣∣ K∑
j=1,j ̸=i

GiFHjQjH
H
j F

HGH
i + σ2

(
GiFF

HGH
i + I

)∣∣∣∣∣
|σ2 (GiFFHGH

i + I)|

 , (7.55)

where Qj = PjP
H
j . The sum-rate maximization problem can be formulated as

maximize
{Qi|i∈{1,··· ,K}},F

RUB (7.56a)

subject to
1

Tu

Tr (Qi) ≤ P, i ∈ {1, · · · , K} (7.56b)

1

Td

Tr

(
K∑
i=1

FHiQiH
H
i F

H + σ2FFH

)
≤ P, (7.56c)

where RUB is given in (7.55).

The optimization problem in (7.56) involves the set of user precoders {Qi|i ∈

{1, · · · , K}}, and the relay precoder F. A general approach to this problem is to

iteratively optimize one group of parameters while fixing the other group of param-

eters; see, e.g., [109]. In our problem (7.56), we can iteratively updating the set of

user precoders {Qi|i ∈ {1, · · · , K}}, with fixed relay precoder F, and then updating

relay precoder F with fixed set of user precoders {Qi|i ∈ {1, · · · , K}}.

7.6.2 Optimizing {Qi} for Fixed F

We first consider fixing the relay precoder F and optimizing the user precoders. For

a fixed relay precoder F, RUB in (7.56) is a concave function of Qi, i ∈ {1, · · · , K}
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[151]. Thus, standard convex optimization tools can be used to find the optimal user

precoders {Qi|i ∈ {1, · · · , K}}. We omit the details for brevity.

7.6.3 Optimizing F for Fixed {Qi}

We now consider the optimization of F in the problem (7.56) for fixed {Qi|i ∈

{1, · · · , K}}. This problem is in general difficult to solve directly. In the follow-

ing, we propose an iterative algorithm to approximately solve this problem.

We first convert the optimization of relay precoder F in our problem (7.56) with

fixed set of user precoders {Qi|i ∈ {1, · · · , K}}, into a form that is suitable for

iterative optimization, following the approach in [109].

Recall that all transmitted signals from the users are i.i.d. drawn from CN (0, 1).

At user i, i ∈ {1, · · · , K}, the intended message is sī. Let p(sī) be the distribution of

sī, it is given by

p(sī) = π−(K−1)L exp
(
−sHī sī

)
. (7.57)

Let p(sī|yī) be the a posterior distribution of sī given yī. From [164], this a posterior

distribution follows CN (Ωiyī,∆i), and can be written as

p(sī|yī) = π−(K−1)L |∆i|−1 exp
(
−(sī −Ωiyī)

H∆−1
i (sī −Ωiyī)

)
, (7.58)

where

Ωi = Cov(sī,yī)Cov
−1(yī,yī)

= (GiFHīPī)
H
(
(GiFHīPī)(GiFHīPī)

H + σ2(GiFF
HGH

i + I)
)−1

, (7.59a)

∆i = I−ΩiCov(yī, sī)

= I−ΩiGiFHīPī. (7.59b)

The Cov(·, ·) in (7.59) stands for covariance matrix.

Let p(sī,yī) be the joint distribution of sī and yī. Then the decoding rate upper
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bound at user i, i ∈ {1, · · · , K}, can be written as

RUB
r,i =

1

T
I(s1 · · · , si−1, si+1, · · · , sK ;yī)

=
1

T ln 2

∫∫
p(sī,yī) ln

p(sī|yī)

p(sī)
dsīdyī

=
1

T ln 2

∫∫
p(sī)p(yī|sī) ln

p(sī|yī)

p(sī)
dsīdyī, (7.60)

where

p(yī|sī) = π−MTd |Ψi|−1 exp
(
−(yī −GiFHīPīsī)

HΨ−1
i (yī −GiFHīPīsī)

)
,

and

Ψi = σ2
(
GiFF

HGH
i + I

)
.

Substitute (7.57) and (7.58) into (7.60), we can rewrite the decoding rate upper

bound at user i, i = 1, · · · , K, as

R̃UB
r,i = − 1

T ln 2

(
ln |∆i| − (K − 1)L+ Tr

(
∆−1

i Di

))
, (7.61)

where

Di = (I−ΩiGiFHīPī) (I−ΩiGiFHīPī)
H + σ2Ωi

(
GiFF

HGH
i + I

)
ΩH

i . (7.62)

Thus, the sum-rate in (7.55) can be rewritten as

R̃UB = − 1

T ln 2

K∑
i=1

(
ln |∆i| − (K − 1)L+ Tr

(
∆−1

i Di

))
, (7.63)

where Di is given in (7.62). A verification of this derived sum-rate upper bound is

shown in Appendix E.

Now the optimization of relay precoder F in problem (7.56) with fixed set of user

precoders {Qi|i ∈ {1, · · · , K}} can be rewritten as

maximize
F,{∆i,Ωi|i∈{1,··· ,K}}

R̃UB (7.64a)

subject to
1

Td

Tr

(
K∑
i=1

FHiQiH
H
i F

H + σ2FFH

)
≤ P. (7.64b)
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The optimization problem in (7.64) is a quadratically constrained quadratic program

(QCQP) [151] with respect to F. The Lagrangian is given by

L (F, {∆i,Ωi|i ∈ {1, · · · , K}}) = R̃UB+λ

(
1

Td

Tr

(
K∑
i=1

FHiQiH
H
i F

H + σ2FFH

)
− P

)
,

(7.65)

where λ stands for the Lagrangian multiplier. Letting ∂L/∂F = 0, we obtain the

optimal F in vector form as

vec(F) = (Φ1 +Φ2)
−1 · vec

(
K∑
i=1

(
HīPī∆

−1
i ΩiGi

)H)
(7.66)

where

Φ1 =
K∑
i=1

((
HīPīP

H
ī H

H
ī + σ2I

)T ⊗
(
GH

i Ω
H
i ∆

−1
i ΩiGi

))
,

Φ2 =

(
K∑
i=1

HiPiP
H
i H

H
i + σ2I

)T

⊗ (λI) ,

and vec(·) stands for the vectorization function, ⊗ stands for Kronecker product, and

λ is selected to satisfy the power constraints in (7.64b). The relay precoder F is

obtained by converting the vec(F) computed in (7.66) to its matrix form.

7.6.4 Overall Algorithm

The sum-rate maximization problem in (7.56) can be solved by iteratively updating

the user precoders and the relay precoder. The overall procedure is outlined in the

following algorithm. Note that the result obtained by the proposed iterative opti-

mization procedure is not the global optimum result. The optimization results from

the iterative optimization procedure are sensitive to the initial precoder, especially at

the high SNR region.



198 Chapter 7 Optimization of MIMO MWRCs with PNC

Algorithm 7.1 Iterative Sum-rate Maximization

Initialization:

Set Pi = α · rand(MTu, L), i ∈ {1, · · · , K}, and set F = β · rand(NTd, NTu),

where α and β are chose to meet the user and relay power constraint. Set ε to

an arbitrary small real number.

Iteration:

1: while the RUB can be increased by more than ε do

2: Calculate relay precoder F base on (7.66).

3: Optimize {Pi|i ∈ {1, · · · , K}} using CVX optimization tool.

4: Compute {∆i,Ωi|i ∈ {1, · · · , K}} based on (7.59).

5: end while

7.6.5 Numerical Results

In this subsection, we illustrate the numerical results of the rate optimization. We

consider two systems. Fig. 7.7 shows various sum-rates for network where K = 3,

M = 2, N = 4, and Fig. 7.8 shows various sum-rates for network where K = 4,

M = 2, N = 6.

We firstly consider the DoF. For the network K = 3, M = 2, N = 4, the optimal

DoF calculated based on (7.38) is 4. The DoF with equal time allocation calculated

from (7.47) is 3. The DoF with TDMA scheme calculated from (7.53) is 2. For the

network K = 4, M = 2, N = 6, the optimal DoF calculated based on (7.38) is 6. The

DoF with equal time allocation calculated from (7.47) is 4. The DoF with TDMA

scheme calculated from (7.53) is 3.

In Fig. 7.7, we can see that the sum-rates of the system K = 3, M = 2, N = 4

with proposed time optimization grow linearly with the slope of 4; the sum-rate of

the system with equal time allocation grows linearly with the slope of 3; and the sum-

rate of the system in TDMA scheme grows linearly with the slope of 2. These results

match well with the DoF analysis in this paper. Similarly, we can see numerical
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K = 3, M = 2, N = 4.

 

 

Optimal time allocation with optimized precoding; d = 4;

Optimal time allocation; d = 4;

Equal time allocation; d = 3;

TDMA; d = 2;

Figure 7.7The comparison of sum-rate of a MIMO MWRC: K = 3, M = 2,
N = 4.

results match well with the DoF analysis for system K = 4, M = 2, N = 6 in Fig.

7.8.

We now compare the sum-rates of the considered system. Fig. 7.7 and Fig. 7.8

demonstrated a significant sum-rate improvement by the proposed iterative sum-rate

optimization algorithm in Subsection 7.6.4. The gain is more than 10 bits per channel

use in the medium to high SNR region. It is worth pointing out that the optimization

results are sensitive to the initial precoder in the high SNR region. In our simulation,

we randomly initialize the precoder 200 times at each SNR and select the best one.

Further, Fig. 7.7 and Fig. 7.8 compared the sum-rate of various schemes. It also

shows that with network coding, the sum-rate improves significantly, compared to

the TDMA scheme.
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K = 4, M = 2, N = 6.

Optimal time allocation with optimized precoding; d = 6;

Optimal time allocation; d = 6;

Equal time allocation; d = 4;

TDMA; d = 3;

Figure 7.8The comparison of sum-rate of a MIMO MWRC: K = 4, M = 2,
N = 6.

7.7 Conclusion

In this chapter, we derived the DoF capacity of the MWRC with full data exchange.

Our derived result generally applies to any antenna and user configurations, as well

as to both full-duplex and half-duplex communications. We showed that, unlike other

MWRCs with pairwise data exchange, the number of time slots for the uplink and

downlink phases are asymmetric when full data exchange is considered. As a result,

we optimized the uplink/downlink time allocation to enhance the DoF of the half-

duplex network. Both our analysis and numerical results showed that a significant

DoF improvement can be achieved by the proper uplink/downlink time allocation.

Further, we proposed an iterative algorithm to optimize the user precoders and the

relay precoder for sum-rate maximization. The numerical results of the sum-rate

match well with the DoF analysis in this chapter, and they also demonstrated that

the system sum-rate performance can be considerably improved by a careful design

of the user and relay precoders.
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Conclusions and Future Work

8.1 Conclusions

This thesis is aim to investigate the question “How to design PNC schemes for var-

ious relay networks to achieve fast and reliable information exchange?”. As a start,

Chapter 2 is focused on the channel-uncoded PNC system in a TWRC. In particular,

we considered relay fading channel with phase variation onlyand each user is using

QPSK modulation. In PNC scheme, relay sees an superimposed constellation. The

problem of minimizing the detection error for network-coded information at the relay

becomes a grouping problem. The grouping rule is to maximize the minimum dis-

tance between each group. The relay can select different network coding coefficients

to achieve various grouping on the superimposed constellation. Thus, we proposed

an optimum grouping strategy to achieve linear network coding at the relay with

maximized minimum distance. The performance bound was derived and numerical

simulation was used to show the tightness of the derived performance bound.

In Chapter 3, the study moved to analyzing the performance of binary classic codes

coded PNC system in a TWRC. The challenge here in this work is to characterize the

distance spectrum of the network coded codewords at the relay from the superimposed

codewords at the relay. It has been found out that, different from the conventional

201
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single-user scenario, the effective distance spectrum of the PNC scheme is determined

by both the Hamming distance spectrum of the underlying channel code, and an extra

distance spectrum of the superimposed codewords. Base on that, an asymptotically

tight performance bound for the error probability of the channel-coded scheme at high

SNR region was derived. The derivation showed that the extra distance spectrum of

the superimposed codewords leads to an SNR penalty of at most ln 2 in linear scale.

Chapter 4 studied the design of more industrial practical modern codes in PNC

systems. The IRA code is selected due to its easy encoding process. Other than the

conventional analysis in point-to-point channel, this study revealed that the presence

of the ternary signal leads to the challenges in its convergence analysis. We analyzed

the component decoders and derived the generalized update rules in terms of log-

likelihood ratios. We then proposed two models for the soft information exchanged

among the components decoders, and developed bounds on the approximation of

the extrinsic information transfer (EXIT) functions. Based on that, we carried out

an EXIT chart curve-fitting technique to construct optimized codes. Our developed

irregular repeat-accumulate coded PNC schemes have significantly improved perfor-

mance compared to the existing regular repeat-accumulate coded PNC schemes.

In Chapter 5, the research of channel-coded PNC is focused on more complicat-

ed system: multi-way relay networks. In existing literature, lattice codes have been

found good characteristics in network coding. In this chapter, the Eisenstein integer

based lattice network codes are studied for PNC employed multi-way relay fading

channels. A union bound estimation of the decoding error probability has been de-

rived. The design criteria for optimal lattice network codes with minimum decoding

error probability were formulated in this work. Furthermore, the construction of lat-

tice network codes from linear codes by Complex Construction B is studied. The

nominal coding gains and error performance of for various LNCs are also analyzed

in this work. It has been demonstrated in this work that the lattice network codes

constructed by Complex Construction B provide a better tradeoff between code rate

and nominal coding gain. Further, the optimal dither method in terms of energy
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efficiency for LNC over GF(4) is derived, and this optimal dither can save on aver-

age 1/3 transmission power. Next, the lattice network code design from linear codes

over GF(4) was investigated, and explicit connection between parameters of the lin-

ear code and of the corresponding lattice network code was established. Moreover,

linear lattice codes from convolutional, BCH, and Reed-Solomon codes over GF(4)

was constructed in this study.

Chapter 6 focused on improving the sum-rate performance of PNC employed SISO

MWRCs. It has been shown that by choosing the pair-wise transmission scheduling

appropriately, we can achieve a significant improvement for the sum-rate of the multi-

user transmission. High level modulation with nested lattice codes was adopted in

this study. An opportunistic pair-wise transmission scheme was proposed to exploit

the multi-user fading channels. In addition, it has been shown that the proposed

opportunistic pair-wise transmission can provide up to 4.5 dB gain for an uncoded 4-

user MWRC, and up to 2.5 dB gain for a rate-1/2 memory order-1 convolutional coded

4-user MWRC at the frame error rate of 10−2, when compared to the conventional

pair-wise transmission.

Chapter 7 extended the study in MIMO MWRCs. In particular, this chapter

investigated the problem of maximizing the DoF of MIMO MWRCs with full da-

ta exchange, and an iterative algorithm was proposed to maximize the sum-rate.

The DoF capacity of considered network is derived, and the results can be generally

applied to both full-duplex and half-duplex systems. Further, optimization of the

uplink/downlink time allocation to enhance the DoF of the half-duplex network was

studied. Both analysis and numerical results showed that a significant DoF improve-

ment can be achieved by the proper uplink/downlink time allocation. Further, an

iterative algorithm to maximize system sum-rate was proposed, and the optimiza-

tion parameters were the system precoders. It has been demonstrated in numerical

simulation that the system sum-rate performance can be considerably improved by a

careful design of the user and relay precoders.
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8.2 Future Work

The problems studied in this thesis are important in understanding the PNC. These

problems can be further investigated in following aspects:

• In Chapter 2, the current work was carried out under amplitude fading only

condition. This work can be further extended to more realistic fading channel

model. The phase fading further increase the system complexity by bringing

more types of clustering cases. Incorporate the phase fading in the system

model is of great interest, since it simulates the real communication channel

condition.

• In Chapter 3 and Chapter 4, the analysis and design of the channel codes in

PNC is limited in binary code. In practical communication systems, higher

modulation is always in great interest. Extend the current work from bina-

ry codes to higher modulation codes are challenging due to the fact that the

increased modulation level will create more complicated mapping between the

superimposed codewords and the network coded codewords at the relay. This

change will not only complicate the performance analysis process, but also will

complicate the optimization operation using EXIT chart.

• In Chapter 7, the study of the DOF of MWRCs with full data exchange is limited

in the case where all system users exchange information via the common relay. A

more general system model can be a multi-cluster system [103], where multiple

user groups are using one common relay, and the information exchange only

occurs within each user group. This system model is more likely to happen

in real word communication system. For example, grouped users share files

with each other, but each group does not share with other group members.

This generalized system model requires that signal alignments should be also

considered among the user groups. In other words, each group members can only

receive signals within their group, and cannot receive signals from other groups.
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Therefore, the received signals from different groups should be in orthogonal

signal space. In the future, I will focus on the DOF analysis in multi-cluster

system model.
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Table A.1Code Parameters

Scheme Code Type
CN VN

d̄c d̄v
Threshold

dc ρ dv λ Eb/N0

CPNC

Regular R = 1/3 1 1 3 1 1 3 2.2 dB

Regular R = 1/2 1 1 2 1 1 2 4 dB

Bi-regular R = 2/3

1 0.65 4 1

2.67 4 4.8 dB4 0.1444

7 0.2056

Bi-regular R = 3/4

1 0.2288 4 1

3 4 6 dB3 0.5424

5 0.2288

Irregular R = 1/3

1 0.30 2 0.1542

2.4 7.2 2.1 dB

3 0.70 3 0.3353

7 0.1375

8 0.2237

21 0.1493

Irregular R = 1/2

1 0.30 3 0.3612

3.1 6.2 2.4 dB
4 0.70 4 0.4282

16 0.1778

17 0.0328

Irregular R = 2/3

1 0.20 2 0.2243

3.4 5.1 2.9 dB

4 0.80 3 0.4322

6 0.1823

7 0.1073

28 0.0539

Irregular R = 3/4

1 0.20 2 0.3221

4.2 5.6 3.4 dB

5 0.80 3 0.3297

6 0.2272

7 0.0478

31 0.0732

Complete decoding

Irregular R = 1/3

1 0.20 3 0.4963

2.6 7.8 1.5 dB

3 0.80 4 0.1144

9 0.0829

10 0.2004

29 0.0870

30 0.0190

Irregular R = 3/4

1 0.10 2 0.2672

2.8 3.73 5.6 dB

3 0.90 3 0.5915

7 0.0493

8 0.0610

19 0.0310



Appendix B

Derivations of Node Update Rules

in Chapter 4

B.1 Derivation of VN update rule

Consider a VN with degree dv. Without loss of generality, we consider the update of

the extrinsic information on the first edge, based on the a priori information from

the edges with index 2 to dv.

Borrowing the result Eq. (13) of [46] and extending it to dv − 1 edges, we have

q
(1)
0 = γ · 4(dv−2) ·

dv∏
l=2

p
(l)
0 ,

q
(1)
1 = γ · 2(dv−2) ·

dv∏
l=2

p
(l)
1 ,

q
(1)
2 = γ · 4(dv−2) ·

dv∏
l=2

p
(l)
2 ,

where γ is for normalization purpose. The primary LLR Λ
(1)
Q is calculated by

Λ
(1)
Q = log

(
q
(1)
0 + q

(1)
2

q
(1)
1

)
= log

(
4(dv−2) ·

∏dv
l=2 p

(l)
0 + 4(dv−2) ·

∏dv
l=2 p

(l)
2

2(dv−2) ·
∏dv

l=2 p
(l)
1

)

= (dv − 2) log 2 +
dv∑
l=2

Λ
(l′)
P +KVN. (B.1)
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where

KVN = log


1 +

dv∏
l=2

exp
(
Ω

(l′)
P

)
dv∏
l=2

(
1 + exp

(
Ω

(l′)
P

))
 . (B.2)

The derivation of the secondary LLR Ω
(1)
Q can be carried similarly.

B.2 Derivation of CN update rule

The CN update function is calculated based on its mapping table. There are two

steps to prove the successive update approach for the CN in the CPNC scheme. First

step, we generalize the CN mapping table for any degree dc. Second step, we prove

that the generalized CN mapping table can be derived by successively using degree-2

mapping table.

In the ETG, the value on each edge is taken from {0, 1, 2}. For a CN of degree dc,

let Nθ denote the number of input edges with value θ ∈ {0, 1, 2}, N0 +N1 +N2 = dc.

The generalized mapping rule is given as

Case 1: If N1 mod 2 ̸= 0, then the CN outputs 1;

Case 2: If N1 mod 2 = 0, N1 ̸= 0, then the CN outputs 0 or 2;

Case 3: If N1 = 0, we have two subcases:

• Case 3 a) N2 mod 2 ̸= 0, the CN outputs 2;

• Case 3 b) N2 mod 2 = 0, then the CN outputs 0;

The above cases cover all combinations of the input value for a given CN. We only

consider the first case while the manipulation for the other cases can be performed

in a similar way. Let us organize the input edges by their superimposed value. Then
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each user’s value relates to the superimposed value as

Superimposed value : 0 · · · 0 1 · · · 1 2 · · · 2 (B.3)

User A′s value : 0 · · · 0 κ1 · · ·κη 1 · · · 1 (B.4)

User B′s value : 0 · · · 0 ω1 · · ·ωη 1 · · · 1 (B.5)

where κ, ω ∈ {0, 1} and η is the number of edges whose superimposed value is 1.

We now consider the edges with superimposed value of 1 in (B.3) whose total

number is N1. Note that N1 = η. For the corresponding edges of user A and user B,

we use N
(A)
1 denotes the number of edges for user A that have bit value κ = 1, and

we use N
(B)
1 denotes the number of edges for user B that have bit value ω = 1. Note

that N
(A)
1 +N

(B)
1 = N1. The total number of bits with value 1 in (B.4) is N

(A)
1 +N2,

and the total number of bits with value 1 in (B.5) is N
(B)
1 +N2. In Case 1, N1 is an

odd number, which means that N
(A)
1 and N

(B)
1 can only be one even number and one

odd number. This means that N
(A)
1 +N2 or N

(B)
1 +N2 can only be one odd number

and one even number. Thus, the check node outputs for each user are different, e.g.,

if user A’s check node output is 1, then user B’s check node output is 0. This leads

to an output superimposed value 1 in the ETG.

We now show that the successive update approach is valid for the first case. Let us

temporally use F2
CN(·) denotes the mapping function for degree-2 mapping function.

From (10) in [46], we have

F2
CN(1, 1) = θ̃ (B.6)

F2
CN(1, θ̃) = 1 (B.7)

where θ̃ ∈ {0, 2}. Note that in (B.6), θ̃ has equal probability to be 0 or 2. We next

consider two scenarios.

Scenarios I: N1 = 1. The successive update function for this case can be written

as

F2
CN(θ̃, · · · F2

CN(θ̃,F2
CN(θ̃,F2

CN(θ̃, 1)))), θ̃ ∈ {0, 2}. (B.8)
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The calculation of (B.8) only needs (B.7) and it is straight forward to see the result

is 1.

Scenarios II:N1 > 1, and note thatN1 mod 2 ̸= 0. In this case, we have (N1−1)/2

pairs of input edges with value 1, and an extra input edge with value 1. Each pair

of the edges with value 1 can be updated firstly by using (B.6). By doing this, the

CN will have an equivalent N0 +(N1 − 1)/2+N2 number of input edges with value θ̃

and an extra input edge with value 1. Thus, this case becomes Scenarios I, and the

CN outputs 1. The manipulation for Case 2 and Case 3 can also be done in a similar

way.



Appendix C

Proofs and Justifications in

Chapter 5

C.1 Proof of Theorem 5.1

By the same analysis as in [21], we can show the following inequality for any positive

real value ν in the high signal-to-noise ratios regime,

Pe(u → û | h, a) ≤
∑

λ∈Nbr(Λ\Λ′)

K(Λ/Λ′) exp

(
−1

2
ν∥λ∥2 + 1

4
ν2∥λ∥2|α|2N0

)
·
∏

l
E
[
exp

(
νRe{(αhl − al)xlλ

H}
)]

where Nbr(Λ\Λ′) means the set of neighbors of the origin in Λ\Λ′.

Since Λ′ is equivalent to Z[ω]N with a scaling factor γ ∈ C, there exists an n× n

unitary matrix U such that xlU is a vector with the first N entries in the Voronoi re-

gion V(γZ[ω]) and the last n−N entries equal to 0. Denote by x′
l the N -dimensional

random row vector with i.i.d. components uniformly distributed over V(γZ[ω]), and
by λ′ the vector consisting of the first N components in λU. By continuous approx-

imation, Cov(xl) = Cov(x′
l). Moreover, since xlλ

H = (xlU)(λU)H = x′
lλ

′, Lemma
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C.1 in the sequel asserts that

E[exp(νRe{(αhl − al)xlλ
H})] = E[exp(νRe{(αhl − al)x

′
lλ

′H})]

≤ exp(
5γ2

144
ν2|αhl − al|2∥λ∥2) = exp(

nP

4N
ν2|αhl − al|2∥λ∥2),

where the last equality holds due to P = 5N
36n

|γ|2 according to Proposition 5.1. Sub-

sequently,

Pe(u → û | h,a)

≤
∑

λ∈Nbr(Λ\Λ′)

exp(−1

2
ν∥λ∥2 + 1

4
ν2∥λ∥2|α|2N0)

·
∏

l
exp(

nP

4N
ν2|αhl − al|2∥λ∥2)

≤
∑

λ∈Nbr(Λ\Λ′)

exp(−1

2
ν∥λ∥2 + 1

4
ν2∥λ∥2|α|2N0

+
nP

4N
∥νλ∥2∥αh− a∥2)

<
∑

λ∈Nbr(Λ\Λ′)

exp(−1

2
ν∥λ∥2 + 1

4
ν2∥λ∥2N0Q(α,a))

≤
∑

λ∈Nbr(Λ\Λ′)

exp

(
− ∥λ∥2

4N0Q(α,a)

)
,

where the last inequality is obtained by setting ν = 1
N0Q(α,a)

. For high SNRs,

Pe(u → û | h, a) ≤
∑

λ∈Nbr(Λ\Λ′)

exp

(
− ∥λ∥2

4N0Q(α, a)

)

≈ K(Λ/Λ′) exp

(
− d2(Λ/Λ′)

4N0Q(a, a)

)
.

We last show that when N = n, every component in n is uncorrelated with each other

and has variance N0Q(α, a). It suffices to prove the covariance matrix of xl equal to

P In, which is obviously true for P In = Cov(x′
l) = Cov(xlU) = UHCov(xl)U.

Lemma C.1. Let x = (x1, x2, · · · , xN) ∈ CN be a row vector uniformly distributed

over V(γZ[ω])N , where γ ∈ C. For an arbitrary N -dimensional row vector v over C,

E[exp(Re{xvH})] ≤ exp(
5γ2

144
∥v∥2)
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Proof. It suffices to show the case γ = 1. In this case, x is uniformly distributed over

the direct product of N regular hexagons with edge length
√
3/3 and centered at the

origin. Then,

E[exp(Re{xvH})] =E[exp(Re{x}Re{v}T + Im{x}Im{v}T )]

=
∏N

j=1
E[exp(Re{xj}Re{vj}+ Im{xj}Im{vj})]

=
2
√
3

3

∏
j

∫
V(Z[ω])

(exp(Re{xj}Re{vj}+ Im{xj}Im{vj})dµ(xj)

where µ is the complex Lebesgue measure. Write vj = a+ bi and xj = x+ yi for each

j. Then,

2
√
3

3

∫
V(Z[ω])

(exp(Re{vj}Re{xj}+ Im{vj}Im{xj})dµ(xj)

=
2
√
3

3

∫ 0

− 1
2

∫ −
√

3
3
(1+x)

−
√
3

3
(1+x)

(exp(ax+ by) + exp(−ax+ by))dydx

=
8

b(3a2 − b2)
(
√
3a sinh

a

2
sinh

√
3b

6
− b sinh

√
3b

6
sinh

√
3b

6

+ b cosh
a

2
cosh

√
3b

6
− b cosh

√
3b

6
cosh

√
3b

6
)

=
2

3b′(a′2 − b′2)
(a′ sinh a′ sinh b′ − b′ sinh b′ sinh b′

+ b′ cosh a′ cosh b′ − b′ cosh b′ cosh b′) // a′ =
a

2
; b′ =

√
3b

6

=
2

3
(
sinh b′

b′
a′ sinh a′ − b′ sinh b′

a′2 − b′2
+ cosh b′

cosh a′ − cosh b′

a′2 − b′2
)

=
2

3

sinh b′

b′
(
a′ sinh a′ − b′ sinh b′ + cosh a′ − cosh b′

a′2 − b′2
)

+
2

3
(cosh b′ − sinh b′

b′
)(
cosh a′ − cosh b′

a′2 − b′2
) , A+B
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Next we shall upper bound A and B respectively:

A ≤ 2sinh b′

3b′
(1 +

1

2!
+

a′2 + b′2

3!
+

a′2 + b′2

4!

+
a′4 + b′4 + a′2b′2

5!
+

a′4 + b′4 + a′2b′2

6!
+ . . .)

≤ sinh b′

b′
· (1 + 5

36
(a′2 + b′2) +

7

1080
(a′4 + b′4 + a′2b′2) + . . .)

≤ sinh b′

b′
· exp( 5

36
(a′2 + b′2))

B =
2

3
(
2b′2

3!
+

4b′4

5!
+

6b′6

7!
+ · · · )( 1

2!
+

a′2 + b′2

4!

+
a′4 + b′4 + a′2b′2

6!
+ . . .)

≤ 1

3
(
2b′2

3!
+

4b′4

5!
+

6b′6

7!
+ · · · ) exp(a

′2 + b′2

12
)

Thus, A+B ≤ exp( 5
36
(a′2+ b′2))[1+ b′2

3!
+ b′4

5!
+ · · ·+ 1

3
(2b

′2

3!
+ 4b′4

5!
+ · · · )] ≤ exp( 5

36
(a′2+

b′2)) exp(5b
′2

18
)) = exp( 5

144
(a2 + b2)). Consequently, E[exp(Re{xvH})] ≤ exp(5γ

2

144
∥v∥2).

�

C.2 Justification of Algorithm 5.2

We shall first show that the output vector u1 of the algorithm is a shortest nonzero

vector in Λ. It is equivalent to show that for any nonzero lattice point v in Λ,

∥v∥ ≥ ∥u1∥.

As stated in the remark following Algorithm 5.2, {u1,u2} keeps to be a basis

of Λ. Thus, the vector v can be written as α1u1 + α2u2, where α1, α2 ∈ Z[ω].

Correspondingly,

∥v∥2 = |α1|2 · ∥u1∥2 + |α2|2 · ∥u2∥2 + 2Re(α1α
∗
2 · u1u

H
2 ) (C.1)

Because α1α
∗
2 is also an element in Z[ω], |α1α

∗
2|2 is a rational nonnegative integer. We

shall divide the discussion into the following three cases:

(i) |α1α
∗
2|2 = 0. In this case, we have either α1 = 0 or α2 = 0. If α1 = 0, then

α2 ̸= 0 and thus |α2|2 ≥ 1. Consequently, ∥v∥2 ≥ |α2|2∥u2∥2 ≥ |α2|2∥u1∥2 ≥ ∥u1∥2.

Likewise, if α2 = 0, we have ∥v∥2 ≥ |α1|2∥u1∥2 ≥ ∥u1∥2.
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The proof in the other two cases needs the following two properties of the two

output vectors u1 and u2 of the algorithm: (a) ∥u1∥ ≤ ∥u2∥; (b) u1u
H
2 /∥u1∥2 is

always in the Voronoi region V(Z[ω]). The second property holds because when

the algorithm terminates, u2 is set to be equal to u′
2, which is calculated from

u1 and non-updated u2 in Step 3 of the algorithm, and u1u
′
2
H/∥u1∥2 = (u1u

H
2 −

∥u1∥2DZ[ω](u1u
H
2 /∥u1∥2))/∥u1∥2 = u1u

H
2 /∥u1∥2 −DZ[ω](u1u

H
2 /∥u1∥2) ∈ V(Z[ω]).

(ii) |α1α
∗
2|2 = 1. Since the norm of every nonzero Eisenstein integer is a positive

integer, |α1|2 = |α2|2 = |α1α
∗
2|2 = 1, i.e., all of α1, α2 and α1α

∗
2 are units in Z[ω]. Since

V(Z[ω]) is a regular hexagon, u1u
H
2 /∥u1∥2 ∈ V(Z[ω]) implies α1α

∗
2 · u1u

H
2 /∥u1∥2 ∈

V(Z[ω]). Using the fact that all points in V(Z[ω]) have real parts no less than −1/2,

we get

2Re(α1α
∗
2 · u1u

H
2 ) ≥ −∥u1∥2. (C.2)

Continuing the argument in (C.1), ∥v∥2 = ∥u1∥2 + ∥u2∥2 + 2Re(α1α
∗
2 · u1u

H
2 ) ≥

∥u2∥2 ≥ ∥u1∥2.

(iii) |α1α
∗
2|2 > 1. Because every point in V(Z[ω]) has Euclidean norm no larger

than 1/
√
3, u1u

H
2 /∥u1∥2 ∈ V(Z[ω]) implies |u1u

H
2 | ≤ 1√

3
∥u1∥2, and thus

2Re(α1α
∗
2 · u1u

H
2 ) ≥ −2|α1α

∗
2| · |u1u

H
2 | ≥ − 2√

3
|α1α

∗
2| · ∥u1∥2 (C.3)

Continuing the argument in (C.1), we have ∥v∥2 = |α1|2 · ∥u1∥2 + |α2|2 · ∥u2∥2 +

2Re(α1α
∗
2 ·u1u

H
2 ) ≥ (|α1|2+ |α2|2− 2√

3
|α1α

∗
2|) · ∥u1∥2 ≥ ∥u1∥2, where the last inequal-

ity holds because at least one of α1, α2 is a non-unit, and every nonzero non-unit

Eisenstein integer has norm no smaller than 3.

This completes the proof that the output u1 is indeed a shortest vector in Λ.

Now we justify that the output vector u2 of the algorithm is a shortest vector in

Λ\{βu1 : β ∈ Z[ω]}.

Let v be a nonzero lattice point in Λ which is Z[ω]-linearly independent of u1,

and denote by α1, α2 the two Eisenstein integers so that v = α1u1+α2u2. Note that

α2 ̸= 0. We shall show ∥v∥ ≥ ∥u2∥ by considering the following four cases.

1. |α1|2 = 0. In this case, ∥v∥2 = |α2|2 · ∥u2∥2 ≥ ∥u2∥2
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2. |α1|2 = |α2|2 = 1. In this case, ∥v∥2 = ∥u1∥2+∥u2∥2+2Re(α1α
∗
2·u1u

H
2 ) ≥ ∥u2∥2,

where the inequality follows from (C.2).

3. |α1|2 > 1, |α2|2 = 1. By combining (C.3) into (C.1), ∥v∥2 ≥ (|α1|2 − 2√
3
|α1|) ·

∥u1∥2 + ∥u2∥2 ≥ ∥u2∥2 where the last inequality is based on the fact that

|α1| ≥
√
3.

4. |α2|2 > 1. By combining (C.3) into (C.1), ∥v∥2 ≥ |α1|2 · ∥u1∥2 + |α2|2 · ∥u2∥2 −
2√
3
|α1| · |α2| · ∥u1∥2 = (|α1| − 1√

3
)2∥u1∥2 − 1

3
∥u1∥2 + |α2|2 · ∥u2∥2 ≥ (|α1| −

1√
3
)2∥u1∥2 + (|α2|2 − 1

3
)∥u2∥2 ≥ ∥u2∥2, where the last two inequalities follow

from ∥u1∥ ≤ ∥u2∥ and |α2|2 ≥ 3 respectively.

C.3 Proof of Theorem 5.2

Let c1, · · · , ck be such a set of basis for the linear code C that their juxtaposition in

rows forms a generator matrix over R/πR in the systematic form. Correspondingly,

let λ1, · · · ,λk be a set of row vectors over R such that:

1. σ(λi) = c1;

2.
∑n

j=1 λij = 0, where λij is the jth entry in λi;

3. The juxtaposition of λ1, · · · ,λk by rows forms a k × n matrix over R in which

the first k columns form an identity matrix.

Due to the condition
∑n

i=1 ci = 0 for each (c1, · · · , cn) ∈ C, such a choice of λ1, · · · ,λk

always exists.

Now establishing the matrices MΛ and MΛ′ in (5.11) by describing Bn−k to be

the last n − k columns in the juxtaposition of λ1, · · · ,λk by rows. Obviously MΛ′

is a generator matrix for Λ′. For MΛ, observe that it is of full rank and every row

in it is a vector in the R-lattice Λ defined in (5.10). Thus, the R-lattice generated

by MΛ is a sublattice of Λ. Reversely, consider an arbitrary vector λ in Λ. Then,
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σ(λ) =
∑k

i=1 aici for some ai ∈ R/πR, and the sum of components in λ is congruent

to 0 modulo π2. Let λ′ be an arbitrary R-linear combination
∑k

i=1 αiλi subject to

σ(αi) = ai. In order to prove that λ is in the R-lattice generated by MΛ, it remains

to show that so is λ− λ′. Since

σ(λ− λ′) = σ(λ)− σ(
∑k

i=1
αiλi) = 0

and the sum of components in λ−λ′ is congruent to 0 modulo π2, the vector λ−λ′

can be written as an R-linear combination of the rows in the n× n matrix:
π −π 0 ... 0

. . .

0 ... 0 π −π

0 0 ... 0 π2

 .

Because each row in this matrix is in turn an R-linear combination of the rows in

MΛ, the vector λ−λ′, and thus λ is in the R-lattice generated by MΛ. This verifies

that MΛ is a generator matrix for Λ.

Now consider the special case R = Z[ω] or Z[i]. Since (π,−π, 0, · · · , 0) is a

vector in Λ\Λ′ with squared length 2|π|2, d2(Λ/Λ′) = min(2|π|2, wmin
E (C)). On the

other hand, (π2, 0, · · · , 0) is a shortest nonzero vector in Λ′ with squared length

|π2|2 = |π|4. Thus, when |π|4 > 2|π|2, there is no shortest nonzero vector in Λ that is

also in Λ′, which implies d2(Λ/Λ′) = d2(Λ) and K(Λ/Λ′) = K(Λ). However, the only

case for |π|4 ≤ 2|π|2 is a Gaussian prime π with norm 2. In this case, d2(Λ/Λ′) =

min(2|π|2, wmin
E (C)) = min(|π|4, wmin

E (C)) = d2(Λ). The proof is complete.
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Appendix D

Tables in Chapter 5

Table D.1The mappings from F13
∼= Z[i]/(2+3i)Z[i] ∼= Z[ω]/(4+3ω)Z[ω] to

Z[i] and Z[ω] by EZ[i] : Z[i]/(2+3i)Z[i] → Z[i] and EZ[ω] : Z[ω]/(4+3ωZ)[ω] →
Z[ω].

F13 0 1 2 3 4 5 6

EZ[i](F13) 0 1 2 2i −1− i −i 1− i

EZ[ω](F13) 0 1 −1 + ω ω 1 + ω 2 + ω −1− 2ω

F13 7 8 9 10 11 12

EZ[i](F13) −1 + i i 1 + i −2i −2 −1

EZ[ω](F13) 1 + 2ω −2− ω −1− ω −ω 1− ω −1

221
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Appendix E

Verification of Derived Sum-Rate

in Chapter 7

In this appendix, we verify the derived sum-rate upper bound in (7.63), against the

original sum-rate upper bound in (7.55). The sum-rate upper bound in (7.55) can be

written as:

RUB =
K∑
i=1

1

T
RUB

i

=
K∑
i=1

1

T
log

(∣∣GiFHīPīP
H
ī
HH

ī
FHGH

i + σ2(GiFF
HGH

i + I)
∣∣

|σ2(GiFFHGH
i + I)|

)
, (E.1)

We repeat Ωi and ∆i here:

Ωi = Cov(sī,yī)Cov
−1(yī,yī)

= (GiFHīPī)
H
(
(GiFHīPī)(GiFHīPī)

H + σ2(GiFF
HGH

i + I)
)−1

, (E.2a)

∆i = I−ΩiCov(yī, sī)

= I−ΩiGiFHīPī. (E.2b)

We now show that log |∆i| = −RUB
i in (E.1), for i = 1, · · · , K. Let Ui =
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GiFHīPī, and let Vi = GiFF
HGH

i + I, we have

log |∆i| = log |I−ΩiUi|

= log
∣∣I−Ui

H(UiUi
H + σ2Vi)

−1Ui

∣∣
(a)
= log
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H(UiUi
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)
= −RUB

i , (E.3)

where step (a) use the fact that |I+AB| = |I+BA| when AB and BA are both

square matrices.

Next, we show that actually in (7.63), we have
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where step (b) follows the fact that the I in ∆i has the size (K − 1)L × (K − 1)L.

Now we only need to show that in (E.4)

σ2∆−1
i ΩiViΩ

H
i = (ΩiUi)

H . (E.5)
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From (E.2a), we can obtain

Vi =
Ω−1

i UH
i −UiU

H
i

σ2
. (E.6)

Substitute (E.2b) and (E.6) into the left hand side of (E.5), we immediate obtain the

right hand side of (E.5). Thus we have Eqn. (E.4) = (K − 1)L.
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ders,” Journal de Théorie des Nombres de Bordeaux, vol. 8, pp. 387-396, 1996.

[177] S.-H. Hong and G. Caire, “Quantized compute and forward: a low-complexity

architecture for distributed antenna systems,” IEEE ITW, Paraty, Brazil, Oct.,

2011.

[178] R. M. Gray and T. G. Stockham, “Dithered quantizers,” IEEE Trans. Inform.

Theory, vol. 39, no. 3, pp. 805-812, 1993.

[179] J. H. Conway and N. J. A. Sloane, “A fast encoding method for lattice codes

and quantizers,” IEEE Trans. Inform. Theory, vol. 29, no. 6, pp. 820-824, Nov.,

1983.

[180] G. D. Forney, “Multidimensional Constellations–Part II: Voronoi Constellation-

s,” IEEE J. Select. Areas Commun., vol. 7, no. 6, pp. 941-958, Aug., 1989.

[181] I. Dumer, “Concatenated codes and their multilevel generalizations,” Handbook

of coding theory, vol. 2, pp. 1911-1988, North Holland, 1998.

[182] K. Sakakibara and M. Kasahara, “On the minimum distance of a q-ary image

of a qm-ary cyclic code,” IEEE Trans. Inf. Theory, vol. 42, no. 5, pp. 1631-1635,

Sept. 1996.



BIBLIOGRAPHY 249
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