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“We cannot clone, perforce; instead, we split

Coherence to protect it from that wrong

That would destroy our valued quantum bit

And make our computation take too long.

Correct a flip and phase -that will suffice.

If in our code another error’s bred,

We simply measure it, then God plays dice,

Collapsing it to X or Y or zed.

We start with noisy seven, nine, or five

And end with perfect one. To better spot

Those flaws we must avoid, we first must strive

To find which ones commute and which do not.

With group and eigenstate, we’ve learned to fix

Your quantum error with our quantum tricks.”

’Quantum Error Correction Sonnet’ - Daniel Gottesman
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by Yixuan Xie

Quantum error-correcting codes (QECCs) will be the ultimate enabler of future

quantum computing and quantum information processing. Stabilizer codes are

the most important class of QECCs since the first discovery of QECCs in the

mid-1990s. In this thesis, we study the design of QECCs and provide several

contributions to quantum stabilizer code constructions.

The first contribution is the design of families of quantum stabilizer codes using

quadratic residues (QR) sets and difference sets. We study the distance property

and dimension for the families of quantum stabilizer codes constructed from QR

sets. We give three design criteria for constructing quantum stabilizer codes from

difference sets. We show that using the subsets of difference sets can further

improve the proposed code performance.

We then design families of quantum low-density parity-check (LDPC) codes from

classical quasi-cyclic LDPC codes for large-scale quantum systems. The proposed

quantum LDPC codes of quasi-cyclic structure and various code rates are con-

structed from a family of proto-graph LDPC codes based on the QR set and Latin

square. We provide two constructions based on the adjunction and concatenation

of a proto-matrix and one construction based on the unique transformation of a
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proto-matrix. We derive the dimension of the proposed quantum LDPC codes

and provide a lower bound for its minimum distance. The performance of the

proposed quantum LDPC codes over quantum depolarizing channels with itera-

tive sum-product decoding algorithms is illustrated. Furthermore, we propose a

construction of quantum LDPC codes with rate at least 0.9 by performing tensor

product operation between two non-binary parity-check matrices obtained from

the idempotent polynomials of QR/NQR sets.

Next, we study quantum synchronizable codes that correct both quantum noise

and block synchronization errors. We propose a general construction of quantum

synchronizable codes with CSS structure from classical chain-containing cyclic

codes, and derive a distance bound using rational function for the proposed quan-

tum synchronizable codes.We design a class of quantum synchronizable codes from

classical quadratic residue codes over binary field. We show that these codes are a

subclass of the proposed chain-containing cyclic codes, and their code length and

dimension are equal to Mersenne prime and one, respectively.

Lastly, inspired by the phenomenon of channel mismatch effect for classical LDPC

codes, we investigate the effect of channel mismatch for quantum LDPC codes

over quantum depolarizing channels. We show that the degraded performance

due to the channel mismatch can be mitigated by introducing a weighted channel

information into the iterative sum-product decoder.
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Chapter 1

Introduction

1.1 Motivation

Q uantum computing and quantum information processing are new inter-

disciplinary fields, which have recently attracted many researchers from

physics, mathematics, and engineering. The power of quantum computers comes

from their ability to use quantum mechanical principles such as superposition,

measurement, and entanglement. Arguably, one of the most attractive features of

quantum computing is that quantum algorithms are conjectured to solve a certain

computational problems exponentially faster than any classical algorithm. For

instance, Shor’s factoring algorithm [1] and Grover’s search algorithm in [2].

Unlike classical information, quantum information is represented by the states of

quantum systems. Such a quantum system is affected by decoherence effect due to

inevitable interaction between the quantum system and its environment. Hence, it

is infeasible to perform quantum computation without a remediation of the deco-

herence that tends to destroy such a quantum system. Quantum error correction

(QEC) is one of the foundation stones for quantum information processing. Sim-

ilar to classical communication systems, quantum error-correcting codes (QECC)

are essential for stabilizing and protecting fragile quantum systems against the

undesirable effects of decoherence. Both classical error correction and QEC are

1
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concerned with the fundamental problem of communications in the presence of

noise. The challenge of performing QEC consists two parts: first, the physics of

error processes and their reversal, and secondly the construction of a good quan-

tum error-correcting code.

The aim of this thesis is to study quantum error correction and develop novel

techniques for constructing quantum error-correcting codes. We specifically focus

on the design of numerous quantum stabilizer codes of short, moderate and long

lengths based on classical codes over the binary field.

1.2 A brief background

In 1995, inspired by the classical 3-bit repetition code, Shor conceived the first

QECC, which had a code rate of 1
9 [3]. The code was capable of correcting ar-

bitrary quantum errors on a single qubit due to the remarkable finding of error

discretization. This discovery not only dispelled the notion that conceiving QECCs

was infeasible, but opens an interdisciplinary research area. The general theoret-

ical frameworks that describe the requirements of good QECCs are well studied

in [10] and [9]. Meanwhile, Steane proposed a simpler construction compared to

the 9-qubit code, where only 7 qubits are required to protect a single qubit from

general quantum errors [4, 5]. Finally, Bennett et al. [10] and Laflamme et al.

[13] discovered the perfect 5 qubit code, which is the shortest quantum code that

is capable of correcting any error on a single qubit. The word ‘perfect’ refers to

the fact that this code achieves quantum Singleton bound [93] and quantum Ham-

ming bound [14, 94], such that it does the same job as the 7-qubit and 9-qubit

code with only 4 redundancy qubits. The following works in [6–8] showed that a

class of quantum codes, namely Calderbank-Shor-Steane (CSS) codes, can be con-

structed from a pair of classical linear codes C1 and C2 that satisfy some orthogonal

constraint. With the aid of CSS construction, the problem of finding good quan-

tum codes was reduced to finding good dual-containing or self-orthogonal classical
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codes. The 7-qubit code was a typical example of quantum codes constructed from

the dual-containing [7, 4, 3]2 Hamming code.

The construction of these classic short quantum codes mentioned above are non-

systematic. That is, each code was described using a tensor product operation

over a vector space of certain dimension, which is tedious when designing quan-

tum codes with a large number of qubits. The remarkable stabilizer formalism

generalized the design of quantum codes by wisely using the concepts of group

theory with error operators represented by Pauli group. The theory of stabilizer

group and stabilizer codes was formalized by Gottesman [14, 15], which yield many

useful insights into the design of QECCs and permitted new codes to be devel-

oped from many classical perspectives, e.g., classical linear codes over binary and

quaternary fields [6–8, 14].

Compared with CSS construction, the stabilizer formalism defines a more general

class of quantum codes by imposing a more relaxed orthogonal constraint upon

the underlying classical codes. In other words, stabilizer codes constitute a wide

range of quantum codes designed from various different classical codes, where the

class of CSS codes can be considered as a subclass of stabilizer codes. The stabi-

lizer formalism has undoubtedly provided a cornerstone for a wide range of differ-

ent quantum codes developed in the literature. The class of algebraic structured

quantum codes, such as quantum Bose-Chaudhuri-Hocquenghem (BCH) codes

[8, 16–19], quantum Reed-Solomon (RS) codes [20] and quantum Reed-Muller

(RM) codes [21], was investigated in the late 90s. Comparing between classical

block codes and convolutional codes, convolutional codes can encode with higher

efficiency and the encoding operation depends on current as well as a number

of past information bits. Inspired by these features, Chau conceived the first

quantum convolutional code [22] and generalized the classical Viterbi decoding

algorithm into quantum settings [23]. Later, many works on quantum convo-

lutional codes were proposed, for example, [24–26, 58, 59, 106, 107, 109]. The

class of maximum-distance-separable (MDS) codes is an important class of codes,

because they attain maximum minimum distances. Example of classical MDS

codes are the well-known RS codes and extended RS codes, whereas the famous
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[[5, 1, 3]] [93] quantum code is the first quantum MDS code. The construction of

quantum MDS codes have been exhaustively investigated in the literature, e.g.,

[31, 44–50, 108]. After the famous [[5, 1, 3]] code, Chau [44] constructed quan-

tum codes with parameters [[5, 1, 3]] based on the integers modulo n. Feng [45]

presented quantum MDS codes with parameters [[6, 2, 3]]p and [[7, 3, 3]]p, where p

is an odd prime. Grassl et al. [50] constructed families of quantum codes with

parameters [[n, n − 2d + 2, d]]q, where 3 ≤ n ≤ q and 1 ≤ d ≤ n/2 + 1, and

[[q2 − s, q2 − s − 2d + 2, d]]q, where 1 ≤ d ≤ q and s = 0, 1, by means of Eu-

clidean and Hermitian self-orthogonal extended RS codes, respectively. They also

have constructed other families of quantum MDS codes of length up to q + 1 and

some quantum MDS codes of length up to q2 + 1, including code [[6, 2, 3]]p and

[[7, 3, 3]]p, for p ≥ 3 [108]. Sarvepalli et al. [31] showed the existence of q-ary

quantum MDS codes with parameters [[q2 − qα, q2 − qα − 2v − 2, v + 2]]q, where

0 ≤ v ≤ q − 2 and 0 ≤ α ≤ q − v − 1, by means of classical generalized RM

codes. Wang et al. [49] have constructed quantum MDS codes with parameters

[[n, n − 2k, k + 1]]q where n = q2 + 1 and k = q;n = q2 − l, l ≤ q − l − 1 and

0 ≤ l ≤ q − 2;n = mq − l, k ≤ m − 1, 0 ≤ l < m and 1 < m < q;n ≤ q and

k ≤ bn/2c, derived from generalized RS codes. Guardia [48] showed the existence

of quantum MDS codes with parameters [[q2+1, q2−2d+3, d]]q, where q = 2t, t ≥ 1

and 3 ≤ d ≤ q + 1 is an odd integer. Although so, there are still a lot of quantum

MDS codes difficult to be constructed. It is a great challenge to construct new

quantum MDS codes and a even more challenge to construct quantum MDS codes

with relatively large minimum distance.

Further, many different coding techniques have also been adopted into the design

of quantum stabilizer codes, for example, non-additive and non-binary quantum

stabilizer codes [28–30, 32, 33], codeword stabilized quantum codes [27] and quan-

tum synchronizable codes [140–142]. Note that not all classical codes are suitable

for the design of quantum codes due to the requirement of orthogonality. A sig-

nificant break through in this dilemma is the emergence of entanglement-assisted

quantum error-correcting codes [78–81], which exploit pre-shared entanglement

qubits between the transmitter and receiver such that the classical codes used
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to construct entanglement assisted quantum codes do not necessarily have to be

dual-containing or self-orthogonal. Later, this concept was extended to numerous

code constructions, e.g., [38, 82–85]. In the past decade, quantum Turbo codes

[37, 38, 128, 129], quantum polar codes [111–114] as well as quantum low-density

parity-check (LDPC) codes [39, 62–64] are popular codes that have been well-

studied since classical LDPC and Polar codes are capacity achieving codes, and

more importantly, there exists a practical iterative decoder for LDPC and Turbo

codes.

MacKay et. al. [39] generalized the design of quantum LDPC codes based on the

prior works in [60–62] for large-scale (a large number of qubits involved) quantum

computation and information processing. They conjectured that good quantum

LDPC codes with practical decoders could exist due to the fact that 1) the con-

ventional sparse-graph LDPC codes [43, 51] are capacity achieving codes [52, 53],

which ascertain both the sparseness of a code and an efficient decoding algorithm,

and 2) decoding algorithms, such as the sum-product algorithm, can be practically

implemented. The sparseness of the parity-check matrix of LDPC codes is of par-

ticular interest in the quantum domain due to a small number of interactions per

qubit when performing an error correction procedure, and also makes quantum

LDPC codes highly degenerate. The degeneracy of a quantum code is a striking

feature, in that the code can be used to correct more errors than they can uniquely

identify, e.g., [34], which is impossible for a classical code.

The design of general quantum stabilizer codes from conventional LDPC codes is

non-trivial. In particular, the design of conventional LDPC codes utilizing ran-

domness [51, 54, 55] is not helpful in the design of quantum LDPC codes. To

construct powerful quantum LDPC codes, many researchers dedicated their work

in this direction and a wide range of different types of sparse-graph quantum LDPC

codes has been proposed. The bicycle and unicycle codes with unavoidable cycles

of length 4 proposed by Mackay et. al. [39] are typical examples of quantum

LDPC codes from the family of classical dual-containing LDPC codes. Addition-

ally, MacKay et al. proposed the class of Cayley graph-based quantum LDPC

codes [40] whose minimum distance is lower bounded by a logarithmic function
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of its code length. The class of Cayley graph-based quantum LDPC codes was

further investigated by Couvreur et al. [41, 42]. Moreover, Lou et al. proposed

the quantum LDPC codes of CSS structure from classical low-density generator

matrix (LDGM) codes [76, 77]. However, these codes suffer from cycles of length

4. Hagiwara et al. conceived a class of quantum LDPC codes based on conven-

tional quasi-cyclic (QC) LDPC codes [67]. Such a quantum LDPC code has girth

of at least 6 by carefully designing the pair of QC-LDPC codes using algebraic

combinatorics. Later, the class of quantum QC-LDPC codes was extended to the

non-binary field [72, 74, 75] with higher decoding complexity, and further extended

to the class of spatially-coupled quantum QC-LDPC codes [69, 73], which was ca-

pable of achieving a performance similar to a non-binary QC-LDPC code only

when its code length was very large. Furthermore, many mathematical tools have

also been used when designing quantum LDPC codes. For instance, the classes of

quantum LDPC codes derived from finite geometries and Latin squares were pro-

posed by Aly et al. [65, 66]. Djordjevic exploited the Balanced Incomplete Block

Designs (BIBD) in [71]. The design of quantum stabilizer codes based on syn-

drome assignment by parity-check matrices is proposed in [70]. Notably, Camara

et al [63, 64] were the first to conceive quantum LDPC codes from classical self-

orthogonal quaternary LDPC codes, which means the proposed quantum codes

are of non-CSS structure. Later, Tan et al. proposed a number of systematic con-

structions for self-orthogonal quantum LDPC codes [68], four of which were based

on scrambling and rotation of circulant permutation matrices (CPMs), while one

was derived from binary LDPC-convolutional codes.

However, most of the above mentioned constructions of quantum sparse-graph

codes suffer from disappointingly small minimum distances, namely whenever they

have non-vanishing rate and parity-check matrices with bounded row-weight, their

minimum distance is either proved to be bounded, or unknown and with little

hope for unboundedness. The point has been made several times that minimum

distance is not everything, because there are complex decoding issues involved,

whose behavior depends only in part on the minimum distance, and also because

a poor asymptotic behavior may be acceptable when one limits oneself to practical
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lengths. Nevertheless, very poor minimum distances will imply significant error

floors. It has been proved [156] that a sufficient large growing minimum distance

- for quantum LDPC codes - is enough to imply a non-zero decoding threshold.

In other words, the code corrects almost all error patterns of weight up to a value

linear in the block length. Finally, the minimum distance has been the most

studied parameter of error-correcting codes and given that asymptotically good

(dimension and minimum distance both linear in the blocklength) quantum LDPC

codes are expected to exist, it is of great theoretical interest, and possibly also

practical, to devise quantum LDPC codes with large, growing, minimum distance

[154–157].

1.3 Contribution and layout of the thesis

In this thesis, two families of quantum stabilizer codes based on classical block

codes are constructed, including small-scale; tens to hundreds of qubits, quantum

stabilizer codes designed from quadratic residue (QR) sets and difference sets. For

large-scale quantum systems, where hundreds to thousands of qubits are involved,

novel constructions of quantum LDPC codes based on the classical Proto-graph

LDPC codes and Latin square are proposed. These constructions employ various

construction techniques, such as circulant concatenation, matrix transformations

and tensor product operations, into the design of quantum LDPC codes of quasi-

cyclic structure. Furthermore, a family of quantum synchronizable codes from

classical nested cyclic codes is proposed. Such a family of quantum codes are

capable of correcting both standard quantum errors and synchronization errors

by making good use of the cyclic property of a classical cyclic code. Lastly, we

investigate the channel mismatch effect for quantum LDPC codes decoded under

iterative sum-product decoding algorithm over quantum depolarizing channels.

In the following, the structure and contribution of each chapter of the thesis is

given. There are eight chapters in total, presenting the motivation for pursuing

this thesis, reviews of the relevant literature and background, research results,
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analysis of proposed quantum stabilizer codes and quantum LDPC codes, as well

as the conclusion we reach through the research.

Chapter 1

This chapter starts with an exposition of the key impedance in quantum

information processing, which is the motivation for the works presented in

this thesis. A brief review of the history of quantum error correction and

quantum error-correcting codes is followed by the perspective for the work

involved.

Chapter 2

Chapter 2 provides fundamental background knowledge related to the mate-

rials presented in this thesis. It covers an introduction on quantum compu-

tation, quantum error correction, the relationship between quantum error-

correcting codes and classical error-correcting codes, and most importantly,

the stabilizer formalism and stabilizer codes. The materials in this chapter

are well-studied in past decades and no new results provided.

Chapter 3

This chapter focuses on the perspective of designing quantum stabilizer codes

from classical linear block codes. A brief overview of classical linear block

codes is followed by the description of three dual spaces, such that differ-

ent categories of classical codes can be used to construct quantum stabilizer

codes. They are the Euclidean dual space, Hermitian dual space and the

symplectic dual space. The encoding of CSS and general stabilizer codes,

together with examples, and some known distance bounds for quantum sta-

bilizer codes are given thereafter.

Chapter 4

In Chapter 4, we propose two types, Type-I and Type-II, quantum stabi-

lizer codes using quadratic residue sets of prime modulus given by the form

p = 4n ± 1 and difference sets of parameters (4n − 1, 2n − 1, n − 1), where

n ∈ Z+. The proposed Type-I stabilizer codes are of cyclic structure and
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code length N = p. They are constructed based on multi-weight circu-

lant matrix generated from idempotent polynomial, which is obtained from

a quadratic residue set. The proposed Type-II quantum stabilizer codes

from difference sets is named difference set stabilizer codes (DSS). We give

three design criteria for constructing quantum stabilizer codes from differ-

ence sets, and illustrate the performance of the proposed DSS codes over

quantum depolarizing channels with low-complexity majority-logic decoder.

In addition, we show that the performance of proposed DSS codes can be

further improved by constructing the stabilizer codes from subsets of a dif-

ference set rather than from a difference set itself.

Part of the work this chapter has been published in:

[C3] Y. Xie, J. Yuan and R. Malaney, “Quantum Stabilizer Codes From

Difference Sets,” IEEE Procs. on Inter. Symp. Info. Theory (ISIT),

2013.

Some of the key results are briefly listed here.

Contributions

• We prove that the dimension of the proposed stabilizer codes from QR

sets is k when n is even with a prime p = 4n− 1, and 1 when n is odd

with a prime p = 4n+ 1.

• We prove that the minimum distance for stabilizer codes of length N =

4n+ 1 is upper bounded by the size of QR set k.

• We show that the constructed Type-I stabilizer codes meet the distance

bounds as shown in the literature.

• We show that the cyclic difference sets of parameters (4n−1, 2n−1, n−

1), where n ≥ 2, can be generated by using a primitive element of a

cyclic group.

• By using shifts (translates) of a difference set, we show that the resulting

circulant permutation matrices are self-orthogonal matrices.
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• We further show that if 2n−1 can be factorized for some value of n, i.e.,

the difference set contains subsets, the qubit error rate over quantum

depolarizing channel can be further improved by constructing the codes

using subsets of a difference set.

Chapter 5

The materials in Chapter 5 are related to the design of large quantum sys-

tems, which hundreds or thousands of qubits are involved. In particular, we

give a novel design of quantum LDPC codes from a much smaller Tanner

graph, namely the proto-graph. We then construct families of proto-graph

quantum LDPC codes based on the prime QR sets used in Chapter 4 and

Latin squares. We derive the minimum distance and dimension of the pro-

posed quantum LDPC codes for various constructions. Finally, we show

examples of the proposed quantum LDPC codes and illustrate their perfor-

mance over quantum depolarizing channels with an iterative sum-product

decoding algorithm. Furthermore, we extend the design of proto-graph quan-

tum LDPC codes by introducing two additional constructions, namely Con-

struction A and Construction B. The first construction relies on the method

of lifting with a simpler pre-lifting method, whereas the second construc-

tion adopts the operation of tensor product. Such a operation is applied

to two non-binary parity-check matrices that are derived from the idempo-

tents of QR/NQR sets, so that the resulting quasi-cyclic LDPC codes are

self-orthogonal w. r. t. the SIP.

The work in this chapter has been submitted:

[J1] Y. Xie, J. Yuan and Q. (Tyler) Sun, “Proto-graph Based Quantum

LDPC codes From Quadratic Residue Sets,” IEEE Trans. Comm..

[C1] Y. Xie and J. Yuan, “Proto-graph Quantum LDPC Codes From

Tensor Product of Parity-Check Matrices,” IEEE Procs. on GlobeCom

Workshop, 2015.

Some of the key results are briefly listed here.

Contributions



Chapter 1: Introduction 11

• We adopt the idea of proto-graph into the design of quantum LDPC. We

show that for regular proto-graphs, the proto-matrix that representing

a proto-graph is a non-orthogonal Latin square.

• We obtain a set of transformation matrices based on the transversal of

these non-orthogonal Latin squares, so that by transforming the proto-

matrix, the resulting QC-LDPC codes are always self-orthogonal w. r.

t. the symplectic inner product (SIP) constraint.

• We provide three classes of quantum LDPC codes proposed from prime

QR sets of p = 4n ± 1, including Type-I-A and Type-I-B codes for

p = 4n− 1 and Type-II codes for p = 4n+ 1.

• We prove that the self-orthogonality between the pair of QC-LDPC

codes is invariant w. r. t. the order of CPM for the proposed Type-I-B

and Type-II codes, whereas for Type-I-A codes the order of CPMs must

be equal to p.

• The minimum distance of the proposed Type-II codes is lower bounded

by 2(ρ′ + 1)−max{wt(a|b)}, where ρ′ is the minimum column weight

of the underlying QC-LDPC codes, and (a|b) ∈ F2N
2 is an element in

the symplectic dual space.

• The Tanner graph of the parity-check matrix of the underlying QC-

LDPC codes for the proposed Type-II QCS codes contains only cycles

of length six, whereas for both Type-I-A and Type-I-B QCS codes, the

girth is four.

• By using QR sets of prime size with parameter p = 4n ± 1, n ≥ 2,

and its associated idempotent polynomials, the proposed Construction

A yields a [[pv, pv − ρ, dmin]] proto-graph quantum LDPC code, where

ρ < pv and v ∈ Z+ is the order of the CPM.

• Construction B yields proto-graph quantum LDPC codes of parameters

[[p2v, p2v−γ(v−1)−1, dmin]], where γ ∈ Z+ is the size of the extension

field F2γ of binary field F2. Such a class of proto-graph quantum LDPC

codes have a quantum code rate at least RQ > 0.9.



Chapter 1: Introduction 12

Chapter 6

In Chapter 6, we study the concept of quantum synchronizable codes (QSC),

which is a class of quantum stabilizer codes that correct not only the standard

quantum noises, but also block misalignment errors. We construct a family

of classical codes that is suitable for the design of quantum synchronizable

codes of CSS structure based on classical chain-containing cyclic codes. We

also provide a distance bound that is derived using rational functions for the

proposed chain-containing cyclic codes.

This is a joint work with Dr Fujiwara from CalTech, USA. Part of the work

has been published in the paper:

[C2] Y. Xie, J. Yuan and Y. Fujiwara, “Quantum Synchronizable Codes

From Quadratic Residue Codes and Their Supercodes,” IEEE Procs.

on Info. Theory Workshop (ITW), 2014.

[J2] Y. Xie and J. Yuan, “q-ary Chain-containing Quantum Synchro-

nizable Codes” IEEE. Trans. Comm. Lett., Vol. 20, No. 3, 414 – 417,

2016.

Some of the key results are briefly listed here.

Contributions

• We provide necessary condition for classical cyclic codes that are suit-

able for the constructions of QSCs.

• We derive the distance lower bound for the proposed QSC codes from

supercodes/subcodes of the chain-containing cyclic codes.

• The class of QR codes is a subclass of the proposed chain-containing

cyclic codes such that the constructed QSC codes from QR codes have

dimension K = 1 and the maximum misalignment tolerance is equal to

the code length N .

Chapter 7

Chapter 7 begins with discussion of an interesting channel mismatch effect

for classical LDPC codes over a binary symmetric channel (BSC), where
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the channel information is unknown to the decoder. We then investigate

the channel mismatch effect for quantum LDPC codes under an iterative

sum-product decoding algorithm over a quantum depolarizing channel. We

demonstrate that the degraded performance due to channel mismatch can

be suppressed by inserting a proper estimation of the channel as the input

of a decoder. A brief overview of quantum sum-product decoding algorithm

over the quantum depolarizing channels is also introduced.

Part of the work in this chapter has been published in:

[C4] Y. Xie, J. Li, R. Malaney and J. Yuan, “Channel identification

and its impact on quantum LDPC code performance,” IEEE Procs. on

Aus. Comm. Theory Workshop (AusCTW), pp. 140 - 144, 2012.

[C5] Y. Xie, J. Li, R. Malaney and J. Yuan, “Improved Quantum

LDPC Decoding Strategies for the Misidentified Quantum Depolariza-

tion Channel,” IEEE Procs. on European Signal Processing Conference,

2016..

Some of the key results are briefly listed here.

Contributions

• We show that for quantum LDPC codes over a depolarizing channel, un-

derestimated channel information causes severe performance loss com-

pared to when the channel is overestimated.

• We introduce a weighting factor ∆f̂ that is added to the estimated

value of a channel, so that the estimation of the channel information is

an overestimation for high probability, which can be used as an input

to the decoder to mitigate the effect of channel mismatch.

• We show that the proposed method of channel estimation can reduce

the effect of channel mismatch up to 50% compared to the decoding

scenario without the weighting factor.

Chapter 8

Chapter 8 concludes the thesis by summarizing the Ph.D research work. In
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addition to the research results, a brief discussion on possible future work is

also given.



Chapter 2

Background on QEC and QECCs

T his chapter is a self-contained introduction on quantum information and

quantum error correction. An adequate level of quantum mechanics is

also provided as a prerequisite to understanding the concept of quantum error

correction. A number of existing well-known quantum codes is shown at the end

of the chapter. Readers who are interested in quantum mechanics are referred to

standard textbooks such as [11, 12] or survey tutorials such as [9, 93, 138].

2.1 Quantum information

2.1.1 Qubit

Single qubit system : A fundamental unit of classical information is a bit.

Each bit can only exist in one of the two distinct values 0 or 1. The choice of

binary number naturally comes from classical logic of true or false, respectively.

Quantum computation and quantum information are built upon an analogous

concept, the quantum bit, qubit. Unlike the classical bits, a qubit can exist in

coherent superposition of its two states |0〉 and |1〉, where the notation ‘| 〉’ is

called Ket [11], which is used to represent a quantum state. Mathematically, the

notation represents a 2-dimensional column vector |0〉 = [ 1
0 ] and |1〉 = [ 0

1 ]. An

15
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arbitrary quantum state of an single qubit |ψ〉 can be expressed as

|ψ〉 = α|0〉+ β|1〉, (2.1)

where {|0〉, |1〉} is known as a set of computational basis states for a single qubit,

and |ψ〉 is an orthonormal state because

〈0|1〉 = 〈1|0〉 = 0,

|α|2 + |β|2 = 1, α, β ∈ C. (2.2)

The operation 〈0|1〉 denotes the inner product between two states and the nota-

tion ‘〈 |’ is called Bra, or a 2-dimensional row vector 〈0| = [ 1
0 ]T and 〈1| = [ 0

1 ]T ,

equivalently. Thus, the state of a single qubit is a unit vector in a 2-dimensional

complex vector space.

N-qubit system : For an N -qubit quantum system, the general orthonormal

state |ψ〉 is expressed as

|ψ〉 =
2N−1∑
i=0

αi|vi〉, (2.3)

where vi ∈ FN2 is a binary N -tuple that runs over all binary strings of length N

and ∑2N−1
i=0 |αi|2 = 1. Since there are 2N complex coefficients αi, |ψ〉 is a unit

vector in a 2N -dimensional complex vector space and each computational state

represented by |vi〉 is the shorthand for the N -fold tensor product (‘⊗’) operation.

E.g., |00 · · · 0〉 is the shorthand for |0〉 ⊗ |0〉 ⊗ |0〉 ⊗ · · · ⊗ |0〉. The state space

{|ψ〉} for N qubits is the Hilbert space denoted by H ' C2 ⊗ C2 ⊗ · · · ⊗ C2 with

dimension 2N .

Entangled states : Two qubits are said to be entangled if they cannot be ex-

pressed as a tensor product of the single qubit. For instance, the state

|ψ〉 = α|00〉+ β|11〉, α, β ∈ C,
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is a typical example of entangled states. It is entangled since

α|00〉+ β|11〉 6= (α1|0〉+ β1|1〉)⊗ (α2|0〉+ β2|1〉) ,

where the right hand side expands into

α1α2|00〉+ β1α2|10〉+ α1β2|01〉+ β1β2|11〉,

for any nonzero α1, α2, β1, β2 ∈ C subject to normalization.

The set of entangled orthonormal states for two qubits are the Bell states [11],

{
|00〉+ |11〉√

2
,
|00〉 − |11〉√

2
,
|01〉+ |10〉√

2
,
|01〉 − |10〉√

2

}
,

which is also referred to as the Einstein-Podolsky-Rosen (EPR) pairs.

2.1.2 Unitary operators

An unitary operator U is a linear operator that satisfies

U †U = I with U−1 = U †,

where U † is the Hermitian transpose (or mathematically, the conjugate transpose)

of U and I is the identity matrix. Moreover, a unitary transformation on a quan-

tum state |ψ〉 = α|0〉+ β|1〉 is a linear operation that can be expressed as

U (α|0〉+ β|1〉) = αU (|0〉) + βU (|1〉) .

We shall see some typical examples of unitary operators for single qubit, two qubits

and three qubits states.

1. Quantum gates for single qubit
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The Pauli matrices {I,X, Z, Y } (also known as the Pauli I,X, Y, Z-gate)

form a basis of unitary operators acting on a single qubit, where

I =

 1 0

0 1

 , X =

 0 1

1 0

 , Z =

 1 0

0 −1

 , Y =

 0 −i

i 0



and the imaginary component i =
√
−1 is the phase of the operator. Each

operator from left to right represents no action, bit-flip, phase-flip and a

combination of both bit-flip and phase-flip on a single qubit. Note that

X2 = Z2 = Y 2 = I and Y = iXZ. Moreover, each Pauli operator is

unitary since X = X†, Z = Z† and Y = Y †, which implies U †U = I for

U ∈ {I,X, Z, Y }. The behaviour of each operator on a single qubit is shown

in the following:

I(α|0〉+ β|1〉)

=

 1 0

0 1


α

 1

0

+ β

 0

1


 = α

 1

0

+ β

 0

1

 = α|0〉+ β|1〉,

X(α|0〉+ β|1〉)

=

 0 1

1 0


α

 1

0

+ β

 0

1


 = α

 0

1

+ β

 1

0

 = α|1〉+ β|0〉,

Z(α|0〉+ β|1〉)

=

 1 0

0 −1


α

 1

0

+ β

 0

1


 = α

 1

0

+ β

 0

−1

 = α|0〉 − β|1〉,

Y (α|0〉+ β|1〉)

=

 0 −i

i 0


α

 1

0

+ β

 0

1


 = α

 0

i

+ β

 −i
0

 = i(α|1〉 − β|0〉).

(2.4)

From (2.4), we observe that an I operator has no effect to the qubit. A X

operator flip the value between the computational basis |0〉 and |1〉, whereas

a Z operator flip the sign of basis |1〉 but not |0〉. Finally, a Y operator does

both to the qubit.

Another single qubit unitary operator is the Hadamard gate. It transforms a
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basis |0〉 or |1〉 state into an orthonormal superposition state via the following

transformation:

H (|0〉) = 1√
2

1 1

1 −1


1

0

 = 1√
2

1

1

 ≡ 1√
2

(|0〉+ |1〉) (2.5)

and

H (|1〉) = 1√
2

1 1

1 −1


0

1

 = 1√
2

 1

−1

 ≡ 1√
2

(|0〉 − |1〉) . (2.6)

The matrix H = 1√
2

1 1

1 −1

 is the Hadamard matrix of order 2. Note that,

the Hadamard transformation is the key transformation to enable the cor-

rection of a phase-flip error (a Pauli Z operator) of a QECC. By transform-

ing the computational basis {|0〉, |1〉} into Hadamard basis { 1√
2 (|0〉+ |1〉) ,

1√
2 (|0〉 − |1〉)} via Hadamard transformations, the effect of a Z operator

acting on Hadamard basis is equivalent to a X operator acting on the basis

{|0〉, |1〉}. Thus, a Pauli Z operator behaves similarly as a Pauli X operator

under different computational basis. We shall see more on this in the section

of quantum error correction.

2. Quantum gates for two qubits

The analogues of a classical XOR gate is a controlled-NOT gate (CNOT),

which is an unitary operator acting on two or more qubits. A CNOT gate

flips the second qubit (the target qubit) if and only if the first qubit (the

control qubit) is |1〉. The CNOT operation can be expressed as

CNOT =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


, (2.7)
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or equivalently |a, b〉 CNOT−→ |a, a ⊕ b〉, where ‘⊕’ is the binary addition. For

example, |00〉 CNOT−→ |00〉, |01〉 CNOT−→ |01〉, |10〉 CNOT−→ |11〉, |11〉 CNOT−→ |10〉.

More generally, if U is an unitary operator on single qubits with matrix

representation

U =

u11 u12

u21 u22

 ,
then the controlled-U gate operates on two qubits in such a way that the

first qubit serves as a control, and only if the control qubit is |1〉, the trans-

formation of the target qubit (the second qubit) based on U is performed.

It maps the basis states as follows:

|00〉 C(U)−→ |00〉,

|01〉 C(U)−→ |01〉,

|10〉 C(U)−→ |1〉U (|0〉) = |1〉 (u11|0〉+ u21|1〉) ,

|11〉 C(U)−→ |1〉U (|1〉) = |1〉 (u12|0〉+ u22|1〉) .

When U is one of the Pauli operators {X, Y, Z}, the terms controlled-X,

controlled-Y and controlled-Z are sometimes used. The matrix representa-

tion of C(U) is

C(U) =



1 0 0 0

0 1 0 0

0 0 u11 u12

0 0 u21 u22


.

If U = X, then C(U) = CNOT , and it is the CNOT matrix in (2.7).

The swap gate is another type of unitary operators that swaps the position

of two qubits w. r. t. the basis {|00〉, |01〉, |10〉, |11〉}. It is represented by
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the matrix

SWAP =



1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


. (2.8)

3. Quantum gates for three qubits

The Toffoli gate, also known as the controlled-CNOT (CCNOT) gate, is a

three-qubit gate. If the first two qubits are both in the state |1〉, it applies

a Pauli X operator on the third. The equivalent matrix representation is

CCNOT =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0



.

Similarly, the Fredkin gate, also known as the controlled-SWAP (CSWAP)

gate, is another three-qubit gate that swaps the position of the second and

the third qubit if the first qubit is in the state |1〉. The equivalent matrix

representation is

CSWAP =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1



.
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2.1.3 Pauli group

A Pauli operator on N qubits has the form cO1O2 . . . ON , where each Oi ∈

{I,X, Y, Z} and c = i{0,1,2,3} ∈ {±1,±i} is the overall phase of the operator.

This operator takes an N -qubit state |l1l2 · · · lN〉 to cO1|l1〉⊗O2|l2〉⊗ · · ·⊗ON |lN〉

according to (2.4). For instance, XIZ(|000〉+ |111〉) = X|0〉⊗I|0〉⊗Z|0〉+X|1〉⊗

I|1〉 ⊗ Z|1〉 ≡ |100〉 − |011〉.

Furthermore, Pauli operators form a group together with the overall phase factor

c. Let P1 = {±1,±i} × {I,X, Z, Y } be the single qubit Pauli group. Then the

N -fold tensor product of P1 forms an N -qubit Pauli group

PN = {±1,±i} × {I,X, Z, Y }⊗N . (2.9)

The elements of PN either commute or anti-commute. For any two operators

E,F ∈ PN , define

E ◦ F :=
N∏
j=1

Ej ◦ Fj, (2.10)

where Ej ◦ Fj = +1 if EjFj = FjEj and Ej ◦ Fj = −1 if EjFj = −EjFj. Hence,

two Pauli operators either commute (E ◦F = +1) or anti-commute (E ◦F = −1).

For E,F ∈ P1, this commutative operation is summarized in TABLE 2.1.

E\ F I X Y Z
I +1 +1 +1 +1
X +1 +1 -1 -1
Y +1 -1 +1 -1
Z +1 -1 -1 +1

Table 2.1: Commutative operation of Pauli group P1.

This property is particular important since it is the key to the quantum codes of

stabilizer formalism, which we will introduce later.
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2.2 Quantum error correction

2.2.1 Overview

Error-correction methods are widely used in communication systems. To commu-

nicate, a sender needs to send information to a receiver over a noise communication

channel. The disturbance (or noises) of the channel can affect the information car-

ried. To transmit information reliably in the presence of noise through a communi-

cation channel, the sender needs to encode the information by adding redundancy

digits before the transmission. After transmission, the receiver decodes the in-

formation. Classically, the simplest way to add redundancy bits is to repeat the

information bits, e.g., 0 → 000 and 1 → 111, and transmit all the bits through

a communication channel. By performing the majority rule at the receiver side,

the transmitted information bits can be recovered reliably whenever the number of

erroneous bits flipped by the noise is less than half of the length of the transmitted

sequence. This is also known as the repetition code.

This principle of communication systems applies to the quantum systems as readily

as to the classical setting. However, there are fundamental differences between

quantum information processing and its classical counterpart because a quantum

system can exist in the form of superposition state. The three important differences

that require new ideas to be introduced to make such quantum error correcting

codes possible are:

• No-cloning theorem [11] The no-cloning theorem states that it is impos-

sible to duplicate a quantum state |ψ〉 to give |ψ〉⊗|ψ〉. This can be shown in

the following. If we assume that U is a linear transformation of replication,

which maps the state

|ψ〉 U→ |ψ〉 ⊗ |ψ〉. (2.11)
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Since U is linear, the following should hold:

(|ψ〉+ |θ〉) U→ |ψ〉 ⊗ |ψ〉+ |θ〉 ⊗ |θ〉. (2.12)

However, the right-hand side of the transformation does not equivalent to

(|ψ〉 + |θ〉) ⊗ (|ψ〉 + |θ〉). Therefore, we can not replicate quantum state

|ϕ〉 = |ψ〉+ |θ〉 to obtain |ϕ〉 ⊗ |ϕ〉.

• Quantum measurement destroys quantum information: In quantum

mechanics, measuring a quantum superposition state generally collapses the

superposition property, or destroys the encoded quantum information. This

means that we cannot examine a qubit to determine its quantum state, that

is, the values of the complex coefficient αi. For instance, when we measure

the state |ψ〉 = α|0〉 + β|1〉, we get either the result 0 with probability |α|2

or 1 with probability |β|2.

• Quantum bit (Qubit) errors are continuous: Recall that a quantum

superposition state of N qubits is often described by a vector space in a

2N -dimensional Hilbert space. Unitary errors consist of a rotation of this

vector and hence there exists a continuum of possible errors. In contrast,

only bit-flip errors may occur for classical bits. These possible impairments

have a continuous nature and the erroneous state may lie anywhere on the

surface of the Bloch sphere [11].

2.2.2 Basic strategy of QEC

The discovery of the first quantum error-correcting codes was made by Shor [3]

in 1995. He realized that quantum error-correction can be formulated as a digital

process after all; measurement of the quantum syndrome projects the continuum

of quantum error onto a discrete error basis. In another word, syndrome measure-

ment digitizes the quantum error by measuring the discretized error basis without

measuring the quantum state itself. By doing so the quantum information carried

by the original state remains intact.
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To explain in more detail, the process of digitization of quantum error is based on

the observation of any interaction between a quantum system and an environment

system. Consider the following interaction between a single qubit state formed by

the basis {|0〉, |1〉} and an environment |e〉:

|e〉|0〉 → |e1〉|0〉+ |e2〉|1〉,

|e〉|1〉 → |e3〉|0〉+ |e4〉|1〉,

where |e〉 is the initial state of the environment and |ei〉 are states of the environ-

ment, not necessarily orthogonal or normalized. Then the state |ψ〉 = α|0〉+ β|1〉

interacting with |e〉 is

|e〉|ψ〉 →α (|e〉|0〉) + β (|e〉|1〉)

α (|e1〉|0〉+ |e2〉|1〉) + β (|e3〉|0〉+ |e4〉|1〉) . (2.13)

We can write the Equation (2.13) in terms of different orthonormal states of single

qubit, that is, in the terms of {α|0〉 + β|1〉, α|0〉 − β|1〉, α|1〉 + β|0〉, α|1〉 − β|0〉}.

Then, the following equivalent expression can be obtained:

α (|e1〉|0〉+ |e2〉|1〉) + β (|e3〉|0〉+ |e4〉|1〉)

≡1
2[(|e1〉+ |e4〉)(α|0〉+ β|1〉) + (|e1〉 − |e4〉)(α|0〉 − β|1〉)

+ (|e2〉+ |e3〉)(α|1〉+ β|0〉) + (|e2〉 − |e3〉)(α|1〉 − β|0〉)]. (2.14)

Note that each one of the orthonormal state is actually a unitary transformation

of |ψ〉 under a Pauli operator given in (2.4). Hence,

|e〉|ψ〉 →α (|e1〉|0〉+ |e2〉|1〉) + β (|e3〉|0〉+ |e4〉|1〉)

≡1
2[(|e1〉+ |e4〉)I|ψ〉+ (|e1〉 − |e4〉)Z|ψ〉

+ (|e2〉+ |e3〉)X|ψ〉+ (|e2〉 − |e3〉)(−i)Y |ψ〉]. (2.15)

As shown in Equation (2.15), the interaction between a quantum state and an

environment can be discretized into a linear combination of the original state and
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its transformations under Pauli operators X,Z and Y . Hence, the Pauli matrices

form a complete set such that every possible transformation of the qubits can be

described by the set {I,X, Y, Z}.

In a general quantum system, an arbitrary state |ψ〉 interacted with the environ-

ment |e〉, as shown in Figure 2.1, produce a superposition state

|e〉 |ψ〉 →
∑
i

|ei〉 (Mi |ψ〉) (2.16)

as the outcome. Each error operator Mi is a tensor product of Pauli matrices

acting on the system |ψ〉.

eψ ( )i i
i

e M ψ∑

Figure 2.1: Interaction between quantum state and environment.

Error correction is a process which takes the erroneous state Mi|ψ〉 to |ψ〉. To see

closely how quantum error correction is achieved, consider the noisy state

∑
i

|ei〉 (Mi |ψ〉) .

The error correction procedure works by introducing another system called ancilla,

which is often initialized as the zero state |0〉a. The unitary interaction between

a quantum system, say |ψ〉, and |0〉a, denoted as A, is carefully designed to have

the property

A (|0〉aMi |ψ〉) = |si〉a (Mi |ψ〉) , (2.17)

where |si〉a of the ancilla state are orthonormal for all Mi. This interaction is

known as syndrome extraction. The syndrome si contains information about the

error that occurred. Furthermore, to prevent the destruction of encoded quantum

information, the state of the ancilla |si〉a depends only on the error, and not on

the quantum state |ψ〉 itself. By applying A to the corrupted state on the right

hand side of Equation (2.16), we obtain the result
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ψ

0
a

e ( )i i ia
i

e M ψ∑ s
Ancilla state

A A

Figure 2.2: Quantum error correction with ancilla qubits

A
(
|0〉a

∑
i

|ei〉Mi |ψ〉
)

=
∑
i

|ei〉 |si〉a (Mi |ψ〉) (2.18)

as shown in Figure 2.2. Since the state |si〉a is orthonormal, the superposition

state is projected onto

∑
i

|ei〉 |si〉a (Mi |ψ〉)→ |ei〉 |si〉aMi |ψ〉 (2.19)

if the basis |si〉a is measured for some values of si. Then the decoding process is to

deduce Mi from si, so that the recovery operation is simply apply M−1
i to obtain

the final corrected state |ei〉 |si〉a |ψ〉.

Note that, the state |ψ〉 has now been corrected, the state of the environment is

of no importance and the ancilla state can be reused.

2.2.3 Quantum bit-flip repetition code

By making use of ancilla states wisely, the idea of the classical repetition code

is applicable to quantum error correction. Consider the simplest quantum error

correction method in Fig. 2.3. Suppose Alice wishes to transmit a single qubit

state |ψ〉 = α|0〉 + β|1〉 to Bob through a channel which introduces bit-flip X

errors randomly. To encode the state, Alice prepares two extra ancilla qubit |0〉

and obtains the state

(α|0〉+ β|1〉)⊗ |00〉 = α|000〉+ β|100〉

to encode her single qubit state. Followed by two CNOT operations on each of

the extra qubits, the encoded state before passing through the single bit-flip error
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Bit‐flip 
error

0 1ψ α β= +

0

0

q1

q2

q3

Encoder Decoder

0

0 (1,2, 3)orX}

0 1ψ α β= +

Syndrome extraction Recovery

Figure 2.3: Circuit for 3-qubit bit-flip repetition code.

channel is

|ψ〉 = α|000〉+ β|111〉.

Now we have generated a rate 1
3 quantum repetition code.

If a bit-flip error occurred randomly and independently on each qubit with prob-

ability of ε, then Bob receives one of the following possible states:

State Probability

α |000〉+ β |111〉 (1− ε)3

α |100〉+ β |011〉 ε(1− ε)2

α |010〉+ β |101〉 ε(1− ε)2

α |001〉+ β |110〉 ε(1− ε)2

α |110〉+ β |001〉 ε2(1− ε)

α |101〉+ β |010〉 ε2(1− ε)

α |011〉+ β |100〉 ε2(1− ε)

α |111〉+ β |000〉 ε3.

(2.20)

To be able to detect and correct any bit-flip errors, Bob introduces two more

ancilla qubits state |00〉. Bob uses the state to gather information about the error.

He first carries out CNOT operations from the first and second received qubits to

the first ancilla qubit, then from the first and third received qubits to the second
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ancilla qubit. Thus, we obtain the total states of all five qubits as

State Probability

(α |000〉+ β |111〉) |00〉 (1− ε)3

(α |100〉+ β |011〉) |11〉 ε(1− ε)2

(α |010〉+ β |101〉) |10〉 ε(1− ε)2

(α |001〉+ β |110〉) |01〉 ε(1− ε)2

(α |110〉+ β |001〉) |01〉 ε2(1− ε)

(α |101〉+ β |010〉) |10〉 ε2(1− ε)

(α |011〉+ β |100〉) |11〉 ε2(1− ε)

(α |111〉+ β |000〉) |00〉 ε3

(2.21)

Bob then measures the two ancilla qubits in the basis of |0〉 and |1〉. This gives

him two classical bits of information. This information is called error syndrome,

which helps to diagnose the error in the received qubits. For instance:

Syndrome Action

00 nothing

01 X → 3rdqubit

10 X → 2ndqubit

11 X → 1stqubit

(2.22)

This is also the recovery stage as shown in the Fig. 2.3. Suppose that Bob’s

measurement gives ‘10’. By examining Equation (2.21), the state of the received

qubits must be either α|010〉+β|101〉 or α|101〉+β|010〉 with probability of ε(1−ε)2

and ε2(1 − ε), respectively. Assume that ε < 0.5, state α|010〉 + β|101〉 is more

likely to happen. Thus, Bob corrects the state by applying a Pauli X operator

to the second qubit. This procedure corrects the bit-flip error since X2 = I, and

the original three qubit stated α|000〉 + β|111〉 is recovered from the corrupted

state α|010〉 + β|101〉. Finally, to extract the single qubit state which Alice sent,

Bob applies two CNOT operations from the first qubit to the second and third,

obtaining the state α|0〉 + β|1〉. Hence, the decoding process has completed and

Bob received the exact state sent by Alice. Note that, analogous to the classical
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3-bit repetition code, the method above has a probability of success greater than

1 − ε when ε < 0.5. On the other hand if ε > 0.5, state α|101〉 + β|010〉 will be

most likely to happen, which will cause decoding error for Bob after applying X

operator on the second qubit. Moreover, this example of correction is designed to

succeed whenever either no qubit or just one is corrupted. The failure probability

is the probability that at least two qubits are corrupted by the channel.

2.2.4 Quantum phase-flip repetition code

A 3-qubit phase-flip repetition code is slightly different from the 3-qubit bit-flip

repetition code. The reason for this is because a Pauli Z operator will not alter the

value between basis |0〉 and |1〉, instead, it only change the sign of |1〉. Therefore, as

mentioned in the Section 2.1.2 of this chapter, a set of new basis is required in order

to detect and correct a phase-flip error. These are the Hadamard basis obtained

from the transformation of Hadamard gates. According to the transformations

given in Equations (2.5) and (2.6), denote by

|+〉 ≡H |0〉 = |0〉+ |1〉√
2

,

|−〉 ≡H |1〉 = |0〉 − |1〉√
2

. (2.23)

The transformation of a Pauli Z operator interchanges between Hadamard basis

|+〉 and |−〉, that is,

Z|+〉 = Z (H |0〉) =

1 0

0 −1

 1√
2


1

0

+

0

1




= 1√
2


1

0

−
0

1




≡ 1√
2

(|0〉 − |1〉)

= |−〉 (2.24)
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and vice and versa. Consequently, analogues to the 3-qubit bit-flip repetition code,

a 3-qubit phase-flip repetition code encodes |0〉 and |1〉 via Hadamard basis as

|0〉 → |0̄〉 = |+ + +〉,

|1〉 → |1̄〉 = |− − −〉, (2.25)

to protect against the single qubit phase error. Consider the quantum state |ψ〉 =

α|0〉+ β|1〉, then the encoded state is

|ψ〉 → |ψ̄〉 = α|+ + +〉+ β|− − −〉.

= α

2
√

2
((|0〉+ |1〉)(|0〉+ |1〉)(|0〉+ |1〉))

+ β

2
√

2
((|0〉 − |1〉)(|0〉 − |1〉)(|0〉 − |1〉))

= α

2
√

2

(∑
i

|vi〉
)

+ β

2
√

2

(∑
i

(−1)wt(vi)|vi〉
)
, (2.26)

where each vi is a binary 3-tuple that runs over all binary strings of length 3, and

wt(vi) is the number of 1’s. The encoding circuit of this state is depicted in Figure

2.4.

0 1ψ α β= +

0

0

q1

q2

q3

Figure 2.4: Encoding circuit for the 3-qubit phase-flip repetition code. The
Hadamard gates transform the computational basis into Hadamard basis for
phase error correction.
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2.2.5 Shor’s 9-qubit error correction code

The first quantum code able to correct both bit and phase flips was discovered in

mid-90s by Shor [3]. It encodes a single qubit in 9 qubits. The encoded states are:

|0〉 =
(

1√
2

)3
(|000〉+ |111〉)(|000〉+ |111〉)(|000〉+ |111〉)

|1〉 =
(

1√
2

)3
(|000〉 − |111〉)(|000〉 − |111〉)(|000〉 − |111〉),

If we expand the above expression in full, we have

|0〉 =
(

1√
2

)3
(|000000000〉+ |000000111〉+ |000111000〉+ |000111111〉

+ |111000000〉+ |111000111〉+ |11111000〉+ |111111111〉),

|1〉 =
(

1√
2

)3
(|000000000〉 − |000000111〉 − |000111000〉+ |000111111〉

− |111000000〉+ |111000111〉+ |111111000〉 − |111111111〉),

where 1
2
√

2 is the coefficient of each computational basis such that 8×
(

1
2
√

2

)2
= 1.

Since Pauli X and Z are anti-commute (see TABLE 2.1), a single bit-flip in the

first three qubits can be detected by using Pauli operators Z1Z2, Z2Z3 (a short-

hand for ZZIIIIIII and IZZIIIIII) to perform diagnostic operations on |0〉 or

|1〉. Similarly, operators Z4Z5 and Z5Z6 detect a bit-flip error in the next three

qubits, and operators Z7Z8 and Z8Z9 detect a bit-flip in the last three qubits.

The phase error can be also detected by applying operators X1X2X3X4X5X6

and X4X5X6X7X8X9. It can be verified easily that these eight operators T =

{Z1Z2, Z2Z3, Z4Z5, Z5Z6, Z7Z8, Z8Z9, X1X2X3X4X5X6, X4X5X6X7X8X9} form a

commuting set which can therefore be measured simultaneously. The outcome of

the measurement is a 8-dimensional vector with elements from the set {+1,−1}

indicating whether each operator commutes with the erroneous state.
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2.3 Stabilizer formalism and stabilizer codes

2.3.1 Stabilizer group

One important class of quantum error-correcting codes is Stabilizer codes [14, 15],

sometimes known as additive quantum codes, whose construction is analogous to

classical linear codes. Unlike Shor’s 9-qubit code, where the code is described

in the state vector description, the advantage of the stabilizer formalism is that

quantum codes can be compactly described by working with the operators that

stabilize them rather than by working with the state itself. For instance, consider

the state

|ψ〉 = 1√
2

(|00〉+ |11〉) (2.27)

and two operators X1X2 and Z1Z2. It is easy to verify that these two operators

cause no effect on the state, that is, X1X2 |ψ〉 = |ψ〉, Z1Z2 |ψ〉 = |ψ〉. We say that

the state |ψ〉 is stabilized by {X1X2, Z1, Z2}. Moreover, |ψ〉 is the unique quantum

state which is stabilized by operators {X1X2, Z1Z2}.

The idea of stabilizer formalism lies in the use of group theory. Recall that

PN = {±1,±i} × {I,X, Z, Y }⊗N is a group closed under the operation of ma-

trix multiplication. Denote by S ⊂ PN a subgroup of the N -qubit Pauli Group.

Then we have the following definition of a stabilizer.

Definition 2.1. Let V = {|ψ〉} be a vector space of N -qubit states and S ⊂ PN
be a subgroup of the N -qubit Pauli group. Then V is fixed by every element of S,

that is

S|ψ〉 = |ψ〉,∀S ∈ S, |ψ〉 ∈ V . (2.28)

Hence, S is the stabilizer of the vector space V .

Furthermore, not all subgroups S of the N -qubit Pauli group can be used as a

stabilizer for a non-trivial vector space V . The two necessary conditions for a

subgroup S to be able to be used as a stabilizer are 1) S is Abelian containing
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only commuting elements and 2) −I /∈ S since the only solution to −I|ψ〉 = |ψ〉

is |ψ〉 = 0, which is a trivial vector space. This is also true for condition 1) when

E,F ∈ S, if EF = −FE we have |ψ〉 = EF |ψ〉 = −FE|ψ〉 = −|ψ〉, which implies

that |ψ〉 = 0 for identity |ψ〉 = −|ψ〉 holds. Thus, V a trivial vector space.

2.3.2 Stabilizer codes

The Abelian subgroup S may be compactly described by its generators. Denote

by M = {gi|1 ≤ i ≤ m} ∈ PN , a set of linearly independent Pauli operators such

that S = span (M), where each element of S can be expressed as a product of

elements of M.

Recall that a stabilizer group S is an Abelian subgroup of PN such that a non-

trivial subspace CS ⊂ H is fixed (or stabilized) by S. The subspace CS defines a

quantum code space

CS = {|ψ〉 ∈ H | M |ψ〉 = |ψ〉,∀M ∈ S}.

If S is generated byM = {g1, g2, . . . , gm}, whereM is the m = N−K independent

stabilizer generators, then the code space CS encodes K logical qubits into N

physical qubits and it is able to correct t = bdmin−1
2 c errors. This code CS is called

an [[N,K, dmin]] quantum stabilizer code.

The N − K stabilizer generators may be regarded as the check operators of the

code. The role is analogous to the rows of the parity-check matrix of a classical

code. If the state is undamaged, the measurement outcome ismi = +1. Conversely

mi = −1 if state is damaged. Then the state is orthogonal to the code space and

an error has been detected. Thus, measuring the stabilizer generators allows the

error syndrome to be determined.

Suppose an error acts on an N -qubit state. Any operator Ea either commute or

anti-commute with a given stabilizer generator gi ∈ M. If Ea ∈ PN commutes
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with gi, then

giEa |ψ〉 = Eagi |ψ〉 = Ea |ψ〉 ∀ |ψ〉 ∈ CS , (2.29)

so the operator E preserves the value of the measurement outcome, m = +1.

However, if E and gi anti-commute, then

giEa |ψ〉 = −Eagi |ψ〉 = −E |ψ〉 , (2.30)

then m = −1. This indicates the error is detected by measuring the stabilizer

generator gi. In general, for stabilizer generator gi and errors Ea, we may write

giEa = (−1)siEagi (2.31)

where si ∈ {+1,−1}, i = 1, 2 . . . ,m, constitute the syndrome for the error Ea as

(−1)si will be the result of measuring gi.

When correcting more than one errors Ea and Eb, one must make sure that Ea|ψ〉

is orthogonal to Eb|φ〉, where |ψ〉, |φ〉 ∈ CS . The sufficient and necessary conditions

for error recovery are [10, 93],

1) 〈ψ|E†bEa|φ〉 = 0

2) 〈φ|E†bEa|φ〉 = 〈ψ|E†bEa|ψ〉,
(2.32)

where † denotes conjugate transpose. In order to correct two errors, one must

always be able to distinguish error Ea acting on one basis codeword |φ〉 from error

Eb acting on a different basis codeword |ψ〉. This is only true when Ea|φ〉 is

orthogonal to Eb|ψ〉 as shown in condition 1). The second condition requires that

for each of the errors Ea, Eb, the following relationship applies

〈ψ|E†bEa|φ〉 = ∆ba, (2.33)
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where ∆ba = 〈ab|aa〉 (|a〉 is the state of ancilla). This relation is satisfied provided

that, for errors Ea and Eb, one of the following holds:

(1) E†bEa ∈ S,

(2) There is an g ∈M that anti-commutes with E†bEa.
(2.34)

In (1) of (2.34), 〈ψ|E†bEa|ψ〉 = 〈ψ|ψ〉 = 1, for |ψ〉 ∈ CS . In (2) of (2.34), suppose

g ∈ S and gE†bEa = −E†bEag, then

〈ψ|E†bEa|φ〉 = 〈ψ|E†bEag|φ〉 = −〈ψ|gE†bEa|φ〉 = −〈ψ|E†bEa|φ〉 (2.35)

implies that 〈ψ|E†bEa|ψ〉 = 0. In general, a stabilizer code corrects the error

E = ±EaEb if either E ∈ S is an element of the stabilizer or anti-commute

with some elements of S (see (2.34)). Recovery may fail if there is an E†bEa that

commutes with every element of the stabilizer but does not lie within the stabilizer

itself. The reason that E†bEa commutes with every element of the stabilizer is

because Ea |ψ〉 and Eb |ψ〉 have exactly the same error syndrome. Consequently,

if Ea error occurs, there is a risk that mistakenly interpret it as an Eb error.

Denote by E ⊂ PN a collection of Pauli operators. Then E is a set of correctable

error operators for CS [7, 15] if

E†F /∈ N (S)− S, ∀E,F ∈ PN , (2.36)

where N (S) is the normalizer of S in PN , which defined as the set of elements

that fix S under conjugation, that is,

N (S) = {A ∈ PN |A†MA ∈ S,∀M ∈ S}.

Note that N (S) is a collection of all operators in PN that commutes with S.

Hence, S ⊂ N (S). Then the minimum distance dmin of a stabilizer code is given

by

dmin , min(wt(E)) s.t. E ∈ N (S)− S, (2.37)
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where the weight, wt(E), of an operator is the number of non-identity positions.

If the stabilizer group S contains element of weight less than dmin, then it is a

degenerate quantum stabilizer code, otherwise, it is a non-degenerate quantum

stabilizer code.

To correct errors of weight t or less, the particular error operator is determined

based on error syndrome s = [s1, s2, . . . , sm] ∈ {+1,−1} after simultaneously

measuring the set of stabilizer generators M. For a non-degenerate stabilizer

code, the error syndrome is unique defined for every correctable errors E ∈ E,

whereas for a degenerate stabilizer code, the error syndrome for different error is

not unique.

2.3.3 Logical operators

Given a stabilizer S and its m = N −K stabilizer generators M, we can choose

any one of the 2K orthogonal vectors in the code space CS to act as our encoded

logical states. Using logical operators is one method to choose such a state in a

systematic way. Since all the elements of N (S) commute with S and S ⊂ N (S)

fixes CS , elements of N (S)−S have non-trivial effect on |ψ〉 ∈ CS . Hence, the set

N (S)−S have natural interpretation of encoded logical operators that act on the

K encoded qubit in CS . Consider the following example.

Example 2.1. Consider the stabilizer group S is generated by two generators

g1 = ZZI and g2 = ZIZ. Then S = {III, ZZI, ZIZ, IZZ} and

N (S)− S = {±1,±i} × {XXX,Y Y X, Y XY,XY Y, ZII, IZI,

IIZ, ZZZ, Y Y Y,XXY,XY X, Y XX}.

If we take two operators {XXX,ZII}, it can be easily verified that N (S) − S =

(XXX)S ∪ (ZII)S ∪ (XXX)(ZII)S. Let CS = {|0〉 = |000〉, |1〉 = |111〉}. Then

we see that XXX|0〉 = |1〉, XXX|1〉 = |0〉 and ZII|0〉 = |0〉, ZII|1〉 = −|1〉.
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In other words, XXX acts like an encoded X operator that flips the value between

encoded qubits and ZII acts like an encoded Z operator that flips the sign of the

encoded state |1〉.

Denote by N (S)/S the quotient group, where each element of N (S) can be ex-

pressed as RM where M ∈ S and R /∈ S. The group is equivalent to the Pauli

group of size K = N−m and can be generated by 2K equivalent classes of encoded

logical X and logical Z operators {X̄1, X̄2, . . . , X̄K , Z̄1, Z̄2, . . . , Z̄K}. It is worth

noting that this logical operator set is non-unique as long as they satisfies

X̄i ◦ X̄j = +1,

Z̄i ◦ Z̄j = +1,

X̄i ◦ Z̄j = +1, for i 6= j,

X̄i ◦ Z̄j = −1, for i = j. (2.38)

2.3.4 Examples of stabilizer codes

2.3.4.1 Three qubit bit-flip code

This code is the same code shown in Example 2.1 with CS = {|000〉, |111〉}, where

a single qubit is encoded into a block of three according to

|ψ〉 = α |0〉+ β |1〉 → |ψ〉 = α |000〉+ β |111〉 ,

and protect against single bit-flip error acting on any single qubit. The stabilizer

for this code is generated by the two generators Z1Z2 and Z2Z3. Clearly, any error

combination of two elements from the set {I,X1, X2, X3} anti-commutes with at

least one of the stabilizer generators (For example, X1, X2, X3, X1X2, X2X3, X1X3

are the possible errors). Therefore, the set{I,X1, X2, X3} forms a set of correctable

error for the three qubit bit-flip code with stabilizer generators Z1Z2, Z2Z3. Er-

ror correction is performed by measuring the stabilizer generators and perform

recovery operation based on the syndrome vector given in TABLE 2.2.
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Qubit flipped Z1Z2 Z2Z3 Recovery operation
None +1 +1 no action

Qubit 1 -1 +1 Apply X1
Qubit 2 -1 -1 Apply X2
Qubit 3 +1 -1 Apply X3

Table 2.2: Error recovery for three-qubit bit-flip code

2.3.4.2 The 5-qubit perfect code

The [[5, 1, 3]] stabilizer code achieves the quantum Hamming bound [14] and proves

that five is the minimum number of physical qubits needed to encode a single

logical qubit. This code has the minimum distance of three, which achieves the

quantum Singleton bound [13]

N −K ≥ 2(dmin − 1). (2.39)

Hence, it is named ‘perfect’ code [10, 13]. The generator of the stabilizer S is

M =



Z Z X I X

X Z Z X I

I X Z Z X

X I X Z Z


(2.40)

which can protect against any error of type X, Y, Z acting on a single qubit. This

construction encodes one qubit into five qubits and has distance of three. Since

K = 1, the two logical operators that generates the quotient group N (S)/S are

X̄1 = XXXXX, Z̄1 = ZZZZZ.

The code space that contains 2K basis codewords is denoted as CS = {|0〉, |1〉},

where
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|0〉 = ∑
M∈S

M |00000〉

= |00000〉+ |10010〉+ |01001〉+ |10100〉+ |01010〉 − |11011〉

−|00110〉 − |11000〉 − |11101〉 − |00011〉 − |11110〉 − |01111〉

−|10001〉 − |01100〉 − |10111〉+ |00101〉,

(2.41)

and

∣∣∣1̄〉 = X̄1

∣∣∣0̄〉
= |11111〉+ |01101〉+ |10110〉+ |01011〉+ |10101〉 − |00100〉

−|11001〉 − |00111〉 − |00010〉 − |11100〉 − |00001〉 − |10000〉

−|01110〉 − |10011〉 − |01000〉+ |11010〉,

(2.42)

where the coefficient term 1√
2N−m

= 1
4 in front of every orthogonal basis is omitted.

2.3.4.3 The 7-qubit Hamming code

Steans’s 7-qubit code [4] is constructed from the classical C = [7, 4, 3]2 Hamming

code. The parity-check matrix of the Hamming code is

H =


0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1

 . (2.43)

The rows have an even number of 1’s, and any two of them overlap by an even

number of 1’s, so C⊥ ∈ C. This is a typical example of designing quantum codes

from dual-containing classical codes, which we will provide further explanation in

the next chapter. Here, by replacing each nonzero element of H with a X operator

and later on replace each nonzero element of H with a Z operator, we obtain 6
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stabilizer generators

M =



I I I X X X X

I X X I I X X

X I X I X I X

I I I Z Z Z Z

I Z Z I I Z Z

Z I Z I Z I Z


. (2.44)

Since K = 7 − 6 = 1, we can encode one qubit into seven qubits and the two

codewords of this code can be expressed explicitly as

∣∣∣0̄〉 = 1√
8

 |0000000〉+ |1010101〉+ |0110011〉+ |1100110〉

+ |0001111〉+ |1011010〉+ |0111100〉+ |1101001〉


∣∣∣1̄〉 = 1√

8

 |1111111〉+ |0101010〉+ |1001100〉+ |0011001〉+

|1110000〉+ |0100101〉+ |1000011〉+ |0010110〉


(2.45)

The encoded |0〉 state is the superposition of the even codewords in the Hamming

code and the encoded |1〉 is the superposition of the odd codewords in the Hamming

code. Since K = 1, the two logical operators that generates the quotient group

N (S)/S are

X̄1 = XXXIIII, Z̄1 = ZZZIIII. (2.46)

2.4 From quantum codes to classical code spaces

2.4.1 Basic concepts and arithmetics over F4

To start with this section, it is important to get familiar with arithmetics in

F4. For detailed explanations, readers are referred to standard textbooks, e.g.,

[35, 56, 57, 99].



Chapter 2: Background on QEC and QECC 42

The addition and multiplication tables for the four elements {0, 1, ω, ω̄ = ω2} over

F4 are:

+ 0 1 ω ω̄

0 0 1 ω ω̄

1 1 0 ω̄ ω

ω ω ω̄ 0 1

ω̄ ω̄ ω 1 0

· 0 1 ω ω̄

0 0 0 0 0

1 0 1 ω ω̄

ω 0 ω ω̄ 1

ω̄ 0 ω̄ 1 ω

It is important to note that these additions and multiplications are not the rules of

modulo-4 addition and multiplication in F4. For example 1+1 = ω+ω = ω̄+ω̄ = 0.

In fact, the elements of F4 are expressed in a univariate polynomials over F2, that

is, a polynomial of degree 1 with coefficients are elements of F2. e.g.,

F4 Elements polynomial in F22 binary 2-tuple

0 0 00

1 1 01

ω x 10

ω̄ x+ 1 11

(2.47)

These polynomials obey the addition and multiplication rules of F4 if addition and

multiplication are modulo over the primitive polynomial x2 + x+ 1. For example,

ω̄ × ω̄ = x2 + (1 + 1)x+ 1 = x+ 1 + 2x+ 1 = x = ω.

Furthermore, a direct mapping can be done between Pauli group P1 and the

elements of Galois field F4 consisting of the elements {0, 1, ω, ω̄} (See TABLE

2.3). The addition of elements in F4 maps to the multiplication of elements of the

P1 (up to a ± sign). For example, ω̄ + ω = 1 corresponds to Y · Z = X, and

ω̄ + 1 = ω corresponds to Y ·X = −Z. However, the Pauli operators do not map

perfectly onto the elements of F4, since there is no operation in P1 corresponding

to the multiplication of elements in F4.

Denote by tr : F4 → F2
2 with tr(x) = x + x̄ for x ∈ F4, where x̄ = x2 is the

conjugate of x. Then the commutative relationship between Pauli operators in F4
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F4 P1
0 I
1 X
ω Z
ω̄ Y

Table 2.3: F4 elements to Pauli operators

is computed using the trace inner product defined as follows

〈P1, P2〉 = tr(P1P̄2) = 0, (2.48)

where two elements P1, P2 ∈ F4 are commutative if their trace inner product is

zero. The notation 〈∗, ∗〉 represents the Hermitian inner product between two

vectors, that is,

〈z1, z2〉 = tr
(∑

i

z1i z̄2i

)
.

Note that, since x2 + x + 1 = 0 is a primitive polynomial of F4, tr(0) = tr(1) = 0

and tr(ω) = tr(ω̄) = 1.

2.4.2 Direct translation from classical H into quantum sta-

bilizer generator

It is tempting to link between the stabilizer generator and the rows of parity-

check matrix H of a classical code, since their role is analogous in a certain way.

However, it is not correct to translate directly from the rows of H into the stabilizer

generators according to the mapping in (2.47) and TABLE 2.3. As mentioned

before, there is no operation in the Pauli group equivalent to multiplication in F4.

The rows of H span the dual space of the classical code over F4 since the code

is linear, any vector in the dual space could be generated by summing together

selected rows of H, each multiplied by an element ω of F4 (because any element

of F4 may be written as a + bω, a, b ∈ {0, 1}). Therefore, in the N -qubit Pauli

group, the above procedure corresponds to multiplying together not only the direct

translations of the H, but also the translations of the H after each row has been
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multiplied by ω in F4. The complete procedure for finding the stabilizer generators

corresponding to a classical F4 code is:

1. Translate the rows of H from F4 to PN .

2. Translate the rows of ωH from F4 to PN .

For example, the perfect [[5, 1, 3]]2 quantum code was derived from the classical

[5, 3, 3]4 Hamming code over F4 with parity check matrix

H =

 1 ω ω 1 0

0 1 ω ω 1

 . (2.49)

The corresponding quantum stabilizer could be obtained by first translating the

rows of H according to Table 2.3, i.e., we obtain two stabilizer generators XZZXI

and IXZZX. Then translate the rows of ωH:

ω
(

1 ω ω 1 0
)

=
(
ω ω̄ ω̄ ω 0

)
⇒ ZY Y ZI

ω
(

0 1 ω ω 1
)

=
(

0 ω ω̄ ω̄ ω

)
⇒ IZY Y Z

Therefore, the stabilizer generators for the [[5, 1, 3]]2 perfect code derived from

direct translation of H is given in part (a) of Equation (2.50).

M =



X Z Z X I

I X Z Z X

Z Y Y Z I

I Z Y Y Z


(a)

Malt =



Z Z X I X

X Z Z X I

I X Z Z X

X I X Z Z


(b)

(2.50)

Alternatively, the [[5, 1, 3]]2 perfect code can be represented in terms of only

I,X, Z, which is obtained by multiplying rows 3 and 4 of M with rows 2 and

1 of M, respectively. In particular, the resulting generator Malt is given in part

(b) of (2.50) is cyclic.
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2.4.3 Parity-check matrix for stabilizer code over F2

A general prescription is provided above for generating a quantum stabilizer code

from a classical code over F4. Consequently, the classical F4 code is restricted to

satisfy the two necessary criteria that all the stabilizer generators must commute

with each other, and that each must square to the identity.

To examine closely, it is not difficult to observe that, since Y = XZ if we ignore

the phase factor i, any element E of the N -qubit Pauli group (up to a ± sign) can

be expressed as a product of X’s and Z’s, i.e.,

E = XE · ZE, (2.51)

where ZE and XE are tensor product of Z’s and X’s, respectively. More precisely,

a Pauli operator can be written as

(a|b) := X(a)Z(b) =
N
⊗
i=1

Xai ·
N
⊗
i=1

Zbi (2.52)

where a,b are binary sequence of length N . We know that multiplication in Pauli

group PN is equivalent to binary addition. Thus, for two operators E and F of

PN represented by binary 2N -tuples (a|b) and (a′|b′),

EF = (−1)a′·b+b′·a(a + a′|b + b′), (2.53)

where ‘+’ is the binary addition and ‘·’ is the usual dot product. The phase factor

(−1)a′·b+b′·a arises because it counts the number of times Z and X overlap. Since

elements of a Pauli group commute or anti-commute, two Pauli operators commute

iff the corresponding binary vectors are orthogonal with respect to the symplectic

inner product defined as

(a|b) ◦ (a′|b′) := a′ · b + b′ · a. (2.54)
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Define the mapping Φ : PN → F2N
2 . Then Φ (P1) = {(0|0), (1|0), (0|1), (1|1)}. This

implies that the binary 2N -tuple (a|b) of an element E ∈ PN can be obtained by

Φ(E) = (a|b).

In this representation, aj = 1 indicates a bit-error on qubit j, bj = 1 indicates

a phase error on qubit j, and both errors on the same qubit are represented by

aj = bj = 1. For example,

E = XY Y ZI → Φ(E) = (11100|01110),

F = XY ZY Y → Φ(F ) = (11011|01111).
(2.55)

For a stabilizer group S generated from a set of independent stabilizer generators

M = {g1, g2, . . . , gm}, define the parity-check matrix H of S by representing each

row of H as Φ(gj) for 1 ≤ j ≤ m and gj ∈ g. Then the resulting H of size m×2N

is of the form H = [H1|H2], where

H1 =



ag1

ag2

...

agm


and H2 =



bg1

bg2

...

bgm


.

Let hi = (agi |bgi) and hi′ = (agi′ |bgi′ ) be two rows of H, where 1 ≤ i, i′ ≤ m

and i 6= i′. Since any two elements of S must commute, hi and hi′ must be

orthogonal with respect to the twisted inner product given in (2.54). This implies

that for m independent stabilizer generators to be commutative, the Symplectic

Inner Product (SIP) must be satisfied:

H1H
T
2 +H2H

T
1 = 0m×m (mod 2), (2.56)

where 0m×m is a zero matrix and ‘T ’ denotes the transpose of a matrix. We call

(2.56) the SIP constraint hereafter.

We now see the connection between a quantum stabilizer code over F4 and F2.
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From (2.47), we know that any element in F4 can be expressed in the form a+ bω.

Therefore, the direct translation of the parity-check matrix H according to TABLE

2.3 can be expressed as

H = H1 + ωH2.

The SIP constraint in this case between two rows hi,hj ∈ H, i 6= j, is given by

〈hi,hj〉 = tr ((hi1 + ωhi2)(hj1 + ω̄hj2))

= tr (hi1hj1 + ωhi2hj1 + ω̄hi1hj2 + ωω̄hi2hj2)

= tr (hi1hj1) + tr (ωhi2hj1) + tr (ω̄hi1hj2) + tr (ωω̄hi2hj2)

= 0 + hi2hj1 + hi1hj2 + 0

= hi2hj1 + hi1hj2 (2.57)

since tr(0) = tr(1) = 0, tr(ω) = tr(ω̄) = 1 and ωω̄ = 1. It can be seen that the

symplectic inner product defined over F2 given in Equation (2.54) is equivalent to

the one defined over F4 given in Equation (2.57).





Chapter 3

Quantum Block Codes

T his chapter presents background materials and terminologies of classical

linear block codes and constructions of stabilizer quantum block codes

from classical codes. We show how stabilizer codes are related to classical linear

codes. The central idea behind this relationship is the fact that whether an error

is detectable is irrelevant to the phase information. This means the phase can be

ignored after the mapping Φ : PN → F2n
q defined in Section 2.4.3 and studying the

image of stabilizer S and normalizer N (S). The encoding procedure of quantum

Calderbank-Shor-Steane (CSS) and general stabilizer codes is also provided.

3.1 Classical linear block codes

Let q be a power of a prime p. Let Fq denote a finite field with q elements. If

q = pr then

Fnq [x] = {f(x) ∈ Fq[x]|deg (f(x)) < r}, (3.1)

where f(x) is a polynomial of maximum degree r, and Fq[x] is a polynomial ring.

If r = 1, then the field Fq has p integer elements {0, 1, . . . , p − 1} with modulo

p additions and multiplications. Detailed surveys of algebraic coding theory over

finite fields can be found in [35, 56, 57]. Let α ∈ Fq and αq−1 = 1, then α is called

49
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a primitive element in Fq and all the nonzero elements of Fq can be expressed

in q − 1 consecutive powers of the primitive element α, that is, Fq = {α0 =

1, α, α2 . . . , αq−1 = 1, αq = α, α∞ = 0}.

Let Fnq be a vector space with dimension n. A code C is a subspace of Fnq over

Fq. A [n, k] linear code, which encodes k information bits into n bits, is generated

by a generator matrix G of size k × n. Then the code space C is the span of its

generator matrix G and is defined as

C = {mG | ∀m ∈ Fkq}, (3.2)

where m = (m0,m1 · · ·mk−1) is a vector of length k over Fq and C contains |C| = 2k

valid codewords. The weight of a codeword u ∈ C, wt(u), is the number of nonzero

positions in u. The Hamming distance between two codewords u,v ∈ C is the

number of positions in which u and v differ

d(u,v) = |{i | 0 ≤ i ≤ n− 1, ui 6= vi}| = wt(u− v). (3.3)

Then the minimum Hamming distance of a linear code C ∈ Fnq is the minimum

weight of a nonzero codeword in C. That is d(C) = min(wt(u)) for u ∈ C and

u 6= 0. Given the minimum distance d of a code C, the maximum number of errors

t that can be corrected by C is

t =
⌊
d− 1

2

⌋
, (3.4)

which is often used to measure the performance of a code; the higher the minimum

distance d, the better ability to correct errors.

Since C has dimension k, size of 2k, then there also exists a dual space C⊥ ⊂ Fnq of

C defined as

C⊥ = {v | v ∈ Fnq ,v · u = 0 ∀u ∈ C}, (3.5)
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where v · u is the usual Euclidean inner product v · u = ∑n−1
i=0 viui between two

vectors in Fq. It is generally said that u is orthogonal to v if their Euclidean inner

product is zero. The dual space C⊥ is the span of a (n − k) × n matrix H such

that

GHT = 0. (3.6)

The matrix H is called the parity check matrix of C and is used to verify whether

a vector of length n is valid codeword. A vector u is a valid codeword in C if and

only if HuT = 0. Assume u ∈ C is sent over a noisy communication channel. If the

received vector r = u + e, where e is the added noise introduced by the channel,

we can extract information about the noise from r by performing error detection

using H, that is,

s = rHT = (u + e)HT = eHT . (3.7)

The syndrome vector s then can be used to decode the error e from r to obtain

the correct codeword u. However, there is a possibility that eHT ∈ C is also a

valid codeword, then vector e is undetectable, which causes a decoding error.

If [n, k, d]q denotes the set of parameters of a code C over Fq, then [n, n− k, d⊥]q
denotes the set of parameters of the dual code C⊥. Through out the entire thesis,

we denote a quantum stabilizer code in Section 2.3.2 using double brackets [[ ]],

and single brackets [ ] for a classical linear code to distinguish between quantum

codes and classical codes.

If C⊥ ⊆ C, then the code is dual-containing (sometimes it is also known as weakly

self-dual codes). It means that codewords in C⊥ are also in C. Hence, C⊥ is a

subspace of C. If C ⊆ C⊥, then C is called self-orthogonal. If C⊥ = C, the code is

called self-dual. Self-orthogonal and dual-containing codes are important to the

derivation of quantum stabilizer codes, and highly related to our work in the later

part of this thesis. Self-dual linear codes are also good potential candidates for

designing quantum codes, e.g., [39].
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3.2 Construction of quantum codes

There have been numerous families of classical codes. The most notable are the

Bose-Chaudhuri-Hocquenghem (BCH) code, the Reed-Solomon (RS) code, the

Reed-Muller (RM) code, algebraic and projective geometry codes. Modern codes

such as Turbo codes and low-density parity-check codes have also been well stud-

ied. Notably, in order to design quantum stabilizer codes from these classical

codes, one must ensure that the underlying classical codes satisfy certain orthog-

onal constraints.

For completeness, we recall some general constructions of QECCs from classical

codes for q-dimensional quantum digits, qudits, where q is an arbitrary prime

power. A 2-dimensional quantum digit is called qubit.

3.2.1 Construction of QECCs over symplectic dual space

The symplectic inner product (SIP) defined in Equation (2.54) is generalized on

the space (Fq × Fq)n ≡ Fnq × Fnq as

(v,w) ∗ (v′,w′) := v ·w′ − v′ ·w =
n−1∑
i=0

viw
′
i − v′iwi. (3.8)

The subtraction operation is equivalent to addition when q = 2 as given in (2.54)

for binary vectors. The dual code of a code C over Fq × Fq w. r. t. (3.8) is

C∗ := {(v,w) ∈ Fnq × Fnq | ∀c ∈ C : (v,w) ∗ c = 0}. (3.9)

Theorem 3.1. [108] (QECCs from Symplectic dual) For C = [n, k]q and C∗ =

[n, n − k]q over Fq × Fq. If C ⊆ C∗, then there exists a [[N,K, dmin]]q QECC

encoding K = n − k qudits into N = n qudits with minimum distance dmin =

min{wt(v) | v ∈ C∗\C}.
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3.2.2 Construction of QECC over Hermitian dual space

Next, consider a classical linear code over Fq2 . The inner product on space Fnq2 is

the Hermitian inner product defined by

v ∗w :=
n−1∑
i=0

viw
q
i . (3.10)

Again, classical codes over Fq2 which are self-orthogonal w. r. t. (3.10) give rise

to QECCs.

Theorem 3.2. [108] (QECC from Hermitian dual) Let C ⊂ Fnq2 be a linear

[n, k]q self-orthogonal code over Fq2. Then there exists a [[N,K, dmin]]q = [[n, n−

2k, dmin]]q QECC, where dmin = min{wt(v) | v ∈ C∗\C}.

Proof. The proof can be found in ([108]).

3.2.3 Construction of QECC over Euclidean dual space

Finally, the construction of the so-called Calderbank-Shor-Steane (CSS) codes [4–6]

uses the notion of duality w. r. t. the Euclidean inner product

v ·w =
n−1∑
i=0

viwi, (3.11)

for which the dual code is denoted by C⊥.

Theorem 3.3. [11] (QECC from Euclidean dual (CSS codes)) Let C1 = [n, k1, d1]q
and C2 = [n, k2, d2]q be linear codes over Fq with C⊥2 ⊆ C1. Then there exists

a QECC of parameters [[N,K, dmin]]q = [[n, k1 + k2 − n, dmin]]q with dmin =

min{wt(v | v ∈
(
C1\C⊥2

)
∪
(
C2\C⊥1

)
)}.

In particular, if C = [n, k, d]q is a linear code over Fq and C⊥ ⊆ C. Then we have the

following result on construction of QECC from dual-containing or weakly self-dual

classical codes.
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Corollary 3.4. Let C = [n, k, d]q be a dual-containing code over Fq. Then there

exists a [[n, 2k − n, dmin]]q QECC with dmin = min{wt(v | v ∈ C\C⊥)}.

3.3 Encoding of stabilizer codes

We shall see in this part of the chapter the encoding process of stabilizer codes of

CSS structure and general structure. We focus on binary codes since binary codes

are highly relevant to the work in later chapters.

3.3.1 CSS codes: encoding and error correction

An important class of quantum codes designed from classical codes over Euclidean

dual space is called Calderbank-Shor-Steane (CSS) codes, named after the inven-

tors. CSS codes are an important subclass of stabilizer codes. Let C1 = [n, k1] and

C2 = [n, k2] be two classical linear codes such that C2 ⊂ C1 and both C1 and C⊥2
correct t errors. Then a [[n, k1 − k2]] CSS code of C1 over C2 capable of correcting

t qubits can be constructed via the following encoding method. Let x ∈ C1 be any

codeword. Then the quantum state |x + C2〉 is

|x + C2〉 ≡
1√
|C2|

∑
y∈C2

|x + y〉, (3.12)

where addition is over binary field. It is easy to see that the state |x+C2〉 depends

only upon the cosets of C1/C2. If two elements x1,x2 ∈ C1 such that x1 + x2 ∈ C2,

then |x1 + C2〉 = |x2 + C2〉. Conversely, if x1 and x2 belong to different cosets of

C2, there exist no y1,y2 ∈ C2 such that x1 + y1 = x2 + y2. Thus, |x1 + C2〉 and

|x2 + C2〉 are orthonormal states. Hence, the CSS code constructed from C1 over

C2 is the vector space spanned by |x + C2〉 for all x ∈ C1. The dimension of the

CSS code is determined by the number of cosets of C2 in C1, that is, |C1|
|C2| = 2k1−k2 ,

and therefore, this is an [[n, k1 − k2]] quantum CSS code.
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The 7-qubit code shown in Section 2.3.4.3 is a typical example of quantum CSS

code with C1 = C and C2 = C⊥ such that C⊥ ⊂ C for a classical linear code

C = [n, k, d]. This is known as the dual-containing classical codes or weakly self-

dual codes.

The codeword states in this case is given by

∣∣∣x + C⊥
〉

= 1√
|C⊥|

∑
y∈C⊥

|x + y〉 (3.13)

for x ∈ C. The dimension of this CSS code is |C|
|C⊥| = 2k−(n−k) = 22k−n.

Denote by E = (e1|e2) a Pauli error operator after the mapping Φ : PN → F2n
2 .

The vector e1 describes an occurrence of a bit-flip error with a 1, whereas the

vector e2 describes an occurrence of a phase-flip error with a 1. If |x + C2〉 in

Equation (3.12) is the original encoded state then the corrupted state is

1√
|C2|

∑
y∈C2

(−1)(x+y)·e2 |x + y + e1〉.

To detect where bit flips occurred, recall from the previous section, it is convenient

to use an ancilla state initialized at |0〉a to store the error syndrome. Thus, by

using the parity-check matrix H1 for the code C1, we can effectively take the state

|x + y + e1〉|0〉a to |x + y + e1〉|H1(x + y + e1)〉a and produce the state

1√
|C2|

∑
y∈C2

(−1)(x+y)·e2 |x + y + e1〉|H1e1〉a.

Since x + y ∈ C1, the ancilla state |H1e1〉 contains only the syndrome about the

error e1. The error e1 can be inferred from the error syndrome H1e1 after the

ancilla state is measured. The recovery is performed simply by applying Pauli

X-gates to the qubits at whichever the positions in the error e1 a bit flip occurred.

After all the bit flip errors been removed, the recovered state is

1√
|C2|

∑
y∈C2

(−1)(x+y)·e2 |x + y〉. (3.14)
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To detect a phase error, each qubit in the state (3.14) is transformed using

Hadamard gates, and taking to the state

1√
|C2|2n

∑
z

∑
y∈C2

(−1)(x+y)·(z+e2)|z〉, (3.15)

where the sum is over all possible values for N bit z. Let z′ = z + e2, then the

state is equivalent to

1√
|C2|2n

∑
z′

∑
y∈C2

(−1)(x+y)·z′ |z′ + e2〉.

If z′ ∈ C⊥2 , then ∑
y∈C2

(−1)y·z′ = |C2|,

whereas z′ /∈ C⊥2 implies ∑
y∈C2

(−1)y·z′ = 0.

Thus, the transformed state in Equation (3.15) can be rewritten as

1√
2n
|C2|

∑
z′∈C⊥2

(−1)(x)·z′|z′ + e2〉,

which is similar to the case when detecting a bit flip error. By using ancilla states

and the parity-check matrix H2 for the code C⊥2 , error syndrome H2e2 can be

obtained, and correct the phase error e2 using Pauli Z-gates. The recovered states

is
1√
2n
|C2|

∑
z′∈C⊥2

(−1)(x)·z′ |z′〉.

The error-correction is completed by applying Hadamard transformation to each

qubit once again.

3.3.2 Encoding of general stabilizer codes

To encode a general stabilizer code, consider the binary check matrix H = [H1|H2]

for an [[N,K, dmin]] stabilizer code. Note that this matrix has m = N −K rows
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(m independent stabilizer generators). Since the dual-space of H is of dimension

2N−m ≡ (2(m+K)−m) = m+2K, the normalizer group N (S) that commutes

with S can be considered as the dual-space of S generated by an (m+ 2K)× 2N

binary matrix. The last 2K rows are the logical operators X̄ and Z̄ with |X̄| =

|Z̄| = K. Note that the choices of X̄ and Z̄ are non-unique and the following is a

simple and most general way to obtain the set of 2K logical operators {X̄, Z̄}.

Since S = 〈M〉, we can always replace a generator gi with gigj for some other

generator gj. The corresponding effect on the binary check matrices is to add row

j with row i in both H1 and H2. In addition, by rearranging the corresponding

columns in both matrices, the positions of qubits are altered. Combining these

two operations, one can transform H = [H1|H2] into standard form [15] given by

Hstd =
RH1{

m−RH1{


I

0︸︷︷︸
RH1

A1

0︸ ︷︷ ︸
m−RH1

A2

0︸ ︷︷ ︸
K

B

D︸︷︷︸
RH1

C1

I︸ ︷︷ ︸
m−RH1

C2

E︸ ︷︷ ︸
K

 ,

where RH1 is the rank of H1.

To obtain {X̄, Z̄} that satisfies conditions in (2.38), we obtain X̄ and Z̄ as

X̄ = K{( 0︸︷︷︸
RH1

ET︸︷︷︸
m−RH1

I︸︷︷︸
K

| CT
2︸︷︷︸

RH1

0︸︷︷︸
m−RH1

0︸︷︷︸
K

) (3.16)

and

Z̄ = K{( 0︸︷︷︸
RH1

0︸︷︷︸
m−RH1

0︸︷︷︸
K

| AT2︸︷︷︸
RH1

0︸︷︷︸
m−RH1

I︸︷︷︸
K

), (3.17)

respectively.

The operation of encoding a general stabilizer code can be described as [15]

|x1, x2, · · · , xK〉 →

 ∏
1≤i≤m

(I + gi)
 X̄x1

1 X̄x2
2 · · · X̄

xK
K |00 · · · 0〉, (3.18)
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where X̄i ∈ X̄ is the encoded X operator on the i-th qubit, and the state

|x1, x2, . . . , xK〉 is a quantum codeword. The binary K-tuples [x1, x2, . . . , xK ] rep-

resent one of the 2K possible basis states that can be encoded into. Since the basis

codeword is defined to be |00 · · · 0〉 =
(∏

1≤i≤m(I + gi)
)
|00 · · · 0〉 and a Pauli Z

operator does not generally affect the basis of a state, only X̄i operators are used

during the encoding process.

3.4 Bounds for quantum codes

Similar to classical codes, bounds that compare the performance of quantum codes

also exist. In this small subsection, we are omitting detailed explanations but

simply state the most important results on quantum bounds for stabilizer codes.

Given a stabilizer code [[N,K, dmin]], the quantum Hamming bound for binary

field [14] is given by

t∑
j=0

3j
(
N

j

)
≤ 2m, (3.19)

and the code efficiency (code rate) is asymptotically upper bounded by

K

N
≤ 1− δQ log2(3)− h2(δQ), (3.20)

where m = N − K is the number of stabilizer generators, t = bdmin−1
2 c is the

number of correctable errors, and δQ = t
N

. In (3.20), h2(∗) is the binary entropy

function h2(x) = −x log2(x)−(1−x) log2(1−x). Note that this quantum Hamming

bound valid for non-degenerate stabilizer codes, and for many years, it is unknown

whether this bound holds for degenerate codes. There are no known degenerate

codes that guarantee success that violate the quantum Hamming bound [14] [110].

The quantum Gilbert-Varshamov (GV) bound is [7]

2t∑
j=0

3j
(
N

j

)
≤ 2m, (3.21)
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and the code efficiency is asymptotically lower bounded by

K

N
≥ 1− 2δQ log2(3)− h2(2δQ). (3.22)

In addition, the Gilbert-Varshamov bound for an [[N,K, dmin]] CSS code [6] is

then given by

K

N
≥ 1− 2h2(2δQ). (3.23)

Furthermore, any (degenerate and non-degenerate) quantum code must satisfy the

quantum Singleton bound [93]

N −K ≥ 4t. (3.24)

Hence, the asymptotic code efficiency is given by

K

N
≤ 1− 4δQ. (3.25)

Any quantum codes that satisfy (3.24) with equality are called quantum maximum

distance separable (MDS) codes.

The above known quantum bounds in the literature are depicted in Figure. 3.1

with code rate K
N

in terms of its normalized distance dmin
N

, where dmin
N
≈ 2δQ for

sufficiently large N .
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Figure 3.1: Known quantum bounds. The curves are 4: Quantum Single-
ton bound (SB), �: Quantum Hamming bound (HB), ×: Quantum Gilbert-
Varshamov bound for general quantum code and 5: Quantum Gilbert-
Varshamov bound for quantum CSS codes.



Chapter 4

Stabilizer Codes from Quadratic

Residue Sets and Difference Sets

I n this chapter, we design two types of stabilizer codes from quadratic residue

(QR) sets and difference sets, respectively. We name them Type-I and Type-

II stabilizer codes. The proposed stabilizer codes are non-CSS structures such

that the underlying classical codes are self-orthogonal w. r. t. the SIP constraint

described by Theorem 3.1 in Section 3.2.1.

4.1 Type-I quantum stabilizer codes from QR

sets

Denote by H = [H1|H2] the parity-check matrix of a stabilizer S, where H1 and

H2 are the generator matrices of two classical linear codes, respectively. We design

the pair of matrices H1 and H2 simultaneously so that the two linear codes are

self-orthogonal w. r. t. the SIP condition given in (2.56). In this section, we

design [[N,K, dmin]]2 Type-I quantum stabilizer codes over the finite field of order

two by exploiting the notion of quadratic residue sets. We omit the subscript ‘2’

for stabilizer codes designed from binary linear codes. We show that the proposed

construction method using idempotents of cyclic codes generated from QR sets

61
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can apply to any quadratic residue set of prime modulus p = 4n ± 1 for n ∈ Z.

In addition, we prove that the minimum distance for stabilizer codes of length

N = 4n+1 is upper bounded by the size of the quadratic residue set k. Moreover,

the code rate for stabilizer codes of length N = 4n−1 is determined by K
N

= k
p
, and

the code rate approaches 1
2 as n goes to infinity, whereas the code rate for stabilizer

codes of length N = 4n+ 1 is K
N

= 1
p
. Furthermore, the family of stabilizer codes

of length N = 4n − 1 has a constant minimum distance of 2, which is related to

the work in [92].

4.1.1 Quadratic (non-) residue sets and idempotent poly-

nomials

Let Z×p be a multiplicative group of order p − 1, where p is a prime of the form

p = 4n ± 1. Denoted by QR and QNR the quadratic residue set and quadratic

non-residue set, respectively. Take α as a primitive element in Fp. Then we have

the following.

Lemma 4.1. QR = {α2i|1 ≤ i ≤ p−1
2 } and QNR = {α2i−1|1 ≤ i ≤ p−1

2 } with

|QR| = |QNR| = p−1
2 .

From Lemma 4.1, QR ∪ QNR = {1, 2, . . . , p − 1} when p is a prime since there

are exactly half odd and half even integer numbers in Z×p . Furthermore, for 1 ≤

i, i′ ≤ p−1
2 and i 6= i′, α2i · α2i′ ≡ α2i−1 · α2i′−1 = α0( mod 2) ∈ QR and α2i−1 · α2i′ =

α1( mod 2) ∈ QNR. We have the following property as a direct consequence of

Lemma 4.1.

Lemma 4.2. For 1 ≤ i ≤ p−1
2 ,

α2iQR = α2i−1QNR ≡ QR,

α2i−1QR = α2iQNR ≡ QNR. (4.1)

Let Q̄R = {0,QNR} and Q̄NR = {0,QR} be the complementary set of QR and

QNR, respectively. Then for each Z×p , we can construct four cyclic codes CR, C̄R,
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CNR and C̄NR associated to QR, Q̄R, QNR and Q̄NR, respectively. One way to

obtain a generator matrix for these codes is to use their idempotent polynomial.

Define {Qr(x), Q̄r(x),Qnr(x), Q̄nr(x)} ∈ F2[x]/(xp−1) the idempotent polynomial

for CR, C̄R, CNR and C̄NR over F2 of a prime p. Then

Qr(x) =
∑
i∈QR

xi, Q̄r(x) = 1 +
∑

i∈QNR
xi,

Qnr(x) =
∑

i∈QNR
xi, Q̄nr(x) = 1 +

∑
i∈QR

xi. (4.2)

Denote by

P :=



0 1 0 · · · 0
0 0 1 . . . ...
... . . . . . . . . . 0
0 . . . . . . . . . 1
1 0 · · · 0 0


(4.3)

a square circulant permutation matrix (CPM) of order v such that P v = P 0 = Iv,

where Iv is the identity matrix of size v. Note that P is of weight one since it has

only one non-zero element in each row and column.

The generator matrix for CR is obtained as

GCR =
∑
i∈QR

P i, (4.4)

where the i-th power of P is the i-th cyclic shift of P , and P 0 = I is the identity

matrix. The transpose of Qr(x) is then given by Qr(x−1). Hence, in matrix

representation, it is equivalent to

GT
CR =

∑
i∈QR

P p−i. (4.5)

Since CR is a cyclic code, where each row of GCR is a cyclic shift of the previous row

by one position, GCR can be completely characterized in its idempotent polynomial

Qr(x). Similar representations are used for C̄R, CNR and C̄NR.
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4.1.2 Design of Type-I stabilizer codes of length N = 4n−1

We now look at Type-I stabilizer codes of length N = 4n− 1 by designing multi-

weight circulant matrices H1 and H2 from the idempotent polynomials in (4.2).

Then, we analyse the dimension of Type-I stabilizer codes by constructing a pair

of sub-matrices Hsub
1 and Hsub

2 from H1 and H2. We denote a matrix using capital

letters and a polynomial using the corresponding lower case letters. e.g., h1(x) is

the polynomial of a parity-check matrix H1.

Proposition 4.3. For an even n and a prime p = 4n − 1, let H1 = GC̄R and

H2 = GCR. Denote by Hsub
1 and Hsub

2 a pair of sub-matrices with Rank(Hsub
1 ) =

p − k − 1 and Rank(Hsub
2 ) = p − k. Then, Hsub

1 and Hsub
2 are self-orthogonal

w. r. t. the SIP, and the resulting parity-check matrix H = [Hsub
1 |Hsub

2 ] is a

[[N,K, dmin]] = [[p, k, dmin = 2]] Type-I stabilizer code.

Proof. When n is even, p = 4n − 1 ≡ −1 (mod 8), by the 2nd Supplement to

the Law of Quadratic Reciprocity [57], 2 ∈ QR and −2 /∈ QR. From (4.2),

h1(x) = 1 + ∑
i∈QNR x

i and h2(x) = ∑
j∈QR x

j. Since −QR = QNR and for

f(x) = (xa + xb) ∈ F2[x], f(x)2 = (xa + xb)2 = x2a + x2b, we have

h1(x)h2(x−1) =
 ∑
j∈QR

x−j

+
 ∑
j∈QR

x−j

 ∑
i∈QNR

xi


≡

 ∑
i∈QNR

xi

+
 ∑
i∈QNR

x2i

 . (4.6)

By Lemma 4.2, (∑i∈QNR x
2i) = (∑i∈QNR x

i) since 2 ∈ QR is an element of the

QR set. Hence, H1H
T
2 = 0 (mod 2). Similarly, H2H

T
1 ≡ 0 (mod 2) implies that

H1 and H2 are commuting pairs for even n.

Since QR ⋃QNR = Z×p . Then H1 and H2 are complementary matrices, that is

H1 +H2 = Ip×p, (4.7)

where Ip×p is an all-one matrix of size p × p. Denote by MX(E) and MZ(E)

the two binary m-tuple error syndromes measured by H1 and H2, respectively.
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Since M (E) = (MX(E) + MZ(E)) (mod 2), we have M (Y1) = M (Y2) = . . . =

M (Yp) = [1, 1, . . . , 1]m. Thus, this code cannot distinguish between two single

weight Y operators. Hence, dmin = 2.

The rank of H = [Hsub
1 |Hsub

2 ] constructed from Proposition 4.3 is determined from

the following lemma.

Lemma 4.4. For n is even and p = 4n − 1 is a prime, let H1 = GC̄R and

H2 = GCR with, respectively, the idempotent polynomials h1(x) := 1 + ∑k
i=1 x

−di

and h2(x) := ∑k
i=1 x

di, where d1,2,...,k ∈ QR. The rank of H1 and H2 is

Rank(H1) = p− (k + 1), (4.8)

Rank(H2) = p− k. (4.9)

Let Hsub
1 (resp. Hsub

2 ) be the sub-matrix of H1 (resp. H2) with Rank(Hsub
1 ) =

Rank(H1) (resp. Rank(Hsub
2 ) = Rank(H2)). The resulting parity-check matrix

H = [Hsub
1 |Hsub

2 ] is a [[N,K, dmin]] = [[p, k, dmin]] quantum stabilizer code.

Proof. Let α be a primitive p-th root of unity in some field Fp. To prove the

lemma, it is equivalent to finding the number of roots of h1(x) and h2(x) in

{1, α, α2, . . . , αp−1}.

Since p = 4n− 1 ≡ −1(mod 8) when n is even, we shall show that corresponding

to each di in QR, either αdi or α−di is a root of h2(x). Since p is not congruent

to 1 modulo 4, by the 1st Supplement to the Law of Quadratic Reciprocity [57],

−1 is not a quadratic residue, and we have {d1, d2, . . . , dk} ∪ −{d1, d2, . . . , dk} =

G×Zp . Consequently, ⋃
1≤i≤p−1

{αdi , α−di} = {α, α1, · · · , αp−1}. Hence for all 1 ≤

j ≤ p − 1, h2(αdi) + h2(α−di) = ∑k
j=1 α

djdi + ∑k
j=1 α

−djdi = ∑p−1
j=1 α

jdi = 1 +∑p−1
j=0 α

jdi = 1, where the last equality holds due to αdi 6= 1 being a root of

xp − 1 = (x− 1) (xp−1 + xp2 + . . .+ x+ 1). Again, by the 2nd Supplement to

the Law of Quadratic Reciprocity, 2 ∈ QR in G×Zp . Then the quadratic residue

set {d1, d2, . . . , dk} is closed under multiplication by 2. As a result, h2(α2di) =

h2(αdi). This implies that h2(αdi) is an element in F2. Thus, either h2(αdi) = 0 or
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1−h2(α−di) = h2(αdi) = 1. We conclude that either αdi or α−di is a root of h2(x).

Hence, when n is even, Rank(H2) = p− k.

Similarly, for h1(x) := 1 +∑k
i=1 x

−di for −d1,2,...,k ∈ QNR, we have

{0}
⋃
{α−di |1 ≤ i ≤ k}

are the set of roots for h1(x). Hence, Rank(H1) = p− (k + 1).

Corollary 4.5. For n is odd and p = 4n − 1 is a prime, let H1 = GC̄R and

H2 = GCR. The rank of H1 and H2 is

Rank(H1) = p− 1, (4.10)

Rank(H2) = p. (4.11)

Let Hsub
1 (resp. Hsub

2 ) be the sub-matrix of H1 (resp. H2) with Rank(Hsub
1 ) =

Rank(H1) (resp. Rank(Hsub
2 ) = Rank(H2)). The resulting parity-check matrix

H = [Hsub
1 |Hsub

2 ] is a trivial [[N,K, dmin]] = [[p, 0, dmin]] quantum stabilizer code.

Proof. In this case, p = 4n− 1 is equivalent to p = 3 mod 8. Denote by min(QR)

the smallest value in {d1, d2, . . . , dk}. Then, f(x) = xmin(QR) ·∑k
i=1 x

(di−min(QR)).

Since min(QR) = 1, there are at most p−1−min(QR) non-zero roots of f(x). By

the 2nd Supplement to the Law of Quadratic Reciprocity, 2 ∈ Qnr is a quadratic

non-residue in G×Zp , hence the order of 2 in G×Zp is p − 1. Assume αi for some

0 ≤ i ≤ p − 1 is also a root of f(x). Since f(x) is a polynomial over field F2,

f(αi·2j) = f(αi)2j = 0 for all 0 ≤ j ≤ p − 1, which implies that there are p − 1

distinct roots of f(x). But this contradicts that f(x) has at most p−1−min(QR) <

p − 1 non-zero roots. Hence, no roots of f(x) are in the set {1, α, α2, . . . , αp−1}

and Rank(H2) = p − K, where K = 0. By the same argument in Lemma 4.4,

Rank(H1) = p− 1.

Corollary 4.6. The above analyses for n is even or odd also apply to the case

when H1 = GC̄NR and H2 = GCNR.
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Example 4.1. Take n = 2 as an example. We have a (p, k, λ) = (7, 3, 1) difference

set, and QR = {1, 4, 2} (mod 7) is the set of quadratic residues. Let H1(x) =

Qr(x)π1(QR) = x(x + x2 + x4) and H2(x) = Qr(x)π4(QR) = x4(x + x2 + x4). Since

n is even, Rank(H) = Rank(H1) = Rank(H2) = p − k = 7 − 3 = 4, it is a

[[p,K, dmin]] = [[7, 3, dmin]] quantum stabilizer code and the parity-check matrix is

H =



0011010

0001101

1000110

0100011

0100011

1010001

1101000

0110100


. (4.12)

Furthermore, the set of logical X and Z operators are

X̄ =


IZIIXII

IIZIIXI

IIIZIIX

 and Z̄ =


ZIZZZII

ZZZIIZI

IZZZIIZ

 . (4.13)

It can be verified easily that properties in (2.38) are satisfied for X̄ and Z̄. Since

{X̄, Z̄} ∈ N (S)\S, dmin = 2 because wt(X̄1) = 2. Thus, H in (4.12) this is a

[[7, 3, 2]] Type-I stabilizer code. �

Example 4.2. For n = 2 and p = 7, QR = {1, 2, 4} and Q̄R = {0, 3, 5, 6}. Let

h1(x) = Q̄r(x) and h2(x) = Qr(x). We have h(x) = [1 + x3 + x5 + x6|x1 + x2 + x4]

and Rank(H1) = p − k − 1 = 3 and Rank(H2) = p − k = 4. Consider two error

operators E1, E2 ∈ PN , where E1 = IIIY III and E2 = IIY IIII, by measuring

all four stabilizer generators on each of the operators, we obtain the syndrome

M (E1) = [1, 1, 1, 1]T and M (E2) = [1, 1, 1, 1]T . Since M (E1) = M (E2), the code

can not distinguish Y errors on arbitrary two qubits. Thus, 2 ≥ dmin. �

4.1.3 Design of Type-I stabilizer codes of length N = 4n+1

We now look at Type-I stabilizer codes of length N = 4n+ 1.
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Proposition 4.7. For an odd n and a prime p = 4n+1, let H1 = GCR, H2 = GCNR,

and Hsub
1 , Hsub

2 be the sub-matrices of H1 and H2, respectively. Then Hsub
1 and Hsub

2

are self-orthogonal w. r. t. the SIP, and the rank is Rank(Hsub
1 ) = Rank(Hsub

2 ) =

p − 1. The resulting parity-check matrix H = [Hsub
1 |Hsub

2 ] is a [[N,K, dmin]] =

[[p, 1, d† ≥ dmin ≥ 3]] quantum stabilizer code, where d† = min(wt(E)) for E ∈ S.

Since p = 4n + 1 ≡ 1 (mod p), by Theorem 14 in [70], matrices H1 = GCR and

H2 = GCNR are commutating pairs and have rank p − 1. Moreover, since k =
p−1

2 = 2n, both H1 and H2 are even weight circulant matrices. Hence, we have the

following lemma.

Lemma 4.8. For an odd n > 1 and a prime p = 4n + 1, let CR and CNR be two

linear cyclic code spanned by H1 = GCR and H2 = GCNR, respectively. Then CR
and CNR are linear even code that contain codewords of even weight only. For

a ∈ CR and b ∈ CNR, min(wt(a)) = min(wt(b)) = 2.

Proof. Let c1, c2 be rows of H1, then

wt(c1 + c2) = wt(c1) + wt(c2)− 2wt(c1 ∩ c2). (4.14)

Since |QR| = k, we have wt(c1) = wt(c2) = k and 2wt(c1∩c2) = 0 ( mod 2). Thus,

wt(c1 + c2) ≡ 0 (mod 2). By induction, for any codeword a ∈ CR, wt(a) = 0 (mod

2). Let b be any codeword of CNR. Similarly, we can also show by induction

that wt(b) = 0 (mod 2). Thus, CR and CNR are even codes with wt(a) = wt(b) =

0 (mod 2).

We know that an even code has a generator polynomial g(x) that is divisible by

(1 + x). Thus, any Qr(x) over F2 is divisible by (1 + x). Since Rank(H1) =

p − 1 implies that dim(CR) = p − 1, the generator polynomial for CR has degree

of one. Hence, g(x) = 1 + x is the generator polynomial of CR for any prime

length p = 4n + 1 with an odd n. Therefore, for any codeword a ∈ CR, we have

wt(a) = {2i|1 ≤ i ≤ p−1
2 } and min(wt(a)) = 2. Similarly, an even code Qnr(x) is

also divisible by g(x), which implies that CR ≡ CNR. Hence, the minimum weight

of codewords spanned by H1 and H2 is always 2.
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By Lemma 4.8, we know that CR = 〈h1(x)〉 ≡ 〈g(x)〉 and CR ≡ CNR, where

g(x) = 1 + x. Let Hsub
1 = G generated from g(x) and Hsub

2 = GCNR with rank

p − 1. By linear operation on rows and columns of Hsub
1 and Hsub

2 , we transform

H = [Hsub
1 |Hsub

2 ] into its reduced row-echelon form

Hrref =


I(p−1)×(p−1)

1
1
...
1︸ ︷︷ ︸

Hsub′
1

Hsub′
2

 , (4.15)

where Hsub′
1 and Hsub′

2 are equivalent matrices for Hsub
1 and Hsub

2 , respectively.

Note that each row of Hsub′
1 is of weight 2 and the linear combination between any

two rows of Hsub′
1 is also a codeword of weight 2. The corresponding row weight

of Hsub′
2 is then determined by the following lemma.

Lemma 4.9. Let c be a row of Hsub′
2 , where Hsub′

2 is the equivalent matrix of Hsub
2

given in (4.15). Then min(wt(c)) = k and max(wt(c)) = k + 2.

Proof. Let h1(x) = Qr(x) and h2(x) = Qnr(x). Since n is odd and p is a prime of

the form p = 4n + 1, by the 1st Supplement to the Law of Reciprocity, −1 ∈ QR

and 2 /∈ QR. Then by Lemma 4.2, h1(x) = h1(x−1) (resp. h2(x) = h2(x−1)) and

h1(x)2 = h2(x) (resp. h2(x)2 = h1(x)). Equivalently,

H1H
T
1 = kI + (n− 1)Idiag(0),p×p +H2 ≡ H2 (mod 2) (4.16)

and

H2H
T
2 = kI + (n− 1)Idiag(0),p×p +H1 ≡ H1 (mod 2), (4.17)

where Idiag(0),p×p is a all-one matrix with zero diagonal of size p×p. It can be seen

that the maximum and minimum overlapping between a pair of rows in either

H1 or H2 is n and n − 1, respectively. Thus, using (4.14), the row weight of

Hsub′
2 is 2k − 2n = k, assuming two rows having the maximum overlapping, or to

2k − 2(n− 1) = k + 2, assuming two rows having the minimum overlapping.
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From the above, we have the following result.

Lemma 4.10. Let E ∈ S be a Pauli operator of weight wt(E), where S is the sta-

bilizer group spanned by H = [Hsub
1 |Hsub

2 ]. Let d† = min(wt(E)) be the minimum

weight of operator in S. Then we have d† ≤ k.

Proof. From Lemma 4.8, we know that CR ≡ CNR. Thus, for any E ∈ S, Φ(E) =

(a|b) ∈ F2N
2 with a, b ∈ CR. The weight of E is determined by

wt(E) ≡ wt(a|b) = wt(a) + wt(b)− wt(a ∩ b). (4.18)

Then, the minimum weight, d†, is given by

d† = min{wt(a) + wt(b)− wt(a ∩ b)}. (4.19)

Since min(wt(a)) = 2, Equation (4.19) is equivalent to

d† = min


min

a∈CR,wt(a)=2
{wt(a) + wt(b)− wt(a ∩ b)},

min
a∈CR,wt(a) 6=2

{wt(a) + wt(b)− wt(a ∩ b)}


≤ min(wt(a)) + wt (b|wt(a) = 2)− wt(a ∩ b). (4.20)

We know from Lemma 4.9 that max(wt(b)) = k + 2 and min(wt(b)) = k when

wt(a) = 2. Therefore,

d† ≤ min(wt(a)) +min[wt(b)|wt(a) = 2]−max(wt(a ∩ b))

≤ 2 + k −min{wt(a), wt(b)} ≡ k. (4.21)

To encode such a code, note that Equation (4.15) is already in the standard form

given in (3.16),

Hstd =
(
Hsub′

1 | B C
)
, (4.22)
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where B is a (p− 1)× (p− 1) square matrix and C is a single (p− 1)× 1 column

vector. Therefore, the logical operators Z̄1 and X̄1 for K = 1 are

Z̄1 = (0, 0, . . . , 0|1, 1, . . . , 1) (4.23)

and

X̄1 =
(
0, 0, . . . , 0, 1| CT 0

)
. (4.24)

The minimum distance dmin of a stabilizer code that is defined as

dmin = min(wt(F )) s.t. F ∈ N (S)\S, (4.25)

can be determined by the following lemma.

Lemma 4.11. Let F ∈ N (S)\S be a Pauli operator of weight wt(F ). The mini-

mum distance dmin is upper bounded by

dmin = min(wt(F )) ≤ k − 1 (4.26)

Proof. The subset N (S)\S is generated by multiplying S with X̄1, Z̄1 and X̄1Z̄1.

Let Φ(X̄1) = (aX̄1|bX̄1) and Φ(Z̄1) = (aZ̄1|bZ̄1). Let Φ(F ) = (a′|b′) ∈ F2N
2 and

Φ(E) = (a|b) ∈ F2N
2 be the binary 2N -tuples for F ∈ N (S)\S and E ∈ S,

respectively. The binary N -tuples a′ and b′ are determined by one of the linear

combinations

a′ ∈ {a+ aX̄1 , a+ aZ̄1 , a+ (aX̄1 + aZ̄1)},

b′ ∈ {b+ bX̄1 , b+ bZ̄1 , b+ (bX̄1 + bZ̄1)}. (4.27)

Since min(wt(b)) = k given that min(wt(a)) = 2 for E ∈ S, the weight of the

column vector C in (4.24) is wt(C) ≥ k. Thus, we have

wt(aX̄1) = 1, wt(bX̄1) ≥ k,

wt(aZ̄1) = 0, wt(bZ̄1) = p. (4.28)
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The minimum distance dmin is given by

dmin = min(wt(F )) ≡ min(wt(a′|b′))

= min{wt(a′) + wt(b′)− wt(a′ ∩ b′)}. (4.29)

Since either wt(b) = k+ 2 or wt(b) = k given that min(wt(a)) = 2, by considering

all the possible cases for the given wt(b) and min(wt(a)), Equation (4.29) can be

expanded into Equation (4.30), where Ω = max(wt(a′ ∩ b′)).

By using (4.27) and (4.28), the upper bound for dmin is

dmin ≤ min {k, k + 2, k, k − 1}

≤ k − 1 ≤ d†. (4.31)

We have now completed the proof.

The lower bound on the minimum distance dmin can be interpreted as the following.

Since

h1(x) + h2(x) = Qr(x) + Qnr(x) =
p−1∑
i=1

xi, (4.32)

we have

H1 +H2 = Qr(P ) + Qnr(P ) =
p−1∑
i=1

P i = Idiag(0),p×p. (4.33)

Let E ∈ N (S)\S have weight wt(E) = 1. Then for 1 ≤ i ≤ p, {MZ(Ei),MX(Ei),

M (Ei)} = [H1|H2|Idiag(0),p×p] are distinct column vectors. Hence, dmin ≥ 3 and

dmin ≤

min


min (wt(a′)|wt(a) = 2) + wt (b′|min(wt(a′)), wt(b) = k)− Ω,
min (wt(a′)|wt(a) = 2) + wt (b′|min(wt(a′)), wt(b) = k + 2)− Ω,
min (wt(b′)|wt(b) = k) + wt (a′|min(wt(b′)), wt(a) = 2)− Ω,
min (wt(b′)|wt(b) = k + 2) + wt (a′|min(wt(b′)), wt(a) = 2)− Ω

 .
(4.30)
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H = [Hsub
1 |Hsub

2 ] of length N = 4n + 1 is a Type-I stabilizer code that corrects

at least one error. We now give an example of Type-I stabilizer codes of length

N = 4n+ 1.

Example 4.3. When n = 1 and p = 5, then QR = {1, 4} (mod 5) and QNR =

{2, 3} (mod 5). Let

Qr(x) = x+ x4 and Qnr(x) = x2 + x3

be the first row of Qr(P ) and Qnr(P ), respectively. Since, n is odd, we obtain the

parity matrices

Hsub
1 =


01001
10100
01010
00101

 and Hsub
2 =


00110
00011
10001
11000

 (4.34)

of a [[5, 1, dmin]] quantum stabilizer code by removing the last row of matrices Qr(P )

and Qnr(P ). Note that, this code is equivalent to the well-known perfect [[5, 1, 3]]

quantum stabilizer code [13] if we remove the forth row of Qr(P ) and Qnr(P ) in

stead of the first row. It is known that this code has dmin = 3 that can correct

arbitrary single error. Furthermore, d† = 4 > dmin which implies that this code is

a non-degenerate quantum stabilizer code. �

Example 4.4. For n = 3 and p = 13, QR = {1, 3, 4, 9, 10, 12} (mod 13) and

QNR = {2, 5, 6, 7, 8, 11} (mod 13). Thus

Qr(x) = x+ x3 + x4 + x9 + x10 + x12

and

Qnr(x) = x2 + x5 + x6 + x7 + x8 + x11. (4.35)

The rank Rank(H) = Rank(Hsub
1 ) = Rank(Hsub

2 ) = 13 − 1 = 12. This is a

[[13, 1, dmin]] quantum stabilizer code. The stabilizer and the set of logical op-

erators X̄1 and Z̄1 are shown in TABLE 4.1. Let E = g2g4X̄1. Then E =
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g1 X Z Z I Z I I I Z I Z Z X
g2 I Y I Z Z Z I I Z Z Z I Y
g3 Z Z X I I Z Z I Z Z I I X
g4 I I I X Z I Z Z Z Z I Z X
g5 I Z Z I Y Z I Z I Z I Z Y
g6 Z Z I Z Z Y Z I I I I Z Y
g7 Z I I I I Z Y Z Z I Z Z Y
g8 Z I Z I Z I Z Y I Z Z I Y
g9 Z I Z Z Z Z I Z X I I I X
g10 I I Z Z I Z Z I I X Z Z X
g11 I Z Z Z I I Z Z Z I Y I Y
g12 Z Z I Z I I I Z I Z Z X X

X̄1 I Z I I Z Z Z Z I I Z I X
Z̄1 Z Z Z Z Z Z Z Z Z Z Z Z Z

Table 4.1: Stabilizer of [[13, 1, 5]] quantum stabilizer code.

IXIY ZIIIIIIZY ∈ N (S)\S has wt(E) = 5. Note that this stabilizer S has

distance d† = 6 and the minimum distance of this code is dmin = 5 < d†. Hence,

this is a non-degenerate [[13, 1, 5]] stabilizer code that is capable of correcting ar-

bitrary two errors. �

4.1.4 Constructed codes

In this section, we constructed Type-I stabilizer codes of length N = 4n + 1

and N = 4n − 1 for n ≤ 25 and the results are listed in TABLEs 4.2 and 4.3.

The codes in TABLE 4.2 are Type-I [[N,K, dmin]] = [[4n + 1, 1, d† ≥ dmin ≥ 3]]

stabilizer codes. The corresponding d† of the codes, which denotes the minimum

weight of an operator E ∈ S, is also shown in the table. From these two tables,

it can be seen that dmin < d† for all n, which means they are all non-degenerate

stabilizer codes. Further, we find that for the code lengths N = 4n + 1, n = 1, 3

and 7, our constructed Type-I stabilizer codes in TABLE 4.2 achieve the highest

minimum distance as given in [91]. Moreover, our constructed Type-I stabilizer

codes, [[37, 1, 11]], [[53, 1, 15]], [[61, 1, 17]] and [[101, 1, 21]] meet the lower bound

of the achievable minimum distance given in [91]. As shown in TABLE 4.2, for

n = 1, our Type-I stabilizer code is equivalent to the perfect [[5, 1, 3]] code [13].
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Interestingly, it has d† = 4 > dmin shown in brackets, where d† = 4n. Also, for

n = 3 and 7, our [[13, 1, 5]] and [[29, 1, 11]] Type-I stabilizer codes are equivalent

to the codes proposed in [7]. Furthermore, the codes in TABLE 4.3 are Type-I

[[N,K, dmin]] = [[4n− 1, 2n− 1, 2]] codes, where the code rate K
N

is approximately

half and dmin = 2 for any even n that gives a prime p = 4n − 1. The minimum

distance d† of stabilizer S is also listed in the table.

The equality of the quantum Hamming bound (3.19) and the quantum Singleton

bound (3.24) holds for [[5, 1, 3]] Type-I stabilizer code when n = 1. In this case,

t = n is the number of correctable errors. For other Type-I stabilizer codes of

N = 4n + 1 with N > 5, the code efficiency is upper bounded by the quantum

Hamming bound for t < n or dmin < 2n+ 1 = k + 1.

n [[N,K, dmin]] d† ≤ 2n
1 [[5,1,3]] (4)
3 [[13,1,5]] 6
7 [[29,1,11]] 12
9 [[37,1, 11]] 12
13 [[53,1,15]] 16
15 [[61,1,17]] 18
25 [[101,1,21]] 22

Table 4.2: Type-I stabilizer codes of length N = 4n+ 1 for n ≤ 25. d† is the
minimum weight of operator E ∈ S. Underlined numbers indicate that dmin
meets the lower bound of the achievable minimum distance given in [91]. The
number with brackets is the Perfect code in [13].

n [[N,K, dmin]] d†

2 [[7, 3, 2]] 4
6 [[23, 11, 2]] 8
8 [[31, 15, 2]] 8
12 [[47, 23, 2]] 12
18 [[71, 35, 2]] 16
20 [[79, 39, 2]] 16

Table 4.3: Type-I stabilizer codes of length N = 4n− 1 for n ≤ 25. d† is the
minimum weight of operator E ∈ S.
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4.2 Type-II quantum stabilizer codes from dif-

ference sets

In this section, we construct Type-II stabilizer codes, difference sets stabilizer

(DSS) codes. We first introduce some preliminaries on the theories of the cyclic

group and difference sets which are the foundation of our proposed constructions.

We then propose an efficient construction method that leads to our general quan-

tum DSS codes.

4.2.1 Preliminaries

1) Cyclic group

Let Z×p be a multiplicative group of order p.

Definition 4.12. For any multiplicative group Z×p of order p, it is cyclic if there

exists an element α ∈ Z×p such that, any element b ∈ Z×p can be expressed as

b = αi for some integer i. Such an element α is named the generator of the cyclic

group.

Consider the multiplicative group G×Z7 . Both elements 3 and 5 generate the entire

group, e.g.,

31 = 3, 32 = 3� 3 = 2, 33 = 32 � 3 = 2� 3 = 6,

34 = 33 � 3 = 6� 3 = 4, 35 = 34 � 3 = 4� 3 = 5

36 = 35 � 3 = 5� 3 = 1.

A useful theorem is the following.

Theorem 4.13. [99] For every prime p, the multiplicative group

Z×p = {1, 2, · · · , p− 1}

is cyclic.



Chapter 4: Stabilizer Codes from Quadratic Residue Sets and Difference sets 77

2) Difference sets

Definition 4.14. [97] A (p, k, λ) difference set is a subset D of a multiplicative

group Z×p such that the order of the group is p, the size of D is k, and each element

of Z×p can be expressed as a difference (di−dj) mod p of elements from D in exactly

λ times.

As an example, D = {1, 2, 4} is a (p, k, λ) = (7, 3, 1) difference set because each

element in G×Z7 can be written as the difference of two integers from the set D in

exactly λ = 1 way, as can be seen below:

 1− 2 = 6

1− 4 = 4

2− 1 = 1

2− 4 = 5

4− 1 = 3

4− 2 = 2

 mod 7. (4.36)

3) Shift of a difference set

Lemma 4.15. For every difference set D of size k, we may construct p − 1 dif-

ferent shifts of the original set, such that each shift is also a difference set that

generates elements of Z×p . We denote such shift operations as S(D, s), where

s = {1, 2, . . . , p− 1}.

For example, if D = {1, 2, 4} ⊂ G×Z7 = {1, 2, . . . , 6}, the 6 shifts of D are

D = {1, 2, 4},

S(D, 1) = {2, 3, 5}, S(D, 2) = {3, 4, 6},

S(D, 3) = {4, 5, 0}, S(D, 4) = {5, 6, 1},

S(D, 5) = {6, 0, 2}, S(D, 6) = {0, 1, 3}.

(4.37)

We denote a multi-weight CPM of the form

h (x)S(D,1) = xd1 + xd2 + xd3 , (4.38)

where {d1 = 2, d2 = 3, d3 = 5} ∈ S(D, 1). Thus, we generate a multi-weight

circulant matrix of weight k = 3, which is equivalent to the size of D, as H =∑
i∈S(D,1) P

i, where P is the CPM defined in (4.3).
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Our proposed method for constructing a DSS code is based on a series of circulant

matrices, where each circulant matrix is generated from a difference set D, or its

shift S(D, s), and the resulting parity-check matrix H = [H1|H2] is self-orthogonal

w. r. t. the SIP constraint.

4.2.2 Proposed DSS code constructions

Our proposed construction focuses on the difference sets with parameters [96]-[98]

(p, k, λ) = (4n− 1, 2n− 1, n− 1) (4.39)

for an even integer n ≥ 2 that results in a prime number p = 4n− 1.

To generate a difference set D, consider the multiplicative group

G×Z7 = {1, 2, · · · , 6}

of order 7. By taking the powers of a non-generator element β ∈ G×Z7 , say β = 4,

we have β2 = (16 mod 7) = 2 and β3 = β2 � β = (2 � 4 mod 7) = 1. An

interesting feature of D is that by taking the powers of any element d ∈ D\{1},

the new set {d1, d2, d3} = {1, 2, 4} and is equivalent to D. We now present the

following theorem:

Theorem 4.16. For every prime p, the multiplicative group Z×p possesses one

difference set D = {β, β2, . . . , βk} of size k such that each element of D is a non-

generator element of Z×p and each element of D\{1} also generates the difference

set D iff k is not factorable.

Proof. Assume k is not factorable. Let D = {β, β2, . . . , βk}, if θ = βi for i =

{1, 2, . . . , k − 1}, then θ2 = β2(i), θ3 = β3(i), . . ., θj = βj(i). To prove that when

j = k, {θ, θ2, . . . θj} = D, we consider the first case when i = 1 and 1 ≤ j ≤ k,

and we obtain {θ, θ2, . . . θj} = {β, β2, . . . βj} = D. For the second case when i 6= 1

and 1 ≤ j ≤ k, if ij < k, we know that θj = βij ∈ D, otherwise, for ij > k,
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θj = βij = βmk+r, where m is an multiple of k and 1 ≤ r < k is a remainder.

Since βk = 1, θj = βij = βnk+r = βr will be an element in D. However, if k can be

factorized, hence, k can be decomposed into a series of factors Υ = {υ1, υ2, . . . , υa}.

These factors can be used to generate a unique sequence of divisors of k,

Ξ =
{
ξl : ∀ξl =

w∏
n=1

υn, 1 ≤ w ≤ a,∃m = k

ξl

}
.

If i = ξl ∈ Ξ, then, θj = βj(i) = βj
k
m . When j = m, θj = βk where m 6= k is a

divisor of k. In other words, if k is factorable and i = ξl ∈ Ξ, βi only generates a

subset of D.

By using difference sets acquired from Theorem 4.16, the following theorem for

designing DSS codes is now given:

Theorem 4.17. For any two shift operations of a difference set D = {d1, d2, · · · ,

dt}, S(D, s1), S(D, s2), {s1, s2} ∈ {1, 2, . . . p− 1} and s1 6= s2, the corresponding

circulant matrices derived from the polynomials h1(x) = ∑
i∈S(D,s1) x

i, h2(x) =∑
i∈S(D,s2) x

i are self-orthogonal w. r. t. the SIP constraint.

Proof. From (4.38), we denote

h1 (x) = ∑
i∈S(D,s1) x

i = xd1+s1 + xd2+s1 + · · ·xdt+s1 ,

h2 (x) = ∑
i∈S(D,s2) x

i = xd1+s2 + xd2+s2 + · · ·xdt+s2 .

Then
h1 (x)h2 (x−1)

=
(∑

i∈S(D,s1) x
i
) (∑

i∈S(D,s2) x
−i
)

= x(d1+s1)−(d1+s2) + x(d1+s1)−(d2+s2) + · · ·

x(d1+s1)−(dt+s2) + · · · x(dt+s1)−(dt−1+s2) + x(dt+s1)−(dt+s2)

= kx(s1−s2) + x(d1−d2)+(s1−s2) + · · ·

x(d1−dt)+(s1−s2) + · · · x(dt−dt−1)+(s1−s2).

(4.40)
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Similarly, we have

h2 (x)h1 (x−1)

=
(∑

i∈S(D,s2) x
i
) (∑

i∈S(D,s1) x
−i
)

= x(d1+s2)−(d1+s1) + x(d1+s2)−(d2+s1) + · · ·

x(d1+s2)−(dt+s1) + · · · x(dt+s2)−(dt−1+s1) + x(dt+s2)−(dt+s1)

= kx(s2−s1) + x(d1−d2)+(s2−s1) + · · ·

x(d1−dt)+(s2−s1) + · · ·x(dt−dt−1)+(s2−s1).

(4.41)

By combining equations (4.40) and (4.41), we obtain

h1 (x)h2 (x−1) + h2 (x)h1 (x−1)

= k
(
x(s1−s2) + x(s2−s1)

)
+ xd1−d2

(
x(s1−s2) + x(s2−s1)

)
· · ·

+xd1−dt
(
x(s1−s2) + x(s2−s1)

)
+ · · ·

xdt−dt−1
(
x(s1−s2) + x(s2−s1)

)
.

(4.42)

By taking modulo 2 sum upon the first term in (4.42), k
(
x(s1−s2) + x(s2−s1)

)
is

reduced to
(
x(s1−s2) + x(s2−s1)

)
since k is always an odd number, as given in (4.39).

The rest of the terms in (4.42) are distinct differences between two elements du, dv
of the difference set D. Thus, equation (4.42) can be rearranged as

h1(x)h2(x−1) + h2(x)h1(x−1)

=
(

1 +
k∑

u=1

k∑
{v=1,v 6=u}

xdu−dv
)(

x(s1−s2) + x(s2−s1)
)
.

(4.43)

In Equation (4.43), the term
(
1 +∑k

u=1
∑k
{v=1,v 6=u} x

du−dv
)

represents an all-one

square matrix, where each polynomial degree is a distinct difference between two

elements {du, dv} ∈ D. Moreover, the second term
(
x(s1−s2) + x(s2−s1)

)
is also

a circulant matrix of weight 2, so each entry of the resulting circulant matrix

H1H
T
2 + H2H

T
1 is a summation of the corresponding column of the second term.

Thus, we have proved the theorem by showing that equation (4.43) is always

a circulant matrix that contains only even integers, which is an all-zero square

matrix when taking the modulo 2 sum.
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From Theorem 4.17, we know that any two shifts of a difference set D would yield

a trivial quantum stabilizer code with rate RQ = 0. In order to construct non-

trivial quantum stabilizer codes we introduce the following three constructions, A,

B and C:

Construction A. Let h1(x) = [g1(x)S(D,s1),g2(x)S(D,s2)] and h2(x) = [g1(x)S(D,s3),

g2(x)S(D,s4)], where the set {s1, s2, s3, s4} represents the distinct shifts of D. This

construction method generates a rate RQ = 1
2 quantum stabilizer code with parity-

check matrix H = [H1|H2] that is self-orthogonal w. r. t. the SIP.

Example 4.5. Using Construction A and the (7, 3, 1) difference set in (4.36),

consider two parity-check matrices h1(x) = [g1(x)S(D,1), g2(x)S(D,3)] and h2(x) =

[g1(x)S(D,4), g2(x)S(D,2)], where each shift S(D, s) is obtained from (4.37). The

combined parity-check matrix has the form of

h(x) = [h1(x)|h2(x)]

= [ x2 + x3 + x5, 1 + x4 + x5 |

x+ x5 + x6, x3 + x4 + x6 ].

By Theorem 4.13,

h1(x)h2(x−1) + h2(x)h1(x−1)

=
[
x2 + x3 + x5, 1 + x4 + x5

]  x−1 + x−5 + x−6

x−3 + x−4 + x−6

+

[
x+ x5 + x6, x3 + x4 + x6

]  x−2 + x−3 + x−5

1 + x−4 + x−5


= 0 (mod 2),

where ‘0’ denotes all zeros square matrix.

To construct a quantum stabilizer code of rate greater than 1
2 , Construction A can

be extended as follows:

Construction B. Let h1(x) = [g1(x)S(D,s1), g2(x)S(D,s2), . . . , gl(x)S(D,sl)] be a se-

rial concatenation of l circulant matrices. Similarly, let H2(x) = [g1(x)S(D,q1),



Chapter 4: Stabilizer Codes from Quadratic Residue Sets and Difference sets 82

g2(x)S(D,q2), . . . , gl(x)S(D,ql)] be another set of l circulant matrices. Such a construc-

tion generates a quantum stabilizer code of rate RQ = (l−1)
l

that is self-orthogonal

w. r. t. the SIP constraint.

Example 4.6. Consider l = 3, h1(x) = [g1(x)S(D,1), g2(x)S(D,4), g3(x)S(D,5)] and

h2(x) = [g1(x)S(D,2), g2(x)S(D,3), g3(x)S(D,6)], the quantum code has rate RQ = 2
3 ,

and is of the form

h(x) = [h1(x)|h2(x)]

= [ x2 + x3 + x5, x1 + x5 + x6, 1 + x2 + x6 |

x3 + x4 + x6, 1 + x4 + x5, 1 + x1 + x3 ].

4.2.3 Extension of DSS codes

Although the proposed construction methods satisfy the SIP constraint, the con-

structed quantum stabilizer codes are too dense in that both the performance

and the decoding complexity can be affected. As such, we provide an improved

construction method in order to reduce the weight of the circulant matrix. From

Theorem 4.16, we know that if θ = βi where i is a divisor of k, a cyclic subset

D′ ⊂ D can be obtained. To generate a circulant matrix of low weight, we extend

the constructions A and B as follows:

Construction C. Let h1(x) = [g1(x)S(D′,s1), g2(x)S(D′,s2), . . . , gl(x)S(D′,sl)] and

h2(x) = [g1(x)S(D′,q1), g2(x)S(D′,q2), . . . , gl(x)S(D,ql)], where D′ is a cyclic subset of

D with cardinality |D′| = k′ < k and l needs to be an even number. The SIP

constraint is satisfied iff (s1 +s2 + . . .+sl) mod p = (q1 +q2 + . . .+ql) mod p, and

(sj + sj+1) mod p = (qj + qj+1) mod p for every odd integer number 1 ≤ j < l.

4.2.4 Codes performance

Here we provide simulation results of some constructed DSS codes. We note

that to reduce the decoding complexity, classical cyclic codes are commonly de-

coded using a majority-logic decoder, which is a type of hard-decision decoding
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algorithm. Since our DSS codes are constructed from circulant matrices, we per-

formed majority-logic decoding [99] [100] on our codes. Note this decoding is used

simply for simulation-speed issues, given that we are interested in relative per-

formances only of the codes (similar relative performances will be found if slower

BP decoders are utilized). Our simulations are carried out over the quantum de-

polarizing channel. This channel creates X, Y and Z errors independently with

equal flip probability f
3 . In our simulations an approximation has been made at

the decoder side to further reduce the complexity of decoding by considering only

the marginal flip probability fm = 2f
3 of each received bit.

Based on the proposed construction method, Table 4.4 illustrates a set of stabilizer

codes with different size p. The performance of these sample codes is plotted in

Fig. 4.1. The quantum code rate of all codes is RQ = 1
2 . Here we see the

relative performance of some DSS codes as a function of block length. Interestingly

from Fig. 4.1, the block error rate (BLER) and qubit error rate (QBER) reduces

significantly for decreasing block size. One possible explanation for this is that

the distance property of DSS codes is irrelevant to the block size of the code, but

is relevant to the size of the difference set. Note also, for comparison we have

adopted one code [[13, 7]] from [95] and passed it through our decoder. The main

point here is that we can see that code performance is comparable to our [[14, 7]]

DSS code.

Fig. 4.2 illustrates the BLER (solid lines) and QBER (dash lines) of a DSS code

of block size N = 398 with different weights. From this figure, we observe that

the performance of the code improves when the weight of each circulant matrix is

low. The subset D′ for each circulant weight is provided in TABLE 4.5.

4.3 Chapter summary

In this chapter, two types of quantum stabilizer codes were proposed based on

quadratic residue sets of prime modulus and prime difference sets. By juxtaposing

cyclic permutation matrices, a number of different construction methods proposed
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n (p, k, λ) D
2 (7,3,1) {1 2 4}
6 (23,11,5) {1 2 3 4 6 8 9 12 13 16 18}
12 (47,23,11) {1 2 3 4 6 7 8 9 12 14 16 17 18 21 24 25 27 28 32

34 36 37 42}
50 (199,99,49) {1 2 4 5 7 8 9 10 13 14 16 18 20 23 25 26 28 29 31

32 33 35 36 40 43 45 46 47 49 50 51 52 53 56 57
58 61 62 63 64 65 66 70 72 79 80 81 86 89 90 91
92 94 98 100 102 103 104 106 111 112 114 115 116
117 121 122 123 124 125 126 128 130 131 132 139
140 144 145 151 155 157 158 160 161 162 165 169
172 175 177 178 180 182 184 187 188 193 196}

126 (503,251,125) {1 2 3 4 6 7 8 9 11 12 13 14 16 18 21 22 23 24 25
26 27 28 32 33 36 39 42 43 44 46 47 48 49 50 52 54
56 59 61 63 64 66 67 69 72 73 75 77 78 79 81 83 84
85 86 88 91 92 94 95 96 97 98 99 100 104 108 112
113 117 118 121 122 126 128 129 131 132 134 138
141 143 144 145 146 147 150 154 155 156 158 161
162 166 168 169 170 172 173 175 176 177 182 183
184 185 188 189 190 192 194 196 197 198 199 200
201 205 207 208 216 219 223 224 225 226 229 231
233 234 236 237 242 243 244 249 252 253 255 256
257 258 262 263 264 265 268 271 273 275 276 281
282 283 285 286 288 289 290 291 292 293 294 297
299 300 301 308 310 312 316 317 322 323 324 325
329 332 336 338 339 340 343 344 346 350 351 352
354 355 361 363 364 366 367 368 370 373 376 378
379 380 383 384 387 388 389 392 393 394 396 397
398 400 401 402 410 413 414 416 421 423 427 429
432 433 435 438 441 443 445 446 448 450 452 458
462 463 465 466 468 469 472 473 474 483 484 486
488 493 498}

Table 4.4: Different block size quantum stabilizer codes constructed from our
proposed method.

k′ D′

k′ = 3 {1 92 106}
k′ = 9 {1 43 58 92 106 162 175 178 180}
k′ = 11 {1 18 61 62 63 103 114 121 125 139 188}
k′ = 33 {1 5 8 18 25 28 40 52 61 62 63 64 90 92 98 103 106

111 114 116 117 121 123 125 132 139 140 144 157
172 182 187 188}

Table 4.5: Subset D′ ⊂ D of different size for DSS codes of N = 398.
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Figure 4.1: BLER (solid lines) and QBER (dash lines) performances of DSS
codes listed in TABLE 4.4 and comparison with the [[13, 7]] code in [95].
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Figure 4.2: BLER (solid lines) and QBER (dash lines) performances of DSS
codes of block size N = 398 with different weights given in TABLE 4.5.
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based on the property of QR sets and difference sets such that the constructed

quantum codes are always self-orthogonal w. r. t. the SIP constraint. The

minimum distance for Type-I stabilizer codes of length N = 4n + 1 is closely

related to the size of quadratic residue sets while the dimension of the codes is a

constant. The code rate for Type-I stabilizer codes of length N = 4n − 1 is near

half.

Furthermore, the proposed construction methods for DSS codes generate a dif-

ference set from a single input parameter and ensures the constructed codes are

self-orthogonal w. r. t. the SIP constraint. From simulation results, DSS code

performances can be improved by constructing from the subsets of a difference

set.



Chapter 5

Sparse-Graph Quantum LDPC

Codes

A lthough the pioneers’ work describes a new field of research, and has

proven that ‘good’ quantum error-correcting codes do exist, however, the

method of proof was non-constructive, and the theory was developed based on very

short block of qubits (e.g., the 5 qubit codes, Shor’s 9 qubit code, and Steane’s 7

qubit code). Thus it is not practicable to build a huge quantum circuit when the

number of qubits becomes large or even of moderate length. Also, no practical

decoding algorithm (i.e., an algorithm for which the decoding time is polynomial

in the block length) exists for these codes.

This stands in contrast to the situation with classical error correction, where prac-

tically decodable codes exist which, when optimally decoded, achieve information

rates close to the Shannon limit. Low-density parity-check (LDPC) codes [43, 51]

are an example of such codes. The sparseness of the parity-check matrices makes

the codes easy to encode and decode. It is also worth emphasizing that the sum-

product algorithm solves the decoding problem for low-density parity-check codes

at noise levels far greater than the maximum noise level correctable by any code

decoded by a traditional bounded-distance decoder. Since the parity-check matrix

87
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is sparse, a quantum low-density parity-check code would have the additional at-

tractive property that only a small number of interactions per qubit are required

in order to determine the error that has occurred. Such conjecture is made by

Mackay et. al in [39]. Moreover, since practical decoding algorithms have been

found for classical low-density parity check codes, it seems likely that a practical

decoding algorithm will also exist for quantum low-density parity-check codes.

In this chapter, we design classes of quantum LDPC codes, from conventional

quasi-cyclic (QC) proto-graph LDPC codes. We first introduce the basics of con-

ventional proto-graph LDPC codes. Then a class of quantum LDPC codes, namely

quasi-cyclic stabilizer (QCS) codes, are derived from a proto-matrix of Latin square

structure, where each proto-matrix is obtained using quadratic residue sets and

quadratic non-residue sets of prime modulus given by the form p = 4n ± 1. We

then show another class of quantum LDPC codes constructed based on the tensor

product of a pair of non-binary parity-check matrices. The resulting quantum

LDPC codes are of rates as high as above 0.9.

5.1 Background on quantum LDPC codes

Conventional sparse-graph LDPC codes [43, 51] are capacity achieving codes [52,

53] which ascertain both the sparseness of a code and efficient decoding algorithm.

However, the design of general quantum stabilizer (non-CSS) codes from conven-

tional LDPC codes is limited by the orthogonality constraint, that is, the under-

lying pair of classical codes must be orthogonal with respect to the symplectic

inner product. The idea of quantum LDPC codes was first given by Postol in [62],

whereas generalization of quantum LDPC codes was proposed a few years later

by MacKay et al. [39]. Thereafter, a wide range of different types of sparse-graph

quantum codes have been proposed, e.g., [64]-[75], many of them are quantum

CSS codes. Most of these constructions are based on the design of structured

quasi-cyclic (QC) LDPC codes using circulant permutation matrix (CPM) since

the orthogonality requirement can be satisfied easily compared to that of using a
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random LDPC codes. To determine the cyclic shift of a CPM, various techniques

have been applied, for instance, algebraic construction of quantum LDPC codes

from Latin squares [65] and finite geometries [66]. Alternatively, cyclic shifts can

be obtained by solving a set of linear equations (e.g.,[75]) or by searching for dif-

ferent combination of integer numbers that satisfy a certain necessary condition

(e.g., [68]).

In this chapter, we propose several constructions of quantum LDPC codes that

do not require to calculate or search the cyclic shifts of CPMs for the underlying

protograph LDPC codes [86]. As introduced in [65] a class of quantum LDPC codes

of CSS structure can be constructed using a pair of QC-LDPC codes derived from

orthogonal Latin squares. Inspired by this, we construct quantum LDPC codes of

non-CSS structure, called quasi-cyclic stabilizer (QCS) codes, using conventional

regular protograph LDPC codes derived from non-orthogonal Latin squares. More

specifically, we use quadratic residue (QR) sets of prime modulus as the basic

building block of our protomatrix, and show that by arranging the elements of a

QR set in a particular way, the resulting protomatrix is a non-orthogonal Latin

square, where each entry represents a cyclic shift of a CPM. Further, we obtain a

set of transformation matrices from the transversal of Latin squares for QR sets of

parameter p = 4n− 1, or from the cyclic shifts of reverse identity matrix for QR

sets of parameter p = 4n + 1. By applying these transformations among the pre-

obtained protomatrices, the binary protograph QC-LDPC codes lifted from the

equivalent protomatrices are also self-orthogonal with respect to the symplectic

inner product. Upon construction of such a type of QCS codes we show that the

orthogonality requirement of the proposed QCS codes preserves for an arbitrary

order of CPMs.

In our proposed design, we consider quadratic residue sets of size k = p−1
2 , where

p = 4n±1 is a prime and n ∈ Z+ is a positive integer. There are three types of QCS

codes proposed in this chapter and they are here called ‘Type-I-A’, ‘Type-I-B’ and

‘Type-II’. All these codes are quantum LDPC codes of non-CSS structure. The

underlying binary parity-check matrices H1 and H2 for each type of QCS codes

are derived from a pair of protomatrice H1proto and H2proto, respectively, such that
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H1 and H2 are self-orthogonal with respect to the symplectic inner product. The

main constructions of the proposed three types of QCS codes are summarized in

the following.

1. For a prime p = 4n − 1, n ∈ Z+ and a pair of protomatrices H1proto and

H2proto, Type-I-A QCS codes of length N = kp are constructed by superim-

posing a k×k all-zero protomatrix Ok to either H1proto or H2proto. The dimen-

sion of Type-I-A QCS codes is K = kp−k(p−1)−1 and K = kp−k(p−2)−1

for odd n and even n, respectively.

2. For a prime p = 4n − 1, n, v ∈ Z+ and a pair of protomatrices H1proto

and H2proto, Type-I-B QCS codes of length N = 2kv and dimension K =

2kv− ρ′v+ ρ′− 1 are constructed by using transformation matrices D ∈P,

where ρ′ ≤ k is the column weight of the derived QC-LDPC codes and v is

the order of CPMs, and the set of transformation matrices P is obtained

based on transversals of H1proto and H2proto.

3. For a prime p = 4n + 1, n, v ∈ Z+ and a pair of protomatrices H1proto

and H2proto, Type-II QCS codes of length N = kv and dimension K =

kv − ρ′v + ρ′ − 1 are constructed by swapping the columns of H1proto or

H2proto. The permutation of columns are performed using cyclic shifts of

reverse identity matrix of size k.

We give a lower bound on the minimum distance of the proposed Type-II QCS

codes. By proving that the Tanner graphs of the underlying protograph LDPC

codes are free of cycles of length four according to [87], we show that the minimum

distance of Type-II QCS codes can be lower bounded in terms of the minimum

distances of the underlying protograph LDPC codes obtained based on the results

from [88] [89].

The performance of the proposed three types of QCS codes is also shown. The

constructed codes are decoded over a quantum depolarizing channel using an it-

erative sum-product decoder. The simulation environment is analogous to that

of decoding a sparse classical quaternary code under the sum-product algorithm
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(SPA) [150] [151]. Simulation results show that the proposed QCS codes of mod-

erate code length (a few hundreds to a few thousands) outperform some of the

literature codes in the waterfall region. In addition, and outperform the rate half

quantum LDPC codes from [75] in the error floor region (block error rate around

∼ 10−7) with a low decoding complexity.

We first give a preliminary on Latin squares and classical proto-graph LDPC codes.

Then we give explicit design procedures of QCS codes from quadratic residue sets

(see Section 4.1.1) with parameter p = 4n± 1, including the designs of Type-I-A

QCS codes and Type-I-B QCS codes for p = 4n−1, and the design of Type-II QCS

codes for p = 4n + 1. We present some constructed codes and simulation results

of these codes over the quantum depolarizing channel model with the iterative

sum-product decoding algorithms afterwards.

5.1.1 Latin squares

Definition 5.1. Let L = {l1, l2, . . . , lq} be a set of q elements. A q × q square

matrix

S =



s(1,1) s(1,2) · · · s(1,q)

s(2,1) s(2,2) · · · s(2,q)
... ... . . . . . .

s(q,1) s(q,2) · · · s(q,q)


, (5.1)

is a Latin square of order q if each row and column of S contains each element

of L exactly once. A Latin square is called commutative if the cell (i, j) and (j, i)

for 1 ≤ i, j ≤ q contain the same element of L, that is, S = S T .

Definition 5.2. Two Latin squares of order q, S = [s(i,j)] and U = [u(i,j)], are

orthogonal iff the q2 order pair (s(i,j), u(i,j)) are distinct for all 1 ≤ i, j ≤ q.

Definition 5.3. A transversal T ⊂ {(i, j)|1 ≤ i, j ≤ q} of a Latin square of order

q is such a set of q cells that each row and each column only contains one cell, and

the q cells contain q different elements in L.
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Proposition 5.4. Let S be a Latin square of order q and T be a transversal of

S . Denote by πT a q × q transformation matrix. Then the (i, j)-th entry of πT

has value of 1 if the cell (i, j) ∈ T and 0 if the cell (i, j) /∈ T for 1 ≤ i, j,≤ q.

Corollary 5.5. A left multiplication of S by πT , πTS , is equivalent to a permu-

tation of rows of S , whereas a right multiplication S by πT , S πT , is equivalent

to a permutation of columns of S .

5.1.2 Proto-graph quasi-cyclic LDPC codes

A circulant permutation matrix defined in (4.3) has order v such that

Pv = P0 = Iv,

where Iv is the identity matrix of size v. Let f(x) = ∑l
i=1 x

ri be a univariate

polynomial of l distinct terms such that 0 ≤ r1 < r2 < . . . < rl < v. We define

a weight-l CPM as A = f(P) := ∑l
i=1 Pri . Furthermore, the transpose of A is

denoted as AT = f(P−1) = ∑l
i=1 Pv−ri = ∑l

i=1 P−ri .

Let B = [bi,j]1≤i≤c,1≤j≤d ∈ Z+ be a protomatrix of size c × d, where each entry

denotes the weight of a CPM. The summations

dc =
{∑c

i=1 bi,j
}
, 1 ≤ j ≤ d, and dr =

{∑d

j=1 bi,j

}
, 1 ≤ i ≤ c, (5.2)

represent the set of column degrees and row degrees of the derived parity-check

matrix, respectively. To construct a parity-check matrix H from B, each non-zero

entry of B is lifted using a weight-bi,j CPM of order v such that v � max(bi,j),

and the zeros are lifted using an all-zero matrix of size v× v. The null space of H

gives a binary QC-LDPC code of length dv.

Example 5.1. Considering a proto-matrix B = [3 2]1×2 of column weights 2 and

3, and row weight 5. A parity check matrix H can be obtained by lifting B with
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CPMs P of order v, such that v � 3. This can be expressed as,

B =
[

3 2
]

(P,v)−→ H =
[∑3

i=1 Pri
∑2
i=1 Pri

]

=



1 0 1 1

1 1 0 1

1 1 1 0

0 1 1 1

1 0 1 0

0 1 0 1

1 0 1 0

0 1 0 1


.

The multi-weight CPM on the left consists of P with permutations {r1, r2, r3} =

{0, 2, 3}, whereas the multi-weight CPM on the right consists of P with permuta-

tions {r1, r2} = {0, 2}.

5.2 New constructions on quasi-cyclic quantum

LDPC codes

As briefly introduced in Section II, the SIP constraint upon a quantum code com-

plicates the design of quantum LDPC codes from an arbitrary protomatrix B. In

this chapter, we focus on the design of quantum LDPC codes using the k × k

protomatrix

B =

 1 · · · 1
... . . . ...
1 · · · 1

 , (5.3)

where k = p−1
2 is the size of QR and QNR. We first obtain a pair of protomatrices

H1proto and H2proto by replacing each ‘1’ inside B with an element from QR and

QNR, respectively. We then lift H1proto and H2proto with CPMs to obtain a pair

of binary matrices H1 and H2 that is orthogonal with respect to the SIP. In the

following subsections, we 1) discuss the design of H1proto and H2proto from B; 2)

show explicit construction methods of the proposed Type-I-A, Type-I-B and Type-

II QCS codes; 3) derive a lower bound on the minimum distance of Type-II QCS

codes and 4) provide exemplifying codes at the end of this chapter.
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5.2.1 Proto-matrices of QCS codes

Let QR and QNR be a quadratic residue and non-residue set that contains k = p−1
2

elements, respectively. From Lemma 4.1, QR⋃QNR = {1, 2, . . . , p − 1} if p is a

prime. Let β = α2, where α is a primitive element of the finite field Fp. Since

α2 ∈ QR and k = p−1
2 , β is a primitive k-th root of unity and QR is closed under

multiplication by β. Thus, β is the generator element of QR and we can express

QR as

QR = {β0 = 1, β, . . . , βk−1}.

To represent QNR in terms of β, we consider prime p for two cases.

1) p = 4n− 1

By the First supplement to quadratic reciprocity [57], −1 ∈ QNR for a prime

p = 4n− 1. Thus, according to Lemma 4.2,

QNR = −1× {1, β, . . . , βk−1} ≡ −QR (5.4)

and βi + (−βi) = 0 (mod p) for 0 ≤ i ≤ k − 1. Moreover, we construct integer

vectors hQR and hQNR as

hQR =
[
QR(1) QR(2) · · · QR(k)

]
=
[
1 β . . . βk−1

]
(5.5)

and

hQNR = −hQR , (5.6)

where QR (j) (resp. QNR (j)), 1 ≤ j ≤ k, represents the j-th element of QR (resp.

QNR).

2) p = 4n+ 1
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In the case when a prime p = 4n + 1, ±1 ∈ QR by the First supplement to

quadratic reciprocity [57]. Thus,

QR = {β0 = 1, β, . . . , βk−1} ≡ ±{1, β, . . . , β k
2−1}. (5.7)

Let

hQR =
[
1, β, . . . , β k

2−1,−1,−β, . . . ,−β k
2−1

]
. (5.8)

From Lemma 4.2, we know that α2i−1 ·α2i ∈ QNR for 1 ≤ i ≤ p−1
2 , where α2i ∈ QR

and α2i−1 ∈ QNR. Therefore, the integer vector hQNR can be obtained from hQR

based on the relation

hQNR = γhQR (mod p) ,

where γ ∈ QNR.

For both cases, we obtain k − 1 permutations of hQR and hQNR by performing

column-swapping. Since βk = β0 = 1 (mod p), βkβi ≡ βk+i ≡ βi( mod k), the

column-swapping performed here is equivalent to cyclic shift of hQR and hQNR

towards left. More specifically, for 0 ≤ i ≤ k − 1, the i-th cyclic left shift of hQR

and hQNR is expressed as

C (hQR)i ≡ βihQR and C (hQNR)i ≡ βihQNR , (5.9)

respectively. For a fixed B given in (5.3), the protomatrices H1proto and H2proto

are obtained by replacing the i-th all-one row of B with C (hQR)i and C (hQNR)i,

respectively. The final H1proto and H2proto are

H1proto =



C (hQR)0

C (hQR)1

...

C (hQR)k−1


and H2proto =



C (hQNR)0

C (hQNR)1

...

C (hQNR)k−1


. (5.10)
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Note that, both H1proto and H2proto are square matrices that contain k different

permutations of QR and QNR, respectively. Since H1proto(i, j) = H1proto(j, i) for

0 ≤ i, j ≤ k−1, H1proto = HT
1proto and similarly H2proto = HT

2proto. Thus, by Defini-

tion 5.1, H1proto and H2proto are commutative Latin squares of order k with every

element of QR and QNR appearing exactly once in every row and every column.

Furthermore, since (H1proto(i, j),H2proto(i, j)) and (H1proto(i′, j′),H2proto(i′, j′)) are

identical pairs for i′ = i ± 1 (mod k) and j′ = j ∓ 1 (mod k), by Definition 5.2,

H1proto and H2proto are non-orthogonal Latin squares. By lifting H1proto and H2proto

with P of order v, we obtain a pair of parity-check matrices H1 and H2 of size

vk × vk, each consisting of k × k weight-1 CPMs.

5.2.2 Type-I-A QCS codes from QR set of prime p=4n-1

We now design Type-I-A QCS codes for p = 4n− 1 from H1proto and H2proto given

in (5.10).

Denote by � the operation of adjunction, e.g., (βi�βj) ≡ (Pβi +Pβj). Let OM be

an all-zero protomatrix of size M ×M . For a given pair of protomatrices H1proto

and H2proto, we construct Hproto in the following way,

Hproto = [H1proto | H′2proto] = [H1proto | H2proto �Ok] , (5.11)

where k = p−1
2 and H2proto �Ok is performed element-wise.

Lemma 5.6. For a positive integer n and a prime p = 4n− 1, let Ok be the k× k

all-zero protomatrix. Then the parity-check matrix H = [H1 | H′2] lifted from the

protomatrix Hproto = [H1proto | H2proto �Ok] is self-orthogonal with respect to the

SIP.

Proof. Let F = [fi,j (x)]k×k and T = [ti,j (x)]k×k be the k × k circulant array of

H1 and H′2, respectively, where fi,j(x) = xH1proto(i,j) and ti,j(x) = 1 + xH2proto(i,j)

are univariate polynomials of the (i, j)-th CMP for 0 ≤ i, j ≤ k − 1. Since



Chapter 5: Sparse-Graph Quantum LDPC Codes 97

H1proto = −H2proto and for 0 ≤ i ≤ k − 1, the first row of FTT + TFT is


k−1∑
j=0

[
xβ

j
(
1 + xβ

(j+i) mod k)+ x−β
j
(
1 + x−β

(j+i) mod k)] . (5.12)

The rest k−1 rows are the cyclic shift of Equation (5.12) towards right. Moreover,

express the two terms inside the summation as xβj + xβ
j(1+βi) + x−β

j + x−β
j(1+βi).

Since QR∪QNR = Z×p for a prime p = 4n−1 and for 0 ≤ j ≤ k−1, the polynomial∑k−1
j=0(xβj + x−β

j) represents an all-one matrix of zero diagonal. Similarly, for

either (1+βi) ∈ QR or ∈ QNR, {βj(1 + βi),−βj(1 + βi)} generates QR and QNR

according to lemma 4.2. Thus, the polynomial ∑k−1
j=0(xβj(1+βi) + x−β

j(1+βi)) also

represents an all-one matrix of zero diagonal. Hence, FTT + TFT = 0(mod2)

and the pair of binary matrices H1 and H2 is self-orthogonal with respect to the

SIP.

Proposition 5.7. For a positive integer n and a prime p = 4n−1. Let v = p. The

quadratic residue set QR and the quadratic non-residue set QNR yield a [[N,K]] =

[[kp, kp−Rank (H)]] QCS code, where the parity-check matrix H = [H1 | H′2] has

rank Rank (H) = k(p− 1) + 1 when n is odd and Rank (H) = k(p− 2) + 1 when

n is even. We call this type of QCS codes based on adjunction operation Type-I-A

QCS codes.

Proof. See Appendix A.1.

5.2.3 Type-I-B QCS codes from QR set of prime p=4n-1

In this sub-section, we show an alternative construction method for Type-I QCS

codes such that the adjunction operation is no longer required for prime p = 4n−1.

Denote by

RIk =



0 0 · · · 0 1
0 0 · · · 1 0
... 0 1 0 0
0 . . . 0 ... ...
1 0 · · · 0 0

 (5.13)
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a reverse identity matrix of size k, where k = p−1
2 . The product of H1protoRIk and

H2protoRIk generates a different Latin square H′1proto and H′2proto of order k that

is equivalent to H1proto and H2proto, respectively. This transformation is equivalent

to the matrix column-swapping

H1proto(i, j)→ H′1proto(i, k − j − 1), 0 ≤ i, j ≤ k − 1,

where each (i, j) represents the coordinate of the i-th row and j-th column of

H1proto.

Lemma 5.8. For a positive integer n and a prime p = 4n − 1, let H1proto and

H2proto be the protomatrices of the form given in (5.10), respectively. Let

H′1proto = RIkH1proto and H′2proto = RIkH2proto (5.14)

be the equivalent Latin square of H1proto and H2proto, respectively. Then the binary

matrix H = [A1 | A2] = [H1 H′2 | H2 H′1] lifted from Hproto = [H1proto H′2proto
| H2proto H′1proto] is self-orthogonal with respect to the SIP.

Proof. Let F = [fi,j(x)]k×k and T = [ti,j(x)]k×k be the k × k circulant array

of H1 and H2, where fi,j(x) = xH1proto(i,j) and ti,j(x) = xH2proto(i,j) are weight-1

CPMs for 0 ≤ i, j ≤ k − 1. Consider the case F̂ = RkF and T̂ = RkT, where

Rk = [ri,k−i−1(x)]k×k is the k × k reverse identity matrix with ri,k−i−1(x) = 1 for

0 ≤ i ≤ k − 1. Since Rk = RT
k = R−1

k , we have

A1AT
2 + A2AT

1 =
(
FTT + T̂F̂T

)
+
(
TFT + F̂T̂T

)
=
(
FTT +

(
RkTFTRT

k

))
+
(
TFT +

(
RkFTTRT

k

))
=
(
FTT + TFT

)
+
(
TFT + FTT

)
= 0(mod2). (5.15)

Hence, we have A1AT
2 = A2AT

1 and A1AT
2 + A2AT

1 = 0 (mod 2).

Note that for p = 4n − 1 and odd k = p−1
2 , H1proto and H2proto consist of k

different transversal T such that their transformation matrices πT are cyclic shifts

of identity matrix Ik. We construct a set of reverse matrices from πT using RIk .
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Corollary 5.9. For Type-I-B QCS codes, let P = {RIkπTi ≡ RIkPi, 0 ≤ i ≤

k − 1} be a set of transformation matrices for H1proto and H2proto, where the

permutation matrix πTi is the i-th cyclic shift of the k × k identity matrix. For

D ∈P, we construct the equivalent protomatrices

H′1proto = DH1proto and H′2proto = DH2proto

based on row-swapping. Then for an arbitrary order v of P, the binary parity-check

matrix H = [A1 | A2] lifted from Hproto = [H1proto H′2proto | H2proto H′1proto] is

always self-orthogonal with respect to the SIP.

Proof. Since RkRT
k is the identity matrix, DDT equals to the identity matrix.

Thus, the SIP constraint can be satisfied for different D ∈P used. Furthermore,

since A1AT
2 = A2AT

1 from Lemma 5.8 is irrelevant to the order of CPMs, the

non-zero values of A1AT
2 + A2AT

1 are always even for an arbitrary order of P.

Proposition 5.10. For positive integers n and ρ′ ≤ k, a prime p = 4n − 1 and

a v > p, the quadratic residue set QR and quadratic non-residue set QNR yield a

[[N,K]] = [[2kv, 2kv − ρ′(v − 1) − 1]] QCS code. We call this type of QCS codes

Type-I-B QCS codes.

Proof. By removing k − ρ′ rows from Hproto, the sub-matrices Asub
1 and Asub

2 of

size ρ′v× 2kv define a QCS code of rate at least RQ = 1− ρ′

2k . Further, since each

of the v rows of A1 and A2 lifted from C (hQR)i and C (hQNR)i sum to the all-one

vector, the rank of the parity-check matrices Asub
1 and Asub

2 is at most ρ′(v−1)+1

(e.g., see [87]).

5.2.4 Type-II QCS codes from QR set of size p = 4n+1

In this section, we design H1proto and H2proto given in (5.10) for Type-II QCS

codes. Recall that

hQR =
[
1, β, . . . , β k

2−1,−1,−β, . . . ,−β k
2−1

]
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for a prime p = 4n+ 1 and k = p−1
2 = 4n

2 = 2n is an even integer. The associated

protomatrix H1proto is a commutative Latin square of the form

H1proto =



1 · · · β
k
2−1 −1 · · · −β k

2−1

... . . . . . . . . . . . . ...

β
k
2−1 . . . −β k

2−2 −β k
2−1 . . . β

k
2−2

−1 . . . −β k
2−1 1 . . . β

k
2−1

... . . . . . . . . . . . . ...

−β k
2−1 · · · β

k
2−2 β

k
2−1 · · · −β k

2−2


≡

 h11 h12

h21 h22

 ,

(5.16)

where h11 = h22, h12 = h21 and h11 = −h12. Let γ ∈ QNR. We construct

H2proto = γ
[h11 h12
h21 h22

]
(mod p) .

Let RIk be the reverse identity matrix of size k × k given in (5.13) and P =

{RIkPi, 0 ≤ i ≤ k − 1} be a set of transformation matrices.

Lemma 5.11. For a positive integer n and a prime p = 4n + 1, let H1proto and

H2proto be the protomatrices of the form given in (5.10). Let H′1proto = H1protoD

(resp. H′2proto = H2protoD) be the equivalent Latin square of H1proto (resp. H2proto)

constructed from column-swapping, where D ∈ P. The binary matrix H = [H1 |

H′2] (resp. H = [H′1 | H2]) lifted from Hproto = [H1proto | H′2proto] (resp. Hproto =

[H′1proto | H2proto]) is self-orthogonal with respect to the SIP.

Proof. From Equation (5.16), we know that h11 = h22, h21 = h12 and h11 = −h12.

The lifted parity-check matrix H = [H1 | H′2] can be expressed as

H = [H1 | H′2] =
[ A11 A12

A12 A11

B11 B12
B12 B11

]
,
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where H1H′T2 is given by

H1H′T2 =


(
A11B11

T + A12B12
T
) (

A11B12
T + A12B11

T
)

(
A12B11

T + A11B12
T
) (

A12B12
T + A11B11

T
)
 .

By expressing H1 and H′2 in the polynomial form similar to lemma 5.6, it can be

verified that

A11B11
T = B12A12

T , A12B11
T = B12A11

T ,

A11B12
T = B11A12

T , A12B12
T = B11A11

T . (5.17)

This implies that

H1H′T2 ≡


(
B11A11

T + B12A12
T
) (

B11A12
T + B12A11

T
)

(
B12A11

T + B11A12
T
) (

B12A12
T + B11A11

T
)
 = H′2HT

1 . (5.18)

Thus, H1 and H′2 are orthogonal with respect to the SIP. The proof completes.

Proposition 5.12. For positive integers n, ρ′ ≤ k, a prime p = 4n + 1 and a

v > p, the quadratic residue set QR and the quadratic non-residue set QNR yield

a [[N,K]] = [[kv, kv − ρ′(v − 1) − 1]] QCS code. We call this type of QCS codes

Type-II QCS codes.

Proof. Refer to the proof for Proposition 5.10.

5.2.5 Lower bound on minimum distance of Type-II QCS

codes

It is known that a Tanner graph of a stabilizer matrix over F4 contains inevitable

cycles of length four due to the orthogonality requirement. This means that every

commuting pair of operators in a stabilizer S must have an even number of over-

lapping positions with non-identity elements according to (2.10). In the following,
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the girth of their underlying binary matrices H1 and H′2 is studied, and a lower

bound on the minimum distance for Type-II QCS codes is given.

In [87], it is shown that a cycle in the Tanner graph of a conventional QC-LDPC

code can be considered as a sequence of the corresponding v × v CPMs. Thus, a

cycle of length 2i in a conventional binary QC-LDPC code can be expressed as the

sequence (j0, l0); (j1, l1); . . . ; (jk, lk); . . . ; (ji−1, li−1); (j0, l0), where (jk, lk) stands for

the jk-th row and lk-th column of Hproto = [H1proto | H2proto], and the semicolon

between (jk, lk) and (jk+1, lk+1) can be considered as (jk+1, lk). Clearly, jk 6= jk+1

and lk 6= lk+1. Therefore, the necessary and sufficient condition for the existence

of the cycle of length 2i is [87]

∑i−1
k=0(hjk,lk − hjk+1,lk) = 0 (mod v) , (5.19)

where each hjk,lk represents an element in Hproto. For example, for i = 2, the girth

of a Tanner graph is four if there exists a sequence (j0, l0); (j1, l1); (j0, l0) such that

the condition in (5.19) is satisfied. This condition is used to show that the length

of a cycle in a protograph LDPC code can be calculated using the shift values of

their circulants.

Lemma 5.13. The binary matrix H = [H1 | H′2] lifted from Hproto = [H1proto |

H′2proto] has girth at least six.

Proof. Recall that hQR =
[
1, β, β2, β3, . . . , βk−1

]
and hQNR = γhQR(mod p) for a

prime p = 4n + 1, where γ ∈ QNR. Let i1 6= i2 for 0 ≤ i1, i2 ≤ k − 1. Since the

j-th row of H1proto (resp. H2proto) is the j-th cyclic left shift of hQR (resp. hQNR)

for 0 ≤ j ≤ k − 1, the difference between row i1 and row i2 of Hproto is given by

[
βi1hQR βi1hQNR

]
−
[
βi2hQR βi2hQNR

]
=
[
(βi1 − βi2)hQR (βi1 − βi2)hQNR

]
.

(5.20)

For either (βi1 − βi2) ∈ QR or (βi1 − βi2) ∈ QNR, the unique sets QR and QNR

are generated according to lemma 2. Thus, the difference between arbitrary two

rows of Hproto is a vector that contains p−1 distinct elements from Z×p . Moreover,
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since H′2proto = H2protoD is a column permutated version of H2proto, where D ∈P

is a transformation matrix, the difference between row i1 and row i2 of Hproto is

also permuted. Hence, the lifted binary parity-check matrix H contains no cycles

of length four since there exist no sequences (j0, l0); (j1, l1); (j0, l0) in Hproto such

that the condition in (5.19) that can be satisfied. Therefore, the girth of binary

H of Type-II QCS codes is at least six.

Since the Tanner graph of binary H is free of cycles of length four, it is straightfor-

ward that the Tanner graphs of H1 and H′2 are also free of cycles of length four.

In the following, we show that the minimum distance of Type-II QCS codes can

be lower bounded in the terms of the minimum distance of the underlying binary

LDPC codes.

Proposition 5.14. For positive integers n, ρ′ ≤ k, a prime p = 4n + 1 and a

v > p, the proposed Type-II QCS codes have the minimum distance lower bounded

by dQ ≥ 2(ρ′ + 1) − max (wt(a ∩ b)), where (a | b) ∈ F2N
2 is an element in the

symplectic dual space C◦.

Proof. Recall from Section II-B that the minimum distance of a non-CSS quantum

LDPC code is defined as

dQ := min {wt (a | b) | (a | b) ∈ C◦ \ C}

≡ min {wt(a) + wt(b)− wt(a ∩ b) | (a | b) ∈ C◦ \ C} , (5.21)

where a,b ∈ FN2 . Let d1 = wt(a) and d2 = wt(b) be the distance of the pair of

protograph LDPC codes with parity-check matrices H1 and H′2, respectively. It is

known from [88] [89], that the minimum distance of LDPC codes is lower bounded

by dcmin + 1, where dcmin denotes the minimum column weight of the parity-check

matrix, if the associated Tanner graph is free from cycles of length four. Since

both H1 and H′2 have a constant column weight ρ′ ≤ k and their Tanner graphs

do not have cycles of length four according to lemma 5.13, the minimum distance

d1 and d2 are both lower bounded by ρ′ + 1. Hence, the minimum distance of

Type-II QCS codes is lower bounded by dQ ≥ 2(ρ′ + 1)−max (wt(a ∩ b)).
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Hproto =
1 3 9 5 4
3 9 5 4 1
9 5 4 1 3
5 4 1 3 9
4 1 3 9 5

2 6 7 10 8
8 2 6 7 10
10 8 2 6 7
7 10 8 2 6
6 7 10 8 2

10 8 2 6 7
8 2 6 7 10
2 6 7 10 8
6 7 10 8 2
7 10 8 2 6

9 5 4 1 3
3 9 5 4 1
1 3 9 5 4
4 1 3 9 5
5 4 1 3 9


(5.22)

5.2.6 Examples

Example 5.2. For n = 3, p = 4n − 1 = 11, QR = {1, 3, 4, 5, 9} and QNR =

−QR = {10, 8, 7, 6, 2}. Choose D ∈P as

D =



0 0 1 0 0

0 1 0 0 0

1 0 0 0 0

0 0 0 0 1

0 0 0 1 0


.

Let H′1proto = DH1proto and H′2proto = DH2proto be the equivalent protomatrix of

H1proto and H2proto, respectively. Then

Hproto = [H1proto H′2proto | H2proto H′1proto]

is shown in Equation (5.22). Note that in this example, the Tanner graph of

the parity-check matrix H lifted from Hproto given in Equation (5.22) contains

cycles of length four. According to the condition (5.19), consider the sequence

(j0, l0); (j1, l1); (j0, l0) = (1, 1); (2, 10); (1, 1). This sequence is a cycle of length 4

since 1−3+10−8 = 0 (modv) for any arbitrary v. Hence, the binary parity-check

matrix in (5.22) has cycles of length 4. Furthermore, let ρ′ = k = 5 and v = 31

the lifted H = [H1 | H2] is a [[2kv, 2kv−ρ′v+ρ′− 1]] = [[310, 159]] Type-I-B QCS

code.

Let OM be a 5× 5 all-zero matrix and v = p. Then the associated Type-I-A QCS
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Figure 5.1: The parity-check matrix for [[366, 185] quantum Type-II QCS
code in Example 5.3.

codes can be constructed by superimposing O5 to either H1proto or H2proto. Let

H′2proto = H2proto � O5, we have H = [H1 | H′2] lifted from H1proto = [H1proto |

H′2proto] is a [[kp, k − 1]] = [[55, 4]] Type-I-A QCS code.

Example 5.3. For n = 3 and p = 4n + 1 = 13, we have QR = {1, 3, 4, 9, 10, 12}

and QNR = {2, 5, 6, 7, 8, 11} with k = p−1
2 = 6. Let β = 4 and γ = 2 ∈ QNR.

Then

h1proto = {1, 4, 3, 12, 9, 10} ≡ {1, 4, 3,−1,−4,−3} (mod 13)

and

h2proto = γh1proto = {2, 8, 6, 11, 5, 7} ≡ {2, 8, 6,−2,−8,−6} (mod 13).

Let H′
1proto = H1protoRIk . The final protomatrix is given by Equation (5.23).

Let ρ′ = 3 and v = 61, the rank of H1 and H2 is ρ′(v − 1) + 1 = 3(61 − 1) +

1 = 181. We obtain a [[kv, kv − ρ′v + ρ′ − 1]] = [[366, 185]] Type-II QCS code

of rate RQ ≈ 0.5 by removing the last three rows of Hproto. The parity-check

matrix of this code is shown in Fig. (5.1) Furthermore, consider the protomatrix

Hproto given by (5.23), we now show that the binary matrix H lifted from Hproto

is free of cycles of length four. It can be verified that for any arbitrary pair of

rows, the differences between each pair of elements are distinct. This implies that

there exist no sequences (j0, l0); (j1, l1); (j0, l0) such that the condition in (5.19) is

satisfied. Furthermore, when i = 3, the sequence (j0, l0); (j1, l1); (j2, l2); (j0, l0) =
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Hproto =
[
H′

1proto|H2proto
]

=



10 9 12 3 4 1
1 10 9 12 3 4
4 1 10 9 12 3
3 4 1 10 9 12
12 3 4 1 10 9
9 12 3 4 1 10

2



1 4 3 12 9 10
4 3 12 9 10 1
3 12 9 10 1 4
12 9 10 1 4 3
9 10 1 4 3 12
10 1 4 3 12 9





=



10 9 12 3 4 1
1 10 9 12 3 4
4 1 10 9 12 3
3 4 1 10 9 12
12 3 4 1 10 9
9 12 3 4 1 10

2 8 6 11 5 7
8 6 11 5 7 2
6 11 5 7 2 8
11 5 7 2 8 6
5 7 2 8 6 11
7 2 8 6 11 5



(5.23)

(4, 12); (5, 1); (6, 3); (4, 12) form a cycle of length 6, that is

∑2
k=0(hjk,lk − hjk+1,lk) = 6− 11 + 12− 9 + 3− 1 = 0 (mod v) .

Thus, the binary check matrix H over F2 has girth six.

5.2.7 Constructed codes

TABLE 5.1 is a list of parameters of the constructed Type-I-A, Type-I-B and

Type-II QCS codes. The listed codes have code rate∼ 0.5 due to the pair of parity-

check matrices are rank deficient. The code length of the set of Type-I-A codes

for different n are N = vk, where v = p, and the dimension of each code is K =

kv−ρ′(v−1)−1, where ρ′ = k−1
2 . The set of codes are constructed by removing k+1

2

rows from the bottom of Hproto = [H1proto | H′2proto]. The resulting parity-check

matrices have rank ρ′(v−1)+1 for both odd and even v. Moreover, the set of Type-

I-B QCS codes is constructed from quadratic residue set of parameters n = 3 and

p = 4n−1 = 11 given in Example 2. The equivalent non-orthogonal Latin squares

H′1proto and H′2proto are obtained by performing left multiplication (row-swapping)

using arbitrary transformation matrix D ∈ P. The final protomatrix Hproto =

[H1proto H′2proto | H2proto H′1proto] is lifted with P of orders v = 32, 61, 113 and

199. The dimension of the constructed Type-I-B QCS codes is K = 2kv − ρ′(v −



Chapter 5: Sparse-Graph Quantum LDPC Codes 107

Table 5.1: Constructed [[kv, kv − ρ′(v − 1) − 1, dQ]] Type-I-A, [[2kv, 2kv −
ρ′v + ρ′ − 1, dQ]] Type-I-B and [[kv, kv − ρ′v + ρ′ − 1, dQ]] Type-II QCS codes.

Type-I-A
p = 4n− 1
ρ′ = k−1

2

Type-I-B
p = 4n− 1
ρ′ = k

Type-II
p = 4n+ 1
ρ′ = k

2

n k v N K n k v N K n k v N K

5 9 19 171 98 3 5 32 320 164 3 6 79 474 239
6 11 23 253 142 3 5 61 610 309 3 6 100 600 302
8 15 31 465 254 3 5 113 1130 569 3 6 199 1194 599
11 21 43 903 482 3 5 199 1990 999 3 6 401 2406 1205

Table 5.2: Parameters of Type-II QCS codes with v = 79 and variable n.

Type-II
p = 4n+ 1 ρ′ = k

2 v = 79
n k N K

3 6 474 239
4 8 632 319
7 14 1106 559
10 20 1580 799

1)−1, where ρ′ = k. Furthermore, the set of Type-II QCS codes are obtained from

quadratic residue set of parameters n = 3 and p = 4n+ 1 = 13 given in Example

5.3. Let ρ′ = k
2 , we remove k

2 rows from the bottom of Hproto = [H1proto | H′2proto]

to obtain a subprotomatrix Hsub
proto, where H′2proto = H2protoRIk . We lift Hsub

proto with

different orders of P (e.g., v = 79, 100, 199 and 401) to generate Type-II QCS codes

of different lengths with quantum code rate of at least 0.5. In addition, TABLE

5.2 and 5.3 are set of Type-I-B and Type-II QCS codes constructed from CPMs

of a fix order v and various n for ρ′ = k and ρ′ = k
2 , respectively.

5.2.8 Simulation results and performance evaluation

In this section, we provide simulation results of the proposed protograph quantum

LDPC codes over a quantum depolarizing channel under the iterative sum-product
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Table 5.3: Parameters of Type-I-B QCS codes with v = 61 and variable n.

Type-I-B
p = 4n− 1 ρ′ = k v = 61

n k N K

3 5 610 309
5 9 1098 557
6 11 1342 681
8 15 1830 929

algorithm (SPA). The decoding process is performed over Galois field F4 [150]

[151] by applying the isomorphism between the Pauli operators {I,X, Z, Y } and

the Galois field F4 = {0, 1, ω, ω̄ = ω2}, or the equivalent F22 = {00, 10, 01, 11}.

The isomorphism is given by the element identification

I ↔ 0, X ↔ 1, Z ↔ ω, Y ↔ ω̄,

and the operation identification

multiplication ↔ addition, commutativity ↔ trace inner product.

The input of the decoder is the syndrome vector s = {+1,−1}N−K . We assume

the decoder knows the channel depolarizing strength 0 < f < 1 and the all-zero

vector is transmitted. The message passing along the edges of a Tanner graph

from each qubit node is a probability vector [1− f, f/3, f/3, f/3], and each value

from left to right in the vector represents the probability of a single Pauli error

E ∈ P1 acting on the j-th qubit, that is, Pr(Ej = I) = 1 − f and Pr(Ej =

X) = Pr(Ej = Z) = Pr(Ej = Y ) = f/3. Furthermore, random perturbation is

also used to break the symmetry of degeneracy errors [150]. The strength of the

random perturbation is 0.1 and the maximum number of iterations between each

perturbation is 40. The maximum iteration number for the sum-product decoder

is 50. To effectively compute the check node operation, the FFT-based SPA [127]

is used in our simulations.
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Figure 5.2: BLER of Type-I-A QCS codes.
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Figure 5.3: BLER of Type-I-B QCS codes.

Figures 5.2, 5.3 and 5.4 present the block error rate (BLER) of Type-I-A, Type-

I-B and Type-II QCS codes listed in TABLE 5.1. From Figure 5.2, we see that

as n increases the BLER of Type-I-A QCS codes improves in the waterfall region.
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Figure 5.4: BLER of Type-II QCS codes.
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Figure 5.5: BLER of Type-I-B QCS codes with v = 61 and n = 3, 5, 6, 8.

However, as n further increases, an early error floor appears due to the vast number

of trapping sets created by the high column and row weights. In Figures 5.3 and

5.4, the performance of the proposed Type-I-B and Type-II QCS codes is compared
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Figure 5.6: Performance comparison between Type-II QCS codes with v = 79
and n = 3, 4, 7, 10 and the quantum CSS codes Code-C-28 and Code-D-29 in [75].
Note that the BLER plotted here for Code-C-28 and Code-D-29 is a function of
f = 3fm/2, where fm is the marginal probability used in [75], and the BLER
for the entire CSS code is shown.

to some of the quantum LDPC codes in the literature. The two codes denoted as

‘Code-A’ and ‘Code-B’ of length N = 1034 and N = 2068 are quantum LDPC

codes constructed from multi-weight circulant matrices and by performing matrix

scramble, respectively [68]. Moreover, the performance of the ‘(6, 12)-regular’

quantum LDPC code from [64] and MacKay’s ‘Bicycle’ codes of column weight 12

from [39] is also shown in the Figures. We can see from Figure 5.3 that Type-I-B

QCS codes show improving performance when the depolarizing strength f is low

compared to the Bicycle code. In addition, an approximately 0.0025 performance

gain is achieved by Type-I-B QCS code of length N = 320 compared to Code-B of

length N = 2068. Furthermore, as shown in Figure 5.4, the performance of Type-

II QCS codes with moderate code lengths outperform Code-A approximately two

orders of magnitude for low f , and outperform the (6, 12)-regular code for high f .

Comparing the performance between Type-I-B and Type-II QCS codes given in

TABLE 5.1, it can be seen that for codes with similar length, the performance
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of Type-I-B codes is approximately a half order of magnitude better than Type-

II codes. Furthermore, the performance of Type-I-B and Type-II QCS codes is

better when the code length N is shorter. As can be seen from TABLE 5.1, the

column and row weights of the constructed Type-I-B and Type-II QCS codes stay

constant as the code length increases. Moreover, as v increases, the quantum

code rate approaches a half. This implies that there is an increasing number of

redundant rows in the parity-check matrix. Thus, the minimum distance of Type-

I-B and Type-II QCS codes does not grow with the code length. Hence, the error

correction capability remains unchanged, which causing a performance lost as v

increases.

The performance of the constructed Type-I-B and Type-II QCS codes given in

TABLE 5.2 and TABLE 5.3 are shown in Figures 5.5 and 5.6. These codes are

constructed from CPMs of a fixed order (v = 61 for Type-I-B QCS codes in

TABLE 5.2 and v = 79 for Type-II QCS codes TABLE 5.3), whereas the column

weight of their parity-check matrices varies as n increases. It can be seen from

the figures that as n increases, the warterfall region of both Type-I-B and Type-II

QCS codes become steeper and no error floor appears for block error rate up to

10−6 ∼ 10−7. On the other hand, as n increases, a constant performance gap of

approximately 0.005 is shown for different Type-I-B QCS code of n = 3, 5, 6 and

8, whereas the Type-II QCS code of n = 7 achieves 0.01 ∼ 0.015 performance gain

compared to Type-II QCS codes of n = 3, 4, and 10.

We also compare the performance of the constructed Type-II QCS codes with the

rate half quantum LDPC codes constructed in [75]. In Figure 5.6, ‘Code-C-28’ and

‘Code-C-29’ are length N = 8768 and N = 10728 quantum LDPC codes in [75],

respectively, where 28 and 29 represent the field size that the iterative decoding

algorithm is performed over. From the figure, we see that no error floor appears

for the proposed Type-II QCS codes when BLER reaches ∼ 10−7, whereas an early

error floor appears for Code-C-28 and Code-C-29. Moreover, in term of decoding

complexity, the SPA performed over F4 for the proposed QCS codes requires less

computational complexity compared to that of performing over F28 and F29 for

Code-C-28 and Code-C-29,
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5.3 Quantum LDPC codes From Tensor Product

of Parity-Check Matrices

In this section, we consider two designs, namely Construction A and Construc-

tion B. For both designs, we use quadratic residue (QR) sets of prime size with

parameter p = 4n ± 1, n ≥ 2, and its associated idempotent polynomials defined

in (4.2) to construct the desired proto-matrix. We show that for Construction

A, the proposed method yields a [[pv, pv − ρ, dmin]] proto-graph quantum LDPC

code, where ρ < pv and v ∈ Z+ is the order of the CPM. Moreover, Construction

B explores the design of proto-graph quantum LDPC codes by performing tensor

product between two non-binary parity-check matrices obtained from the idempo-

tent polynomials of a QR set. The resulting proto-graph quantum LDPC codes

are of parameters [[p2v, p2v − γ(v − 1)− 1, dmin]], where γ ∈ Z+ is the size of the

extension field F2γ of binary field F2. Such a class of proto-graph quantum LDPC

codes have a quantum code rate at least RQ > 0.9.

In this part of the chapter, we shall look at different construction methods of

quantum LDPC codes based on proto-matrix

B = [u u]1×2, (5.24)

where u ∈ Z+.

5.3.1 Pre-lifting with idempotent polynomials

Construction A. For n ∈ Z+ and p = 4n+ 1 being a prime integer, let

B =
[
u u

]
, u = p− 1

2 (5.25)

and the pre-lifted proto-matrix

BM =
[
Qr(P ) Qnr(P )

]
, M = p. (5.26)
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To obtain the non-binary proto-matrix

Hproto =
[
H1proto H2proto

]
, (5.27)

we replace non-zero elements of BM with elements of QR and QNR. Thus, the

entries of H1proto and H2proto are determined by

H1proto =
p−1

2∑
i=1

α2iPα2i and H2proto =
p−1

2∑
i=1

α2i−1Pα2i−1
. (5.28)

Then for an arbitrary v ∈ Z+ and v >> p, the resulting parity-check matrices

H1 =
[
PH1proto(i,j)

]
and H2 =

[
PH2proto(i,j)

]
,

∀H1proto(i, j) 6= 0,∀H2proto(i, j) 6= 0, (5.29)

lifted from H1proto H2proto are self-orthogonal with respect to the SIP. If the (i, j)-th

element of H1proto or H2proto is zero, we lift it with an v × v all-zero matrix.

Example 5.4. Consider the case when n = 3 and p = 13 is a prime. The QR set

and NQR set generated by α = 4 are

QR = {4, 3, 12, 9, 10, 1} and QNR = {2, 8, 6, 11, 5, 7}

with idempotent polynomials

Qr(x) = x+ x3 + x4 + x9 + x10 + x12,

Qnr(x) = x2 + x5 + x6 + x7 + x8 + x11.

The proto-matrix B = [6 6] is pre-lifted into B13 =
[
Qr(P ) Qnr(P )

]
. By replac-

ing non-zero elements of B13 with elements of QR or QNR according to (5.28), we

obtain the proto-matrix Hproto = [H1proto H2proto] with H1proto and H2proto given
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by

H1proto =



0 1 0 3 4 0 0 0 0 9 10 0 12
12 0 1 0 3 4 0 0 0 0 9 10 0
0 12 0 1 0 3 4 0 0 0 0 9 10
10 0 12 0 1 0 3 4 0 0 0 0 9
9 10 0 12 0 1 0 3 4 0 0 0 0
0 9 10 0 12 0 1 0 3 4 0 0 0
0 0 9 10 0 12 0 1 0 3 4 0 0
0 0 0 9 10 0 12 0 1 0 3 4 0
0 0 0 0 9 10 0 12 0 1 0 3 4
4 0 0 0 0 9 10 0 12 0 1 0 3
3 4 0 0 0 0 9 10 0 12 0 1 0
0 3 4 0 0 0 0 9 10 0 12 0 1
1 0 3 4 0 0 0 0 9 10 0 12 0



(5.30)

and

H2proto =



0 0 2 0 0 5 6 7 8 0 0 11 0
0 0 0 2 0 0 5 6 7 8 0 0 11
11 0 0 0 2 0 0 5 6 7 8 0 0
0 11 0 0 0 2 0 0 5 6 7 8 0
0 0 11 0 0 0 2 0 0 5 6 7 8
8 0 0 11 0 0 0 2 0 0 5 6 7
7 8 0 0 11 0 0 0 2 0 0 5 6
6 7 8 0 0 11 0 0 0 2 0 0 5
5 6 7 8 0 0 11 0 0 0 2 0 0
0 5 6 7 8 0 0 11 0 0 0 2 0
0 0 5 6 7 8 0 0 11 0 0 0 2
2 0 0 5 6 7 8 0 0 11 0 0 0
0 2 0 0 5 6 7 8 0 0 11 0 0



. (5.31)

In this particular example, the girth is 4 since

H1proto(1, 5)−H1proto(2, 5) = H1proto(1, 11)−H2proto(2, 11).

Similar indices can also be found in H2proto.

Let v ∈ Z+ and v >> p. We obtain a pair of parity-check matrices H1 and H2 of

size 13v×13v that are self-orthogonal with respect to the SIP. Hence, by removing

any rows of H1 and H2, the resulting sub-matrices Hsub
1 and Hsub

2 of size ρ×13v are
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also self-orthogonal with respect to the SIP, where ρ < 13v. Let H = [Hsub
1 |Hsub

2 ],

then H defines a quantum LDPC code of parameters [[13v, 13v − ρ, dmin]].

5.3.2 Tensor product construction method

In this section, we introduce the second construction method for high rate quantum

LDPC codes using tensor product of two non-binary matrices.

For n ∈ Z+ and p = 4− 1 being a prime, let

BM =
[
A1 A2

]
, M = p, (5.32)

where A1 = Qr(P ) and A2 = Q̄r(P ) with Rank(A1) = p+1
2 and Rank(A2) = p−1

2 .

Note that A1 and A2 are generator matrices of quadratic residue codes [35]. Denote

by Λm(G) : F2 → F2m the transformation of matrix G from base field F2 to

extension field F2m . We propose the following construction method.

Construction B. Let A′′1 = Λ p+1
2

(A1) and A′′2 = Λ p−1
2

(A2) be of the form

A
′′

1 =
[
a1,1 a1,2 . . . a1,p

]
A
′′

2 =
[
b1,1 b1,2 . . . b1,p

]
, (5.33)

where a1,i and b1,i for 1 ≤ i ≤ p are elements of F
2
p+1

2
since F

2
p−1

2
⊂ F

2
p+1

2
. Then

the matrices h′′1 and h′′2 defined as the tensor product of A′′1 and A′′2 is given by

h
′′

1 = A
′′

1 ⊗ A
′′

2 =
[
a1,1A

′′
2 a1,2A

′′
2 . . . a1,pA

′′
2

]
,

h
′′

2 = A
′′

2 ⊗ A
′′

1 =
[
b1,1A

′′
1 b1,2A

′′
1 . . . b1,pA

′′
1

]
. (5.34)

The components of the matrices h′′1 and h
′′
2 are products of components from the

matrices A′′1 and A′′2 . These products are formed according to the rules of multipli-

cation for elements from F
2
p+1

2
. Let γ = p−1

2 . We generate the matrices H ′′1 and
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H
′′
2 as

H
′′

1 =



h
′′
1

(h′′1)2

...

(h′′1)γ


, H

′′

2 =



h
′′
2

(h′′2)2

...

(h′′2)γ


. (5.35)

Let v ∈ Z+ and v >> p. By performing the lift operation on H
′′
1 and H

′′
2 , we

obtain two matrices H1 = [P ei,j ] ∈ {0, 1}γv×p2v and H2 = [P ei,j ] ∈ {0, 1}γv×p2v of

size γv × p2v that are self-orthognal with respect to the SIP. Note that the rank of

H1 and H2 is given by Rank(H1) = Rank(H2) = γ(v − 1) + 1, which means the

proposed Construction B yields proto-graph quantum LDPC codes with parameters

[[p2v, p2v − γ(v − 1)− 1, dmin]].

We now provide an example illustrating how the construction is performed.

Example 5.5. Consider the case when n = 2 and p = 7. The idempotent poly-

nomials Qr(x) = x + x2 + x4 and Q̄r(x) = 1 + x3 + x5 + x6 are obtained from

QR = {1, 2, 4} and Q̄R = {0, 3, 5, 6}. Let

A1 =



0 1 1 0 1 0 0

0 0 1 1 0 1 0

0 0 0 1 1 0 1

1 0 0 0 1 1 0


and A2 =


1 0 0 1 0 1 1

1 1 0 0 1 0 1

1 1 1 0 0 1 0

 (5.36)

be the generator matrices of the binary [7, 4, 3] and [7, 3, 4] quadratic residue codes,

respectively. Then we obtain

A
′′

1 = Λ4(A1) =
[
α3 1 α4 α5 α13 α9 α2

]
(5.37)

over F24 with primitive polynomial m′′1(x) = 1 + x+ x4 and

A
′′

2 = Λ3(A2) =
[
α5 α4 α2 1 α1 α6 α3

]
(5.38)
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over F23 with primitive polynomial m′′2(x) = 1 +x+x3 for some primitive element

α. The resulting tensor product codes with check matrices h′′1 and h′′2 are given by

h
′′

1 = A
′′

1 ⊗ A
′′

2

=
[α8 α7 α5 α3 α4 α9 α6 α5 α4 α2 1 α

α6 α3 α9 α8 α6 α4 α5 α10 α7 α10 α9 α7

α5 α6 α11 α8 α3 α2 1 α13 α14 α4 α α14

α13 α11 α9 α10 1 α12 α7 α6 α4 α2 α3 α8 α5]

and

h
′′

2 = A
′′

2 ⊗ A
′′

1

=
[α8 α5 α9 α10 α3 α14 α7 α7 α4 α8 α9 α2

α13 α6 α5 α2 α6 α7 1 α11 α4 α3 1 α4

α5 α13 α9 α2 α4 α1 α5 α6 α14 α10 α3 α9

α6 α10 α11 α4 1 α8 α6 α3 α7 α8 α1 α12 α5].

Let γ = 3. The corresponding matrices H ′′1 and H ′′2 are given in Equations (5.39)

and (5.40) (next page). Let v ∈ Z+ and v >> p. By lifting H
′′
1 and H

′′
2 with

P of order v, we obtain H1 and H2 that are self-orthogonal with respect to the

SIP. Thus, H1 and H2 yield a proto-graph quantum LDPC code of parameter

[[49v, 46v + 2, dmin]].

5.3.3 Simulation results

We now provide simulation results of the proposed proto-graph quantum LDPC

codes over quantum depolarizing channels with an iterative sum-product decod-

ing algorithm. The input of the decoding algorithm is the syndrome vector s with

entries in {+1,−1}. We assume the depolarizing channel with marginal flip prob-

ability 2f
3 of X errors and Z errors, where f is the total depolarizing strength of

the channel, and assume the decoder knows the marginal flip probability fm = 2f
3 .

Fig. 5.7 shows the block error rate (BLER) performance of quantum LDPC codes

constructed from Constructions A and B. The code denoted as ‘Code-lifting’ is a

[[13v, 13v − ρ, dmin]] = [[1651, 1551, dmin]] proto-graph quantum LDPC code with

code rate RQ = 0.94, and the code denoted as ‘Code-tensor’ is a [[42v, 39v +
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Figure 5.7: Code performance of the proposed proto-graph quantum LDPC
codes. � : [[1651, 1551]], RQ = 0.94; 5 : [[1638, 1523]], RQ = 0.93.

2, dmin]] = [[1638, 1523, dmin]] proto-graph quantum LDPC code with code rate

RQ = 0.93. The former code is constructed based on the QR set shown in Example

5.4 with CPM order v = 127 and ρ = 100. The later code is constructed based on

the QR set shown in Example 5.5 with associated non-binary parity-check matrices

given in (5.39) and (5.40). For the second code, we first shorten the parity-check

matrices H ′′1 and H
′′
2 by removing the common columns {1, 9, 17, 25, 33, 41, 49}

in both matrices, then we lift the shortened parity-check matrices with CPM

of order v = 39. Note that since the difference between H
′′
1 and H

′′
2 at these

column positions is a γ × 1 all-zero vector, removing these columns will preserve

the orthogonality of the resulting binary matrices. From the figure, the proposed

proto-graph quantum LDPC code constructed from lifting method shows better

performance compare to the code constructed from tensor product method when

the total flip probability of the channel approaches to zero.
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5.4 Chapter summary

In this chapter, we developed a systematic way to design general stabilizer quan-

tum LDPC codes of quasi-cyclic structure using the notion of proto-matrix (and

proto-graph). By designing a Latin square based proto-matrix using quadratic

(non-) residue sets of prime modulus, and its equivalent matrices using transforma-

tion matrices, the proposed construction methods yield a wide range of quantum

LDPC codes with different code lengths and rates. Furthermore, we proposed a

class of proto-graph quantum LDPC codes with code rate as high as above 0.9 by

using tensor product operation between a pair of non-binary parity-check matri-

ces. In the last, it is interesting to determine the minimum distance of proto-graph

quantum LDPC codes in the future work and to develop an efficient sum-product

decoding algorithm for the tensor product quantum LDPC codes.





Chapter 6

Quantum Synchronizable Codes

I n classical communication systems, misalignment in block synchronization

is another type of error that causes catastrophic failure, where the infor-

mation processing device misidentifies the boundaries of an information block.

For instance, assume that each chunk of information is encoded into a block of

three consecutive bits in a stream of bits bi so that the data has a frame struc-

ture. If four blocks of information are encoded, we have twelve ordered bits

(b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11) in which each of the four blocks (b0, b1, b2),

(b3, b4, b5), (b6, b7, b8), and (b9, b10, b11) forms an information chunk. If, for exam-

ple, misalignment occurs to the right by two bits when attempting to retrieve

the second block of information, the device will wrongly read out b5, b6, and b7

instead of the correct set of bits b3, b4, and b5. The same kind of error in block

synchronization may be considered for a stream of qubits.

A quantum synchronizable code (QSC) is a coding scheme that corrects general

quantum noise represented by Pauli errors as well as block synchronization errors.

A theoretical framework of quantum synchronizable coding was first introduced in

[140] as a quantum analogue of synchronizable coding in classical coding theory

that attempts to correct both bit flips and block synchronization errors [139].

Subsequent studies have improved the original construction method and given

further examples of quantum synchronizable codes [141, 142].

123
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In general, quantum synchronizable codes can be constructed from classical cyclic

codes with additional properties through a method similar to the one studied in

[143]. However, while the quantum analogue of cyclic codes given in [143] only

requires a cyclic code that contains its dual, the known general construction for

quantum synchronizable codes requires a chain of three cyclic codes satisfying

further complicated properties, making it harder to explicitly construct promising

examples.

In this chapter, we construct quantum synchronizable codes by exploiting special

classical cyclic codes over the finite field F2 of order 2, called quadratic residue

codes. Quadratic residue codes tend to have large minimum distances [35]. Thus, it

is reasonable to expect that quantum error-correcting codes that exploit quadratic

residue codes possess good error correction performance. We show that quantum

synchronizable codes from quadratic residue codes also have good block synchro-

nization capabilities. In fact, the proposed quantum synchronizable codes attain

the known upper bound on the maximum tolerable magnitude of misalignment

in some cases. Note that the concept of the proposed method also applies to the

general cyclic codes.

We begin with an overview of what quantum synchronizable codes are and how

they deal with misalignment errors. We then study the general classical q-ary cyclic

codes and derive a general construction of QSC using nested cyclic codes. We then

use classical quadratic residue codes to demonstrate our general construction of

QSCs.

6.1 Quantum synchronizable code

An [[n, k]] quantum error-correcting code is a coding scheme that encodes k logical

qubits into n physical qubits. As in the classical case, n and k are the length and

dimension of the code, respectively. Typically, quantum error-correcting codes

are designed to correct the effects of bit errors and phase errors caused by Pauli

operators X and Z respectively under the assumption that both bit error due to X
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and phase error due to Z may occur on the same qubit. A (cl, cr)-[[n, k]] quantum

synchronizable code is an [[n, k]] quantum error-correcting code that corrects not

only bit errors and phase errors but also misalignment to the left by cl qubits and

to the right by cr qubits for some nonnegative integers cl and cr.

The general construction method for quantum synchronizable codes developed in

[140, 141] employs a notion in finite algebra. Let f(x) ∈ F2[x] be a polynomial

over F2 such that f(0) = 1. The order ord (f(x)) of the polynomial f(x) is the

cardinality |{xa (mod f(x)) | a ∈ Z}|, where Z is the set of positive integers.

Theorem 6.1. [141] Let C1 = 〈g1(x)〉 and C2 = 〈g2(x)〉 be two cyclic codes of

parameters [n, k1, d1] and [n, k2, d2] with k1 > k2 respectively such that C2 ⊂ C1 and

C⊥2 ⊆ C2. Define f(x) of degree k1−k2 to be the quotient of g2(x)
g1(x) over F2[x]/(xn−1).

For any pair of nonnegative integers cl, cr satisfying cl+cr < ord (f(x)), there exists

a (cl, cr)-[[n+ cl + cr, 2k2 − n]] quantum synchronizable code that corrects at least

up to bd1−1
2 c bit errors and at least up to bd2−1

2 c phase errors.

Theorem 6.1 requires a pair of cyclic codes C1, C2 of the same length and dimension

k1 > k2 > dn2 e to construct a quantum synchronizable code of positive dimension.

To design a good quantum synchronizable code, it is generally desirable to choose

cyclic codes with good minimum distances while ensuring ord (f(x)) to be as large

as possible. In addition to these criteria, the cyclic codes must satisfy the chain

condition that C⊥2 ⊆ C2 ⊂ C1. Note that this is stronger than the dual-containing

condition for the quantum cyclic codes given in [143]. In what follows, when a pair

of cyclic codes is written as C1 and C2, we always assume that they satisfy the chain

condition and that their generator polynomials are g1(x) and g2(x) = f(x)g1(x)

for some polynomial f(x), respectively.

6.1.1 Encoding

Since dim (C2) = k2 and dim
(
C⊥2
)

= n − k2, the dimension of the cosets is

dim
(
C2/C⊥2

)
= k2 − n + k2 = 2k2 − n. Hence, the number of cosets is 22k2−n.
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Let B = {bi(x) | 0 < i ≤ 22k2−n} be a system of representatives of the cosets.

Then the set

V =
{∣∣∣C⊥2 + bi(x)

〉 ∣∣∣ bi(x) ∈ B
}

of 22k2−n quantum states forms an orthogonal basis of a vector space of dimension

22k2−n, where ∣∣∣C⊥2 + bi(x)
〉

= 1√
|C⊥2 |

∑
c(x)∈C⊥2

|c(x) + bi(x)〉 .

Take an arbitrary 2k2 − n-qubit state |ψ〉 to be encoded. Using the standard

encoder for Calderbank-Shor-Steane (CSS) codes [11], the state |ψ〉 is transformed

into n-qubit state |ψ〉enc = ∑
i αi|vi〉, where vi ∈ V .

Recall that g1(x) is the generator polynomial of C1. Apply the unitary operator

Ug that adds the coefficient vector of g1(x):

Ug|ψ〉enc →
∑
i

αi|vi + g1〉.

Let cr, cl be nonnegative integers such that cl+cr < ord (f(x)). By attaching extra

cl and cr ancilla qubits to the left and to the right of the original state respectively

and then applying CNOT gates, the state is taken to the final encoded (n+cl+cr)-

qubit state

|0〉⊗clUg(|ψ〉enc)|0〉⊗cr →
∑
i

αi|li, vi + g1, ri〉 = |Ψ〉enc,

where li and ri are the last cl and the first cr portions of the vector vi + g1,

respectively.

6.1.2 Synchronization recovery

Assume that the device gathered qubits of one block length, that is, consecutive

n + cl + cr − 1 qubits, and tries to correct errors caused by Pauli operators and

misalignment if necessary. Let T = (t0, t1, . . . , tn+cl+cr−1) be the collection of
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n+ cl + cr qubits at the output of the quantum channel. If block synchronization

is correct, T forms a properly aligned block encoded as |Ψ〉enc. We assume that

T may be misaligned by θ qubits to the right, where −cl ≤ θ ≤ cr. When θ is

negative, it means that misalignment is to the left by |θ| qubits.

Let S = (s0, s1, . . . , sn+cl+cr−1) be the n + cl + cr qubits of |Ψ〉enc. The device

first focuses on consecutive n qubits W = (tcl , tcl+1, . . . , tcl+n−1) in the mid-

dle of T . Because of the potential misalignment, this set of qubits is W =

(scl+θ, scl+1+θ, . . . , scl+n−1+θ).

Let E be the (n+ cl + cr)-fold tensor product of single Pauli operators that repre-

sents errors that occurred on |Ψ〉enc. The corrupted state at the quantum channel

output is given by

E|Ψ〉enc =
∑
i

αi(−1)(li,vi+g1,ri)·ep|(li, vi + g1, ri) + eb〉,

where eb and ep are binary vectors representing bit and phase errors, respectively.

The device first corrects bit errors on W and then detects misalignment. Let HC1

be the full-rank parity-check matrix of C1 used for encoding. Using the stabilizer

generators defined by C1, the decoding circuit obtains the syndrome for bit errors

as in the standard two-step decoding of a CSS code:

E|Ψ〉enc|0〉⊗n−k1 → E|Ψ〉enc|ebHT
C1〉.

If the number of bit errors is at most bd1−1
2 c in W , applying X Pauli operators to

the qubits specified by ebHT
C1 eliminates all bit errors within the window W .

The next step is to identify how many qubits awayW is from the correct position S,

that is, identifying the magnitude θ. To this end, we manipulate the polynomials

used as the labels of each basis state. Such operations can be done, for example,

by a quantum shift register given in [143].

Note that the condition that C⊥2 ⊂ C2 ⊂ C1 implies that any codeword c⊥i (x) ∈ C⊥2
also belongs to C2 and C1. Hence, each basis of the state of S is a sum of states of
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the form ∣∣∣c⊥i (x) + bi(x) + g1(x)
〉

=

|v1(x)f(x)g1(x) + v2(x)f(x)g1(x) + g1(x)〉 ,

for some polynomials v1(x) and v2(x) whose degrees are less than k2. Because of

the misalignment, each basis of the state of W is a linear combination of states

of the form
∣∣∣xθ (c⊥i (x) + bi(x) + g1(x)

)〉
. Thus, the quotient of the label of each

basis of the state ofW divided by g1(x) is xθ(v1(x)f(x)+v2(x)f(x)+1). Dividing

this quotient by f(x) gives xθ as the remainder. Thus, if cl + cr < ord(f(x)), the

synchronization error θ is uniquely determined.

Once we know the number of qubits thatW is misaligned, the same error correction

for bit errors can be applied to the qubits outside the initial window W by sliding

the window on the n + cr + cl consecutive qubit frame. If the channel introduces

at most bd1−1
2 c bit errors on any n consecutive qubits, then all bit errors can be

corrected and obtain the state E ′|Ψ〉enc, where E ′ introduces only phase errors.

To correct phase errors E ′ on our n + cr + cl consecutive qubits, the process of

extension operation and the unitary operation Ug is reversed since we only care

about the phase errors upon the n qubits in W without any misalignment error.

The reverse operation is

E ′|Ψ〉enc →
∑
i

αi(−1)(vi+g1)·(en+(0,el)+(er,0))|vi〉, (6.1)

where (el, en, er) is the binary error vector. The notation (0, el) and (er, 0) is the

n-dimensional binary vector by padding n− cl and n− cr zeros, respectively. The

encoded state |Ψ〉enc is stabilized by the stabilizer generated by C2. Denote by ep
the total number of phase error among the n+ cl + cr qubits. If ep ≤ d2−1

2 , we can

correctly diagnose the effect of (en + (0, el) + (er, 0)) through the standard phase

error correction procedure for CSS codes. That is

E
′′ |ψ〉enc|0〉n−k2 → E

′′ |ψ〉enc|HC2 (en + (0, el) + (er, 0))〉, (6.2)

where HC2 is the parity-check matrix of C2 and E ′′ is the phase error on |ψ〉 caused
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by (en + (0, el) + (er, 0)). Based on the error syndrome obtained by measuring the

last n−k2 ancilla qubits, applying Z operators on appropriate qubits removes the

phase error and completes the error correction procedure.

Recognised quantum synchronizable codes employ well-known classes of cyclic

codes called narrow-sense Bose-Chaudhuri-Hocquenghem (BCH) codes [140] and

punctured Reed-Muller codes [141]. The design of QSCs from finite geometry can

also be found in [142].

6.2 Chain - containing quantum synchronizable

codes

6.2.1 q-ary cyclic codes

Let q be a power of a prime. Denoted by Fq the finite field of order q, and Fq[x]

the set of all univariate polynomials with coefficients in Fq and the indeterminant

x. A q-ary cyclic code C of length n, dimension k and minimum distance d =

min{wt(c) | c ∈ C, c 6= 0}, where wt(c) is the number of nonzero entries in c, is

denoted by [n, k, d]q. The dual code C⊥ is defined as

C⊥ = {c′ ∈ Fnq | c′ · c = 0 for all c ∈ C}

where c′ · c is the dot-product and dim(C⊥) = n− dim(C) = n− k.

By regarding a codeword c as a coefficient vector of a polynomial in Fq[x], an

[n, k, d]q cyclic code C is an ideal in the ring Fq[x]/ (xn − 1) generated by the

unique monic polynomial g(x) of minimum degree. Each codeword c = (c0, c1,

. . . , cn−1) ∈ C is associated with a polynomial c(x) = ∑n−1
i=0 cix

i ∈ Fq[x] that

is divisible by g(x). Thus, this unique polynomial g(x) is called the generator

polynomial of cyclic code C and has degree deg (g(x)) = n− dim(C) = n− k. We
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may understand cyclic codes as

C = {m(x)g(x) | m(x) ∈ Fq[x], deg(m(x)) < k}. (6.3)

The polynomial h(x) such that g(x)h(x) = xn − 1 is called the check polynomial

of C. The dual code C⊥ is generated by the reciprocal polynomial of h(x) which

is given by

C⊥ = 〈g⊥(x) = xdeg(h(x))h(x−1)〉. (6.4)

We know from (6.3) that any codeword of C is a multiple of the generator poly-

nomial g(x) with roots in Fqz , where z is the smallest integer such that the code

length n divides qm − 1 (m is also known as the multiplicative order of q). Cyclic

codes are often defined by the set of roots that could be obtained using the notions

of cyclotomic cosets. A q-cyclotomic coset Cs,n of s modulo n is the set

Cs,n = {sqi mod n | ∀i = 0, 1, . . . , ns − 1},

where ns is the smallest integer such that sqns ≡ s mod n. Since Cs,n = Cs′,n for

s′ ∈ Cs,n, we may take

Sn = {min{t | t ∈ Cs,n} | t ∈ Z ∪ {0}}

as a system of representatives of the cyclotomic cosets by picking the smallest

element from each set.

Let α be an n-th root of unity in Fqz . By definition, the unique irreducible minimal

polynomial Ms(x) ∈ Fq[x] of αs can be expressed as

Ms(x) =
∏

i∈Cs,n
(x− αi).

The defining set D of a q-ary cyclic code C is the set containing the indices of the

zeros of the generator polynomial g(x). Since the integers modulo n are partitioned
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into cyclotomic cosets in a way described as

{0, 1, . . . , n− 1} =
⋃
s∈Sn

Cs,n, (6.5)

the defining set of a q-ary cyclic code is given by

D := {i : g(αi) = 0} =
⋃

{si | 1≤i≤|Sn|}⊂Sn
Csi,n.

Hence, the generator polynomial g(x) of degree n − k of a q-ary cyclic code can

be expressed as

g(x) =
∏

{si | 1≤i≤|Sn|}⊂Sn
Msi(x).

Because of the one-to-one correspondence between cyclic codes and monic divisors

of xn − 1, deleting one or more factors Ms(x) gives another generator polynomial

that results in a cyclic code of higher dimension.

Definition 6.2. Let C1 = 〈g1(x)〉 and C2 = 〈g2(x)〉 be two cyclic codes of length n.

If C2 ⊆ C1, that is, if C1 contains all codewords of C2, then the generator polynomial

g1(x) divides every codeword of C2, which means that for every c(x) ∈ C2 there exits

a polynomial f(x) of degree deg(c(x))− (n− dim (C1)) such that c(x) = f(x)g1(x)

in F2[x]. The smaller code C2 is a subcode of C1 while C1 is a supercode of C2. A

cyclic code is dual-containing if it is a supercode of its dual code.

In the following, we design chain-containing (nested) quantum synchronizable

codes. We require that, for any two cyclic codes C1, C2 ∈ C of parameters [n, k1, d1]

and [n, k2, d2],

1. g1(x) | g2(x) | g⊥2 (x) for C1 = 〈g1(x)〉, C2 = 〈g2(x)〉.

2. deg(g2(x)) + deg(g⊥2 (x)) = n.

Note that ‘a(x) | b(x)’ denotes the polynomial b(x) is divisible by polynomial

a(x).



Chapter 6: Quantum Synchronizable Codes 132

6.2.2 Chain-containing cyclic codes

We know that a generator polynomial of a q-ary cyclic code can be obtained

from the product of minimal polynomials over Fq. Therefore, by constructing

supercodes of a given cyclic code, the special containing property can be fulfilled.

Let Λ = {Ms(x) : s ∈ Sn} ∈ Fq[x] be the set of monic irreducible factors of xn−1.

If gcd(n, q) = 1, there are no multiple factors. We can find all cyclic codes of

length n over Fq by taking any of the 2|Λ| − 2 non-trivial monic factors of xn − 1

as a generator polynomial.

Suppose C2 = 〈g2(x) = ∏
i∈I,I⊂SnMi(x)〉. Then by removing one Mi(x), we obtain

a supercode C3 = 〈g3(x) = g2(x)
Mi(x)〉 of C2 with k3 > k2, and removing a product

Mi(x) ·Mi′(x), i 6= i′, we obtain a supercode C4 = 〈g4(x) = g2(x)
Mi(x)Mi′ (x)〉 of both C2

and C3. Thus, C2 ⊂ C3 ⊂ C4 because g4(x) | g3(x) | g2(x). To obtain the dual code

C⊥2 such that C⊥2 ⊂ C2, from (6.4), the generator polynomial of C⊥2 is

g⊥2 (x) = xh(x)h(x−1) ≡ g2(x)f(x), (6.6)

where h(x) is the check polynomial and

f(x) =
∏

j∈Sn,j /∈±I
Mj(x), ∀j,Mj(x) - g2(x) (6.7)

with

deg(f(x)) = n− 2
 ∑
i∈I,I⊂Sn

|Ci,n|

 , ∀i,Mi(x) | g2(x). (6.8)

The following proposition states the necessary conditions when constructing a

quantum synchronizable code from q-ary cyclic code.

Proposition 6.3. (Chain-containing cyclic codes) Let n,m be some positive in-

tegers and q be a prime such that n divides qm − 1 and gcd(n, q) = 1. The set

of monic irreducible minimal polynomials Λ = {Ms(x) : s ∈ Sn} ∈ Fq[x] form a

set of factors of xn − 1. Let C2 = 〈g2(x) = ∏
i∈I,I⊂SnMi(x)〉 be a cyclic code of

parameters [n, k2, d2], then there exist 2|I|− 2 supercodes C1 = [n, k1 > k2, d1 < d2]
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that contain C2, and its dual code C⊥2 = 〈g⊥2 (x)〉 is a subcode of C2 if g⊥2 (x) satisfies

the conditions (6.6) and (6.7). Then there exist a quantum synchronizable code of

parameters (cl, cr)− [[n+ cl + cr, 2k2 − n, dmin]]. �

Proof. Since g2(x) is reducible over Fqm and I ⊂ Sn, the number of removable

factors are {1, 2, . . . , |I| − 1}, which implies

(
|I|
1

)
+
(
|I|
2

)
+ · · ·+

(
|I|
|I| − 1

)
= 2|I| −

(
|I|
0

)
−
(
|I|
|I|

)
≡ 2|I| − 2 (6.9)

supercodes C1 that contain C2. Let α be a primitive n-th root of unity, then

g2(αi) = g2(αiq) = g2(αiq2) = . . . = g2(αiq|Ci,n|) = 0 for all i ∈ I and each

cardinality |Ci,n| divides m. By Equation (6.4) where g⊥2 (x) can be interpreted as

the reciprocal polynomial of the check polynomial h(x), we have, for all i ∈ I,

g2(αi) = g⊥2 (αi) ≡ αdeg(h(x))h(α−i) = 0

if g2(x) | g⊥2 (x). Thus, −I is a set of roots of h(x). Furthermore, recall that the

associated defining set of C2 is determined as DC2 = ⋃
i∈I Ci,n. Since xn − 1 =∏n−1

j=0 (x− αj) = g2(x)h(x), h(αj) = 0 ∀j /∈ DC2 . By the argument above where

α−j is also a root of h(x), we have −i /∈ DC2 for all i ∈ I. Consequently, the

defining set DC⊥2 = ⋃
i∈I C−i,n

⋃
i′ /∈±I Ci′,n and for any minimal polynomial Mi′ ,

where i′ /∈ ±I, it has no roots in both DC2 and −DC2 . Hence, condition (6.7)

follows.

Corollary 6.4. Let C be a cyclic code generated by the polynomial g(x) with the

roots α±i for ±i ∈ DC. Then, C is a reversible cyclic code that cannot be used to

construct quantum synchronizable code.

Example 6.1. For n = 26 and q = 3, given that the generator polynomial of C2

is g2(x) = M1(x) ·M2(x) ·M4(x) ·M7(x), the defining set DC2 = C1,26 ∪ C2,26 ∪

C4,26∪C7,26 of cyclic code [26, 14, d2]3 is obtained from the cyclotomic cosets C1,26 =

{1, 3, 9}, C2,26 = {2, 6, 18}, C4,26 = {4, 10, 12} and C7,26 = {7, 11, 21}. Since I =

{1, 2, 4, 7} and |I| = 4, there are 24 − 2 = 14 possible supercodes C1 obtained from

C2 such that C2 ⊂ C1. Furthermore, −I /∈ DC2 and −i /∈ Ci,26 for all i ∈ I. We
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have I ∩−I = ∅. Therefore h(x) = f(x)∏i∈IM−i(x), where f(x) = M0(x)M13(x)

with degree 26− 2× 12 = 2. Hence, C⊥2 = 〈g⊥2 (x) = x14h(x−1)〉 is a subcode of C2.

�

Example 6.2. For n = 28 and q = 3, the cyclotomic cosets modulo 28 are

C0,28 = {0}, C1,28 = {1, 3, 9, 27, 25, 19},

C2,28 = {2, 6, 18, 26, 22, 10}, C4,28 = {4, 12, 8, 24, 16, 20},

C5,28 = {5, 15, 17, 23, 13, 11}, C7,28 = {7, 21}, C14,28 = {14}. (6.10)

By inspection, for g2(x) = ∏
i∈I,I⊂SnMi(x), where Sn = {0, 1, 2, 4, 5, 7, 14}, we

have ±i ∈ Ci,n. Further, for any subset I of Sn, the associated defining set DC2

is exactly the same as the defining set generated by the inverse −I, e.g., C1,28 =

C27,28. Hence, g2(x) - g⊥2 (x). �

6.3 The minimum distance of CC-QSCs

In this section, we study the distance property for quantum synchronizable codes

under the CSS structure. It is known that the quantum minimum distance of a

CSS code is given by

dmin := min{d1, d2},where

d1 := min{|c|, c ∈ C1\C⊥2 },

d2 := min{|c|, c ∈ C2\C⊥1 }. (6.11)

Since the minimum distance of quantum CSS codes can be determined, we shall

review some of the important distance bounds first, then derive distance bounds

for quantum synchronizable codes of CSS structure constructed from the proposed

method in terms of d1 and d2.
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6.3.1 Known bounds

Theorem 6.5. [146, 147](BCH bound) Let [n, k, d]q be a q-ary cyclic code of length

n, dimension k, distance d, and with defining set D. Let

{b, b+ 1, b+ 2, . . . , b+ δ − 2} ⊆ D.

Then d ≥ dBCH , δ.

If b = 1, the cyclic code is called Narrow-sense BCH code.

Theorem 6.6. [145](HT bound) Let [n, k, d]q be a q-ary cyclic code of length n,

dimension k, distance d, and with defining set D. Let

{b+ z1m1 + z2m2, ∀z1 = 0, 1, . . . δ − 2,∀z2 = 0, 1, . . . , v} ⊆ D

where gcd(n,m1) = 1 and gcd(n,m2) = 1. Then d ≥ dHT , δ + v.

If v = 0, the HT bound in theorem 6.6 becomes the BCH bound. Generalization

of the HT bound was proposed by Roos [102, 103]. Sometimes the actual distance

of a code is greater than δ just by looking at the roots; such an approach to this

question was generalized by van Lint and Wilson [101].

6.3.2 Bounding minimum distance of cyclic codes using

rational function

The BCH bound provides a lower bound to d if the zeros of the generator poly-

nomial is known. The bound can be derived from rational functions [148] using

the representation of Mattson-Solomon polynomial [35] for cyclic codes. We can

extend Mattson-Solomon polynomials of a codeword into infinite series, which can

be further expressed as a summation of rational functions. In this case, the lower

bound of the minimum distance of a cyclic code can be determined by the degree

of numerator of the rational function. For any codeword c(x) = ∑n−1
i=0 cix

i of a
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[n, k, d]q q-ary cyclic code, the Mattson-Solomon polynomial of c(x) can be ex-

press as ∑n−1
j=0 c(αj)xj. We extend the polynomial into the form of infinite series∑∞

j=0 c(αj)xj with repeating coefficients for every n values. Therefore, we have

∞∑
j=0

c(αj)xj =
n−1∑
i=0

∞∑
j=0

ci(αix)j ≡
n−1∑
i=0

ci
1− αix. (6.12)

The last term is a summation of rational functions with the degree of the denom-

inator at most n. The infinite series ∑∞j=0 c(αj+b)xj of a codeword c(x) with δ− 1

consecutive roots {b, b+ 1, b+ 2, . . . , b+ δ − 2} ⊆ D can be expressed as

∑∞
j=0 c(α

j+b)xj =
∑n−1

i=0
ciα

ib

1− αix≡0 (mod xδ−1). (6.13)

Let A be the set of indexes of non-zero coefficients of c(x) ∈ [n, k, d]q, and |A| = d.

Equation (6.13) can be written as

h(x)
f(x) ≡ 0(modxδ−1), (6.14)

where

h(x) =
∑
i∈A

ciαib ∏
l∈A,l 6=j

(1− αlx)
 , δ − 1 ≤ deg(h(x)) ≤ d− 1 (6.15)

and

f(x) =
∏
i∈A

(
1− αix

)
, deg(f(x)) = d. (6.16)

Hence, d ≥ dBCH = δ implies h(x) ≡ 0
(

modxδ−1
)
.

The period P of the rational function h(x)
f(x) , P

(
h(x)
f(x)

)
, is a positive integer p such

that

h(x)(−xp + 1) = f(x)(
p−1∑
i=0

six
i) (6.17)
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holds. In other words, h(x)
f(x) is a periodic function with repeated non-zero positions.

To associate this property with a q-ary cyclic code, let

n−1∑
i=0

ci
αibh(αix)
f(αix) =

∞∑
j=0

sjc(αj+b)xj ≡ 0(mod xθ−1), (6.18)

where c(x) ∈ C of weight wt(c) = d = |A|. Then the sequence

s0c(αb), s1c(αb+1), s2c(αb+2), . . . , sθ−2c(αb−1+θ−1)

is a zero-sequence of maximal length θ − 1. Hence, either sj or c(αb+j) is zero for

0 ≤ j ≤ θ − 1.

Similar to the case of the BCH bound, the left-hand side of (6.18) can be rearranged

into

∑
i∈A

(
ciα

ibh(αix)∏l∈A,l 6=i f(αix)
)

∏
i∈A f(αix) , (6.19)

then the minimum distance d of a q-ary cyclic code [n, k, d]q is lower bound as

d ≥ d∗ ,

⌈
θ − v − 1

u
+ 1

⌉
, (6.20)

where u and v are the degree of the denominator and numerator, respectively.

6.3.3 Minimum distance of proposed QSC codes

In the context of quantum synchronizable codes, we require a pair of cyclic codes

of same length such that their minimum distance is maximized while the misalign-

ment tolerance approaches to the known upper bound derived in [141].

Let C1 = 〈g1(x)〉 and C2 = 〈g2(x)〉 be two q-ary cyclic codes of parameters

[n, k1, d1]q and [n, k2, d2]q, respectively. Let DC1 and DC2 be the associated defining

set of the two codes. If C2 ⊂ C1, g1(x) | g2(x) and DC1 ⊂ DC2 . The BCH bound of
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C2 using the notion of rational function is given by

∞∑
j=0

g2
(
αj+b2

)
xj ≡ 0

(
modxδ−1

)
, (6.21)

where {b2, b2 + 1, . . . , b2 + δ − 2} ⊂ DC2 for some positive integer b2 < n. Since

g1(x) is a factor of g2(x), we can write g2(x) = g1(x)f(x) for some polynomial

f(x). Let c2(x) ∈ C2 be any codeword, then

∞∑
j=0

c2
(
αj+b2

)
xj ≡

∞∑
j=0

g1
(
αj+b2

)
f̄
(
αj+b2

)
xj

≡
∞∑
j=0

xj
n−1∑
i=0

g1i

(
αj+b2

)i n−1∑
k=0

f̄k
(
αj+b2

)k
≡

n−1∑
i=0

n−1∑
k=0

g1i f̄kα
b2(i+k)

∞∑
j=0

αj(i+k)xj

≡
n−1∑
i=0

n−1∑
k=0

g1i f̄kα
b2(i+k)

1− α(i+k)x

≡ 0
(

mod xδ−1
)
, (6.22)

where f̄(x) = f(x)m(x) for some message polynomial m(x). Denoted by W1 and

W2 the set of non-zero positions of g1(x) and f̄(x), respectively, and |W1| = d1,

|W2| = df . We can write (6.22) as

∑
i∈W1

( ∑
k∈W2

(
g1i f̄kα

b2(i+k) ∏
m∈W2,m 6=k

(
1− α(i+m)x

)) ∏
z∈W1,z 6=i

∏
s∈W2

(
1− α(z+s)x

))
∏

i∈W1

∏
k∈W2

(1− α(i+k)x)

≡ 0
(

mod xδ−1
)
, (6.23)

where the degree of the denominator is |W1| · |W2| = d1df . The degree of the

numerator is at most |W1| · |W2| − 1 = d1df − 1, and d1df − 1 ≥ δ − 1. Hence

d1 ≥
⌈
δ

df

⌉
or df ≥

⌈
δ

d1

⌉
. (6.24)

Since k2 < k1, d2 ≥ d1 ≥ d δdf e.
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6.4 A class of QSCs from quadratic residue codes

In the rest of the chapter, we construct a class of quantum synchronizable codes

by exploiting special classical cyclic codes over the finite field F2 of order 2, called

quadratic residue codes. Quadratic residue codes tend to have large minimum

distances [35]. Thus, it is reasonable to expect that quantum error-correcting codes

that exploit quadratic residue codes possess good error correction performance. We

show that quantum synchronizable codes from quadratic residue codes also have

good block synchronization capabilities. Since we only consider binary codes from

now on, the subscript 2 in [n, k, d]2 is omitted.

Recall that Theorem 6.1 requires a pair of cyclic codes C1, C2 of parameters [n, k1]

and [n, k2] with k1 > k2 that satisfy the condition C⊥2 ⊆ C2 ⊂ C1. We first construct

a cyclic code C2 in such a way that its dual code C⊥2 is a subspace of C2. We then

obtain a cyclic supercode C1 by inserting codewords into C2. While we only apply

this idea to a small, specific class of cyclic codes, this general principle of producing

supercodes may be applicable to other cyclic codes to ensure good synchronization

recoverability if code lengths are primes.

6.4.1 Dual-containing cyclic codes: C⊥2 ⊂ C2

Let p be a prime of the form p ≡ ±1 (mod 8). Define QR = {x2 (mod p) | 1 ≤

x ≤ p−1
2 } and QNR = {1, 2, . . . , p−1}\QR to be the sets of p−1

2 nonzero quadratic

residues and p−1
2 quadratic non-residues respectively. Take a primitive p-th root α

of unity in F2t , where t is the smallest positive integer such that p divides 2t − 1.

Let

gR(x) =
∏
i∈QR

(
x− αi

)
and gNR(x) =

∏
i∈QNR

(
x− αi

)
.

Note that gR(x) and gNR(x) are both in F2[x]. The pair CR = 〈gR(x)〉 and

CNR = 〈gNR(x)〉 are [p, p+1
2 ] cyclic codes known as quadratic residue codes over
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F2. By the same token, the two polynomials

ḡR(x) = (x− 1)
∏
i∈QR

(
x− αi

)

and

ḡNR(x) = (x− 1)
∏

i∈QNR

(
x− αi

)

generate [p, p−1
2 ] cyclic codes C̄R = 〈ḡR(x)〉 and C̄NR = 〈ḡNR(x)〉. The latter pair

may also be referred to as quadratic residue codes in the literature. It is known

that quadratic residue codes tend to have large minimum distances. The following

is a well-known general lower bound, known as the square root bound.

Theorem 6.7. (Square Root Bound) The minimum distance d of a quadratic

residue code of length p is at least √p. If p ≡ −1 (mod 4), then d2 − d+ 1 ≥ p.

For small quadratic residue codes, tables of exact parameters can be found in [144].

To take advantage of quadratic residue codes for constructing quantum synchro-

nizable codes, we use the fact that the larger one of each pair is dual-containing

if the length is −1 modulo 8. A detailed account on the properties of quadratic

residue codes and their duals can be found in [35, Ch. 16]. For convenience, we

give a short proof of the simple fact.

Lemma 6.8. The quadratic residue codes CR, CNR, C̄R and C̄NR of length p ≡ −1

(mod 8) have the following properties:

1) C⊥R = C̄R, C⊥NR = C̄NR.

2) C⊥R ⊂ CR, C⊥NR ⊂ CNR.

Proof. Since QR and QNR are disjoint and do not contain 0, we have xp − 1 =

(x− 1) gR(x)gNR(x). The zeros of gR(x) and gNR(x) are {αi | i ∈ QR} and

{αi | i ∈ QNR}, respectively. Hence by Equation (6.4), the zeros of C⊥R are 1 and

α−i for i ∈ QNR, and the zeros of C⊥NR are 1 and α−i for i ∈ QR. Note that

αi ∈ QR if and only if i is even and that αi ∈ QNR if and only if i is odd. When
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p ≡ −1 (mod 8), we have i ∈ QR if and only if −i ∈ QNR. Hence, C⊥R = C̄R and

C⊥NR = C̄NR. Since CR = 〈gR(x)〉 and C⊥R = C̄R = 〈ḡR(x)〉, it is trivial that CR is

dual-containing. By the same token, CNR is a dual-containing code.

Example 6.3. Consider the set of nonzero quadratic residues modulo 31

QR = {1, 22, 32, 42, . . . , 152}

= {1, 4, 9, 16, 25, 5, 18, 2, 19, 7, 28, 20, 14, 10, 8}.

The generator polynomial of the quadratic residue code CR of length p = 31 is then

gR(x) = x15 + x12 + x7 + x6 + x2 + x+ 1.

Multiplying by x+ 1 gives the generator polynomial of C̄R

ḡR(x) = x16 + x15 + x13 + x12 + x8 + x6 + x3 + x+ 1.

Plugging gR(x) into Equation (6.4) also gives ḡR(x), which means that this is the

generator polynomial of the dual code C⊥R as well. �

6.4.2 Cyclic supercodes of C2

Lemma 6.8 provides a [p, p+1
2 , d] dual-containing cyclic code C2 for prime p ≡ −1

(mod 8) with d ≥ √p. To obtain another cyclic code C1 such that C2 ⊂ C1,

we increase the number of codewords by deleting a factor from the generator

polynomial of C2 we already have. Note that, by definition, a cyclic code is a

subcode of another if its generator polynomial is divisible by the other. Thus, if

the generator polynomial of C2 has more than one factor, deletion always gives a

supercode. As the following proposition shows, a particularly interesting case is

when p is a Mersenne prime.

Proposition 6.9. Let C = CR be the quadratic residue code of length p generated

by g2(x) = ∏
i∈QR (x− αi). If p = 2l − 1, then g2(x) can be factored into 2l−1−1

l
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irreducible polynomials of degree l, that is,

g2(x) =
∏
j

Mj(x), (6.25)

where Ms(x) is the minimal polynomial of αs over F2 and deg (Mj(x)) = l for all

j.

The above proposition can be proved through the concept of cyclotomy [35] de-

scribed in Section 6.2.1. Note that for any s, the cardinality |Cs,n| is a divisor of

|C1,n|. When n is a Mersenne prime 2l − 1, we have |C1,n| = l. Because l is also a

prime, when n is a prime of the form n = p = 2l − 1, each Cs,n is of size l as well,

proving Proposition 6.9.

Because of the one-to-one correspondence between cyclic codes and monic divisors

of xn − 1, deleting one or more factors Mj(x) gives another generator polynomial

that results in a cyclic code of higher dimension containing the dual-containing

cyclic code CR. Trivially, if we delete z factors, the dimension of the supercode

is higher than that of CR by zl. Applying Theorem 6.1 to this supercode as C1

together with the dual-containing quadratic residue code gives a quantum syn-

chronizable code.

It is also notable that any supercode C1 obtained by deleting a minimal polynomial

of the quadratic residue code is also dual-containing. Thus, we have a chain of

cyclic codes, each of which is dual-containing itself and contains all smaller ones.

Therefore, we can construct a quantum synchronizable code from any pair of codes

in the chain.

6.4.3 Maximum misalignment tolerance

In the context of quantum synchronizable codes, we would like to maximize

ord (f(x)), where f(x) is the quotient in Theorem 6.1, in order to tolerate as

large magnitude of misalignment as possible. It is known that the maximum tol-

erable magnitude of a quantum synchronizable code is upper bounded by its length
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[141]. We prove that the quantum synchronizable codes from quadratic residue

codes given in the previous subsection attain this bound.

Lemma 6.10. Let C1 = 〈g1(x)〉 and C2 = 〈g2(x)〉 be cyclic codes of length p

such that C2 ⊂ C1 and C1 6= C2. Define f(x) to be the polynomial such that

g2(x) = f(x)g1(x). If p is a prime, then ord (f(x)) = p.

Proof. Because the generator polynomial of a cyclic code of length p divides xp−1,

its factor also divides xp − 1. Hence, the factor f(x) of g2(x) divides xp − 1

as well, which implies that xp ≡ 1 (mod f(x)). Hence, because ord(f(x)) =

|{xa (mod f(x)) | a ∈ N}|, the order of f(x) is a divisor of p. Since p is a prime

and f(x) 6= 1 by assumption, we have ord(f(x)) = p as desired.

We now give our main theorem.

Theorem 6.11. Let p = 2l − 1 be a Mersenne prime. For nonnegative integers

cl, cr and z such that cl + cr < p and z ≤ 2l−1−l−1
l

, there exists a quantum

synchronizable code of parameters (cl, cr)-[[p+ cl + cr, 2zl + 1]].

Proof. Take a quadratic residue code of length p = 2l−1 generated by the nonzero

quadratic residues. By Proposition 6.9, its generator polynomial has 2l−1−1
l

mini-

mal polynomials of degree l as its factors. Thus we have a chain of 2l−1−1
l

cyclic

codes in which a code contains all other smaller ones. Note that a supercode of a

dual-containing code is also dual-containing. Thus, by applying Theorem 6.1 and

Lemma 6.10 the cyclic code generated by the polynomial that is obtained by delet-

ing z factors and another one obtained by deleting z + y factors for some positive

integer y, we obtain a quantum synchronizable code of desired parameters.

Example 6.4. As in Example 6.3, let p = 25 − 1 and take the set QR = {x2

(mod p) | 1 ≤ x ≤ 2l−1 − 1} of nonzero quadratic residues modulo 31. Then QR

is the union of 24−1
5 = 3 cyclotomic cosets of field F25 as follows.

QR = C1,31 ∪ C5,31 ∪ C7,31,
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where

C1,31 = {1, 2, 4, 8, 16},

C5,31 = {5, 10, 20, 9, 18},

C7,31 = {7, 14, 28, 25, 19}.

Let C2 = 〈gR(x)〉. Since gR(x) is the product of the minimal polynomials Ms(x) of

αs over F2 for s ∈ QR, we have

gR(x) = M1(x)M5(x)M7(x),

with

M1(x) = x5 + x2 + 1,

M5(x) = x5 + x4 + x2 + x+ 1,

M7(x) = x5 + x3 + x2 + x+ 1.

Note that each one of M1(x), M5(x) and M7(x) divides x31−1. Let C1 = 〈g1(x) =
gR(x)
f(x) 〉. If we delete z = 1 minimal polynomial, f(x) = Mj(x) for j ∈ {1, 5, 7},

the dimension of C1 is dim(C1) = p − deg(gR(x)) + zl = 31 − 15 + 5 = 21. If we

delete z = 2 factors, then f(x) = Mj1(x)Mj2(x) for j1, j2 ∈ {1, 5, 7} and j1 6= j2,

so the dimension of C1 in this case is dim(C1) = 31− 15 + 10 = 26. In both cases,

the ord (f(x)) = 2l − 1 = p = 31. Since deg(gR(x)) = 15 and dim(C2) = 16, for

arbitrary pair of non-negative integer cl and cr such that cl + cr < 31, we have a

(cl, cr)-[[31 + cl + cr, 1]] quantum synchronizable code.

Further, let z = 1 and C2 = 〈gR(x)〉 ⊂ C3 with C3 = 〈Mj1(x)Mj2(x)〉 for j1, j2 ∈

{1, 5, 7} and j1 6= j2. If y = 1, by removing z + y = 2 minimal polynomials

Mi(x) from gR(x), we obtain another cyclic code C4 such that C2 ⊂ C3 ⊂ C4.

Since dim(C3) = 21 > dn2 e, by Theorem 6.1 for cl + cr < 31, C3 and C4 form a

(cl, cr)-[[31 + cl + cr, 2zl + 1 = 11]] quantum synchronizable code. �
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6.5 Chapter summary

In this chapter, we studied the concept of QSCs and proposed a general method

for constructing QSCs using chain-containing classical cyclic codes. The proposed

construction is particularly flexible when the length is not a Mersenne prime be-

cause since any pair of dual-containing cyclic codes from a chain-containing cyclic

codes is eligible for the construction of QSC. This adds variety in dimension and

minimum distance to the resulting QSC. Furthermore, we showed that the pro-

posed QSCs from quadratic residue codes of length equal Mersenne prime possess

the highest possible tolerance against synchronization errors, while the dimension

of this codes is one.





Chapter 7

Channel Mismatch For Quantum

LDPC Codes Over Depolarizing

Channel

C lassical LDPC codes were originally proposed by Gallager in the 1960s

[43]. However, LDPC codes remained largely unnoticed until their re-

discovery in the mid-90s [123] [131]. Since then hundreds of papers have been

published outlining the near optimal performance of LDPC codes over a wide

range of noisy wireless communication channels. In almost all of such previous

works it was assumed that the characteristics of the noisy wireless channel were

known. However, the reality is that in many cases an exact determination of the

wireless channel is unavailable. Indeed, several works have in fact investigated

the case where a channel mismatch (or channel misidentification) occurs, which in

turn impacts on the performance of the LDPC decoder (e.g. [125]).

From the perspective of the work reported here, the most interesting aspect of

such channel mismatch studies is the asymmetry in the LDPC code performance

as a function of the channel crossover probability for the binary symmetric channel

(BSC). In fact, the main focus of the work described here is an investigation of

whether such asymmetric LDPC code performance carries over from the classical

147
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BSC to quantum LDPC codes operating over the quantum depolarizing channel.

Interestingly, an asymmetry behaviour in performance is observed as a function

of the estimated channel flip probability, showing that the performance of a quan-

tum LDPC code would experience a reduced degradation when the channel is

overestimated (a higher estimation) instead of underestimated (a lower estima-

tion), provided the overestimated channel knowledge still within the threshold

limit of the code.

In this chapter, we first investigate the behaviour of the classical sum-product

decoder under channel mismatch conditions. Then a brief introduction on belief

propagation for QECC with the help of the Tanner graph is provided. Then we

explore the behaviour of a quantum decoder when simulating over a quantum

depolarizing channel and show how the decoding strategy we outline here leads to

a significant improvement in performance relative to decoders that simply utilize

the estimated channel parameter.

7.1 Behaviour of classical sum-product decoder

It is well known in classical coding that low-density parity-check codes are good

rate achievable codes [119] [131], given an optimal decoder. The best algorithm

known to decode them is the sum-product algorithm, also known as iterative

probabilistic decoding or belief propagation (BP). The performance of sparse-

graph codes can be improved if knowledge about the channel is known at the

decoder side. However, in practical situations the decoder is unlikely to know the

channel’s characteristics exactly; thus, the robustness of the decoder to channel

mismatches is also an important issue when designing practical codes.

In [125], MacKay et.al investigated the sensitivity of Gallager’s codes [119] to the

assumed noise level (classical bit-flip probability) when decoded by belief propaga-

tion. A useful result therein is that the belief propagation decoder for LDPC codes

appears to be robust to channel mismatches because the block error probability is
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not a very sensitive function of the assumed noise level. In addition, an underesti-

mation of channel characteristics deteriorates the performance more compared to

an overestimation of channel characteristics. This behaviour is shown in Fig. 7.1.
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PBLER - true f = 0.075

PBER - true f = 0.075

Figure 7.1: Probability of block error as a function of estimated flip proba-
bility when the true flip probability is fixed.

Our results shown in Fig. 7.1 are for a rate half code of block length N = 2040

over a binary symmetric channel. The code is a (3, 6) regular LDPC code which is

constructed with the length of the cycle maximized. The plot shows the probability

of block and bit error (PBLER/PBER) as a function of assumed flip probability f̂

when the true flip probability f is fixed throughout the simulation.

By inspection, the plotted result shows a similar behaviour to that found by

MacKay in [125]. The vertical straight line indicates the true value of the noise

level, and the minimum point of the plot is approximately at the intersection be-

tween the lines. This infers that an optimal performance of a practical sum-product

decoder can be achieved when the input of the decoder is the true noise level (true



Chapter 7: Channel Mismatch For Quantum LDPC Codes Over Depolarizing Channel 150

flip probability). The slope towards the left of the graph is steeper than the slope

towards the right, indicating that underestimation (an estimation smaller than the

true flip probability) of the noise level degrades the performance more than overes-

timation (an estimation larger than the true flip probability) does. However, when

the estimated noise level is far too large, there is a significant increase in the error

probability. Such higher estimation of noise level can be thought of as the classical

Shannon’s limit, which theoretically represents the threshold (fthr) for the noise

level that guarantees reliable transmission at a certain rate. For the code shown in

Fig. 7.1, since it is a rate half code, the Shannon’s limit is 0.11 computed from the

capacity function C = 1−H2(f), where H2(f) = −f log2(f)− (1− f) log2(1− f)

is the binary entropy function. As can be seen from the figure, a sudden increase

of error probability occurs when f̂ > 0.11. However, as f < f̂ < 0.11, the slop of

PBLER curve is less steep compared to that of f̂ < f .

7.2 Channel mismatch over quantum depolariz-

ing channel

Motivated by the decoding asymmetry discussed above for classical LDPC codes,

we now wish to explore whether a similar asymmetry in decoding performance is

achieved for quantum LDPC codes. As stated below several well-known classes

of quantum codes such as quantum stabilizer codes can be designed from existing

classical codes. Upon construction of such codes we will then investigate the de-

coding performance under asymmetrical estimates of the quantum channel param-

eters. The quantum channel we investigate is the widely adopted depolarization

channel.

7.2.1 Quantum channel models

Given some initial system state |Ψs〉, a decoherence model can be built by studying

the time evolution of the system state’s interaction with some external environment
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with initial state |Ψe〉. Without loss of generality we can assume |Ψs〉 and |Ψe〉

are initially not entangled with each other.

In terms of the density operators ρs = |Ψs〉 〈Ψs| and ρe = |Ψe〉 〈Ψe|, the initial

state of the combined total system can be written as ρs⊗ρe. The closed evolution

of ρs ⊗ ρe can be described by a unitary U via U(ρs ⊗ ρe)U †. To obtain the

output system state, ρouts , after some closed evolution U , we use ρouts ≡ ε (ρs) =

Tre
[
U(ρs ⊗ ρe)U †

]
where Tre is the partial trace over the environment’s qubits.

The channel ρouts ≡ ε (ρs) is a completely positive, trace preserving, map which

provides the required evolution of ρs. It is possible to describe such maps directly

using an operator-sum representation,

ε (ρs) =
No∑
a=1

KaρsK
†
a, where

No∑
a=1

K†aKa = I, (7.1)

and where Ka=1...No represent the so-called Kraus operators, with No being the

number of Kraus operators [132].

There are of course decoherence channels modelled on specific qubit-environment

interactions (e.g. see [11]). In this work we will consider only the depolarization

channel. Let us introduce the depolarization parameter, f ′, of a qubit where

0 ≤ f ′ ≤ 1, with f ′ = 1 meaning complete depolarization and f ′ = 0 meaning no

depolarization. If we denote the set of Pauli matrices using σi (here i = 0, 1, 2, 3),

that is, σ0 = I, σ1 = X, σ2 = Z, σ3 = Y , the depolarization channel for a single

qubit can be defined as ε (ρs) = (1 − f ′)ρs + f ′ σo2 . Using the relation σo =
1
2

(
ρs +

3∑
j=1

σjρsσj

)
, we see that the Kraus operators for the depolarization channel

can be written K1 =
√

1− 3f ′
4 σo, K2 =

√
f ′

4 σx, K3 =
√

f ′

4 σy, and K4 =
√

f ′

4 σz.

Note that it is also possible to parameterize the depolarization channel as

ε(ρs) = (1− f)ρs + f

3

3∑
j=1

σjρsσj, (7.2)

where f = 3
4f
′. This latter form is more convenient for decoding purposes, and

below we term f as the true flip probability.
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7.2.2 Quantum channel estimation

In what follows we will assume the true value of f is unknown a priori, and must

first be measured via some channel identification procedure. This estimate of f ,

which we will refer to as f̂ , will be used in a decoder in order to measure its

performance relative to a decoder in which the true f is utilized.

In general, quantum channel identification proceeds by inputting a known quan-

tum state σ (the probe) into a quantum channel Γp that is dependent on some

parameter p (in our case p = f). By taking some quantum measurements on the

output quantum state Γp(σ) which leads to some result R, we then hope to esti-

mate p. The input quantum state may be unentangled, entangled with an ancilla

qubit (or qudit), or entangled with another probe. Multiple probes could be used,

or the same probe can be recycled (i.e. sent through the channel again).

As can be imagined many experimental schemes could be developed along these

lines, and the performance of each scheme (i.e. how well it estimates the true

value of the parameter p) could be analyzed. However, in this study we will take

a different tactic. Here we will simply assume an experimental set-up is realized

that obtains the information-theoretical optimal performance.

Optimal channel estimation via the use of the quantum Fisher information has

been well studied in recent years, particularly in regard to the determination of

the parameter f of the depolarizing channel (e.g. [133], [134], [135], [136], [137]).

Defining ρf = Γf (σ), the quantum Fisher information about f can be written as

J(f) = J (ρf ) = tr [ρf ]L2
f ,

where Lf is the symmetric logarithmic derivative defined implicitly by

2∂fρf = Lfρf + ρfLf ,
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and where ∂f signifies partial differential w.r.t. f . With the quantum Fisher

information in hand, the quantum Cramer-Rao bound can then be written as

mse
[
f̂
]
≥ (NmJ(f))−1

where mse
[
f̂
]

is the mean square error of the unbiased estimator f̂ , and Nm is

the number of independent quantum measurements.

7.2.3 Quantum decoding algorithm

The appropriate decoding algorithm to decode quantum LDPC codes is based

on the classical sum-product algorithm since the most common quantum channel

model, shown in (7.2), is analogous to the classical 4-ary symmetric channel. The

received values at the decoder side can be mapped to measurement outcomes

s ∈ {+1,−1}M (syndrome) of the received qubit sequence, and this syndrome is

then used in error estimation and recovery. Assuming an initial quantum state

representing a codeword, the initial probabilities pi for the i-th qubit of the state

undergoing an X, Y or Z error are

pi =


f
3 for X, Y, and Z

1− f for I
, (7.3)

where f is the flip probability known at the decoder.

The standard BP algorithm operates by sending messages along the edges of the

Tanner graph. We shall introduce Tanner graph for QECCs and belief propagation

decoding algorithm for QECCs now.

7.2.3.1 Tanner graph of QECCs

A QECC can be represented by a decorated Tanner graph. This is a bipartite graph

S = (V,E) with vertices V = Q ∪ C where the subset of vertices Q represent the

N qubits, and the other subset C represent the m = N −K stabilizer generators,
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where K is the encoded number of qubits. The graph has an edge (q, c) ∈ E iff

check c acts non-trivially on qubit q. The Tanner graph for the 5-qubit code in

(2.40) is shown in Fig. 7.2. When two checks c and c
′ both act non-trivially on

at least two qubits in common, say q and q
′ , the stabilizer group S will contain a

cycle 4-loop (c, q, c′ , q′).

1 2 3 4 5

Z

X

Figure 7.2: Tanner graph for the 5-qubit code with stabilizer generator (2.40).

To avoid the presence of a cycle 4-loop, one could make sure that no pair of checks c

and c′ act on more than one common qubit. However, the commutation condition

between two checks depends on the number of positions that a X operator overlaps

with a Z operator, or the non-identity positions are the same Pauli operator. This

argument leads to the conclusion that every edge connected to qubit q must be

the same operator, for instance, Z operator. If this is the case, the code fails to

detect the weight-1 Z error that acts on qubit q since all the operators used to

diagnosis qubit q are Z, which commutes with the Z error. In conclusion, Tanner

graph of QECCs must unavoidably contain cycle 4-loops.

7.2.3.2 Belief propagation decoding of QECCs

Consider the simplest error model, Pauli channels that have the form

ξ(ρ) =
∑
E∈PN

p(E)EρE†, (7.4)

where p(E) ≥ 0 and ∑
E p(E) = 1 are probability of error operator and the sum

of all the possible errors are equal to 1, respectively. Let PN be a Pauli group of
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size N . A memoryless Pauli channel is one for which the probability factors as

p(E) = ∏N
q=1 pq(Eq) for all E = E1E2 . . . EN ∈ PN . A particular relevant example

is the depolarizing channel for which pq(I) = 1− ε and pq(X) = pq(Y ) = pq(Z) =

ε/3 for all q, and for some depolarizing strength 0 ≤ ε ≤ 1.

Once the N qubits are prepared in a code state |ψ〉, they are sent through the

channel and states ρ = ξ(|ψ〉〈ψ|) is obtained by the receiver. To detect the possible

errors at the receiver, the m stabilizer generators are measured simultaneously and

outcome the error syndrome s = (s1, s2, . . . , sM) ∈ {±1}M . When the error E that

corrupted the register commutes with Si, i ∈ {1, 2, . . . ,M}, the syndrome bit si
takes value +1 because SiE|ψ〉 = ESi|ψ〉 = E|ψ〉. When E anti-commutes with

Si, SiE|ψ〉 = −ESi|ψ〉 = −E|ψ〉 is obtained, and hence si = −1. The syndrome

vector will be used to perform belief propagation decoding as a decoder input.

Belief propagation operates by sending a message along the edges of the Tanner

graph (e.g. Fig.7.2). Messages from qubit q to check c are denoted by mq→c and

messages from check c to qubit q are denoted mc→q. Messages received at and

sent by qubit q are probability distribution over Eq. In other words, each message

appears as a vector of 4 positive numbers, one for each value Eq = I,X, Y, Z. Note

that the neighbours of qubit q and check c are defined as n(q) and n(c).

To initialize the algorithm, each qubit q sends out its message vector of size 4 to all

its neighbour mq→c(Eq) = pq(Eq)), where pq(Eq) = pq(X) = pq(Y ) = pq(Z) = ε/3

in depolarizing channel. Upon reception of these messages, each check sends out

a message to its neighbouring qubits given by

mc→q(Eq) =
∑

E1...N∈{E|E ◦ ST=sj)}

∏
q′∈n(c)\q

mq′→c(Eq′ ), (7.5)

where n(c)\q denotes all neighbours of c except q. The sum is over all error

operators that tested with stabilizer that gives si = +1 or −1.
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Upon reception of these messages, each qubit sends out a message to its neigh-

bouring checks given by

mq→c(Eq) = p(Eq)
∏

c′∈n(q)\c

mc′→q(Eq), (7.6)

where n(q)\c denotes all neighbours of q except c. pq(Eq) is the prior probability

distribution of errors.

Equations (7.5) and (7.6) define an iterative procedure that is the core of BP

algorithm. The beliefs of each qubit node bq(Eq) are computed as follows

bq(Eq) = pq(Eq)
∏

c∈n(q)
mc→qEq. (7.7)

After each iteration of message passing, the maximum probability of error pq(Eq) =

max{pq(I), pq(X), pq(Z), pq(Y )} for each qubit q can be obtained. If the obtained

error E satisfy the syndrome constraint, the decoding procedure will halt and out-

put E as the detected error vector; otherwise, the iteration procedure continues

until a valid result is obtained or the maximum iteration number is reached. Fi-

nally, the recovery process is achieved by reapplying the decoded error vector E

to the received state.

7.2.4 Quantum LDPC codes over depolarizing channels

In this section, we investigate the dependence of the performance of a quantum

LDPC code on the estimated flip probability f̂ of a depolarizing channel using the

same quantum LDPC code simulated in [149], which is Code A of [68]. In each

decoding process, the decoder performed an iterative message passing algorithm

(sum-product decoding algorithm) until it either found a valid codeword (regard-

less of whether it is the word transmitted) or reached a maximum number of 200

iterations. The simulation plots herein is the probability of block error (PBLER)

as a function of the estimated flip probability.
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In the simulations, the noise vectors were generated to have weight exactly fN ,

where N was the block length of the code (N = 1034) and f is the true flip

probability for the depolarizing channel. The decoder assumed an estimated flip

probability f̂ . We varied the value of f̂ while the true flip probability f is fixed.

The results of our simulations are shown in Fig. 7.3.
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Figure 7.3: Probability of block error as a function of estimated flip proba-
bility when the true flip probability is fixed.

Similar to the case of classical LDPC codes discussed earlier, we can see from Fig.

7.3 that optimal performance in the quantum LDPC code can be obtained when

the input at the decoder is the true flip probability, i.e exact channel information

is known. The trend of the curve in Fig. 7.3 also shows an overestimate of f is

less costly than an underestimate of f , provided that the estimation of channel flip

probability, f̂ , is less than some threshold fQthr. For the code shown in Fig. 7.3, the

theoretical threshold is fQthr = 0.1893 (the capacity of classical 4-ary symmetric

channel computed from C4−ary = 2 − H2(f) − f log2(3)). If f̂ > fQthr, there is a

catastrophic increase in the error probability. In the following section, we show
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that an improvement in performance of the sum-product decoder can be achieved

if f̂ < fQthr. Note that the PBLER as a function of f̂ shown in Fig. 7.3 is code

dependent, which only a small range of PBLER can be shown due to the error

correction capability of Code A.

7.2.5 Improved decoding of depolarizing channels

In this section, a numerical approach to improving the performance of the sum-

product decoder is described. The asymmetric behaviour of the sum-product

decoder shown in Fig. 7.3 implies that in the case of channel mismatch, an over-

estimation of the channel flip probability is more desirable than underestimation.

Consider the case where a decoder can only attain partial channel information by

probing the quantum channel using un-entangled or entangled quantum states.

Given such partial information we will then weight our estimate of the channel

parameter (at the decoder side) to larger values (rather than smaller values) of

the estimated flip probability.

For a given true flip probability f , the probability of block error shown in Fig. 7.3

can fit approximately by:

P
(f)
BLER(f̂) ≈ a+ bf̂ 3 + cf̂ 5 + df̂ 7 + e

√
f̂ ln(f̂), (7.8)

where a, b, c, d, e are constants (the approximation gives a 2% tolerance). Assum-

ing our estimator of f̂ is centred on the true flip probability (i.e. an unbiased

estimator), has a variance derived from its quantum Fisher information (i.e. an

optimal estimator), and has a known probability density function P (f̂), we can

then make an estimate of what constant should be added to any estimated f̂ in

order to maximally improve the decoder performance.

Note that, for the case where the qubit probe is in an unentangled state, the

quantum Fisher information about f can be shown to be (NmJ(f))−1 = [f(2−f)].

The average probability of block error for a given f can then be estimated using
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the equation

P̃
(f)
BLER =

fQ
thr∫

0

P (f̂)P (f)
BLER(f̂)df̂ . (7.9)

The performance of the sum-product decoder can be improved if a factor ∆f̂ is

added to the estimated value of f̂ . That is, f̂ → f̂ + ∆f̂ . The question then

becomes, given some channel what is the optimal ∆f̂ that minimizes the expected

probability of error? To answer this, Equation (7.9) is modified to

P̃
(f)
BLER(∆f̂) =

fQ
thr∫

0

P (f̂)P (f)
BLER(f̂ + ∆f̂)df̂ , (7.10)

The optimal ∆f̂ is then the solution to

∂

∂∆f̂
P̃

(f)
BLER(∆f̂) = 0. (7.11)

One could repeat this process for a range of true channel flip probabilities, and

derive an estimate of the ∆f̂ averaged over the range of true flip probabilities

where QECCs can be expected to be of relevance, that is

∆f̂avg =
fQ
thr∫

0

P (f |f̂)∆f̂ (f)df. (7.12)

For the same code (Code A) as that used in Fig. 7.3, assume a uniform distribution

for P (f |f̂), and taking Nm = 1 in the Fisher information, we found that value

of ∆f̂avg to be very weakly dependent on f (see Table 7.1 ). This means that

simply adding to each estimated f̂ the additional factor ∆f̂avg led to substantial

performance improvement. The magnitude of this improvement can be seen in

Fig. 7.4. In this figure ∆f̂avg ≈ 0.01422 is applied at the the decoder to provide

the improved error correction (shown are the fraction of blocks in error PBLER),

denoted as ‘CodeA− f̂ + ∆f̂avg’. The notation ‘CodeA− f̂ ’ in this figure is for the

case where the input to the SP decoder is f̂ only, whereas the notation ‘CodeA−f ’

is for the case where the input to the decoder is the true flip probability f . As can

be seen improvements of up to ∼ 50% can found from the new strategy (f̂+∆f̂avg),
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relative to the case of just utilizing the estimated f̂ . Similar results to those shown

were found for other codes investigated, although the factor to be added was found

to be a function of the code. For example, in another code investigated (Code B

using Construction method III of [68] code length N = 2068) a ∆f̂avg ≈ 0.00365

was found to be better and the performance improvement is up to ∼ 30% relative

to the case of utilizing the estimate f̂ (the corresponding optimal ∆f̂ for each

different true flip probability f for Code B is also listed in TABLE 7.1 and see also

Fig. 7.4 for simulation improvement). Of course, improved channel estimation

also alters the details of our analysis, with more accurate measurements (e.g. a

higher number of measurements Nm of the channel) leading to smaller ∆f̂avg, and

smaller improvements in performance.

Table 7.1: Optimal ∆f̂ for different f .

Code A Code B
f ∆f̂ f ∆f̂

0.04 0.02638 0.05 0.00554
0.03 0.01659 0.04 0.00471
0.02 0.01292 0.03 0.00397
0.01 0.00097 0.02 0.00268

0.01 0.00134

Finally, it is perhaps worth illustrating how the use of optimal ∆f̂ for each f

(denoted as ‘CodeA− f̂ + ∆f̂ ’ in Fig. 7.4), rather than ∆f̂avg for every f , impact

the results. From Fig. 7.4 we can see that if the optimal ∆f̂ for each true f is

applied for f > 0.025, the error performance is better compared to the case of

using ∆f̂avg for every f (see the magnified portion in Fig 7.4). This is true since

∆f̂avg provides excess weight for small f and less weight for large f .

7.3 Chapter summary

In this chapter we have investigated possible improvements in the decoding strate-

gies of quantum LDPC decoders in the quantum depolarization channel. The

importance of the channel mismatch effect in determining the performance of

quantum LDPC codes has very recently been shown to lead to a degradation in
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Figure 7.4: Comparison of block error rate of Codes A and B.

the qubit error performance. We have illustrated how such a performance gap in

the qubit error performance can be substantially reduced. The new strategies for

quantum LDPC decoding we provided here are based on previous insights from

classical LDPC decoders in mismatched channels, where an asymmetry in per-

formance is known as a function of the estimated bit-flip probability. We first

showed how similar asymmetries carry over to the quantum depolarizing channel.

We then showed that when a weighted estimate of the depolarization flip param-

eter to larger values is assumed, performance improvement by as much as 50%

was found. We conjecture that all quantum channels which are misidentified, or

for which only partial channel information is available, will benefit from similar

decoding strategies to those outlined here.

The work outlined here will be of practical importance when large-scale quantum

networks are built, and sophisticated quantum error correction codes are deployed

in order to maintain the entanglement between the distributed entangled qubit

pairs that underpins these emerging networks. The strategies described here will
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ultimately manifest themselves in an improved performance of entanglement-based

QKD, or any other entanglement-based quantum communication application, de-

ployed over such future networks.



Chapter 8

Thesis Conclusion

I nspired by the needs of the quantum computer, which takes advantage of

quantum mechanical phenomena, such as superposition of states and entan-

glements between qubits, to solve certain problems efficiently and faster than their

classical counterparts, the ability to mitigate the noise resulting from decoherence

will determine whether building a quantum computer is feasible. Quantum error-

correcting codes are essential to correct quantum information.

In this thesis, we investigated various aspects of quantum error-correcting codes.

We provided a self-contained introduction on the fundamental theory of quantum

error correction and stabilizer coding, and constructed various families of quantum

error-correcting codes over a finite field. The constructed codes can correct stan-

dard bit-flip and phase flip errors. More interestingly, with a certain containing

property satisfied, the proposed stabilizer codes constructed from classical cyclic

codes are also capable of correcting synchronization errors.

Two types of quantum stabilizer codes were proposed based on quadratic residue

sets of prime modulus and prime difference sets of parameters (4n−1, 2n−1, n−1)

with n ≥ 2. The minimum distance for Type-I stabilizer codes of length N = 4n+1

is closely related to the size of quadratic residue sets while the dimension is a

constant, whereas the code rate for the stabilizer codes of length N = 4n −

1 is nearly half. The constructed Type-I stabilizer codes of length N = 4n +

163
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1 achieve the distance lower bound given in the literature. Furthermore, the

proposed construction methods for DSS codes generate a difference set from a

single input parameter and ensure that the constructed codes satisfy the symplectic

inner product constraint. We proposed three methods for constructing DSS codes

from either a full difference set or a subset of a difference set. Simulation results,

using a low-complexity majority-logic decoding algorithm, show that by designing

DSS codes from subsets of a difference set, the qubit error rate can be reduced.

We then designed large-scale quantum stabilizer codes by proposing a systematic

design of stabilizer quantum LDPC codes with quasi-cyclic structure using the

notion of proto-matrix (and proto-graph). By designing a Latin square based

proto-matrix from quadratic (non-) residue sets of prime modulus, and its equiv-

alent matrices using transformation matrices, the proposed construction methods

yielded a wide range of quantum LDPC codes with different code lengths and

rates. We proposed three types of proto-graph quantum LDPC codes, Type-I-A,

Type-I-B and Type-II. For prime QR set of parameters p = 4n− 1, the Type-I-A

QCS codes of length N = pk are constructed using the method of adjunction with

dimension K = k−1 and K = 2k−1 for odd n and even n, respectively. Moreover,

the Type-I-B quantum LDPC codes of length N = 2kv are constructed using the

method of concatenation with dimension K ≥ 2kv−ρ′v+ρ′−1, where ρ′ ≤ ρ is the

column weight of the derived QC-LDPC codes. For prime QR sets of parameters

p = 4n+1, a necessary transformation of the proto-matrix is required to construct

Type-II quantum LDPC codes of length N = kv with a dimension lower bounded

by K ≥ kv−ρ′v+ρ′−1. We showed that for ρ′ ≤ ρ, the minimum distance of the

proposed Type-I-B and Type-II codes is lower bounded by 2ρ′−1. In addition, by

applying transformations among proto-matrices, the proposed design of Type-I-B

codes significantly reduce the number of cycles of length 4 compared to Type-I-A

codes. We also show that the proposed Type-I-B codes over quantum depolariz-

ing channel with sum-product decoding algorithm outperform both Type-I-A and

Type-II quantum LDPC codes. Furthermore, the proposed two constructions,

namely Construction A and B, showed that the pre-lifting of a proto-graph can be

performed using the idempotent polynomials of QR/NQR sets, and the quantum
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LDPC codes constructed from tensor product operation yields a class of quantum

codes of rates as high as above 0.9.

We further proposed a class of quantum synchronizable codes from classical Q-

ary chain-containing cyclic codes and showed that the proposed method enables a

flexible construction of quantum synchronizable codes of various different dimen-

sions over different order of finite field. The proposed quantum synchronizable

codes of CSS structure is a type of quantum stabilizer code that corrects both

standard quantum errors and misalignment errors. The minimum distance of

the proposed chain-containing quantum synchronizable codes can be bounded us-

ing rational functions. We showed that the quantum synchronizable codes from

classical quadratic residue codes possess the highest possible tolerance against

synchronization errors.

Nevertheless, in practical settings, the channel mismatch effect on the performance

of quantum LDPC codes has been discussed. The performance loss due to the

channel mismatch can be reduced by using a weighted estimate of the channel

parameter.

Future Research Directions

Here we discuss some future works that are interesting and relevant to some of the

materials presented in this thesis.

1. The proposed quantum LDPC codes were based on a square all-one matrix.

A challenging extension work of this would be the exploration of designing

quantum LDPC codes from irregular proto-matrix or semi-regular (either fix

the degree of rows or columns), which would further enhance the sparsity

of quantum LDPC codes and improve its decoding performance. Moreover,

it is also interesting to design self-orthogonal QC-LDPC codes from sparse

proto-graphs in order to maximise the girth of the lifted code.

2. The construction methods for the proposed Type-I-B and Type-II quantum

LDPC codes are based on the use of transformation matrices, which alter the
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elements of QR and NQR sets. It would be interesting to design proto-graph

quantum LDPC codes using difference sets so that the resulting proto-graph

is sparse and the girth of the derived codes can be maximized.

3. Designing proto-graph based spatial-coupled quantum LDPC codes is a fu-

ture work, since the spatial-coupled quantum LDPC codes are the only fam-

ily of quantum codes that approaches to the Hashing bound for Pauli chan-

nels. [69].

4. In Chapter 5, the proposed quantum synchronizable codes are of CSS struc-

ture, which was initially proposed in [140]. It would be interesting to con-

struct quantum synchronizable codes of non-CSS structure, since the dimen-

sion of CSS codes is inefficient compared to a non-CSS stabilizer code.

5. It would also be interesting to study the phenomenon of channel mismatch

effect for a general quantum channel. To this end, it is desirable to introduce

new or modified decoding algorithms for quantum LDPC codes with the

presence of channel mismatch.

6. The conventional belief propagation decoding algorithm used to decode a

quantum LDPC code does not address the issue of degeneracy. Since de-

generacy of quantum codes is one of the beneficial properties compared to

its classical counterpart, designing deterministic belief propagation decod-

ing method that addresses degeneracy issue for quantum LDPC codes is an

interesting but challenging task.

7. Notice that the quantum LDPC codes designed from tensor product opera-

tion are capable of correcting bursts of errors and bursts of bursts of errors if

the pair of quasi-cyclic LDPC codes are properly designed. This is due to the

efficient two-stage decoding method for tensor product block codes, which

was first introduced in [130]. Hence, it is interesting to design an efficient

two stage sum-product decoder for quantum LDPC codes constructed from

tensor product operation.
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8. When implementing general quantum error correcting codes, one big chal-

lenge comes from the complexity of the quantum circuits, for both encoding

and decoding. To verify and enhance the control ability to implement com-

plex quantum circuits are critical tasks for implementing QECCs in building

scalable quantum computers. Coherent control of some of the simplest single-

erasure-error- correcting code, such as the ((4, 22, 2)) and the ((5, 21, 3))

codes, have been demonstrated in optical systems [152] and nuclear mag-

netic resonance (NMR) systems [153], respectively. The main difficulty for

implementing a quantum code is that the quantum devices are subject to

errors, from inevitable coupling to the uncontrollable environment, or from

other mechanisms such as imperfection in controlled operations. The errors

damage the coherence, and consequently can reduce the computational abil-

ity of quantum computers. In order to protect quantum coherence, scheme

of fault-tolerant quantum computation [11, 15] is important, which would be

one of interesting future topics to pursue.
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Appendix

A.1 Proof for Proposition 5.7

Let {d1, d2, . . . , dk} be the k elements of the quadratic residue set QR, and σ1, σ2,

. . . , σk be k permutations of {1, 2, . . . , k} such that dσ1(j), dσ2(j), . . . , dσk(j) are dis-

tinct for every 1 ≤ j ≤ k. The parity-check matrix H1 over F2 is then expressed

as

H1 =


P
dσ1(1)
11 · · · P

dσ1(k)
1k

... . . . ...

P
dσk(1)
k1 · · · P

dσk(k)
kk

 ,

where each P d
ij denotes the d-th power of P . Let α be a primitive p-th root of

unity and F2(α) be the minimal finite field containing both F2 and α. Denote by

V the p× p Vandermonde matrix generated by α over F2(α):

Vp =



1 1 · · · 1

1 α · · · αp−1

... ... · · · ...

1 αp−1 · · · α(p−1)(p−1)


.

169
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Since α is a primitive p-th root of unity, αi is a root of xp − 1 and not equal to 1

for all 1 ≤ i ≤ p−1. Moreover, since xp−1 = (x−1)(xp−1 + · · ·+1), ∑p−1
j=0 α

ij = 0

for all 1 ≤ i ≤ p− 1. Furthermore, since 2 and p are co-prime, summation of 1 by

p times is still equal to 1 over F2. It is then easy to check that the inverse of Vp is:

V −1
p =



1 1 · · · 1

1 α−1 · · · α−(p−1)

... ... · · · ...

1 α−(p−1) · · · α−(p−1)(p−1)


.

For 0 ≤ i ≤ p − 1, denote by D(αi) the p × p matrix with diagonal entries equal

to {1, αi, · · · , αi(p−1)}, that is,

D(αi) =



1 0 · · · 0

0 αi
. . . ...

... . . . . . . 0

0 · · · 0 αi(p−1)


.

Thus,

P 1 = Vp · D(α) · V −1
p .

Hence for any 0 ≤ d ≤ p− 1, we have

P d = Vp · D(αd) · V −1
p .

The matrix H1 can then be decomposed into

H1 = Diag (Vp) · H̃1 ·Diag
(
V −1
p

)
, (A.1)
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where

H̃1 =


D(αdσ1(1)) · · · D(αdσ1(k))

... . . . ...

D(αdσk(1)) · · · D(αdσk(k))

 ,

Diag (Vp) =


Vp 0 0

0 . . . 0

0 0 Vp

 ,

and

Diag
(
V −1
p

)
=


V −1
p 0 0

0 . . . 0

0 0 V −1
p

 .

Since both Diag(Vp) and Diag(V −1
p ) have full rank kp, Rank(H1) = Rank(H̃1).

Note that H̃1 can be regarded as a block matrix with k × k blocks each of which

is a p× p diagonal matrix. We can then rearrange the columns and rows in H̃1 to

form a block diagonal matrix ˜̃H1 with each block of size k × k, that is

˜̃H1 =



C0 0 · · · 0

0 C1
. . . 0

... . . . . . . 0

0 · · · 0 Cp−1


,

where

Cj =


αjdσ1(1) · · · αjdσ1(k)

... ... ...

αjdσk(1) · · · αjdσk(k)


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for all 0 ≤ j ≤ p− 1. Obviously,

Rank(H̃1) = Rank( ˜̃H1) =
p−1∑
j=0

Rank(Cj).

Since C0 is an all-one matrix of size k×k, Rank(C0) = 1. Furthermore, since each

row of H1proto is a cyclic shift of the first row, we denote

σ2(1, · · · , k) = (σ1(2), σ1(3), · · · , σ1(1)),
...

σk(1, · · · , k) = (σ1(k), · · · , σ1(k − 2), σ1(k − 1)).

Thus, Cj is a circulant matrix over F2(α). Let U be the k × k cyclic permutation

matrix in the same form as P except for the different size. Then,

Cj = αjdσ1(1)U0 + αjdσ1(2)U1 + · · ·+ αjdσ1(k)Uk−1.

Let β be a primitive kth root of unity, D(βi) be the k × k diagonal matrix with

diagonal entries equal to {1, βi, · · · , βi(k−1)}, and Vk be the k × k Vandermonde

matrix (over F2(α)(β)) generated by β. Since U = Vk · D(β) · V −1
k and U i =

Vk · D(βi) · V −1
k , we have

Cj = Vk ·
(
k−1∑
i=0

αjdσ1(i+1)D(βi)
)
· V −1

k .

Thus, the rank of Cj is equal to the number of nonzero diagonal entries in

k−1∑
i=0

αjdσ1(i+1)D(βi).

Equivalently, it is equal to k− z, where z is the number of roots of the polynomial

fj(x) = ∑k−1
i=0 α

jdσ1(i+1)xi that belong to {1, β, · · · , βk−1}. Since p and k are co-

prime and αp = βk = 1, it can be deduced that fj(βi) 6= 0 for all 1 ≤ j ≤ p − 1

and 1 ≤ i ≤ k − 1. Next, note that fj(1) = ∑k−1
i=0 α

jdσ1(i+1) = ∑k
i=1 α

jdi . Thus, (i)

when n is odd, ∑k
i=1 α

jdi 6= 0 for all 1 ≤ j ≤ p − 1; (ii) when n is even, there are

exactly p−1
2 = k elements in {α, · · · , αp−1} which are roots of ∑k

i=1 x
di . Now, we
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can obtain

Rank(H1) = Rank(C0) + · · ·+Rank(Cp−1)

=

 1 + k(p− 1), when n is odd

1 + k(p− 1)− k, when n is even
.

Similarly, the rank of H2 can be proved to be 1 deficient from the rank of H1.

Since each P d
ij of H2 has weight equal to 2, i.e., (P d +P 0), the diagonal matrix D

will have the form

D(1 + αi) =



0 0 · · · 0

0 1 + αi
. . . ...

... . . . . . . 0

0 · · · 0 1 + αi(p−1)


.

Then H̃2 will be written as

H̃2 =


D(1 + αdσ1(1)) · · · D(1 + αdσ1(k))

... . . . ...

D(1 + αdσk(1)) · · · D(1 + αdσk(k))

 .

Note that the first entry of D(1 + αi) is always 0. By rearranging the columns

and rows of H̃2, we turn H̃2 into a block diagonal matrix ˜̃H2 of the same for-

mat as ˜̃H1 with Rank(C0) = 0. Hence, Rank(H2) = Rank(H1) − 1. Further-

more, we know that the row rank of a matrix equals to its column rank. We

also know that there exists a sub-matrix Hsub with non-zero determinant of size

Rank(H1)×Rank(H1). Therefore, the rank of the parity-check matrix H is given

by Rank(H) = max {Rank(H1), Rank(H2)} = Rank(H1). We have now com-

pleted the proof.
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