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Abstract

The main purpose of resource allocation of distributed antenna multi-point coordination

SWIPT system is to reduce the system power consumption and to improve communication

security. Considering that there are two types of receivers, malicious eavesdroppers (Eve), and

energy harvesting users (EH) are potential eavesdroppers, the distributed radio head adopts a

cooperative approach to achieve the goal through artificial noise and beamforming technology.

The problem is formulated as a non-convex problem of positive semi-definite programming,

that facilities the development of a computationally efficient suboptimal algorithm based on

successive convex approximation of SCA with polynomial complexity.

Keywords—- Non-convex algorithm, beamforming, multi-point coordination network, SWIPT,

optimization.
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Abbreviations

SWIPT Simultaneous Wireless Information and Power Transfer

WPT Wireless Power Transfer

CoMP Multi-point coordinated

RRH Remote radio head

SDP Semidefinite programming

SDR Semidefinite relaxation

MIMO Multiple-Input Multiple- Output

TS Time splitting

IR Information receiver

ER Energy receiver

EH Energy harvesting

Eve Eavesdropper

CP Central processor

QCQPs Quadratically constrained quadratic programming
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Chapter 1

Introduction

The worldwide telecommunications industry consumed 354 TWh of electricity annually in

2012 compared to 219 TWh in 2007, according to a study by Aris and Shabani [1]. From 2013

through 2018, the consumption rate is anticipated to increase by an additional 10% annually.

As a result, the operating expenses (OPEX) have climbed dramatically because electricity costs

account for a sizable amount of OPEX. The huge rise in energy consumption in the commu-

nications industry is primarily due to cellular networks [2, 3]. To satisfy the expectations of

mobile customers, network operators have been prompted to construct more base stations due

to the rapidly growing in mobile subscribers and data traffic [4]. Cellular networks have devel-

oped remarkably and are now capable of meeting user needs. Researchers have concentrated on

Green Networking and Communications to provide energy-saving options for next-generation

wireless communication standards to address the problem of increasing power usage [5]. As a

result, current research in both business and academia has focused heavily on energy-efficient

system designs [6, 7].

Future automobiles will come with a variety of sensors, which makes it complicated to

repeatedly replace the battery or replenish energy to address this critical issue, WPT technology

has been proposed [8]. In practice, this technology provides energy to equipment through radio

frequency signals, which can achieve the purpose of a controllable wireless energy supply

[9]. According to [10], a system that uses wireless power to provide energy for information

transmission and reception is defined.

In addition, massive devices will be widely used in future IoT networks to accomplish con-

nectivity. By 2020, it’s anticipated that more than 20.4 billion wirelessly linked gadgets to the

Internet [11]. Green IoT has encountered challenges due to the device’s short battery capacity,
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high power costs, and limited spectrum resources [12]. SWIPT allows customers’ connectivity

to continue operating even in the event of a device battery shortage, allowing for the flow of in-

formation [12]. On the one hand, SWIPT allows the device’s life to be successfully prolonged

while maintaining quality service (QoS) by adopting radio frequency energy. Combining the

above two points, because of constantly rising energy consumption and the continuing rise in

carbon dioxide emissions, green energy saving has inevitably become a problem that should

be considered. Indeed, the problem is more pronounced in SWIPT systems as it requires high-

power radiation for effective WPT [13].

As wireless technology rapidly expands, information security has become important. Al-

though the traditional application layer encryption method can solve the information leakage

problem, the shortcomings of this method are obvious, for instance, the requirement to share

secret keys and the difficulty of the calculation. Instead, physical layer security becomes a prac-

tical solution that takes advantage of physical channel fading and interference to accomplish

safe communication [14, 15, 16].To achieve physical layer security, beamforming techniques

can be adopted [17], or artificial noise can be introduced into the null space spent by the receiver

channels through additional spatial degrees of freedom of the antenna This can significantly re-

duce the QoS for eavesdroppers[18]. However, to ensure safe communication, a substantial

percentage of transmit power is dedicated to emitting artificial noise [19, 20].

On the other hand, for directional signal transmission or reception in sensor arrays, beam-

forming or spatial filtering is a signal processing method. This is accomplished by strategically

placing components in an antenna array so that some signals interfere constructively while oth-

ers interfere destructively. Beamforming enables spatial selectivity. The directivity of the array

refers to the enhancement over omnidirectional reception and transmission [21]. This approach

can improve service quality, reduce interference, and increase security.

Furthermore, in [22], for the purpose of lowering the system’s transmit power, the authors

considered the coordinated multipoint (CoMP) SWIPT system, which is a crucial technology

for enhancing spectral efficiency, increasing system coverage, and reducing interference. In ad-

dition, they designed a structure that exploits the central processing unit to control the remote

radio head (RRH). They assign computationally intensive and energy-intensive tasks to CPU

processing, while the RRH performs RF-related functions, such as amplification and filtering.

The backhaul link is adopted by the RRH to connect to the CP, which might be a local high-

performance processor or a cloud computing network. This effectively combats path loss and

6



shadow attenuation. The comprehensive cooperation of CoMP can reduce energy costs effec-

tively. The CoMP system’s backhaul capacity is, however, often constrained. Consideration

must be given to resource allocation in the event that backhaul capacity is constrained.

To sum up, the next-generation communication system and IoT system urgently need a

means that can reduce energy consumption and ensure communication security. The system

combining CoMP distributed antenna with beamforming and artificial noise technology will

achieve this goal.

We design a challenge to reduce the power usage of distributed antenna multipoint coor-

dination SWIPT systems while taking into account physical layer security. The system im-

plements beamforming techniques as well as artificial noise to reduce the SINR of a potential

eavesdropper such that it is unable to decode the desired information. This problem is defined

as a non-convex problem. In contrast to convex optimization, we lack a useful set of tools for

tackling non-convex problems, which makes them challenging. It is known that many noncon-

vex optimization problems are NP-hard. A number of non-convex issues that are challenging

to both estimate and solve optimally make the situation even more hopeless [23]. Fortunately,

we rephrase the problem by substituting convex deterministic requirements for the non-convex

probability constraints. A semidefinite programming (SDP) relaxation approach is then ex-

ploited to get the optimal solution [24]. Furthermore, we provide a polynomial complexity

iterative technique based on repeated convex approximations to overcome the issue and pro-

duce a suboptimal resource allocation strategy.
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Chapter 2

Literature Review

2.1 Background

Various studies in recent years have shown that the SWIPT systems can support the explosive

growth of wireless communication devices [25, 26, 27], as well as the emerging low-power

IoT systems, sensor networks, and backscatter tags. In the past decades, energy prices are in-

creasing rapidly, such that green energy saving in communication systems has become more

important. Hence SWIPT’s optimal beamforming to achieve the lowest power consumption

design has become very valuable. On the other hand, distributed antennas have huge advan-

tages over single-antenna base stations. Indeed distributed antenna offers special diversity that

shortens the path loss, and the transmit power. Furthermore, with the growth of wireless de-

vices, information security is threatened, because the probability of users being eavesdropped

on increases, and methods to achieve physical layer security through artificial noise are pro-

posed [15, 18]. Therefore, designing communication systems that reduce energy consumption

and improve communication security becomes a time crunch.

2.2 Wireless Communication Systems

The future of mobile communications is anticipated to be considerably different from what it is

right now. In order to power the future generation of wireless communication systems, energy

harvesting (EH) from external power sources is a necessity due to the high-quality video and

greater widescreen resolutions in mobile devices. The next telecom standard after the 4G/IMT

advanced standard is the 5G [25]. By the time the first 5G standard is predicted to be ready for
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exploitation, there will likely be hundreds of billions or maybe trillions of linked devices due

to the numerous new applications for personal communications [25, 28]. The first generation

of analog communication technology was proposed in 1982. This is a summary of the journey

of several generations of cellular networks. Digital communication is the cornerstone of the

second generation (2G), which was first presented in 1991. Furthermore, 2G introduced cellular

data via the GPRS. Third-generation (3G) networks, which offer greater data rates than 2G,

were introduced over ten years later. The fourth generation of communications (4G), with

higher data rates and more sophisticated technology, was released about ten years later. In

particular, 5G wireless communications are anticipated to significantly decrease latency and

energy usage while increasing data speeds, capacity, coverage, and connection dependability

[29].

2.3 Wireless technologies for the Internet of Things

In the next generation of wireless communication networks, a large number of low-power IoT

devices or sensors are deployed. So I conducted research on the current wireless communica-

tion technology of the Internet of Things and sorted out [30]:

WiFI Zigbee Bluetooth Cellular(4G, 5G) LORA

High speed support / / / YES /

High Density support / / / YES /

Throughput LOW LOW LOW HIGH LOW

Low Latency YES YES YES YES YES

Range MEDIUM LOW LOW HIGH HIGH

Reliability LOW LOW LOW HIGH LOW

2.4 WPT System

The WPT system can absorb and utilize energy in the environment, such as heat energy, wind

energy, sound energy, and radio frequency energy. Compared to currently existing batteries and

charged supercapacitors, the environment provides high-quality energy. The utilization of natu-

ral energy sources in energy harvesting procedures inside communication networks has recently

been the subject of various research [31, 32]. Energy harvesting from natural sources is not as
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efficient as anticipated since environmental sources are erratic and unpredictable. The primary

energy harvesting approaches also only work in certain situations and are scenario-specific

[33]. One EH technology, known as WPT, circumvents the aforementioned drawbacks [34] by

allowing communication network nodes to recharge their internal batteries using electromag-

netic radiation. In WPT, there are two methods for collecting green energy: one option exploits

a base station or another specialized, completely regulated power source. Recent WPT-based

contributions have emphasized near-field (short-range) energy transmission rather than far-field

(long-range) energy transfer. The application situation affects the distances at the near-field and

far-field ends. For instance, the near-field distance of wireless electromagnetic power exchange

in both indoor and outdoor situations can only be a few meters, but the far-field distance may be

a few kilometers [35]. There are a number of drawbacks to near-field WPT, including distance

restrictions, the inability to keep the field strength at safe levels, high initial costs, the adoption

of high frequencies for the power supply, and impractical air ionization methods [35]. Another

drawback is the difficulty of tuning resonant induction. As a result, more advancements in

far-field WPT technology are required. A requirement for technologies that can concurrently

send information and power to endpoint devices has arisen from the possibility of combining

WPT with communications networks. The concept of SWIPT was initially presented for this

need from a theoretical standpoint[34]. Wireless communication networks have recently given

SWIPT a lot of attention [36, 37]. SWIPT technology is crucial for the transfer of energy and

information in a range of contemporary communication networks in the age of 5G communi-

cations.

2.5 SWIPT Systems

SWIPT was initially introduced as a theoretical idea in 8. Actually, a lot of task-processing

systems combine the processing of energy and information. Energy, matter, or anything similar

must be modulated in order to represent a signal. It’s not always necessary to keep communica-

tions and media separate. Early examples of such systems include telegraphs, telephones, and

crystal radios [38], none of which required an external power source. Harvesting the incoming

energy may also be advantageous for contemporary communication systems that must operate

within severe energy limits [39]. Mobile device charging may be done efficiently using strong

base stations or other specialized nodes [40, 41]. In the backscatter link, the energy of the
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Figure 2.1: SWIPT System.

downlink is exploited to drive the scatter tag to transmit the uplink information [34].

Enable SWIPT is expected to information exchange between wireless devices and wire-

less energy transfer to communication devices. Harvesting energy from the environment is

an efficient approach for wireless communication networks where all devices are powered by

batteries, and the radio signal in the environment is an ideal energy harvesting source. In fact,

passive gadgets driven by radio signal energy have become widely adopted, such as RFID,

backscattering tags, and sensor networks that are intended to be implanted in human bodies

[10]. Since the resources of the SWIPT system are limited, the resource allocation algorithm

becomes significantly important. [42, 43] mainly focuses on the application of resource allo-

cation algorithms and obtaining the optimal resource allocation strategy. Most passive devices

and low-power devices do not have encryption capability, which leads to information security

issues in the SWIPT network [44].
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2.6 Physical Layer Security

Wireless networks are widely employed in both the military and the civilian worlds and have

ingrained themselves into our daily lives. When individuals heavily rely on wireless networks

to send sensitive data like credit card transactions or bank-related data transfers, security be-

comes a crucial concern in wireless applications. Therefore, it is crucial to be able to reliably

communicate sensitive information in the presence of enemies. Attackers may try to carry

out a number of assaults to obtain unauthorized access to, modify, or even stop the flow of

information [45]. The majority of security measures rely on encryption technologies adopted

on the wireless network’s higher tiers. The public-private key is often shared by two users

for symmetric encryption methods like the Data Encryption Standard. For key exchange, if

none of the two users has this private key, a secure channel is needed. Here, physical layer

techniques may be utilized to distribute keys, offer location privacy, and support upper-layer

security algorithms instead of extra channels. Physical layer security techniques make it more

challenging for attackers to decode the delivered data. The five kinds of physical layer security

approach now in the application include theoretical security capacity, power, coding, channel,

and signal-detecting techniques.

Physical layer security is an alternative to cryptographic encryption at the application layer,

in fact, exploiting the characteristics of wireless channel fading to achieve completely secure

communication is called physical layer security. Completely confidential communication is

possible when the eavesdropper’s channel is a downgrade version of the target user, according

to Wyner’s pioneering work [46]. The capacity difference between the target user and the

eavesdropper is generally referred to as the secrecy rate [47, 48] :

R =
[
log2 (1+SINRusers)− log2

(
1+SINReavesdropper

)]† (2.1)

When R = 0, it means that the eavesdropper can fully decode the desired information.

2.7 Distributed Antenna CoMP Systems

A Distributed Antenna System is a network that geographically disperses various transmitting

and receiving stations and connects each base station to the same central processing unit. In a

cellular network, the antennas are usually scattered around the cell. This is sensible because the

average distance between the antennas is shorter, which reduces the transmit power required to
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Figure 2.2: Secure SWIPT System by adopting Artificial Noise and Beamforming.

maintain fixed channel quality and improves coverage. [49].

The distributed antenna multi-point coordinated (CoMP) transmission system can expand

the service range and improve spectral efficiency to reduce interference. The CoMP network

adopts a cloud computing architecture, which separates the communication and information

processing functions of traditional base stations, centralizes all the gathered information in the

central processor for processing, and the physics distributed remote radio frequency heads so

that RRH only undertakes all radio frequencies. operations, such as power amplification and

analog filtering, in addition, all RRHs are connected by backhaul links to the central process-

ing unit. The inherent architecture of CoMP systems enables them to provide spatial diversity

against path loss and shadow fading[22]. Studies have shown that CoMP systems can provide

significant system performance gains when fully cooperative is enabled [50]. However, due

to various physical constraints, the backhaul capacity is limited, so CoMP systems with lim-

ited backhaul capacity constraints received widespread attention. The backhaul capacity is the

maximum information capacity in the backhaul link, and in distributed antenna systems it is

the sum of the information capacity of each RRH [22, 19].
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Figure 2.3: Distributed Antenna CoMP System.

2.8 Convex and Non-Convex optimization

Signal processing and wireless communications both benefit greatly from the exploitation of

quadratically constrained quadratic programming (QCQPs). In particular, QCQPs are not con-

vex are often NP-hard. Existing techniques, such as employing consecutive convex approxi-

mations together with computer iteration provide close to optimum suboptimal solutions. Posi-

tive semi-definite relaxations and linear approximations have also been adopted to addressnon-

convex problems [51]. There is also some research showing that machine learning can solve

some non-convex problems [52]–[59].

We occasionally have to deal with a non-convex situation that has xHCx > 0 or xHCx = 0.

Hence, we employ the operators Tr(xHCx) = xHCx and Tr(xHCx) = Tr(xxHC) = Tr(XC) to

address this problem. We can see that the rank(X) for this approach is 1. After transformation,

we discover that the sole non-convex constraint for the issue is rank(X) = 1. If we ignore this

circumstance, the whole problem has been reduced to a convex problem that can be resolved by

CVX methods, this is why the method is called SDR. Engineering allows us to either disregard
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this requirement or demonstrate that the question of whether such a condition exists or not is

equivalent [60].

The successive convex approximation is a method of linearizing the function by using the

Taylor first-order expansion of the function, which can convert some non-convex functions

into approximate linear convex functions. This method adopts a linear function that is closer

to the original function to approximate through continuous iteration. The iterative process is

convergent and monotonic, and from the algorithm point of view, the method has polynomial

complexity [61, 62].
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Chapter 3

System Description and Problem

Formulation

3.1 Network Topology

The CoMP system in this thesis regulates L RRHs to accommodate various sorts of users. The

CoMP system employs artificial noise beams to aid energy-harvesting receivers and informa-

tion beams to assist information consumers. The central processor’s aim is to employ artificial

noise beam and information beamforming technologies to safeguard information consumers

with SINRs greater than the SINR decoding threshold. Furthermore, we use these technologies

to establish physical layer security by lowering the SINR of eavesdroppers and energy harvest-

ing receivers, preventing them from decoding the incoming message. At the same time, we

observe that this system’s backhaul capacity is constrained, it ought to be less than the proces-

sor’s maximum processing capability. In order to reduce this wireless coordinated multipoint

network’s power consumption, we imposed four limits.

Constraints:

1. Energy harvesters’ SINR has to be less than the decoding threshold.

2. Eavesdroppers’ SINR has to be lower than the SNIR of the decoding threshold.

3. Information users’ SINR has to be higher than the SNIR of the decoding threshold.

4. The backhaul capacity needs to be less than the threshold for maximum backhaul capac-

ity.
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Figure 3.1: System model with L=3 RRHs for illustration.

While the RRH solely handles RF and information transmission tasks, such as signal am-

plification and transmission, the multi-point coordination network employs the central process-

ing unit to perform base station and signal processing portion operations. To meet the goals

of expanding coverage, enhancing anti-interference capability, and minimizing resource con-

sumption, we can pick the resource allocation technique to determine the operating mode of

the RRH.

The network in Figure 3.1 has three RRHs that can work together, and there are k infor-

mation users, m energy users, and n eavesdroppers, each RRH can transmit information beams

and artificial noise to achieve the above goals.
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3.1.1 Notation:

We use bold capital and lowercase characters to denote matrices and vectors, respectively.

Rank(A), Tr(A), AH has been exploited to represent the trace and Hermitian transpose of the

matrix A. Positive-definite and a positive semidefinite matrix is defined as A ≻ 0 and A ⪰ 0,

respectively. IN is set as the N × N identity matrix. NN×M represents all N × M matrices

with complex entries.Adopt N × N to express the collection of all Hermitian matrices, .∥ A

represents a vector’s norm.

3.2 Wireless Channel Model

We establish the channel to be a frequency flat fading channel and concentrate on a time-

division duplexing scheme. By employing handshaking and channel reciprocity, the RRH may

gather channel status data for every receiver. Then, they send the CSI to the Central processor

for computation to determine the resource allocation method.

The received signals at IR k ∈ {1, ...,K}, ER m ∈ {1, ...,M} and eav n ∈ {1, ...,N} (This

means we have K information users, M energy harvesters and N eavesdroppers)are given by:

Received signal at IR : yk =
L

∑
l=1

hH
k
(
al,kwl,ksl,k +v

)
+

L

∑
l=1

K

∑
j ̸=k

hH
k
(
al, jwl, jsl, j +v

)
+σ

2
s .

(3.1)

Received signal at ER : ym =
L

∑
l=1

gH
m
(
al,mwl,msl,m +v

)
+

L

∑
l=1

M

∑
j ̸=m

gH
m
(
al, jwl, jsl, j +v

)
+σ

2
s .

(3.2)

Received signal at Eve : yn =
L

∑
l=1

qH
n
(
al,nwl,nsl,n +v

)
+

L

∑
l=1

N

∑
j ̸=n

qH
n
(
al, jwl, jsl, j +v

)
+σ

2
s .

(3.3)

The h, g, and qin the period are all fading rician channels which are defined as:

hk =

√
K

K +1
hd +

√
1

K +1
hs, (3.4)

gm =

√
K

K +1
gd +

√
1

K +1
gs, (3.5)

qn =

√
K

K +1
qd +

√
1

K +1
qs, (3.6)

where hd , gd , qd represents a unit-amplitude deterministic complex scalar that contains

the LoS and specular components of the channel, and hs, gs, qs represents that the scattering
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component of the channel is a zero-mean-unit-variance circular symmetric complex Gaussian

random.

al,k is the RRH scheduling indicator, which is a binary variable and can only be 0 or 1.

1 means that the RRH serves the user normally, and 0 means that the RRH does not provide

services. wk ∈ CNt×1 is the beamforming vector for the low k users’ beamforming vector. v is

the beamforming vector for the artificial noise beamforming vector. Al,k = diag
(
al,k, ...,al,k

)
∈

BNt×Nt . Ak = diag
(
A1,k, ...,AL,k

)
In the distributed antenna system, the SNIR of IF, ER, eva is defined as:

SINR of IR: Γk =

∣∣hH
k Akwk

∣∣2
∑

K
j ̸=k

∣∣hH
k A jw j

∣∣2 +Tr
(
hkhH

k V
)
+σ2

s

(3.7)

SINR of ER: Γm =
η
∣∣gH

mAkwk
∣∣2

∑
K
j ̸=k

∣∣gH
mA jw j

∣∣2 +Tr (gmgH
mV)+σ2

s

(3.8)

SINR of Eve: Γn =

∣∣qH
n Akwk

∣∣2
∑

K
j ̸=k

∣∣qH
n A jw j

∣∣2 +Tr (qnqH
n V)+σ2

s

(3.9)

where Γ is the received signal-to-interference-plus-noise ratio at the desired receiver.

3.3 Problem Formulation

To obtain the optimal solution that minimizes the transmit power, the answer can be obtained

by solving problem (P1), where wk,wl,k,al,k,V are the variables.

(P1) : minimize
{Ak,wk,wl,k,al,k,V}

∥Akwk∥2 +Tr(V) , (3.10)

s.t. C1 : al,k[n] ∈ {0,1} ,∀n,k, (3.11)

C2 : Γk ≥ γk ∀k, (3.12)

C3 :
K

∑
k=1

al,k log2 (1+Γk)≤Cl, ∀l, (3.13)

C4 : Γm < Γth, ∀m (3.14)

C5 : Γn < Γth, ∀n (3.15)

C6 :
K

∑
k=1

al,k
∥∥wl,k

∥∥2 ≤ Pmax, ∀l. (3.16)
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C1 is a binary constraint on the RRH scheduling indicator. The variable γk in C2 specifies

the minimum required SINR of the receiver required to decode the information. C3 is the

constraint on the backhaul capacity per RRH, where Cl is the maximum backhaul capacity per

base station. C4 and C5 represent the SNIR of the ER and the SNIR of the eavesdropper,

respectively, which are both less than the decoding threshold. The maximum transmission

power limit for each RRH is defined as C6.
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Chapter 4

Design solution to Distributed Antenna

Systems

4.1 Problem Analysis and Summary

It is possible to categorize the optimization problem in (3.10) as a non-convex quadratic re-

stricted quadratic programming problem (QCQP) [51]. The non-convexity is due to the quadratic

coupling to the information-carrying beamforming vector wk, and the RRH scheduling indica-

tor al,k is a discrete binary integer. The coupling of al,k and the function with respect to wk also

leads to some conditions being nonconvex.C1, C2, C3, C6 are all non-convex conditions. Non-

convex optimisation problems are typically difficult to solve and have no set solution method.

As a result, we reformat the problem as a convex optimization problem using the positive semi-

definite relaxation of semi-definite programming [60].

4.2 Semidefinite Programming Relaxation

For facilitating the SDP relaxation, In order to facilitate the formulation of the formula, we

introduce Hk = hkhH
k , Gm = gmgH

m , Qn = qnqH
n , we define Wk = wkwH

k ,Wl,k = wl,kwH
l,k and

rewrite problem (3.10) in terms of W as:
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(P2) : minimize
{Ak,wk,wl,k,al,k,V}

Tr
(
AkAH

k Wk
)
+Tr(V) , (4.1)

s.t. C1 : al,k[n] ∈ {0,1} ,∀n,k, (4.2)

C2 :
Tr
(
AkAH

k HkWk
)

γk
≥ ∑

k
j ̸=k Tr

(
A jAH

j HkW j

)
+Tr(HkV)+σ

2
s , ∀k, (4.3)

C3 :
K

∑
k=1

al,k log2 (1+Γk)≤Cl, ∀l, (4.4)

C4 :
ηTr

(
AkAH

k GmWk
)

Γth
< ∑

k
j ̸=k Tr

(
A jAH

j GmW j

)
+Tr(GmV)+σ

2
s , ∀m, (4.5)

C5 :
Tr
(
AkAH

k QnWk
)

Γth
< ∑

k
j ̸=k Tr

(
A jAH

j QnW j

)
+Tr(QnV)+σ

2
s , ∀n, (4.6)

C6 :
K

∑
k=1

al,kTr
(
Wl,k

)
≤ Pmax, ∀l. (4.7)

The main challenge of this problem is the non-convexity introduced by the coupling of the

AkAH
k and Wk. In order to solve the coupling problem of various Ak, wk, wl,k Wk matrices, we

regard Akwk as a whole. we set W̄l,k = al,kWl,k and Wl,k = wl,kwH
l,k. To solve the non-convex

problem of C6, the Big m method is adopted [63].
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(P3) : minimize
{Ak,wk,wl,k,al,k,V}

Tr
(
W̄k
)
+Tr(V) , (4.8)

s.t. C1 : al,k ∈ {0,1} ,∀n,k, (4.9)

C2 :
Tr
(
HkW̄k

)
γk

≥ ∑
k
j ̸=k Tr

(
HkW̄ j

)
+Tr(HkV)+σ

2
s , ∀k, (4.10)

C3 :
K

∑
k=1

al,k log2 (1+Γk)≤Cl, ∀l, (4.11)

C4 :
ηTr

(
GmW̄k

)
Γth

< ∑
k
j ̸=k Tr

(
GmW̄ j

)
+Tr(GmV)+σ

2
s , ∀m, (4.12)

C5 :
Tr
(
QnW̄k

)
Γth

< ∑
k
j ̸=k Tr

(
QnW̄k

)
+Tr(QnV)+σ

2
s , ∀n, (4.13)

C6 :
K

∑
k=1

Tr
(
W̄l,k

)
≤ Pmax, ∀l, (4.14)

C7 : W̄l,k ⪯ PmaxINt al,k, ∀l,k, (4.15)

C8 : W̄l,k ⪯Wl,k, ∀l,k, (4.16)

C9 : W̄l,k ⪰Wl,k−
(
1−al,k

)
PmaxINt , ∀l,k, (4.17)

C10 : Rank
(
W̄l,k

)
= 1, ∀l,k, (4.18)

C11 : W̄l,k ⪰ 0, ∀l,k. (4.19)

(4.20)

It can be noticed that the matrix coupling of C2, C3, C4, C5, and C6 has been resolved.

C10, C11 are adopted to guarantee W̄l,k = al,kWl,k and Wl,k = wl,kwH
l,k. In this way, Ak and wk

can be decoupled, where W̄k = w̄kw̄H
k and w̄k = Akwk. And the signal-to-noise ratio of IF can

be re-expressed as:

SINR of IR: Γ̄k =
Tr
(
HkW̄k

)
∑

K
j ̸=k Tr

(
HkW̄ j

)
+Tr

(
hkhH

k V
)
+σ2

s
. (4.21)

C1 is obviously a non-convex constraint, because this is a binary discrete integer value, we

can relax this constraint and rewrite it as:

C1a :
N

∑
n=1

K

∑
k=1

al,k−a2
l,k ≤ 0,∀n,k, (4.22)

C1b : 0≤ al,k ≤ 1, ∀n,k, (4.23)
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Unfortunately, C1a is still a non-convex condition, so the first-order Taylor expansion of

this condition is adopted to rewrite the condition as:

C1a
′
:

N

∑
n=1

K

∑
k=1

al,k−
N

∑
n=1

K

∑
k=1

a(t)l,kal,k−
(

a(t)l,k

)2
≤ 0,∀n,k, (4.24)

(4.25)

Since we decouple the matrix, C3 can be rewritten as:

C3
′
:

K

∑
k=1

log2(ϕk)−
K

∑
k=1

log2(δk)≤Cl, ∀k, (4.26)

C12 : ϕk ≥
K

∑
k=1

Tr
(
HkW̄k

)
+Tr(HkV)+σ

2
s ∀k, (4.27)

C13 : δk ≤
K

∑
j ̸=k

Tr
(
HkW̄ j

)
+Tr(HkV)+σ

2
s ∀k, (4.28)

Since the log function in C3’ is a concave function, the entire C3 is a non-convex limit, so

we perform Taylor first-order expansion on it:

C3
′′

:
K

∑
k=1

(
log2(ϕ

(t)
k )+

ϕk−ϕ
(t)
k

ϕ
(t)
k ln2

)
−

K

∑
k=1

log2(δk)≤Cl, ∀k, (4.29)

In order to circumvent the non-convexity brought by C10, this constraint will be relaxed

using SDR. The following theorem proves the tightness of SDR.

T heorem1. For Pmax > 0, an optimal beamforming rank-one matrix W̄⋆
l,k can always be

obtained.

Proo f : Please refer to Appendix 1.
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The whole optimization problem can be written as :

(P4) : minimize
{Ak,wk,wl,k,al,k,V}

Tr
(
W̄k
)
+Tr(V) , (4.30)

s.t. C1a
′
:

N

∑
n=1

K

∑
k=1

al,k−
N

∑
n=1

K

∑
k=1

a(t)l,kal,k−
(

a(t)l,k

)2
≤ 0,∀n,k, (4.31)

C1b : 0≤ al,k ≤ 1, ∀n,k, (4.32)

C2 :
Tr
(
HkW̄k

)
γk

≥
k

∑
j ̸=k

Tr
(
HkW̄ j

)
+Tr(HkV)+σ

2
s , ∀k, (4.33)

C3
′′

:
K

∑
k=1

(
log2(ϕ

(t)
k )+

ϕk−ϕ
(t)
k

ϕ
(t)
k ln2

)
−

K

∑
k=1

log2(δk)≤Cl, ∀k, (4.34)

C4 :
ηTr

(
GmW̄k

)
Γth

<
k

∑
j ̸=k

Tr
(
GmW̄ j

)
+Tr(GmV)+σ

2
s , ∀m, (4.35)

C5 :
Tr
(
QnW̄k

)
Γth

<
k

∑
j ̸=k

Tr
(
QnW̄k

)
+Tr(QnV)+σ

2
s , ∀n, (4.36)

C6 :
K

∑
k=1

Tr
(
W̄l,k

)
≤ Pmax, ∀l, (4.37)

C7 : W̄l,k ⪯ PmaxINt al,k, ∀l,k, (4.38)

C8 : W̄l,k ⪯Wl,k, ∀l,k, (4.39)

C9 : W̄l,k ⪰Wl,k−
(
1−al,k

)
PmaxINt , ∀l,k, (4.40)

C10 :
((((((((((((
Rank

(
W̄l,k

)
= 1, ∀l,k (4.41)

C11 : W̄l,k ⪰ 0, ∀l,k, (4.42)

C12 : ϕk ≥
K

∑
k=1

Tr
(
HkW̄k

)
+Tr(HkV)+σ

2
s ∀k, (4.43)

C13 : δk ≤
K

∑
j ̸=k

Tr
(
HkW̄ j

)
+Tr(HkV)+σ

2
s ∀k. (4.44)

(4.45)

We can notice that the expression after Taylor expansion will be smaller than the origi-

nal expression, which makes the solution of P4 must be the solution of P3. P4 is a convex

optimization problem that can be solved using the SCA iterative algorithm with polynomial

complexity.
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Algorithm 1 Successive Convex Approximation Algorithm

1: Initialize parameters W(0)
k , V(0), a(0)l,k , ϕ

(0)
k ,δ(0)k set the iteration index t = 0, and set the

threshold for algorithm latitude 0 < ε≪ 1.

2: while Tr
(

W̄(t)
k

)
+Tr

(
V(t)

)
−Tr

(
W̄(t−1)

k

)
−Tr

(
V(t−1)

)
≥ ε do

3: Obtain W(t)
k , V(t), a(t)l,k , ϕ

(t)
k ,δ(t)k by using known W(t−1)

k , V(t−1), a(t−1)
l,k , ϕ

(t−1)
k ,δ(t−1)

k to

solving problem P4;

4: Update t← t +1;

5: end while

6: return W(∗)
k ←W(t)

k , V(∗)← V(t), a(∗)l,k ← a(t)l,k , ϕ
(∗)
k ← ϕ

(t)
k and δ

(∗)
k ← δ

(t)
k .

Note that the rank-one constraint C11 is the source of the remaining nonconvexity in P4. By

omitting constraint C11, we employ semidefinite relaxation (SDR) to get around this problem.

In general, convex optimization solvers like CVX can effectively address rank constraint relax-

ation problems. It is understood, nonetheless, that adopting SDR on P4 might not provide a

rank-one matrix. We demonstrate the tightness of the adopted SDR in the subsequent theorem.

Problem P4 is solved by the SCA iterative algorithm with polynomial complexity proposed

by us, and the local optimal solution of the problem can be obtained. After our simulation, the

algorithm has excellent convergence, and it will converge after about 6 or 7 iterations.
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Chapter 5

Simulation

This chapter adopts MatLab simulation and illustrates the advantages of the purposed dis-

tributed antenna cooperation systems in reducing power consumption.

The following are the parameters used for the simulation:

Parameter Physical meaning Value

K The number of IF users 2

M The number of EH users 2

N The number of Eavesdroppers 3

dr Reference distance 10m

NT The number of antennas 6,9,12

γk Target SNIR desired user 3,6,9,12,15,18,21 dB

B Bandwidth 200 kHz

PIloss The path loss coefficient of IR 3.6

PEloss The path loss coefficient of EH 2

Peavloss The path loss coefficient of Eavesdroppers 3.6

R f Rician factor 6 dB

Fc Carrier frequency 1.9 GHz

Gt TX antenna gain 10

Gr RX antenna gain 3
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Figure 5.1: Users distribution.

5.1 Results

Figure 5.1 shows the relative positions of RRH, IF users, ER users, and eavesdroppers, and

presents them in coordinates. The coordinates of the three RRHs are
{(
−50
√

3,0
)
,
(
50
√

3,0
)
,(0,150)

}
.

The coordinates of IF users and EH users are {(−200,50) ,(100,−200)} and {(0,200) ,(−50,50)}

respectively. The coordinates of the eavesdropper are denoted as {(10,150) ,(−100,170) ,(100,−100)}.

Figure 5.2 represents the comparison of energy consumption between multi-point coordi-

nated communication and traditional single-base station communication with different numbers

of antennas. In this case, we do not consider the limitation of backhaul capacity and the lim-

itation of power consumption of a single RRH. The abscissa x represents the SINR and the

ordinate y represents the total energy consumption. The energy cost of the CoMP system is

always lower than that of the traditional single base station antenna with the same antenna.

This illustrates that CoMP is more energy efficient than a single base station service when also

considering beamforming, eavesdroppers. In the same system, more antennas can significantly
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Figure 5.2: The performance of CoMP system compared with single base station.

reduce power consumption due to higher spatial degrees of freedom. In addition, the image’s

general trajectory is upward as the minimum necessary SINR rises. However, this trend will

gradually decrease as the power consumption limit is relaxed and finally equals no power con-

sumption limit.

Figure 5.3 shows that in the case of different antennas if the power of a single RRH of

the CoMP system is limited, the total power consumption will increase. The abscissa in the

figure represents the power consumption limit of a single RRH, and the ordinate represents the

system’s total energy consumption. Note that although the energy costs of the system is greater

than the optimal value when a single RRH is limited, it is still smaller than the energy costs of

a single base station. When the transmit power of a single RRH is limited. The transmit power

of a certain RRH is already the highest, hence this is the primary cause of the rise in power, but

it cannot fully support its users, and other RRHs need to be compensated, thus increasing the

power consumption of the entire system.

Figure 5.4 shows that the limited backhaul capacity will prevent the CoMP system from

fully cooperating, resulting in higher power consumption than the fully cooperating state, but

still lower than that of a single base station. The abscissa x of the figure represents the back-

haul capacity, and the ordinate y represents the total energy cost. The general trend is that as

the backhaul capacity increases, the system changes from a partially cooperative to a fully co-

operative state. Power consumption converges to the lower bound which means no backhaul
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capacity limitation. Compared with complete cooperation, incomplete cooperation essentially

reduces the degree of spatial freedom, and the anti-fading ability of the system is weakened,

causing system power consumption to increase.

5.2 Discussion

The simulation results fully demonstrate the advantages of the distributed antenna multi-point

coordination system in terms of energy saving, and the backhaul capacity and the maximum

power limit of a single RRH will become the limitations of the system. Even with these limita-

tions, its performance is overall better than a single base station system. However, the adoption

of the distributed antenna CoMP system increases the complexity, operation cost, and main-

tenance cost of the system. Therefore, a trade-off between system complexity and system

performance needs to be considered.
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Chapter 6

Conclusion

In this thesis, an SCA algorithm with polynomial complexity is proposed to solve the problem

iteratively. In addition, we also verified that this algorithm has fast convergence characteris-

tics. Our work verifies the advantages of distributed antenna multi-point coordination systems

in terms of energy saving and information security, its essence is to exploit spatial freedom to

combat fading and shadows. In addition, the case of limited backhaul capacity and single RRH

transmit power is also considered. Artificial noise reduces decoding capabilities for potential

eavesdroppers and beamforming improves system energy efficiency. When adopting artificial

noise, it needs to trade off the power consumption and the improvement of the security rate,

while the distributed antenna CoMP system needs to trade off the system complexity and sys-

tem performance.

6.1 Future Work

Although our proposed distributed antenna CoMP system has excellent performance, it can

be expanded in the future. For example, the RRH is mounted on the UAV, and the dynamic

distributed antenna CoMP system can be realized according to the specific terrain and user dis-

tribution. Unmanned aerial vehicles (UAVs) are widely used to assist wireless communications

because of their flexibility [64, 65, 66, 67, 68]. Hybrid combined CoMP systems of UAVs and

fixed base stations will also be considered. There are various studies showing the advantages

and prospects of intelligent reflecting surfaces [69, 70, 71, 57], its robust, passive, green, and

energy-saving features make it will be widely adopted in the future [72, 73]. The combination

of distributed antenna CoMP system and intelligent reflecting surfaces (IRS) is also valuable.
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In addition, the complexity of the system, energy efficiency, confidentiality rate, and maximum

throughput can also become the direction of future optimization.
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Appendix 1

Proof of Theorem 1 :

We can notice that P4 is jointly convex after using rank relaxation and satisfies the Slaters

condition so that the strong duality holds. As a result, the dual problem’s solution will be the

same as the relaxation problem’s solution, or the gap between the two solutions will be zero.

To solve the duality problem, the Lagrangian function is written as :

L =
K
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In order to simplify this function, the items that do not contain W̄l,k are uniformly replaced

by Λ, and the original formula is rewritten as :
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Next we reveal the structure of the optimal solution of W̄⋆
l,kby examining the KKT condi-

tions, given by :
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k ,and Y⋆

l,k are the optimal Lagrange multipliers of the dual problem.

▽W̄l,k
L
(
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)
represents the gradient of the Lagrangian function, and then K3 can be rewrit-

ten as the following form.

Y⋆
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Ξ⋆
l,k is an expression for W̄⋆

l,k, which is written as :
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The optimal solution W̄⋆
l,k always satisfies Rank

(
W̄⋆

l,k

)
= 1 will be proved by analyzing the

structure of Y⋆
l,k. The first step is to prove by contradiction that Ξ⋆

l,k is a positive semi-definite

matrix. Defined the maximum eigenvalue of Ξ⋆
l,k as λmax
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)
. Assuming λmax
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< 0,

Y⋆
l,k will be a full rank matrix, which leads to W̄⋆

l,k = 0, this would contradict with ω⋆
l > 0 in

KKT condition K1 and Pmax > 0. Hence, we discuss the case when Ξ⋆
l,k is a positive semi-

definite matrix. Secondly, if ω⋆
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, the condition that Y⋆
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matrix, which also contradict with ω⋆
l > 0 in KKT condition K1 and Pmax > 0. According to the

above proof, there is only one possibility, that is ω⋆
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, such that Y⋆
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0. Therefore, the optimal solution W̄⋆
l,k always satisfies the Rank
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= 1.
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