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1.1 INTRODUCTION

The successful development of wireless communication networks and technologies has trig-
gered an exponential growth in the number of wireless communication devices worldwide. In
the near future, devices embedded with multifunctional sensors and communication chip sets
will be able to collect and exchange information via the Internet. Specifically, these smart
devices will be connected to computationally powerful central computing systems to provide
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intelligent services for the daily life such as environmental monitoring, e-health, automated
control, energy management, logistic, and safety management. This new concept of intercon-
necting a massive number of communication and sensing devices is known as the Internet of
Things (IoT) [1].

It is predicted that in 2020, the number of devices interconnected via the Internet on the
planet may reach up to 50 billion. Besides, the density of such networks will be around 1 mil-
lion devices per km2. Therefore, the wireless communication infrastructure is a key enabler
of IoT. In fact, IoT requires energy-efficient and cost effective wireless communications. Sim-
ilar to conventional communication networks, the lifetime of IoT networks depends on the
available energy at the transceivers. However, smart devices in IoT networks are ubiquitous
with various levels of mobility. In other words, connecting these devices to fixed power grids
to replenish their energy may not be a viable option. Therefore, most of the transceivers
in IoT networks will be powered by batteries with limited energy storage which will reduce
the lifetime of the networks significantly. Although the energy shortage can be alleviated
by temporary battery replacements, such an intermediate solution may require frequent re-
placement of batteries which can be costly, time consuming, and cause interruption of service.
This creates a serious performance bottleneck for providing stable communication, especially
for delay sensitive services. On the other hand, a viable solution to extend the lifetime of
wireless communication networks is to integrate wireless communication devices with energy
harvesting (EH) technology to scavenge energy from the environment. In practice, wind, so-
lar, and geothermal are the major renewable energy sources for generating electricity [2, 3, 4],
thereby reducing substantially the reliance on the energy supply from the power grid. Yet,
these conventional natural energy sources are usually climate and location dependent which
restricts the mobility of smart devices. Besides, most of these energy sources are not avail-
able in indoor environments. More importantly, the uncontrollable and intermittent nature
of these natural energy sources makes their use in IoT communication networks challenging.

Recently, wireless energy transfer (WET) has emerged as one of the technologies driving
IoT networks and has attracted much attention from both academia and industry [5]–[27].
The existing WET technologies can be categorized into three classes: inductive coupling,
magnetic resonant coupling, and radio frequency (RF)-based WET. The first two technolo-
gies rely on near-field electromagnetic (EM) waves. In particular, these two technologies can
provide wireless charging over short distances only due to the required alignment of the mag-
netic field with the EH circuit. Therefore, in general, near-field techniques do not support the
mobility of EH devices. In contrast, RF-based WET [5]–[24] exploits the far-field properties
of EM waves facilitating long distance wireless charging. More importantly, EM waves not
only serve as a vehicle for carrying energy, but also for carrying information which enables
the possibility of simultaneous wireless information and power transfer (SWIPT) and wireless
powered communication (WPC). Specifically, in SWIPT networks, a transmitter broadcasts
both information and energy signals to provide information and energy delivery service simul-
taneously. In wireless powered communication networks (WPCNs), wireless communication
devices first harvest energy, either from a dedicated power station or from ambient RF signals,
and then use the harvested energy to transmit information signals. Compared to conventional
EH, RF-based EH technology provides an on-demand energy replenishment which is suitable
for smart wireless communication devices having strict quality of service (QoS) and energy
requirements. On the other hand, various “last meter” wireless communication systems, such
as Wi-Fi and small cell systems, can be potentially exploited for energy replenishment of
battery constrained wireless devices. Nowadays, simple EH circuits are able to harvest mi-
crowatts to milliwatts of power over the range of several meters for a transmit power of 1
Watt and a carrier frequency of less than 1 GHz [28]. Although the development of WET
technology is still in its infancy, there are already some preliminary practical applications of
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WET such as passive radio-frequency identification (RFID) systems. It is expected that the
introduction of RF-based EH to smart communication devices will revolutionize the system
architecture and resource allocation algorithm design.

Conventional wireless communication systems are required to provide different types of
QoS requirements such as throughput, reliability, energy efficiency, fairness, and timeliness
[29]–[32]. On top of this, efficient WET is expected to play an important role as an emerg-
ing QoS requirement for RF-based wireless EH communication networks. In practice, for
a carrier frequency of 915 MHz, the signal attenuation is 50 dB for every 10-meter of free
space propagation. Hence, the efficiency of WET will be unsatisfactory for long distance
transmission unless advanced resource allocation and antenna technology are combined. As
a result, various resource allocation algorithms exploiting multiple-antenna technology have
been proposed [17]–[24]. Specifically, by utilizing the extra degrees of freedom offered by mul-
tiple transmit antennas, a narrow signal beam can be created and can be more accurately
steered towards the desired receivers to improve the efficiency of WET. In this chapter, we
study the resource allocation algorithm design for two specific RF-based multiple antenna
EH communication networks.

The remainder of this chapter is organized as follows. In Section 1.2, we introduce various
types of receiver structures for RF-based EH wireless communications. Sections 1.3 and 1.4
study the resource allocation algorithm design for SWIPT systems and WPCNs , respectively.
In Section 1.5, we conclude with a brief summary of this chapter.

Notation

In this chapter, we adopt the following notations. AH , Tr(A), and Rank(A) represent the
Hermitian transpose, trace, and rank of matrix A; A � 0 indicates that A is a positive
semidefinite matrix; matrix IN denotes an N × N identity matrix. vec(A) denotes the vec-
torization of matrix A. A⊗B denotes the Kronecker product of matrices A and B. [B]a:b,c:d
returns a submatrix of B including the a-th to the b-th rows and the c-th to the d-th columns
of B. [q]m:n returns a vector with the m-th to the n-th elements of vector q. A complex Gaus-
sian random vector with mean vector μ and covariance matrix Σ is denoted by CN (μ,Σ),
and ∼ means “distributed as”. CN×M denotes the space of all N ×M matrices with com-
plex entries. HN represents the set of all N -by-N complex Hermitian matrices. E{·} denotes
statistical expectation. |·|, ‖·‖, and ‖·‖F denote the absolute value of a complex scalar, the
Euclidean norm, and the Frobenius norm of a vector/matrix, respectively; Re{·} denotes the
real part of an input complex number.

1.2 RECEIVER STRUCTURE

Wireless communications via propagating EM waves in RF enables the possibility of SWIPT
and WPC which is foreseen to be a key technology for facilitating the development of IoT
communication networks with energy-limited wireless transceivers. Yet, the utilization of
EM waves as a carrier for SWIPT and WPC poses many new research challenges for receiver
design. Early studies on SWIPT and WPCNs were based on a pure information theoretical
approach [5, 33]. In particular, it was assumed in these works that information decoding and
EH can be performed based on the same received signal and an ideal receiver. However, this
is not possible in practice, yet. Specifically, existing EH circuits extract the energy of the
received signal in the RF domain. The EH process destroys the information content embedded
in the signal. Besides, conventional information decoding is performed in the digital baseband
and frequency down converted signals cannot be used for EH. As a result, various types of
practical EH receivers have been proposed to enable SWIPT. In particular, for SWIPT, the



6 � From Internet of Things to Smart Cities: Enabling Technologies

��������	�
��
����������

�������
��
�������

�
��������������

�
�������
���������

�������

�������������
���
��

����

�
�������


�
����

��������	�
��
����������

�������
��
�������

�
��������������

�
�������
���������

�������

�
����
��������

����

�
�������
 �
���� �
�������


�
����
�������

������������
���������� �������������
����������

��� �	�

Figure 1.1 Simple receiver structures for wireless information and power transfer; (a) Time
switching receiver; (b) Power splitting receiver.

information decoding process and EH process have to be separated. A viable solution is to
split the received RF power into two distinct parts, one for EH and one for information
decoding. In the following, we discuss two commonly adopted techniques to achieve this
signal splitting.

Time Switching (TS) Receiver:
With TS receivers, each transmission block is divided into two orthogonal time slots, one

for transferring wireless power and the other one for transmitting information, cf. Figure
1.1a. The co-located energy harvester and information receiver switch between harvesting
energy and decoding in two time slots [17]. In practice, by taking into account the channel
statistics and QoSs for power transfer, the time durations for wireless information transfer
and energy transfer can be optimized to achieve different system design objectives. Although
the TS receiver structure allows for a simple hardware implementation, it requires accurate
time synchronization and information/energy scheduling, especially in multi-user systems.

Power Splitting (PS) Receiver:
A power splitting (PS) receiver splits the signal received at the antenna into two streams

at different power levels using a PS unit, cf. Figure 1.1b. In particular, one stream is sent to
the RF energy harvester for EH, and the other one is converted to baseband for information
decoding [17, 19]. The PS process incurs a higher receiver complexity compared to the TS
process. Besides, optimization of the ratio of the two power streams is needed in order to
achieve a balance between the performances of information decoding and EH. Furthermore,
additional noise may be introduced due to the adopted PS process [14]. Nevertheless, this
receiver structure achieves SWIPT, as the signal received in one time slot is exploited for
both information decoding and power transfer. Therefore, it is more suitable than the TS
receiver for applications with critical information/energy or delay constraints [6].

In the sequel, we study the resource allocation algorithm design for two practical wireless
information and power transfer networks based on the TS receiver structure, due to its
simpler hardware implementation. Since the unit of “Joule-per-second” is used for energy
consumption in this chapter, the terms “power” and “energy” are interchangeable.

1.3 SWIPT COMMUNICATION NETWORKS

In this section, we outline the adopted system model for the considered SWIPT systems.
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Figure 1.2 A simple SWIPT system model with one information receiver and J = 2 EH
receivers (ERs), e.g. wireless sensors. The ERs harvest energy from the received RF signals
to extend their lifetimes.

1.3.1 Channel Model

A frequency flat fading communication channel is considered. The SWIPT system comprises
a transmitter, an information receiver (IR), and J EH receivers (ER)1, cf. Figure 1.2. The
transmitter is equipped with NT ≥ 1 antennas and serves both the IR and the ERs simul-
taneously in the same frequency band. We assume that the IR is a single-antenna device for
assuring low hardware complexity. Each ER is equipped with NR ≥ 1 receive antennas to
facilitate wireless EH. The received signals at the IR and ER j ∈ {1, . . . , J} are given by

y = hHws + wE + n, and (1.1)
yERj = GH

j ws + wE + nERj , ∀j ∈ {1, . . . , J}, (1.2)

respectively, where s ∈ C and w ∈ C
NT×1 are the data symbol and the information beam-

forming vector, respectively. Without loss of generality, we assume that E{|s|2} = 1. The
channel vector between the transmitter and the IR is denoted by h ∈ C

NT×1 and the channel
matrix between the transmitter and ER j is denoted by Gj ∈ C

NT×NR . n ∼ CN (0, σ2
s ) and

nERj ∼ CN (0, σ2
s INR) are the additive white Gaussian noises (AWGN) at the IR and ER j,

respectively, where σ2
s denotes the noise power at the receiver. wE ∈ C

NT×1 is a Gaussian
pseudo-random sequence generated by the transmitter to facilitate efficient wireless power
transfer. In particular, wE is modelled as a complex Gaussian random vector with

wE ∼ CN (0, WE), (1.3)

where WE ∈ H
NT , WE � 0, denotes the covariance matrix of the pseudo-random energy

signal.

1.3.2 Non-linear Energy Harvesting Model

In this section, we discuss two mathematical models used in the literature to capture the
characteristic of practical RF EH circuits. To this end, we first study a basic approach for
extracting electrical energy from the received RF signals. In practice, after the transmitted
RF signal is received at the antenna(s) of an ER, a passive bandpass filter is employed before
the received RF signal is passed on to a rectifying circuit, cf. Figure 1.1. In fact, the rectifying
circuit is the core element of RF EH circuits. In particular, it is a passive electronic circuit

1The considered system can be treated as having J + 1 TS receivers where one of the receivers is in the
IR mode and the remaining J receivers are in the ER mode.
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comprising diodes, resistors, and capacitors that converts the incoming RF power to direct
current (DC) power. Then, the converted power can be stored in the energy storage unit of
the receiver.

The RF-to-DC energy conversion efficiency depends greatly on the characteristics of the
rectifying circuit. In general, rectifiers can be implemented using different non-linear circuits,
starting from the simplest half-wave rectifiers, cf. Figure 1.3, to complicated circuits that
offer N -fold increase of the circuit output power so as to improve the efficiency of the circuit,
cf. Figure 1.4. A half-wave rectifier, as depicted in Figure 1.3, passes either the positive
or negative half of the alternating current (AC) wave, while the other half is blocked [34].
Although half-wave rectifiers result in a lower output voltage compared to other types of
rectifiers, a half-wave rectifier requires only a single diode and is a very simple design. Thus,
half-wave rectifiers are suitable for cheap and small mobile devices such as wireless sensors for
IoT applications. On the other hand, Figure 1.4 depicts an array of voltage doubler circuits,
where each part of the circuit consists of two diodes and other corresponding elements.
Depending on the number of stages required for a particular rectifier, the circuit parts can
be repeated until the N -th element is reached. This configuration offers an increase of the
conversion efficiency of the circuit.

In general, one can derive mathematical equations to describe the input-output char-
acteristic of an EH circuit based on its schematic, e.g. Figures 1.3 and 1.4. However, they
usually lead to complicated expressions which are intractable for resource allocation algo-
rithm design. More importantly, such an approach relies on specific implementation details of
EH circuits and the corresponding mathematical expressions may differ significantly across
different types of EH circuits. In the following, we discuss two general tractable models pro-
posed in the literature for characterizing the aforementioned RF EH process. Mathematically,
the total received RF power at ER j is given by

PERj = Tr
(
(wwH + WE)GjGH

j

)
. (1.4)

In the SWIPT literature [36]–[44], the total harvested power at ER j, ΦLinear
ERj

, is typically
modelled by the following linear equation:

ΦLinear
ERj

= ηjPERj , (1.5)

where 0 ≤ ηj ≤ 1 is the constant power conversion efficiency of ER j. In other words,
the total harvested power at the ER is linearly and directly proportional to the received
RF power. Besides, the total harvested power increases with the amount of received power
without bound.

Yet, practical RF-based EH circuits introduce non-linearities into the end-to-end WET
and the conventional linear model fails to capture this important characteristic, as shown by
experimental results [35, 45, 46]. Recently, a parametric non-linear EH model was proposed
in [24, 47] to facilitate the design of resource allocation algorithms for practical SWIPT
systems. Here, the total harvested power at ER j, ΦERj , is modelled as:

ΦERj =
[ΨERj −MjΩj ]

1− Ωj
, Ωj = 1

1 + exp(ajbj)
, (1.6)

where ΨERj = Mj

1 + exp
(
− aj(PERj − bj)

) (1.7)

is a logistic function which has the received RF power, PERj , as the input. In particular,
three parameters, i.e., Mj , aj , and bj , are introduced to describe the shape of the logistic
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Figure 1.3 A schematic of a half-wave rectifier [35] where Cload, Rload, D1, and Vout denote a
load capacitance, load resistance, diode, and the output voltage, respectively.
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Figure 1.4 A schematic of a Dickson charge pump [35] with N stages, where Di, and Ci, i ∈
{1, . . . , N}, denote the diode and the capacitor in the i-th stage.

function which depends on various physical properties of the RF EH circuit. Specifically, Mj

is a positive constant denoting the maximum harvestable power at ER j, when the EH circuit
is saturated due to an exceedingly large input power. Parameters aj and bj are constants
which capture the joint effects of resistance, capacitance, and circuit sensitivity. Specifically,
aj denotes the non-linear charging rate with respect to the input power and bj is related to
the minimum turn-on voltage of the EH circuit.

In practice, for a given EH hardware circuit, the values of parameters aj , bj , and Mj of
the proposed model in (1.6) can be estimated by using a standard curve fitting algorithm.
In Figure 1.5, we show an example for the curve fitting for the non-linear EH model in (1.6)
with parameters M = 0.024, b = 0.014, and a = 150. As can be observed, the parametric
non-linear model matches the experimental result provided in [45] closely for the RF power
harvested by a practical EH circuit. For comparison, Figure 1.5 also illustrates the total
harvested power predicted by the linear model in (1.5). It can be seen that the conventional
linear RF energy harvesting model fails to capture the non-linear characteristics of practical
EH circuits, especially in high and low received RF power regimes.
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Figure 1.5 A comparison between experimental data from [45], the harvested power for the
non-linear model in (1.6), and the linear EH model with ηj = 0.8 in (1.5).

1.3.3 Channel State Information

We assume that only imperfect channel state information (CSI) is available at the transmitter
for resource allocation due to the slow time varying nature of the communication channels.
To capture the impact of the CSI imperfection on resource allocation design, we adopt a
commonly used deterministic model [19, 20]. In particular, the CSI of the links between the
transmitter and the information receiver as well as EH receiver j can be modelled as:

h = ĥ + Δh, (1.8)

Υ �
{

Δh ∈ C
NT×1 : ‖Δh‖2

2 ≤ ρ2
}

, (1.9)

Gj = Ĝj + ΔGj , ∀j ∈ {1, . . . , J}, and (1.10)

Ξj �
{

ΔGj ∈ C
NT×NR : ‖ΔGj‖2

F ≤ υ2
j

}
, ∀j, (1.11)

respectively, where ĥ and Ĝj are the estimates of channel vector h and channel matrix Gj ,
respectively. Δh and ΔGj represent the channel uncertainty due to channel estimation errors.
In (1.9) and (1.11), sets Υ and Ξj define the continuous spaces spanned by all possible channel
uncertainties, respectively. Constants ρ and υj denote the maximum value of the norm of the
CSI estimation error vector Δh and the CSI estimation error matrix ΔGj , respectively.

Remark 1 In practical systems, the values of ρ2 and υ2
j depend not only on the adopted

channel estimation method, but also on the packet duration and the coherence time of the
associated communication channel.
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1.3.4 Achievable System Data Rate

The energy signal wE is a Gaussian pseudo-random sequence which is known to all the
transceivers. Hence, interference cancellation can be performed at the IR to facilitate in-
formation decoding. As a result, given perfect CSI at the receiver for coherent information
decoding, the achievable rate (bit/s/Hz) between the transmitter and the IR is given by

R = log2

(
1 + |hHw|2

σ2
s

)
, (1.12)

where the interference caused by the energy signal, i.e., Tr(hHWEh), has been removed.

1.3.5 Problem Formulation and Solution

In the considered SWIPT system, we aim to maximize the total achievable data rate of the
system while guaranteeing a minimum total harvested power at multiple ERs. The resource
allocation algorithm design is formulated as the following optimization problem:

Problem 1 Robust Resource Allocation for SWIPT:

maximize
w,WE∈H

NT
min

Δh∈Υ
log2

(
1 + |hHw|2

σ2
s

)
(1.13)

subject to C1 : ‖w‖2
2 + Tr(WE) ≤ Pmax,

C2 : min
ΔGj∈Ξj

ΦERj ≥ Preqj
,∀j ∈ {1, . . . , J}.

The objective function in (1.13) takes into account the CSI uncertainty set Υ to provide
robustness against CSI imperfection. Constants Pmax and Preqj

in constraints C1 and C2 are
the maximum transmit power from the power station and the required minimum harvested
power at ER j, respectively. It can be observed that there are infinitely many possibilities
in both the objective function and constraint C2, due to the CSI uncertainties. In order to
design a computationally efficient resource allocation algorithm, we first define W = wwH

and transform the considered problem into the following equivalent rank-constrained semi-
definite program (SDP):

Problem 2 Rank-constrained Robust Resource Allocation for SWIPT:

maximize
W,WE∈H

NT , τ,β
τ (1.14)

subject to C1 : Tr(W + WE) ≤ Pmax,

C2 : Mj ≥ Θj

(
1 + exp

(
− aj(βj − bj)

))
, ∀j ∈ {1, . . . , J},

C3 : min
Δh∈Υ

Tr(WH) ≥ τ,

C4 : min
ΔGj∈Ξj

Tr((W + WE)GjGH
j ) ≥ βj , ∀j ∈ {1, . . . , J},

C5 : Rank(W) ≤ 1,

C6 : W � 0,

C7 : WE � 0,
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where

Θj = Preqj
(1− Ωj) + MjΩj and (1.15)

H = hhH . (1.16)

β = {β1, . . . , βj , . . . , βJ} and τ are auxiliary optimization variables. We note that W � 0,
W ∈ H

NT , and Rank(W) = 1 in (1.14) are imposed to guarantee that W = wwH after
optimization. Now, the transformed problem in (1.14) involves infinitely many constraints
only in C3 and C4. Besides, the rank constraint in C5 is non-convex. To further facilitate
the solution, we first transform constraints C3 and C4 into linear matrix inequalities (LMIs)
using the following lemma:

Lemma 1 (S-Procedure [48]) Let a function fm(x), m ∈ {1, 2}, x ∈ C
N×1, be defined as

fm(x) = xHAmx + 2Re{bH
mx}+ cm, (1.17)

where Am ∈ H
N , bm ∈ C

N×1, and cm ∈ R. Then, the implication f1(x) ≤ 0 ⇒ f2(x) ≤ 0
holds if and only if there exists a δ ≥ 0 such that

δ

[
A1 b1
bH

1 c1

]
−

[
A2 b2
bH

2 c2

]
� 0, (1.18)

provided that there exists a point x̂ such that fm(x̂) < 0.

Exploiting Lemma 1, the original constraint C3 holds if and only if there exists a δ ≥ 0,
such that the following LMI constraint holds:

C3: SC3

(
W, δ, τ

)
=

[
δINT 0

0 −δρ2 − τ

]
+UH

ĥ WUĥ � 0, (1.19)

where Uĥ =
[
INT ĥ

]
. Similarly, constraint C4 can be equivalently written as

C4: SC4j

(
W, WE,ν,β

)
(1.20)

=
[
νjINTNR 0

0 −βj − νjυ
2
j

]
+ UH

g̃j
(W + WE)Ug̃j

� 0,∀j,

for ν = {ν1, . . . , νj , . . . , νJ}, νj ≥ 0, W = INR ⊗W, WE = INR ⊗WE, Ug̃j
= [INTNR g̃j ],

and g̃j = vec(Ĝj) . Then, the considered optimization problem can be rewritten as

Problem 3 Rank-constrained SDP for SWIPT:

maximize
W,WE∈H

NT , τ,ν, δ,β
τ (1.21)

subject to C1 : Tr(W + WE) ≤ Pmax,

C2 : Mj ≥ Θj

(
1 + exp

(
− aj(βj − bj)

))
, ∀j ∈ {1, . . . , J},

C3 : SC3

(
W, δ, τ

)
� 0,

C4 : SC4j

(
W, WE,ν,β

)
� 0, , ∀j ∈ {1, . . . , J},

C5 : Rank(W) ≤ 1,

C6 : W � 0,

C7 : WE � 0,
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where δ and ν are the non-negative auxiliary optimization variables introduced in Lemma 1
for handling constraints C3 and C4, respectively. We note that constraints C3 and C4 involve
only a finite number of LMI constraints which facilitates the resource allocation algorithm
design. However, the rank constraint in C5 is still an obstacle in solving the considered
optimization problem due to its combinatorial nature. As a result, we adopt SDP relaxation
by removing constraint C5 from the problem formulation which yields:

Problem 4 SDP relaxation of (1.21)

maximize
W,WE∈H

NT , τ,ν, δ,β
τ (1.22)

subject to C1 : Tr(W + WE) ≤ Pmax,

C2 : Mj ≥ Θj

(
1 + exp

(
− aj(βj − bj)

))
, ∀j ∈ {1, . . . , J},

C3 : SC3

(
W, δ, τ

)
� 0,

C4 : SC4j

(
W, WE,ν,β

)
� 0, , ∀j ∈ {1, . . . , J},

C5 : �������Rank(W) ≤ 1 .

C6 : W � 0,

C7 : WE � 0 .

The rank relaxed problem is a convex optimization problem and can be solved efficiently
by standard numerical solvers such as CVX [49]. Yet, the constraint relaxation may not be
tight when Rank(W) > 1 and in that case the result of the relaxed problem serves as a
performance upper bound for the original problem. Therefore, we study the tightness of the
adopted SDP relaxation in the following theorem.

Theorem 1 Assuming the considered problem is feasible for Pmax > 0, a rank-one solu-
tion of (1.22) can always be constructed.

Proof: Please refer to Appendix 1.6.1.
In other words, (1.21) can be solved optimally. In particular, information beamforming

is optimal for the maximization of achievable rate, despite the imperfection of the CSI and
non-linearity of the RF EH circuits.

1.3.6 Numerical Example

In this section, we evaluate the IoT system performance of the proposed optimal resource
allocation algorithm via simulations. We summarize the important simulation parameters in
Table 1.1. We assume that the IR and the J ERs are located at 100 meters and 5 meters
from the transmitter, respectively. In particular, the IR is an IoT device connecting to the
transmitter for information transfer while the J ERs are idle IoT receivers requesting wireless
energy to extend their lifetimes. Unless further specified, we adopt the normalized maximum
channel estimation errors of ER j and the IR as σ2

estG
= 1% ≥ υ2

j

‖Gj‖2
F

,∀j, and σ2
esth

= 1% ≥
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Table 1.1 Simulation Parameters.

Carrier center frequency 915 MHz
Bandwidth 200 kHz
Transceiver antenna gain 10 dBi
Number of receive antennas NR 2
Noise power σ2 −95 dBm
Maximum transmit power Pmax 36 dBm
Transmitter-to-ER fading distribution Rician with Rician factor 3 dB
Transmitter-to-IR fading distribution Rayleigh
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Figure 1.6 Average achievable data rate (bit/s/Hz) versus the average harvested power (dBm)
for different numbers of antennas.

ρ2

‖h‖2
2
. For the non-linear EH circuits, we set Mj = 24 mW which corresponds to the maximum

harvested power per wireless powered device. Besides, we adopt aj = 150 and bj = 0.014.
We solve the optimization problem in (1.22) and obtain the average system performance by
averaging over different channel realizations.

In Figure 1.6, we show the average achievable rate of the system versus the average total
harvested energy in a downlink system for the optimal beamforming scheme. In particular, a
transmitter equipped with NT antennas serves a single-antenna IR and J = 1 ER. As can be
observed, there is a non-trivial trade-off between the achievable system data rate and the total
harvested energy. In other words, system data rate maximization and total harvested energy
maximization are two conflicting system design objectives. Besides, for the optimal resource
allocation, the trade-off region of the system achievable rate and the harvested energy is
enlarged significantly with NT and NR. This is due to the fact that the extra degrees of
freedom offered by multiple transmit antennas help the transmitter to focus the energy of
the information signal and thus improve the beamforming efficiency. On the other hand,
increasing the number of receive antennas NR can significantly improve the total harvested
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Figure 1.7 Average achievable data rate (bit/s/Hz) versus the number of ERs for NT = 8.

energy at the ER. In fact, the extra receiver antennas act as additional energy collectors
which enables a more efficient energy transfer. Furthermore, it is verified by simulation that
Rank(W) = 1 can be obtained/construsted for all the considered channel realizations which
confirms the correctness of Theorem 1.

In Figure 1.7, we study the average achievable data rate versus the number of ERs for
different maximum normalized channel estimation error variances. The maximum transmit
power is Pmax = 36 dBm and NR = 2. Besides, the maximum normalized channel estimation
error variance of the transmitter-to-IR link and the transmitter-to-ERs links are set to be
identical, i.e., σ2

estG
= σ2

esth
= σ2

est. As can be observed, the average achievable data rate
decreases with an increasing number of ERs. In fact, constraints C4 become more stringent
when there are more ERs in the system which reduces the flexibility of the transmitter in
resource allocation. In particular, for a large number of ERs in the system, the transmitter
is forced to steer the transmit direction towards the ERs to improve the efficiency of wireless
power transfer which reduces the received signal strength at the IR. On the other hand,
the achievable data rate decreases with increasing σ2

est, since the CSI quality degrades with
increasing σ2

est. In particular, for a larger value of σ2
est, it becomes more difficult for the

transmitter to focus the transmitter energy for improving the efficiency of SWIPT.

1.4 WIRELESS POWERED COMMUNICATION NETWORKS

In the last section, we studied the robust resource allocation algorithm design for systems
where a transmitter provides information and wireless energy simultaneously to IR and ERs,
respectively. In this section, we focus on a second line of research in WET: WPCN, where the
wireless communication devices are first powered by WET and then use the harvested energy
to transmit data. For instance, dedicated power beacons or power stations can be deployed
in the system for WET. Compared to conventional base stations, power stations/beacons
do not require data backhaul connections and can be installed in an ad-hoc or on-demand
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manner. This kind of system setup has various IoT applications for energy-limited wireless
communication sensors which need to first harvest enough energy from the environment
before sending information to an information receiver. In the following, we discuss a resource
allocation design to improve the system performance of such a WPCN.

1.4.1 Channel Model

A simple WPCN is considered in this section. We assume that there is a power station
transferring wireless energy to J wireless powered mobile users in the downlink to facilitate
their information transfer in the uplink, cf. Figure 1.8. We assume that both the power station
and each of the wireless powered mobile user are equipped with NT > 1 and NR > 1 antennas,
respectively, to facilitate efficient energy and information transfer. On the other hand, there
is a single-antenna IR receiving the uplink information from the J wireless powered mobile
users. In the considered network, we adopt the “harvest-then-transmit” protocol [12, 50, 51]
for WET and information transmission. Specifically, the transmission is divided into two
orthogonal time periods, namely the WET period and wireless information transfer (WIT)
period, cf. Figure 1.9. In the WET period, the power station sends an energy signal to the J
wireless powered users for EH. The instantaneous received signal at mobile user j ∈ {1, . . . , J}
is given by

yEHj = GH
j v + nEHj , (1.23)

where v ∈ C
NT×1 is the beamforming vector in the downlink for WET. The channel ma-

trix between the power station and mobile user j is denoted by Gj ∈ C
NT×NR . Vector

nEHj ∼ CN (0, σ2
sj

INR) is the AWGN at mobile user j. Then, in the WIT period, the J
wireless powered mobile users exploit the energy harvested in the RF to transmit indepen-
dent information signals in the uplink to the information receiver in a time division manner.
In particular, mobile user J is allocated τj amount of time for uplink transmission. The
instantaneous received signal at the information receiver from mobile user j is given by

yIR
j = hH

j wjsj + n, ∀j ∈ {1, . . . , J}, (1.24)

where hj ∈ C
NR×1 is the channel vector between wireless powered user j and the information

receiver. Scalar sj ∈ C is the information signal of mobile user j, wj ∈ C
NR×1 is the precoding

vector adopted by user j intended for WIT, and n ∼ CN (0, σ2
n) is the AWGN at the infor-

mation receiver. Without loss of generality, we assume that E{|sj |2} = 1,∀j ∈ {1, . . . , J}.

Channel State Information

In practice, a power station is expected to be a simple device with limited signal processing
capability. As a result, the estimates of the CSI of the communication links between the
power station and the J wireless powered users may not be perfect. To capture the imper-
fectness of the CSI for resource allocation, we adopt equations (1.10) and (1.11). In contrast,
a sophisticated information receiver can be implemented in WPCNs for signal processing.
Therefore, we assume that the CSI of the communication links between the the J wireless
powered users and the information receiver is perfectly known for resource allocation design.

1.4.2 Problem Formulation and Solution

The resource allocation policy, {τ , V, wj}, for maximizing the total system throughput can
be obtained by solving the following problem:
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Figure 1.8 A WPCN with J = 2 multiple-antenna wireless powered users harvesting energy
from a dedicated power base station. The harvested energy will be exploited for future in-
formation transmission.
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Figure 1.9 Wireless energy and information transfer protocol.

Problem 5 Robust Resource Allocation for WPCN:

maximize
V∈H

NT ,wj ,τj

J∑
j=1

τj log2

(
1 +

|hH
j wj |2
σ2

s

)
(1.25)

subject to C1 : Tr(V) ≤ Pmax,

C2 : τ0 +
J∑

j=1
τj ≤ Tmax,

C3 : τj‖wj‖2 ≤ min
ΔGj∈Ξj

τ0

Mj

1+exp
(

−aj(Tr(VGjGH
j )−bj)

) −MjΩj

1− Ωj
, ∀j,

C4 : τr ≥ 0, ∀r ∈ {0, 1, . . . , J},
C5 : V � 0 .

Constants Pmax and Tmax in constraints C1 and C2 are the maximum transmit power for
the power station and the maximum duration of a time slot, respectively. Constraint C3 is
imposed such that for a given CSI uncertainty set Ξj , the maximum energy available for
information transmission at wireless powered user j is limited by the total harvested RF
energy during the wireless EH period τj . In particular, the right-hand side of constraint C3
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denotes the total harvested power at ER j if a practical non-linear RF EH circuit is assumed2.
C4 is the non-negativity constraint for information scheduling variable τj . Constraint C5 and
V ∈ H

NT constrain matrix V to be a positive semi-definite Hermitian matrix.
The optimization problem in (1.25) is a non-convex optimization problem which involves

infinitely many constraints in C3. Besides, inequality constraint C3 involves the coupling
of optimization variables τj and wj . Furthermore, the right-hand side of constraint C3 is a
quasi-concave function. In general, there is no systematic approach for solving non-convex
optimization problems. In order to obtain a computationally efficient resource allocation
algorithm design, we introduce several transformations of the optimization problem. First,
to handle the quasi-concavity of constraint C3, we solve the optimization problem for a fixed
constant τ0 and obtain an optimal solution for one instant of the optimization problem. Then,
we repeat the procedure for all possible values of τ0 and record the corresponding achieved
system objective values. At the end, we select that τ0 as the optimal time allocation for
WET from all the trials which provides the maximum system objective value. Therefore, in
the sequel, we assume that τ0 is given by its optimal value for the design of the resource
allocation algorithm.

Next, we introduce a change of variable to decouple the optimization variables in con-
straint C3. Specifically, we define a new optimization variable w̃j =

√
τ jwj and rewrite the

optimization problem as

Problem 6 Transformed Problem for WPCN:

maximize
V∈H

NT ,w̃j∈H
NU ,τj ,βj

J∑
j=1

τj log2

(
1 +

|hH
j w̃j |2
τjσ2

s

)
(1.26)

subject to C1 : Tr(V) ≤ Pmax,

C2 : τ0 +
J∑

j=1
τj ≤ Tmax,

C3 : ‖w̃j‖2 ≤ τ0

Mj

1+exp
(

−aj(βj−bj)
) −MjΩj

1− Ωj
, ∀j,

C4 : τr ≥ 0,∀r ∈ {0, 1, . . . , J},
C5 : V � 0,

C6 : min
ΔGj∈Ξj

Tr(VGjGH
j ) ≥ βj ,∀j ∈ {1, . . . , J}.

To handle the infinitely many constraints in C6, we can apply Lemma 1 for (1.26). In
particular, constraint C6 can be equivalently written as

C6: SC6j

(
V,μ,β

)
(1.27)

=
[
νjINTNR 0

0 −βj − νjυ
2
j

]
+ UH

g̃j
VUg̃j

� 0,∀j,

for ν = {ν1, . . . , νj , . . . , νJ}, νj ≥ 0, V = INR ⊗V, Ug̃j
= [INTNR g̃j ], and g̃j = vec(Ĝj).

2Here, we assume that the circuit power consumption of each wireless powered user is negligibly small
compared to the transmit power consumption and thus is not taken into account.
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Table 1.2 Simulation Parameters.

Carrier center frequency 915 MHz
Bandwidth 200 kHz
Transceiver antenna gain 10 dBi
Noise power (including quantization noise) σ2 −47 dBm
Power station-to-wireless powered user distance 5 meters
Power station-to-wireless powered user fading distribution Rician with Rician factor 3 dB
Wireless powered user-to-IR fading distribution Rayleigh
Maximum duration of a communication slot, Tmax 1 unit

Problem 7 Transformed Problem for WPCN:

maximize
V∈H

NT ,w̃j∈H
NU ,τj ,βj ,μj

J∑
j=1

τj log2

(
1 +

|hH
j w̃j |2
τjσ2

s

)
(1.28)

subject to C1− C5,

C6: SC6j

(
V,μ,β

)
� 0, ∀j ∈ {1, . . . , J}.

The above transformed problem is jointly concave with respect to the optimization vari-
ables and can be solved efficiently via standard numerical solvers for convex programs.

1.4.3 Numerical Example

In this section, we evaluate the IoT system performance of the proposed resource allocation
algorithm via simulations. We summarize the relevant simulation parameters in Table 1.2.
We assume that a dedicated power station is deployed for wireless charging of IoT devices.
There are J = 4 ERs in the IoT network requiring energy for WIT. For the non-linear EH
circuits, we set Mj = 24 mW which corresponds to the maximum harvested power per ER.
Besides, we adopt aj = 150 and bj = 0.014. To obtain the average system performance, we
solve the optimization problem in (1.28) for each channel realization and average the result
over different channel realizations.

In Figure 1.10, we study the average total system throughput versus the maximum trans-
mit power from the power station, Pmax, for different numbers of antennas equipped at the
power station, NT, and at the wireless powered users, NR. We set the normalized maximum
channel estimation errors of wireless powered user j as σ2

estG
= 1% ≥ υ2

j

‖Gj‖2
F

, ∀j. As can be
observed, the average total system throughput increases with increasing Pmax. Indeed, with a
higher value of Pmax, the wireless powered users are able to harvest more energy for informa-
tion transmission. However, there is a diminishing return in performance as Pmax increases in
the high transmit power regime. This is due to the fact that the high transmit power from the
power station causes saturation in practical non-linear EH circuits which limits the available
harvested power for WIT. On the other hand, when the number of antennas equipped at the
power base station increases, a higher system throughput can be achieved by the proposed
optimal scheme. In fact, the extra antennas provide extra spatial degrees of freedom which
facilitates a more flexible resource allocation, since the power station can steer the energy
signal towards the wireless powered users more accurately to improve the efficiency of WET.



20 � From Internet of Things to Smart Cities: Enabling Technologies

28 30 32 34 36 38 40 42
Pmax (dBm)

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

Av
er

ag
e 

sy
ts

em
 th

ro
ug

hp
ut

 (b
it/

s/
H

z)

NT = 6, NR = 5

NT = 5, NR = 6

NT = 8, NR = 5

NT = 5, NR = 8

Figure 1.10 Average system throughput (bit/s/Hz) versus the maximum transmit power at
the power base station (dBm).
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Figure 1.11 Time allocation ratio for WET and WIT versus the maximum transmit power at
the power base station (dBm).
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Besides, the system throughput increases rapidly with the number of antennas equipped at
the wireless powered users. In fact, the extra antennas equipped at the wireless powered users
act as additional wireless energy collectors which increase the amount of total harvested en-
ergy. Furthermore, the extra antennas at the wireless powered users would also provide extra
spatial degrees of freedom which improves the transmit beamforming gain in the WIT phase.

Figure 1.11 shows the time allocation ratio for the proposed algorithm with respect to
the WET and WIT periods for the case of NT = 6 and NR = 5 in Figure 1.10. As can
be observed, WET period for the proposed scheme becomes shorter as the value of Pmax
increases. In fact, for a higher maximum transmit power from the power station, the wireless
powered users can harvest the amount of energy required for information transmission in a
shorter period of time. In contrast, the WIT period becomes longer for an increasing value of
Pmax. This is due to the fact that the achievable throughput of each wireless powered user is
an increasing function with respect to the time allocation for information transmission, i.e.,
τj , for a fixed amount of total transmit energy. In the extreme case, for a sufficiently large
Pmax, one can expect that τ0 → 0 since an infinitesimal amount of time is enough to provide
sufficient energy to fully charge the wireless powered users.

1.5 CONCLUSION

In this chapter, we studied resource allocation algorithms for two RF-based EH wireless
communication network architectures, which are of interest for IoT applications. We first
discussed a parametric non-linear EH model which facilitates the resource allocation algo-
rithm design to enable efficient wireless powered IoT communication networks. The algorithm
designs were formulated as two non-convex optimization problems for maximizing the sum-
throughput in SWIPT and WPCN systems, respectively. The problem formulations took
into account the imperfectness of the CSI and the non-linearity of the EH circuits in order
to ensure robust resource allocation. The proposed resource allocation design optimization
problems were optimally solved by advanced signal processing techniques. Numerical results
showed the potential gains in harvested power enabled by the proposed optimization and the
benefits in adopting multiple-antenna technology for IoT communication networks.
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1.6 APPENDIX

1.6.1 Proof of Theorem 1

We provide a method for constructing an optimal rank-one solution for (1.22) when
Rank(W) > 1 is obtained from (1.22). For a given optimal τ ∗ from the solution of (1.22),
we solve the following auxiliary convex optimization problem [52, 53]:

Auxiliary Convex Optimization Problem

minimize
W,WE∈H

NT , ν, δ,β
Tr(W) (1.29)

subject to C1, C2, C4, C6, C7,

C3 : SC3

(
W, δ, τ ∗

)
� 0 .

We note that the optimal resource allocation policy obtained from the above auxiliary
convex optimization problem is also an optimal resource allocation policy for (1.22), since
both problems have the same feasible solution set and τ ∗ is fixed for (1.29).

Now, we aim to show that (1.29) admits a rank-one beamforming matrix. In this context,
we first need the Lagrangian of problem (1.29):

L = Tr(W) + λ(Tr(W + WE)− Pmax)− Tr(WY)

−
J∑

j=1
Tr(SC4j

(
W, WE,ν,β

)
DC4j

)

− Tr(SC3

(
W, δ, τ

)
DC3)− Tr(WEZ) + Δ, (1.30)

where λ ≥ 0, DC3 � 0, DC4j
� 0, ∀j ∈ {1, . . . , J}, Y � 0, and Z � 0 are the dual variables

for constraints C1, C3, C4, C6, and C7, respectively. Δ is a collection of primal and dual
variables and constants that are not relevant to the proof.

Now, we focus on those Karush-Kuhn-Tucker (KKT) conditions which are needed for the
proof.

KKT conditions:

Y∗, Z∗, D∗
C3 , D∗

C4j
� 0, λ∗ ≥ 0, (1.31a)

Y∗W∗ = 0, Q∗V∗ = 0, (1.31b)
Y∗ = (1 + λ∗)INT −UĥDC2UH

ĥ −Ξ, (1.31c)
Z∗ = λ∗INT −Ξ, (1.31d)

SC3

(
W, δ, τ

)
DC3 = 0, (1.31e)

where Ξ =
∑J

j=1
∑NR

l=1

[
Ug̃j

DC4j
UH

g̃j

]
a:b,c:d

, a = (l − 1)NT + 1, b = lNT, c = (l − 1)NT + 1,

and d = lNT. The optimal primal and dual variables of the SDP relaxed version are denoted
by the corresponding variables with an asterisk superscript.

Subtracting (1.31d) from (1.31c) yields:

Y∗ + UĥDC3UH
ĥ = Z∗ + INT . (1.32)
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Next, we multiply the both sides of (1.31c) by W∗ leading to

W∗UĥDC3UH
ĥ = W∗(Z∗ + INT). (1.33)

From (1.33), we can deduce that

Rank(W∗) = Rank(W∗UĥDC3UH
ĥ ) (1.34)

≤ min{Rank(W∗), Rank(UĥDC3UH
ĥ )}.

Therefore, if Rank(UĥDC3UH
ĥ ) ≤ 1, then Rank(W∗) ≤ 1. To show Rank(UĥDC3UH

ĥ ) ≤
1, we pre-multiply and post-multiply (1.31e) by [INT 0] and UH

ĥ , respectively. After some
mathematical manipulations, we have the following equality:

(δINT + W∗)UĥDC3UH
ĥ = δ[0 ĥ]DC3UH

ĥ . (1.35)

Besides, it can be shown that δINT + W∗  0 and δ > 0 hold for the optimal solution such
that the dual optimal solution is bounded from above. Therefore, we have

Rank(UĥDC3UH
ĥ ) = Rank(δ[0 ĥ]DC3UH

ĥ ) ≤ Rank([0 ĥ]) ≤ 1. (1.36)

By combining (1.34) and (1.36), we can conclude that Rank(W∗) ≤ 1. On the other hand,
W∗ �= 0 is not optimal for Pmax > 0 and thus Rank(W∗) = 1. �
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