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Abstract

Massive multiple-input multiple-output (M-MIMO), millimeter-wave (mmWave), and

ultra-densification are the core technologies used in the fifth-generation (5G) communi-

cation systems. Although their utilization remarkably enhances the system performance,

they also pose many challenges, including the huge energy consumption of M-MIMO,

the limited transmission coverage of mmWave, as well as both resource congestion and

charging problems associated with ultra-densification. As a result, it is imperative to

adopt novel technologies to mitigate these problems.

Accordingly, this dissertation develops resource allocation algorithms based on an

IRS-aided SWIPT sensor network, while guaranteeing the fairness of the individual data

rate. Since the proposed system employs a linear energy harvesting (EH) model, the

beamforming vectors at the base station (BS), the phase shifts at the IRS, as well as

power splitting (PS) are jointly optimized to maximize the minimum value of individual

achievable data rate.

The original problem formulation is non-convex due to the multiplication of optimiza-

tion variables. By using the alternating optimization (AO) algorithm, it can be decom-

posed into two subproblems. Accordingly, two algorithms, namely semidefinite program-

ming relaxation (SDR)-based successive convex approximation (SCA) and penalty-based

SCA, are used to handle these two subproblems with rank-one constraint, respectively.

In the simulation results, we confirm the effectiveness of IRS for SWIPT-MISO commu-

nication system.
Keywords— intelligent reflecting surface (IRS), simultaneous wireless information and

power transfer (SWIPT), max-min fairness, SCA.
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Chapter 1

Introduction

To target the updating communication standards, we has witnessed tremendous growth

in the wireless industry with mature protocols, wider-spectrum, and even reconfigurable

channel being designed [3]. Thereby, the last few decades have experienced a remarkable

evolution from the first generation (1G) to 5G.

The 1G cellular networks were first introduced in 1981, which only provided voice

service with 2 Kbps data rate by the cordless communication system [4]. To improve

the poor data service, the concept of the second generation (2G), e.g. Global System for

Mobile Communications (GSM), was proposed with objections in reduced communication

fees, higher data rate (up to 64 Kbps), and extra text messaging service [5]. With

the development of smartphone, the third generation (3G) networks gradually replaced

the 2G system, where 3G networks depend on more mature concepts, such as code-

division multiple access (CDMA), Universal Mobile Telecommunications Service (UMTS),

Enhanced Data rates for GSM Evolution (EDGE), and so on. The 3G networks are

able to support video conference, mobile TV, and even wireless mobile Internet with

high speed (approximate up to 2 Mbps) [6]. However, since 3G systems provide limited

bandwidth resources, then the need for spectrum improvement gave birth to the fourth

generation(4G). The 4G networks, e.g. Long Term Evolution (LTE) and Worldwide

Interoperability for Microwave Access (WiMax), are able to offer up to 1 Gbps data

speed which enables video communication and High Definition (HD) moving sharing [7]-

[10]. When the number of electric devices and mobile subscribers keeps a growing trend,

the intense demands for better services and additional spectrum push the 4G networks

to evolve into advanced fifth-generation (5G) systems with extremely high rates, e.g.
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at least 1 Gbps, low latency, e.g. as low as the order of 1-millisecond, and extended

capacity [11, 12]. Due to the outstanding transmission performance in 5G networks,

point-to-point communication in 1G to 4G would gradually move to network-to-network

communication, which enables self-driving car, remotes surgery in healthcare, and even

machine-to-machine communication in the near future [13, 14]. Indeed, a lots of advanced

techniques, such as ultra-densification, mmWave,small cells, and M-MIMO, contribute to

the implementation of 5G or even beyond 5G networks [15]. A simple comparison of

1G to 5G system are summarized in Table 1.1. Although those 5G-related techniques

Table 1.1: Comparison of 1G, 2G, 3G, 4G, 5G Cellular Systems

1G 2G 3G 4G 5G

Key Ref. [3],[4] [5],[6] [5],[6] [7],[9],[10] [11],[12],[14]

Capacity 2 Kbps 14.4-64 Kbps 144 Kbps-2 Mpbs 100 Mbps-1 Gbps 1 Gbps and higher

Bandwidth 150/900 MHz 900 MHz 100 MHz 100 MHz 1000xBW per unit area

Frequency 30 KHz 1.8 GHz 1.6-2.0 GHz 2.0-8.0 GHz 3-300 GHz

Main

Technologies
Analog Cellular Digital Cellular CDMA,UMTS,EDG Wide-area Network

Ultra-densification,

mmWave,

Massive MIMO

Main

Objections
Voice service Short messages

Video conferencing,

Mobile TV
Mobile Multimedia

Machine-to-machine

communication,

Remote control

of vehicles,

Medical procedures

provide considerable improvement in system performance, they lead to some side effects

in commercial deployment of 5G networks, for example, huge facilities cost, higher power

consumption, or fading. It is imperative to find some solutions to alleviate those issues

and construct sustainable future wireless networks with energy and spectral efficiency

[16].

In light of this, we first introduce the major challenges emerging in 5G systems in

Section 1.1. In Section 1.2, we briefly review the technology of IRS and the corresponding

model, respectively. In Section 1.3, we elaborate on two common fairness protocols, i.e.

proportional fairness and max-min fairness. In Section 1.4, we provide the basic concept

of power transfer. In Section 1.5, we elaborate some prior related works. The thesis

organization is provided in Section 1.6.
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1.1 Overview of 5G networks Challenges and Tech-

nologies

Although new technologies such as mmWave and mMIMO improve energy and spectrum

efficiency and throughput, they also introduce new unprecedented challenges which make

the blueprint of the commercializing 5G systems impossible in the future. Thereby,the

possible and promising solutions for those challenges are envisaged in Figure 1.1.

technology,challenge, solution.pdf

mmWave Ultra-densificationmMIMO

Limited Coverage
Resource 

Congestion

Power and Money 

Consumption

IRS Fairness Protocol

Charging Problem

SWIPT

Figure 1.1: Diagram for major techniques, challenges and related solutions in 5G net-

works.

1.2 IRS Technology

1.2.1 Massive MIMO-Related Challenges

To exploit potential multiplexing and diversity gain with enhanced spectral efficiency, 5G

communication deploy an unprecedented number of antennas in both transmitter side and
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receiver side. The massive MIMO technique, on the one hand, increases system through-

put, offers favorable propagation conditions by the orthogonal property and enhances the

capacity through mitigating the inter-user interference [11]. However, those performance

enhancements come at the expense of more expensive hardware, more energy use, and

more sophisticated signal processing. The cost-effective demand enables new materials

to replace some antennas in the massive MIMO systems. As such, IRS with passive

elements can be promising leveraged to reduce some parts of active antenna in massive

MIMO yielding into hybrid networks,as a result of cost reduction, flexible deployment,

and energy conservation [17].

1.2.2 mmWave-Related Challenges

In 5G networks, the mmWave technology has stood out as an enabler to satisfy the

explosive data rate requirements by exploiting unused and unlicensed spectrum to carry

information leading to data rates up to gigabits per second [11]. However, the extremely

high frequency of mmWave bands does not come for free which results in an intractable

coverage problem. For example, the frequency of mmWave can occupy in 1− 30 GHz

with the corresponding extremely short wavelength in the range of 1−10 mm [18]. The

shorter wavelength leads to poor ability in diffraction, scattering, and high atmospheric

attenuation loss caused by fog or rain. To ensure the quality of mmWave communication

where the signal power is strong enough to be detected at receiver, the required line-

of-sight (LOS) path or reducing the transmission range is essential in system design

[13]. Therefore, IRSs have received considerable attention in terms of their ability to

reconfigure the channel condition and provide a virtual LoS link to ultra-high-frequency

(UHF) signals.

1.2.3 Basic Concept of IRS

Accordingly, there are two remarkable bottlenecks in 5G system, including limited cover-

age problem due to penetration loss in mmWave frequencies and high hardware cost due

to increasing multiple antenna deployment in massive MIMO. Those challenges are ma-

jor force to promote the development of the IRS-empowered system, since IRS is capable

of providing many undeniable advantages, for example, extending the limited coverage,

nulling interference to zero, and low energy consumption.
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It is worth noting that IRS has a relatively simple manufacturing process whose

architecture looks like a two-dimensional sandwich [19]. Specifically, IRS is a piece of an

artificial thin surface with three layers that contain some reflecting meta-atom, copper

backplane, control circuit board, and a smart controller [20]. The smart controller can

operate each passive reflecting element to adjust the phase, amplitude, or polarization of

the incident signal. This is controlled to leverage the reflecting signal in a well-designed

direction. Thereby, an uncontrollable random radio environment becomes programmable

and deterministic [21]. In addition, IRS can also use the on-off states of reflecting elements

to transmit extra information, as studied in the [22] and [23].

Application1.pdf

Transmitter Mobile UserBlockage

IRS

Figure 1.2: The directed link was blocked by a tree and an IRS is deployed to establish

a new link for transmitter and mobile receiver.

Based on its special material and passive properties, IRSs can offer plenty of advan-

tages over traditional equipment such as relays or backscatters. Firstly, as a prominent

feature, IRS is envisioned to offer coverage extension for mmWave communication, where

IRS can help radio frequency (RF) signal bypass blockage via passive reflection. Based on

this property, engineers are capable to tailor the propagation path in the wireless network

[17]. Furthermore, IRS is a promising candidate for an economical and energy-efficient

wireless system. Because IRS can operate in the absence of RF chains, as such, its scatter

elements usually consume at most 1 mW [19]. The new hybrid wireless communication
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system comprising both active antennas and passive IRS leverages scalable consumption

and energy efficiency [24]. Thirdly, different from the unwieldy active nodes, IRS can

be flexibly deployed in practical implementation due to its lightweight and low profile

[25]. This feature is greatly useful enabling the future densely deployment of IRS seam-

less integration into windows, ceilings, or building facades. In light of many benefits of

Transmitter

Incident Signal

Reflected Signal

Transmitted Signal

Mobile User 2

Mobile User 1

Figure 1.3: With the help of STAR-RIS, the transmitter can simultaneously send signals

to individual mobile users, where these users are located in both sides of the STAR-RIS.

IRS, various promising IRS-aided network scenarios with different objections have been

studied. For example, a popular use case of IRS-aided system is related to the blockage

channel, cf. Figure 1.2, where IRS customizes a virtual line-of-sight (LoS) link to circum-

vent the obstacles existing in the propagation path [20]. This application is appealing

to overcome the challenge of coverage limitations in mmWave communications. In ad-

dition to achieving a virtual LoS path, some studies consider its application to achieve

full-dimensional coverage. The initial model is simultaneously transmitting and reflect-

ing reconfigurable intelligent surfaces (STAR-RISs) where it enables signal reflection and

transmission at the same time. In Figure 1.3, it demonstrates one example of STAR-RIS

aided communication where the transmitter facilitates simultaneous multiuser transmis-

sion with extended space diversity. In indoor situations or the receiver is located on
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the backside of IRS, intelligent omni-surface (IOS) can further provide full-space cover-

age service (i.e. 360-degree coverage) by reflecting and refracting the transmitted signal

[26]. Moreover, IRS is widely used to assist SWIPT systems or unmanned aerial vehicle

(UAV) communication systems [27] since negative smart reflections of IRS facilitate the

reduction of system power consumption and provide performance gains.

1.3 Fairness Protocol

1.3.1 Ultra-densification-Related Challenges

Another core technology used in 5G network is ultra-densification, where plenty of intel-

ligent devices with wireless connectively provide high capacity demand, support diverse

mobility environments, and better performance gain [28]. However, ultra-densification

incurs concerns about resource allocation, as billions of devices compete for the same

resources, such as power, spectrum, or space. The baseline for resource allocation is to

ensure minimum QoS requirements and individual service and avoid resource famine even

with exhausting the system resource [29]. At the same time, ultra-densification is the

major culprit in resource congestion, energy redundancy, or even spectral waste without

efficient fair resource allocation [30]. Therefore, fairness consideration is indispensable

for the current implementation of ultra-dense networks with reliable QoS services.

1.3.2 Fairness Resource Allocation Protocol

In fact, fairness could be defined from various aspects and easily be influenced by differ-

ent research areas. For example, some papers focus on fairness in a specific short time

duration while some consider dynamically fairness over the time moving window [31].

Accordingly, it is impossible to provide a single authoritative definition for a rather sub-

jective norm and a unified agreement on its definition has not been reached. So far, the

well-adopted way to specify fairness is through Jain’s index or entropy measure, where its

value can quantify the level of fairness [32]. This index is a promising enabler to evaluate

the level of fairness under different fairness criteria.

However, legacy power allocation criteria such as equal allocation or the water-filling

approach suffer a poor level of fairness [33]. Take video resources as an example, users
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deserve to enjoy equal video quality even under the competing streams while terrible

video quality with high and frequent traffic happens to some users in the absence of a

proper resource allocation scheme. In this way, the α-fairness protocol is commonly used

to provide scalable criteria for fair resource allocation, where several allocation cases can

be reached in the same universal framework by tweaking the parameter α [31]. Two

representative allocation schemes based on α-fairness are illustrated as follows:

1) Max-min fairness: It is related to the extreme case of α-fairness with α =∞.

The principle of max-min fairness introduces a guideline that the possible resources

are given priority to the most poorly treated users (i.e., users with the minimum

bit rates) [34].

2) Proportional fairness: The proportional fairness corresponds to the case of α= 1

in α-fairness protocol. Its operation rule based on the logarithmic utility function

to schedule each flow allocation proportionally fair to a fixed window flow [35].

Generally, the high value of α contributes to a favorable fairness level. The specific

analysis for the α-fairness resource allocation was done in [31] in providing the relationship

between α and Jain’s index. They prove that α controls the balance between efficiency

and fairness, especially for α = 0 gives a relatively maximum efficiency level. In [36], T.

Bonald et al. also prove setting enhanced α leads to a higher fairness level but decreases

user efficiency. Especially, under the max-min fairness scheme, α goes to infinity with

reaching the most fairness level, while most resources are almost assigned to the worst

channel leading to severe inefficiency.

Consequently, the max-min protocol is appropriate to solve the congestion challenges

and unreliable QoS service in denser 5G networks. This thesis would focus on the rate

allocation based on the max-min protocol to balance the discrepancy and control rate

congestion between receivers.

1.4 SWIPT Technology

1.4.1 Ultra-densification-Related Challenges

In the era of Internet-of-Things (IoT), the denser interconnection (i.e. ultra-densification)

of various electronic equipment poses another challenge to current 5G architectures:
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charging problem. On the one hand, there is an emergency for energy support for those

devices with limited charging capability in denser networks[1]. On the other hand, the

conventional wired recharging technology is inconvenient or even impossible for those

devices that are in corners, especially for embedded sensors [13].

Consequently, the relentless growth in energy-limited devices and unsuitable wired

charging method potentially cause an urgent demand for a new way to prolong their

lifetime. Then, WPT has emerged as a promising solution to enable the large-scale

deployment of battery-limited networks with significant flexibility features [37]. In addi-

tion, WPT, to some extent, can avoid the expenditure on wired cable installation and

maintenance than legacy method.

1.4.2 Power Transfer Concept

Basically, the concept of WPT techniques refer to delivering the energy from transmitter

to receiver without wires[38].The general system architectures diagram is presented in

Figure 1.4. So far, the common implementation of WPT techniques can broadly be

systems.pdf

Transmitter

Power transfer

Receiver

Figure 1.4: Wireless power transfer system.

categorized in two types: non-radiative (near-field) WPT and radiative (far-field) WPT

[39]. Those four representative WPT technology are illustrated as follows:

1. Inductive coupling: The mechanism of inductive coupling WPT is based on mag-

netic field induction theory [40]. When the primary coil can generate a time-varying

magnetic field, then the secondary coil can induce the electric current within this

field. In this way, many drawbacks come along with induction coupling, including

poor stability and the stringent requirement on alignment, which limits the maxi-

mum transmission distance to only several centimeters [41]. In contrast, inductive

9



coupling WPT can reach the highest efficiency among those methods, which is up

to approximately 95% [42].

2. Resonance coupling: The resonance coupling WPT replies on the same resonance

frequency to support power transfer and it belongs to the near-field transmission

[43]. This scheme have been introduced into many portable systems such as tablets

or mobile phones due to its longer coverage distance up to several meters and

no tighten alignment restriction. However, the authors in [42] investigated that

the resonance coupling WPT is less efficient (e.g. about 75%) compared to the

resonance coupling WPT.

3. RF-microwave power trasfer: RF-microwave WPT refers to wireless power

transfer via radio waves or microwaves, which can enable energy transmission over

greater distances (e.g. up to multiple kilometers) [44]. However, the author in

[45] shows that the maximum transfer efficiency of RF-microwave scheme is less

than 50% without LoS path. Any obstacles would largely attenuate the transmit-

ted microwave signal and even stop energy transmission. With the aid of high

gain antennas, RF-microwave WPT can exhibit approximately 90% transmission

efficiency.

4. Laser power transfer: The principle of laser power transfer refers that the con-

version of the electric source into a high-intensity laser beam allows the energy to

be transmitted to the load as a laser [46]. Considering shorter wavelength implies

weaker penetrate ability, the laser beam in terahertz (THz) band would suffer from

serious drawbacks of penetrating loss.

The representative properties of different types of WPT schemes are listed in Table

1.2. Although near-field WPT is equipped with additional performance merit in transfer

efficiency, the distance constraints limit its practical application. In contrast, the far-

field WPT with greater coverage over several kilometers is more appropriate for current

denser 5G networks to supply energy and recharge batteries for mobile devices. In terms

of the far-field WPT, the efficiency of microwave power beam could exceed that of laser

power beam since laser power beam is more vulnerable to atmospheric blockages such as

dust or rain [44]. Moreover,as a high-intensity beam, laser power transfer highly depends

on line of sight or alignment to the receiver. Consequently, a proper scheme that both
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satisfies long-range transmission and has better performance in environment blockages is

RF-microwave power transfer in this thesis.

Table 1.2: The general classification and corresponding property of WPT technology.

Inductive

Coupling

Resonance

Coupling

RF-Microwave

Power Transmission

Laser Power

Transmission

Key References [40], [41], [42] [42], [43] [44], [45] [46]

Sort
Non-Radiative

(near-field)

Non-Radiative

(near-field)

Radiative

(far-field)

Radiative

(far-field)

Coverage

Distance
Short (cm) Medium (m) Long (km) Long (km)

Operating

Frequency
KHZ MHz KHz MHz GHz >THz

Energy Delivery

Efficiency
High Medium Low to Medium Low to Medium

1.4.3 The Basic Concept of Energy Harvesting

After power transmission, the received RF signal needs to be converted into electrical

energy in order to power the receiver. This type of conversion is defined as energy har-

vesting (EH) [47]. The combination of WPT and EH has been regarded as a key enables

of green eco 5G communication, due to the ability to power the denser 5G communication

devices from ambient RF signals [16].

So far, plenty of research has been proposed to optimize the practical RF energy har-

vesting circuit, where common circuit architecture contains a receiver antenna, a matching

network or passive bandpass filter, a rectifying circuit, and the energy storage unit [1], cf.

Figure 1.5. According to their circuit charging characteristic, RF-based EH model can be

of two types: linear EH model and non-linear model, which are illustrated as following:

1. Linear EH model: This model assumes the output energy is linearly proportional

to input energy [37]. Although this model is not accurate, especially for large input

power, it enables a simple resource allocation design. As a result, many early
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Matching 

network

Matching 

network

Rectifying 
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storage

Incident radiatio

RF power 

collection antenna

Figure 1.5: The typical block diagram of the energy harvesting model contains key com-

ponents and steps [1].

studies [48, 49] on WPT systems adopt a linear model to focus on performance

improvement with the help of energy scavenging.

2. Non-linear EH model: With further studies on the practical implementation of

EH circuit [50], the results of experiment show the discrepancy between measured

characteristics of EH circuit and calculated data from linear EH models is a huge

gap, which would bring in resource allocation mismatches [51, 52]. To this end,

the proposed non-linear EH model can capture the non-linear characteristics of the

actual charging phenomenon in EH circuits.

In fact, employing the non-linear model to quantify energy conversion can significantly

increase the computational complexity. A simple linear model is sufficient to analyze

system performance which can contribute to a more simple resource allocation equation

and programming in a low-power sensor communication system.

1.4.4 The Basic Concept of SWIPT

Based on the research of WPT and EH techniques, more sophisticated concepts are

proposed to fully exploit the RF spectrum, such as wireless information transfer(WIT),

wireless-powered communication (WPC), and wireless-powered backscatter communica-

tion (WPBC) [53]-[56]. In this regard, the heuristic combination of power and information

transmission triggers further research on SWIPT system [1]. This technology allows the

dual use of wave signal, not only for information decoding (ID) but also for energy har-

vesting (EH), resulting in giant progress in spectral efficiency and energy savings [57, 58].

However, two representative technical problems exist for the practical deployment of

SWIPT system. The first-class problem is about propagation loss where the radio signal

12



with a short wavelength is extremely vulnerable to blockage in non-LoS paths and con-

tributes to low efficient energy conversion [57]. Consequently, there is a need for employing

the aforementioned IRS technology, as IRS can costume a more favorable propagation

environment to circumvent heavily penetrate loss [11]. This benefit also motivates this

thesis to focus on the new line of research on bridging SWIPT and IRS techniques.

Since information is destroyed directly after energy harvesting, the second challenge is

how to accomplish both ID and EH on a same received signal [37]. For this reason, various

types of energy splitting schemes have been proposed. Several receiver architectures for

signal splitting are listed in the following.

Time Switching.pdf

Information 

Decoder

Energy 

Harvester

(a) Time Switching.

Power Splitting.pdf

Information 

Decoder

Energy 

Harvester

(b) Power Splitting.
Antenna Switching.pdf

Information 

Decoder

Energy 

Harvester

..
.

..
.

Transmitter

(c) Antenna Switching.

Figure 1.6: Block diagram of three receiver structures for SWIPT system [2].

1. Time Switching: For time switching (TS) architectures, the transmission process

is divided into different time slot [2], where the received signal is either used for

convey information or energy scavenging, cf. Figure 1.6(a). The advantage of TS

receivers is simple implementation and cheap hardware facility. In contrast, TS

receiver requires stringent time synchronization.

2. Power Splitting: For power splitting (PS) architectures, the received wave can

be split into two streams via a certain power splitting ratio, one part used for
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energy supply; another part with conversion to information decoding, cf. Figure

1.6(b). Compared with TS receiver, this techniques contains complicated facilities

and introduces extra optimization computation process about power splitting fac-

tor. However, PS receiver also provide accurate and instantaneous splitting effect

especially for the delay-constraint system [2, 48].

3. Antenna Switching: For antenna switching (AS) architectures, some antennas

are assigned as information decoding while some are the group for energy harvest-

ing, cf. Figure 1.6(c). For optimal antenna assignment, dynamic programming is

intractable process during each communication frame in terms of AS receiver [2].

1.5 Prior Works

The mMIMO, mmWave, and ultra-densification bring in numerous challenges to 5G even

beyond 5G communication systems. Consequently, there are numerous research efforts

have been devoted to designing useful solutions to aforementioned challenges. So far,

the related promising solution designs are usually classified into two groups, one is based

on SWIPT systems and another is based on IRS-aided SWIPT systems with different

resource allocation schemes. At first, the authors of [59] and [60] proposed the SWIPT-

based MISO and orthogonal frequency-division multiplexing (OFDM) communication

networks to enhance energy efficiency, respectively. The energy consumption problem

was further studied by [61] where artificial noise was incorporated to avoid information

leakage to the potential eavesdroppers. Also, in [62], the author considered the energy

fairness allocation for each receiver and developed the SDR algorithm for maximizing

the minimum harvested energy. In practice, ID and EH may not be feasible from the

same received signal. Nevertheless, some useful receiver architecture has been proposed

to enable realize co-located receivers. For instance, a detailed performance analysis of

co-located receivers with PS architecture was presented in [63] for SWIPT-based wireless

network.

However, considering distance-related path loss and non-LoS signal attenuation would

severely degrade RF signal power, the SWIPT system is not adequate to ensure the min-

imum harvested energy in practical situations. To overcome those bottlenecks, [64]-[68]

proposed to incorporate IRS to expand the coverage. Specifically, the joint optimization
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of beamforming vectors and reflect phase shift elements was studied in [69] to minimize

transmit power in an IRS-assisted SWIPT system. Then in [65], the resource allocation

study was extended to multiuser MIMO system, where AO was proposed for weighted

sum-rate maximization. Since the resource allocation schemes in [65] were based on

simple linear EH model, this model would not provide accurate charging service due to

the non-linearity property in EH circuits. In contrast, [66] adopted the non-linear EH

model that paves the way for matching the practical charging phenomenon at expense

of computational complexity and efficiency. Then, in [67] and [68], the study was ex-

tended to co-lated receivers system with PS techniques. The prior works on this topic

are summarized in Table 1.3.

1.6 Organization of the Thesis

Motivated by the prior works, this thesis considers IRS-aided wireless sensor networks

incorporating the PS-based SWIPT system technique with a linear EH model and develop

efficient resource allocation from the max-min rate fairness point of view to ensure data

fairness among all the considered receivers. A brief overview of the rest of this thesis is

illustrated as follows. In Chapter 2, we first propose a system model and then formulate

the resource allocation algorithm design to maximize the minimum data rate in IRS-

aided SWIPT system, which would be solved by the proposed algorithm in Chapter 3.

Chapter 4 presents simulation results and verifies the functionality of incorporated IRS

techniques to the system performance. In Chapter 5, we conclude with a brief summary

of the results and give two direction of future works.
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Table 1.3: The summary of prior works

Ref Type of system Objectives Constraints Solution Approaches

[59] MISO-SWIPT

Minimize transmit power budget,

and minimize interference

-power-leakage-to-transmit

-power ratio, maximize energy

harvesting efficiency

QoS requirements
The semidefinite programming

relaxation method

[60] OFDM-SWIPT Maximize energy efficiency
Minimum required data

rate,maximum transmit

power constraint

The iterative resource allocation

method

[61]
MISO-SWIPT

secure communication

system

Maximize energy efficiency, and

minimize total energy power
QoS requirements

The semidefinite programming

relaxation method

[62]
MISO-SWIPT

with max-min

fairness protocal

Maximize the minimum harvested

energy

Minimum required SINR,

maximium tolerate channel

capacity of energy receiver

The semidefinite programming

relaxation method

[63]
MISO-SWIPT

with co-located

receivers

Minimize the total transmit

power

Minimum required SINR,

minimum harvested DC power
The semidefinite relaxation method

[69]

IRS-MISO-SWIPT

with separated

receivers and

linear EH model

Minimize the total transmit

power

QoS requirements,minimum

harvested DC power
The penalty-based optimization method

[65]
IRS-MIMO-SWIPT

with linear

EH model

Maximize the weighted sum-rate Minimum harvested DC power

The bisection search method,

the successive convex approximation,

the majorization-minimization method,

the block coordinate descent algorithm

[66]

IRS-MISO-SWIPT

secure communication

system with

non-linear EH model

Maximize the system sum-rate

Maximum transmit power

budget, minimum harvested

power, maximum tolerble

information leakage

The alternating optimization method,

the penalty-based method, the

semidefinite relaxation method

[67]

IRS-MISO-SWIPT

with co-located

receivers and

linear EH model

Maximize the energy efficiency

indicator

Maximum transmit power

constraint

The majorization-minimization method,

the Dinkelbach method, the

alternating optimization method,

the semi-definite relaxation method

[68]

IRS-MISO-SWIPT

with co-located

receivers

and non-linear

EH model

Max-min energy efficiency

Minimum harvested DC power,

maximum transmit power

constraint, minimum

required data rate

The majorization-minimization method,

the penalty-based method, the

alternating optimization method,

the semi-definite relaxation method
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Chapter 2

System Model and Problem

Formulation

2.1 Signal Model

Model.pdf
Wireless sensor 2Wireless sensor 1 Wireless sensor K

Power signal

Information signal

Transmitter

G

kd,h

kr,h

IRS

Figure 2.1: Illustration of IRS-aided SWIPT model. There is one BS with NT antennas

and K wireless sensor as receiver equipped with a single antenna.

In this thesis, we consider an IRS-assisted wireless communication system where an

IRS equipped with N reflecting elements enables the SWIPT process from BS with M

transmitting antennas toK sets of low-power sensors. In particular, each sensor equipped

with a single antenna. This system model is depicted in Figure 2.1. During each time
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slot, the transmitted signal vector x ∈ CNT from the BS is given by:

x =
∑
k∈K

wksk︸ ︷︷ ︸
Information signals

+ wE︸︷︷︸
Energy signal

, (2.1)

where wk ∈CNT×1 refers to the beamforming vector for sensor k and wE ∈CNT×1 stands

for pseudo-random energy signal satisfying complex Gaussian distribution with zero mean

and variance WE, i.e., wE ∼ CN (0,WE). In particular, its covariance matrix WE ∈HNT

and WE � 0 . We assume sk denotes the encoded information signals assigned for sensor

k. Without loss of generality, we assume sk is independent and identically distributed

(i.i.d.) and its energy is equal to one, denoted by expectation format E
{∣∣∣s2

k

∣∣∣} = 1,∀k ∈

K = {1, . . . ,K}.

2.2 IRS-aided System Channel Model

Two assumptions were adopted: one is that the channel of all sensors is a quasi-static flat

fading channel [68]. The second assumption is that the channel state information (CSI)1

for each transmission link is perfectly known at the BS and sensors. Then, the equivalent

channel coefficient from the BS-to-IRS-to-sensor superimpose with the direct path from

the BS-to-sensor could be written as:

hHk = hHd,k︸︷︷︸
Direct path

+ hHr,kΦG︸ ︷︷ ︸
Reflected path

. (2.2)

In this representation, hd,k ∈CNT×1, hr,k ∈CN×1, G∈CN×NT denote the direct channel

vectors from the BS to sensor k, the reflected channel vectors from IRS to sensor k, and

the channel equivalent gain from the BS to IRS, respectively. Besides, Φ = diag(v) with

v = [ejθ1 , ejθ2 , · · · , ejθN ]T are the reflection coefficient matrix at the IRS. In particular,

θn ∈ [0,2π] represent the phase shift of the n-th IRS element and all reflection amplitude

are one2 in this system model.
1Although the CSI is imperfect in practical systems, [70] proposed a novel approach successfully solve

the channel estimation problem in multi-user IRS system. Thus, we assume perfect CSI for the design

of resource allocation in this thesis.
2Note that this model representation of IRS is well-adopted in the literature and [19] demonstrate its

advantage in intuitively exhibiting IRS basic properties.

18



2.3 SWIPT-based ID and EH Signal Model

The downlink received signal at sensor k is given by:

yk = hHk
∑
k∈K

wksk +hHk wE +nk, ∀k ∈ K, (2.3)

where nk contains both the thermal noise and antenna noise originating from the receive

antenna at the sensor k and they can be modeled as addictive white Gaussian noise

(AWGN) with nk ∼ CN (0,σ2
s). In particular, the PS receiver would be employed to

separate the received signals into two power streams via the splitting ratio ρk (0≤ ρk ≤ 1).

In particular, the PS ratio ρk can adjust the proportion allocation to ID and EH parts.

Accordingly, the signal received at each sensor k used in ID part is given by

yIDk =√ρk
(
hHk x +nk

)
=√ρk

hHk (
∑
k∈K

wksk +wE) +nk

 , ∀k ∈ K. (2.4)

On the other hand, the received signal at each sensor k used for energy harvesting is

given by
yEHk =

√
1−ρk

(
hHk x +nk

)
=
√

1−ρk

hHk
∑
k∈K

wksk +hHk wE +nk

 , ∀k ∈ K. (2.5)

2.4 Performance Metrics

As pseudo-random energy signal is known at each sensor where the interference regard of

wE can be easily canceled out for ID parts [71], thereby signal-to-interference-noise ratio

(SINR) at k-th sensor in terms of ID parts is given by3

ΓID
k =

ρk
∣∣∣hHk wk

∣∣∣2
ρk

(∑
i∈K\{k}

∣∣∣hHk wi

∣∣∣2)+σ2
s

=

∣∣∣wH
k Hkwk

∣∣∣2∑
i∈K\{k}

∣∣∣hHk wi

∣∣∣2 + σ2
s
ρk

, ∀k ∈ K,

(2.6)

where the channel vector is defined by Hk = E{hHk hk} and σ2
s refers to the signal pro-

cessing noise power at sensors. Accordingly, the individual achievable data rate is given
3Note that the authors in [72] also proposed related algorithms to enable the cancellation of interfer-

ence from energy signal, thereby this representation of SINR is valid.
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by

Rk = log2
(
1 + ΓID

k

)
, ∀k ∈ K. (2.7)

More importantly, since the EH model can approximate the relationship between input

and output with extremely less computation complexity, the simple linear EH model is

adopted. Therefore, the harvested power at k-th sensor can be written as:

ΦEH
k = ηkP

EH
k where

PEH
k = (1−ρk)E

∑
i∈K

∣∣∣hHk wi

∣∣∣2 + |hHk wE|2


= (1−ρk)
∑
i∈K

wH
i Hkwi+ Tr (HkWE)

 , ∀k ∈ K.
(2.8)

In (2.8), ηk ∈ [0,1] stands for the fixed energy conversion efficiency of sensor k. Consider-

ing the noise power from signal processing is smaller than harvesting energy power, thus

we ignore the power of receiver noise in (2.8) [37].

2.5 Problem Formulation

In this section, we aim to achieve the fair data rate among users with the constraints of

QoS. As such, the optimization objectives can be formulated as:

maximize
ρk,wk,Φ,WE

min
k
{Rk(ρk,wk,Φ,WE)}

subject to C1 :∑k∈K ‖wk‖2 + Tr(WE)≤ Pmax,

C2 : ΓID
k ≥ Γk,req, ∀k,

C3 : Pk ≥ Pk,req, ∀k,

C4 : |Φnn|= 1, ∀n

C5 : 0≤ ρk ≤ 1, ∀k,

(2.9)

where Pmax in C1 refers to maximum transmit power budget constraint at the BS. Con-

straint C2 can ensure QoS services for each sensor k with respect to SINR. Pk,req in

constraint C3 guarantees the minimum harvesting energy for individual user k. Con-

straint C4 refers that the reflected elements on IRS have unit modulus components and

constraint C5 is the boundary for the power splitting ratio variable. The formulated

optimization problem (2.9) is not a standard form of convex problems. In particular, the

optimization variables {wk,ρk,WE} are coupled with phase shift Φ in constraints C2
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and C3. Besides, the unit modulus in C4 obviously is a non-convex constraint as well.

Although there are no accessible tools to tackle non-convex problems, we can convert

them into equivalent tractable convex problems by proposing some effective algorithms.
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Chapter 3

Solution of the Optimization

Problem

3.1 Algorithm Design

Problem Formulation (2.9)

Variables: (ρk,wk,WE,Φ)

AO

Subproblem 1 (3.2)

(ρk,wk,WE)
Iteration

Subproblem 2 (3.11)

(Φ)

SDR

SCA

Penalty-based Function

SCA

Figure 3.1: Flow chart of the proposed algorithm for solving the non-convex problem.

In this chapter, we prepare to solve the aforementioned problem in (2.9). Although

the objective function follows the standard form of optimization problem, the coupling

of those optimization variables contributes to highly non-convexity. In this regard, we

adopt AO method to implement alternate optimization in terms of {ρk,wk,WE} and {Φ}

respectively [27]. When the optimization variables are split via AO method, the problem
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in (2.9) would yield two subproblems, where each subproblem has only one grouped

variable and other grouped variable is at a feasible value. For the first subproblem with

variables {ρk,wk,WE}, we adopt the first-order Taylor approximation [73] to rewrite the

data rate and adopt SDR to handle the non-convexity from the rank-one constraint. In

terms of the second subproblem with variables Φ, we apply another method, i.e., the

penalty method [74, 75], to release the rank-one constraint and apply the same SCA

algorithm to optimize the phase shift. Finally, the final optimal solution can be obtained

by separately and alternatively updating these two grouped optimization variables via

two subproblems. The proposed algorithm is summarized in Figure 3.1.

3.2 Alternative Optimization

First, we transform the objection function into its equivalent problem formulation, i.e., the

epigraph problem form [76] via an auxiliary variable. Based on the concept of epigraph

where epigraph function preserves convexity, the equivalent objective function of (2.9)

can be formulated as follows

maximize
τk,ρk,wk,Φ,WE

τk

subject to C1 :∑k∈K ‖wk‖2 + Tr(WE)≤ Pmax,

C2 : Γk ≥ Γk,req, ∀k,

C3 : Pk ≥ Pk,req, ∀k,

C4 : |Φnn|= 1, ∀n,

C5 : 0≤ ρk ≤ 1, ∀k,

C6 : τk−Rk(ρk,wk,Φ,WE)≤ 0, ∀k,

(3.1)

where τk is the auxiliary optimization variables. Although the objective function follows

the standard form of optimization problem, the coupling of those optimization variables

contributes to highly non-convexity.

In this regard, we adopt the AO method to alternately find the optimal solution for

beamforming vector wk and phase shift matrix Φ while holding the other variables at a

feasible value. The problem in (3.1) would yield two subproblems, one is beamforming

optimization problem with respect to {wk,ρk} and another is phase shift optimization

problem with respect to Φ.
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3.3 Subproblem 1: Optimization of Beamforming and

PS Ratio

When we settle phase shift Φ into a fixed stationary point via AO algorithm, we can

recast the original problem formulation in (3.1) as follows

maximize
τk,ρk,Wk,WE

τk

subject to C1 :∑k∈KTr(Wk) + Tr(WE)≤ Pmax,

C2 : ΓID
k ≥ Γk,req, ∀k,

C3 : Pk ≥ Pk,req, ∀k,

C5 : 0≤ ρk ≤ 1, ∀k,

C6 : τk−Rk(ρk,Wk,WE)≤ 0, ∀k,

C7 : Rank(Wk)≤ 1, ∀k,

C8 : Wk � 0, ∀k,

(3.2)

where Wk = wH
k wk and the constraints C7 and C8 in problem (3.2) are able to ensure

this replacement is valid even after optimizing Wk.

To further solve the non-convexity, we propose some transformation and manipula-

tions and the problem in (3.2) can be written as

maximize
τk,ρk,Wk,WE

τk

subject to C1 :∑k∈KTr(Wk) + Tr(WE)≤ Pmax,

C2 : Tr(HkWk)∑
i∈K\{k} Tr(HkWi)+

σ2
s
ρk

≥ Γk,req, ∀k,

C3 :∑i∈KTr(HkWi) + Tr (HkWE)≥ Pk,req
η(1−ρk) ,

C5 : 0≤ ρk ≤ 1, ∀k,

C6 : τk ≤ log2

1 + Tr(HkWk)∑
i∈K\{k} Tr(HkWi)+

σ2
s
ρk

,
C7 : Rank(Wk)≤ 1, ∀k,

C8 : Wk � 0, ∀k.

(3.3)

As shown in problem (3.3), C6 and C7 contribute to non-convexity. Obviously, C2, C3

is a convex constraint in relate to ρk due to the inverse function, i.e., 1
1−ρk , is convex

for 0 ≤ ρk ≤ 1. To leverage the solvable convex optimization design, we first tackle the

non-convexity of C6 based on SCA techniques, then we relax the constraint C7 based on
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the concept of SDR [66, 74, 75]. To tackle the non-convexity in C6, data rate Rk can be

converted to a more tractable form as follows

Rk = log2

1 + Tr(HkWk)∑
i∈K\{k}Tr(HkWi) + σ2

s
ρk


= log2

Tr(HkWk) +∑
i∈K\{k}Tr(HkWi) + σ2

s
ρk∑

i∈K\{k}Tr(HkWi) + σ2
s
ρk


= log2

Tr(HkWk) +
∑

i∈K\{k}
Tr(HkWi) + σ2

s
ρk

− log2

 ∑
i∈K\{k}

Tr(HkWi) + σ2
s
ρk

.
(3.4)

For the sake of notational simplicity, we define two auxiliary variables to rewrite equation

(3.4) as follows

Rk = A1︸︷︷︸
concave

− B1︸ ︷︷ ︸
convex

, where

A1 = log2

Tr(HkWk) +
∑

i∈K\{k}
Tr(HkWi) + σ2

s
ρk

,
B1 = log2

 ∑
i∈K\{k}

Tr(HkWi) + σ2
s
ρk

.
(3.5)

Although A1 is the concave function and −B1 is the convex function in terms of ρk and

Wk, the combination of A1 and −B1 does not preserve convexity. If we replace one

concave function with a constant number, the new combination the logarithmic function

subtract a constant is an affine operation that preserves the convexity. In this regard, the

upper bound bound for the logarithmic function B1 can be obtained by the utilization of

SCA method [73, 77]. More precisely, the upper bound could be expressed through the

first-order Taylor approximation as follows

B1 (Wk,ρk)≤B1

(
W(t)

k ,ρ
(t)
k

)
+ Tr

(
∇HWk

B1

(
W(t)

k ,ρ
(t)
k

)
(Wk−W(t)

k )
)

+ Tr
(
∂HρkB1

(
W(t)

k ,ρ
(t)
k

)
(ρk−ρ

(t)
k )
)
, B̃1(Wk,ρk),

(3.6)

where superscript (t) refers to the iteration index. W(t)
k and ρ

(t)
k refers to the feasible

solution at the t-th iteration, respectively. The first-order derivative function of Bk can

be given as

∇Wk
B1 (Wk,ρk) = Hk

ln2
(∑

i∈K\{k}Tr(HkWi) + σ2
s
ρk

) , (3.7)

∂ρkB1 (Wk,ρk) =− σ2
s(ρk)−2

ln2
(∑

i∈K\{k}Tr(HkWi) + σ2
s
ρk

) . (3.8)

25



So far, the remaining non-convexity is due to the presence of C7, which is a ma-

jor contributing factor to the problem (3.3) that cannot be solved in nondeterministic

polynomial time [78]. Accordingly, we can relax the rank-one matrix constraint and the

problem (3.3) would become a standard semidefinite programming (SDP) problem, where

the convex program solvers, such as CVX, can resolve it. With the tight convex lower

bound for the logarithmic function B1, problem (3.3) can be rewritten as

maximize
τk,ρk,Wk,WE

τk

subject to C1 :∑k∈KTr(Wk) + Tr(WE)≤ Pmax,

C2 : Tr(HkWk)
Γk,req

−∑i∈K\{k}Tr(HkWi)≥ σSs
ρk
, ∀k,

C3 :∑i∈KTr(HkWi) + Tr (HkWE)≥ Pk,req
η(1−ρk) ,

C5 : 0≤ ρk ≤ 1, ∀k,

C6 : τk ≤ A1−Tr
(
B1

(
W(t)

k ,ρ
(t)
k

))
−∑k∈KTr

(
∇HWk

B1

(
W(t)

k ,ρ
(t)
k

)
(Wk−W(t)

k )
)

−Tr
(
∇HρkB1

(
W(t)

k ,ρ
(t)
k

)
(ρk−ρ

(t)
k )
)
,

C8 : Wk � 0, ∀k.

(3.9)

For the sake of presentation, we do not write out the variables {W(t)
k ,ρ

(t)
k } inside the

gradient function and neglect the irrelevant constant terms, i.e. Tr
(
B1

(
W(t)

k ,ρ
(t)
k

))
,

−∇HWk
B1

(
W(t)

k ,ρ
(t)
k

)
W(t)

k and −∇HρkB1

(
W(t)

k ,ρ
(t)
k

)
ρ

(t)
k as follows

maximize
τk,ρk,Wk,WE

τk

subject to C1 :∑k∈KTr(Wk) + Tr(WE)≤ Pmax,

C2 : Tr(HkWk)
Γk,req

−∑i∈K\{k}Tr(HkWi)≥ σSs
ρk
, ∀k,

C3 :∑i∈KTr(HkWi) + Tr (HkWE)≥ Pk,req
η(1−ρk) ,

C5 : 0≤ ρk ≤ 1, ∀k,

C6 : τk ≤ A1−
∑
k∈KTr

(
Wk∇HWk

B1
)
−Tr

(
ρk∇HρkB1

)
, ∀k,

C8 : Wk � 0, ∀k.

(3.10)

However, when we directly remove this rank-one constraint, two cases of solution would

exist for the obtained problem formulation. If the final solution for Wk satisfies constraint

C7 in problem (3.3), then we can perform the eigenvalue decomposition (EVD) to obtain

the optimal beamforming wk based on the equivalent optimization problem in (3.10),
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where same method is normally adopted in literatures, e.g. [77], [79], [80]. Another

case is the obtained matrix Wk with Rank(Wk) > 1, then the value of wk after EVD

computation on Wk is not a feasible solution.

Algorithm 1 SDR-Based SCA Algorithm
1: Assume iteration index l = 1

2: Relax the rank-one constraint via SDR

3: repeat

4: Solve relaxed version problem (3.10) for given {ρ(l)
k ,W

(l)
k ,W

(l)
E } to update

{ρ(l+1)
k ,W(l+1)

k ,W(l+1)
E }

5: Set l = l+ 1 and update the optimization variables

6: until convergence

7: Obtain {ρ?k,W?
k,W?

E}= {ρ(l)
k ,W

(l)
k ,W

(l)
E }

Therefore, if the tightness of the relaxation could be guaranteed, the rank-one con-

straint would not be considered. In fact, the following important Theorem 1 reveals the

sufficient condition for semidefinite programming relaxation.

Theorem 1. When the channel vectors hk are statistically independent and the considered

problem formulation is feasible, the optimal beamforming matrix Wk of problem (3.9)

would be rank-one matrix for any sensor k.

Proof. Please refer to Appendix A for a proof of Theorem 1. �

By utilizing the Algorithm 1, the iterative optimal solutions {ρ?k,W?
k,W?

E} can be

obtained. Since the relaxed version of proposed problem (3.10) belongs to a typical

SDP problem, the SDR-based SCA algorithm is guaranteed to converge to local optimal

solution [76].

3.4 Subproblem 2: Optimization of Phase Shift

Based on the optimization results of {W?
k,W?

E,ρ
?
k}, the concerned optimization problem

formulation with coupled variables can be simplified. In other words, we only search

for the optimal solution of the phase shift matrix without the interference from other
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variables. Under given {W?
k,W?

E,ρ
?
k}, the problem (3.1) can be recast as follows

maximize
τk,Φ

τk

subject to C2 : Γk ≥ Γk,req, ∀k,

C3 : Pk ≥ Pk,req, ∀k,

C4 : |Φnn|= 1, ∀n,

C6 : τk−Rk(Φ)≤ 0, ∀k.

(3.11)

In order to further exploit the optimization variables Φ, we can separate it from the

expression of (2.2) and reexpress this formula in vector form as follows

hHk = hHd,k +hHr,kΦG = hHd,k +vT diag(hHr,k)G = ṽTLk, (3.12)

where ṽ =
[
vT 1

]T
∈C(N+1)×1 and Lk =

[(
diag(hHr,k)G

)T
h∗d,k

]T
∈C(N+1)×NT . With

V = ṽṽH ∈ C(N+1)×(N+1), we have∣∣∣hHk wk

∣∣∣2 = wH
k hkhHk wk = wH

k ṽLkLHk ṽHwk = Tr
(
LkVLHk Wk

)
= Tr(MkWk) ,

(3.13)

where Mk = LkVLHk . In addition, problem formulation (3.11) can be recast as

maximize
τk,V

τk

subject to C2 : Tr(MkWk)∑
i∈K\{k} Tr(MkWi)+

σ2
s
ρk

≥ Γk,req, ∀k,

C3 :∑i∈KTr(MkWi) + Tr (MkWE)≥ Pk,req
η(1−ρk) ,

C4 : Diag(V) = 1N+1,

C6 : τk−Rk(V)≤ 0, ∀k,

C9 : V� 0,

C10 : Rank(V)≤ 1,

(3.14)

where C9 and C10 are imposed to ensure the equation V = ṽṽH holds after optimization.

Due to the existence of C6 and C10, (3.14) is a non-convex problem. Following the

same process of the aforementioned methods in (3.6), we adopt the first-order Taylor

approximation to rewrite the data rate as follows

Rk = log2

Tr(MkWk) +
∑

i∈K\{k}
Tr(MkWi) + σ2

s
ρk

− log2

 ∑
i∈K\{k}

Tr(MkWi) + σ2
s
ρk

,
= A2(V)−B2(V),

(3.15)
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where,

A2(V) = log2

Tr(MkWk) +
∑

i∈K\{k}
Tr(MkWi) + σ2

s
ρk

,
B2(V) = log2

 ∑
i∈K\{k}

Tr(MkWi) + σ2
s
ρk

.
(3.16)

Furthermore,

B2(V)≤B2(V(t)) + Tr
(
∇HVB2(V−V(t))

)
, B̃2(V). (3.17)

Next, we would handle the non-convexity from constraint C10 based on the penalty-based

method4 as in [74, 75]. According to the linear algebra knowledge, we have the nuclear

norm as ‖X‖∗ =∑
iσi, where σi denotes i-th singular value of X, and the Euclidean norm

as ‖X‖2 = max
i
{σi}. It can be observed that ‖X‖∗ ≥ ‖X‖2, where the equality holds only

with the rank-one matrix. Consequently, we can rewrite the constraint C10 as follows

Rank(V)≤ 1⇒‖V‖∗−‖V‖2 ≤ 0. (3.18)

When we impose the penalty term, i.e., (3.18) into the objective function, the rank-one

constraint can be cancelled. Thus, problem (3.14) can be expressed as

minimize
V

1
µ

(‖V‖∗−‖V‖2)

subject to C2 : Tr(MkWk)∑
i∈K\{k} Tr(MkWi)+

σ2
s
ρk

≥ Γk,req, ∀k,

C3 :∑i∈KTr(MkWi) + Tr (MkWE)≥ Pk,req
η(1−ρk) ,

C4 : Diag(V) = 1N+1,

C6 : τk−A2(V) + B̃2(V)≤ 0, ∀k,

C9 : V� 0,

(3.19)

where µ→ 0 denotes the penalty factor. The following Theorem 2 reveals the equivalence

of the original problem formulation (3.14) and the problem formulation (3.19) based on

the penalty method.

Theorem 2. We suppose Vs is the optimal solution for the problem (3.19) and V? denotes

the optimal solution for the problem (3.14), respectively. When the penalty factor is small

enough, i.e., µ→ 0, the limit point V̄ ∈ {Vs} would equal to the V∗.
4The SDR proposed in Subproblem 1 may not be available for Subproblem 2 since [74] found that the

final answer based on the SDR-SCA method is hard to guarantee SINR constraint, i.e., C2. Accordingly,

they propose novel penalty-based algorithms with better performance and convergence guarantees. This

is the reason that we use penalty-based algorithms in this thesis.
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Proof. Please refer to Appendix B for a proof of Theorem 2. �

Algorithm 2 Penalty-Based SCA Algorithm
1: Set iteration index j = 1

2: Replace Φ by V via (3.12) with N + 1 random phases

3: Relax the rank-one constraint via Penalty function

4: repeat

5: Solve relaxed version problem (3.21) with given V(j) to update V(j+1)

6: Set j = j+ 1 and update the optimization variables

7: until convergence

8: Under V? = V(j), obtain the ṽ? via EVD decomposition

9: Obtain Φ? = Diag(v?)

Algorithm 3 The Alternating Optimization Algorithm
1: Assume convergence tolerance ε and iteration index t= 1

2: Initialize Φ(1) to feasible values

3: repeat

4: Under the given Φ = Φ(t), solve problem (3.2) via Algorithm 1 and store the

optimal solution {ρ(t)
k ,W

(t)
k ,W(t)

E }

5: Under the given {ρk,Wk,WE} = {ρ(t)
k ,W

(t)
k ,W(t)

E }, solve problem (3.11) via Al-

gorithm 2 and store the optimal solution Φ(t+1)

6: Update t= t+ 1

7: until problem (3.1) converges or τ (t+1)− τ (t) ≤ ε

8: Obtain the solution by {ρ?k,W?
k,WE}? = {ρ(t)

k ,W
(t)
k ,W(t)

E } and Φ? = Φ(t)

According to Theorem 2, the optimal solution of (3.19) is the rank-one solution when

penalty factor µ is small. However, the objective function in (3.19) is in the difference of

convex form. Then, we can adopt the proposed method SCA to obtain a stationary point.

By utilizing the first-order Taylor approximation during each iteration, it is possible to

determine the lower bound of ‖V‖2, as follows

C(V) = ‖V‖2 ≥ C(V(t)) + Tr
(
∇HVC(V(t))(V−V(t))

)
, (3.20)

where the superscript (t) denotes the t-th iteration. Thereby, the problem (3.19) is given
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by

minimize
V

1
µ

(
‖V‖∗−C(V(t))−Tr

(
∇HVC(V(t))(V−V(t))

))
subject to C2 : Tr(MkWk)∑

i∈K\{k} Tr(MkWi)+
σ2

s
ρk

≥ Γk,req, ∀k,

C3 :∑i∈KTr(MkWi) + Tr (MkWE)≥ Pk,req
η(1−ρk) ,

C4 : Diag(V) = 1N+1,

C6 : τk−A2(V) + B̃2(V)≤ 0, ∀k,

C9 : V� 0.

(3.21)

Obviously, problem (3.21) is jointly convex optimization problem with respect to V. So

far, the current convex pprogramme tools like CVX can successfully solve it. Next, we can

adpot EVD decomposition to recover ṽ and reconstruct the value of Φ. The proposed

algorithm summarized in Algorithm 2, whose results can guaranteed to convergence

due to monotonically non-increasing objective function in (3.20) [76]. The overall AO

algorithm is summarized in Algorithm 3.
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Chapter 4

Simulation Results
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Figure 4.1: Simulation setup.

In this chapter, we evaluate the numerical results of the proposed resource allocation

algorithm based on the IRS-assisted network. As shown in Figure 4.1, we assume this

system contains K = 4 sensors and a single IRS allocated between the BS and sensors.

The distance between BS and reference point 1 as well as the distance between the BS

and reference point 2, are denoted by d1 = 15 m and d0 = 60 m, respectively. Between IRS

and reference point 1, there is a vertical distance of d2 = 2 m. On a circle with a radius of

d3 = 4 m from reference point 2, the four sensors are placed at random. In addition, the

same channel fading model as in [74] is adopted in this simulation setup4. In particular,
4 The channel vector for the BS-IRS path, e.g. G, and IRS-sensors path, e.g. hr,k, follow the equation

(39) in [74] including both large-scale fading and small-scale fading effect. The direct link hd,k is modeled

as Rayleigh fading channel due to the presence of obstacles between the direct links.
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n1, n2 and n3 represent the path-loss exponent for the BS-IRS link, the IRS-sensors link,

and the BS-sensors link, respectively. Other related simulation parameters for simulation

setup are shown in Table 4.1.

Table 4.1: System Parameters

Channel vectors [74]

Wavelength λc = 0.083 m

Carrier center frequency fc = 3.6 GHz

Rician factors Kr = 3.4 dB

Target SINR Γk,req = 9 dB

Noise power σs =−85 dBm

Penalty factor µ= 8×10−4

SCA convergence tolerance ε= 10−4

the BS antenna gains G= 1 dBi

Energy harvesting conversion efficiency ηk = 0.6

Target harvested power Pk,req = 0.03 Watt

Path loss exponents for considered paths n1 = 2, n2 = 3, n3 = 5

4.1 Average Minimum Individual Data Rate versus

Maximum Transmit Power

In this section, we simulate the average minimum individual data rate versus the maxi-

mum transmit power allowance of the BS for the different number of transmit antennas.

Firstly, Figure 4.2 shows that the average minimum individual data rate rises monoton-

ically as the total transmit power increases. This is attributable to an increase in the

SINR of each sensor. In other words, the individual data rate is increased by introducing

more transmit power to raise the SINR in the framework of the proposed algorithms. Sec-

ondly, Figure 4.2 also shows a considerable performance gain by providing more transmit

antennas. This comes from the fact that beamforming can effectively exploit the extra

degrees of freedom (DoF) provided by IRS, and therefore a remarkable gain happens with

deploying additional number of transmit antennas. In consequence, the deployment of

33



30 32 34 36 38 40 42 44 46

Maximum transmit power (dBm)

7.2

7.4

7.6

7.8

8

8.2

8.4

8.6

8.8

9

9.2

A
ve

ra
ge

 m
in

im
um

 in
di

vi
du

al
 d

at
a 

ra
te

 (
bi

ts
/s

/H
z)

K = 4 users, M = 30 IRS elements

N
T
 = 4

N
T
 =8

N
T
 = 12

Performance gain

Figure 4.2: Average minimum individual data rate versus maximum transmit power of

the BS. The double-sided arrows highlight the performance gain by the increase in the

number of transmitting antennas.

the IRS is a driving force to the considerable performance gain, where IRS establishes a

more favorable propagation environment for each sensor.

4.2 Average Minimum Individual Data Rate versus

Number of Reflecting Elements

Figure 4.3 illustrates the average minimum individual data rate versus the number of

reflecting elements at the IRS for different numbers of transmitting antennas. We assume

that the value of the maximum transmit power is 30 dBm. It can be observed that the

average minimum individual data rate for each sensor increased as long as deploying more

reflecting elements at the IRS. This is because the extra reflecting elements can reflect

more power from the BS and extends the signal coverage range, which attributes to the

higher data rate of the IRS-SWIPT system. Thereby, this observation result validates the

considerable advantages of IRS in overcoming the limited coverage problem due to the

penetration loss in mmWave frequencies. Secondly, the schemes with NT = 12 or NT = 8

outperform the baseline scheme with NT = 4 over the entire range of reflecting elements,
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Figure 4.3: Average minimum individual data rate versus the number of reflecting ele-

ments at the IRS.

which indicates that the IRS can help the MISO system fully exploit spatial DoF. This

result confirms that IRS is available to further improve system performance for the links

with extra transmit antennas.
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Chapter 5

Conclusion

5.1 Summary of Results

In this thesis, we incorporated IRS in the SWIPT-MISO system to ensure a fair data rate

for each sensor by deploying the proposed resource allocation scheme. The simulation

results confirm the performance gain achieved by the proposed optimization algorithms.

In particular, the extra number of reflecting elements of IRS can significantly improve the

minimum individual data rate. In addition, the utilization of IRS proved to be favorable

in helping the SWIPT-MISO system to exploit spatial DoF and then save transmit power.

5.2 Future Work

Although this thesis presents the model of IRS-assisted SWIPT communication system

with excellent system performance, this model can be further modified to further com-

plicated communication system. Therefore, future work can extend to the design by

considering the following two directions. First, this thesis only considers a single IRS in

system design. Then, future resource allocation can focus on the system performance by

deploying two IRSs or even more. For example, future works could compare the perfor-

mance gain achieved by multiple IRSs with the gain achieved by additional number of

reflecting elements in a single IRS. Second, IRS is a passive device, however, it still needs

to consume a small amount of energy. Thus, the future research direction can focus on

partially reflective elements to transmit information and partially elements to act as the

EH receivers.
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Appendix A

We would prove the tightness of SDR and we recast the problem in (3.9) as following

presentation

maximize
τk,ρk,Wk,WE

τk

subject to C1 :∑k∈KTr(Wk) + Tr(WE)≤ Pmax,

C2 : Tr(HkWk)
Γk,req

−∑i∈K\{k}Tr(HkWi)≥ σSs
ρk
, ∀k,

C3 :∑i∈KTr(HkWi) + Tr (HkWE)≥ Pk,req
η(1−ρk) ,

C5 : 0≤ ρk ≤ 1, ∀k,

C6 : log2

(
ηk + σ2

s
ρk

)
−∑k∈KTr

(
Wk∇HWk

B1
)
−Tr

(
ρk∇HρkB1

)
, ∀k,

C8 : Wk � 0, ∀k.

(A.1)

In order to simplify the expression of (A.1), we would restate this problem in its epigraph

form to facilitate the following presentation

maximize
τk,ρk,Wk,WE

τk

subject to C1 :∑k∈KTr(Wk) + Tr(WE)−Pmax ≤ 0,

C2 : σ
S
s
ρk
− Tr(HkWk)

Γk,req
+∑

i∈K\{k}Tr(HkWi)≤ 0, ∀k,

C3 : Pk,req
η(1−ρk) −

∑
i∈KTr(HkWi)−Tr (HkWE)≤ 0,

C5 : 0≤ ρk ≤ 1, ∀k,

C6 : τk− log2

(
ηk + σ2

s
ρk

)
+∑

k∈KTr
(
Wk∇HWk

B1
)

+ Tr
(
ρk∇HρkB1

)
≤ 0, ∀k,

C8 :−Wk � 0, ∀k,

C10 : ηk−Tr(HkWk)−
∑
i∈K\{k}Tr(HkWi)≥ 0, ∀k,

(A.2)

where ηk is the auxiliary variable. Without the rank one constraint shown in C7, this

relaxed problem is a typical convex problem and satisfies the Slater’s constraint quali-

fication. According to [76], the optimal solution would satisfy the Karush-Kuhn-Tucker
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(KKT) conditions under the condition of strong duality. The Lagrangian function of

(A.1) with respect to optimization variable Wk is given by

L=τ −
∑
k∈K

Tr(ΥkWk)

+ν

∑
k∈K

Tr(Wk) + Tr(WE)−Pmax


+
∑
k∈K

ψk

σSs
ρk
− Tr(HkWk)

Γk,req
+

∑
i∈K\{k}

Tr(HkWi)


+
∑
k∈K

χk

 Pk,req
η(1−ρk)

−
∑
i∈K

Tr(HkWi)−Tr (HkWE)


+
∑
k∈K

γk

τk− log2

(
ηk + σ2

s
ρk

)
+
∑
k∈K

Tr
(
Wk∇HWk

B1
)

+ Tr
(
ρk∇HρkB1

)
+
∑
k∈K

λk

ηk−Tr(HkWk)−
∑

i∈K\{k}
Tr(HkWi)

 ,

(A.3)

where Υk,ν,ψk,χk,γk, and λk refer to Lagrange multipliers corresponding to constraints

C8,C1,C2,C3,C6,C10, respectively. Next, KKT conditions for the problem in (A.1)

based on optimal Wk can be represented by

K1 : Υ?
kW?

k = 0,

K2 : Υk � 0,ν?k ≥ 0,ψ?k ≥ 0,χ?k ≥ 0,γ?k ≥ 0,λ?k ≥ 0,

K3 :∇Wk
L(W?

k) = 0,∇WEL(W?
E) = 0,

(A.4)

where Υk,ν
?
k ,ψ

?
k,χ

?
k,γ

?
k, and λ?k represent the optimal Lagrange multipliers for (A.1).

KKT condition K1 is the complementary slackness condition, condition K2 is the dual

constraints, and conditions K3 are the gradient of Lagrangian with respect to optimization

variables vanishing.

To further process problems, we could recast the equation (A.3) in a more concise

representation as follows

L= Tr(D?
kWk) + Tr(E?

kWE) +F ?k + ∆, (A.5)

where D?
k, E?

k, and F?
k contains the coefficient terms associated with W?

k, E?
E and all terms

related to ρk, respectively. ∆ denoting all terms that are not relevant with optimization
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variables. The expression for D?
k, E?

k and F?
k are given by

D?
k =−Υ?

kINT +ν?kINT−
ψ?k

Γk,req
Hk +

∑
i∈K

ψ?iHi−ψ?kHk

−
∑
i∈K

χ?iHi+ Tr(γ?k∇HWk
B1(W(t)) +

∑
i∈K

λ?iHi

=(−Υ?
k +ν?k)INT−

(
ψ?k

Γk,req
+ψ?k

)
Hk + Tr(γ?k∇HWk

B1(W(t)))

+
∑
i∈K

(ψ?i −χ?i +λ?i )Hi,

(A.6)

E?
k =−

∑
k∈K

χ?kHk +ν?kINT , (A.7)

F?
k =

∑
k∈K

(
−γ?k log2

(
ηk + σ2

s

ρk

)
+ψ?k

σ2
s

ρk
+χ?k

Pk,req
η(1−ρk)

)
. (A.8)

To further focus on KKT condition K3, i.e., ∇Wk
L(W?

k) = 0, it can be expressed as

follows

ν?kINT +γ?k∇HWk
B1(W(t))−

∑
i∈K

(ψ?i −χ?i +λ?i )Hi︸ ︷︷ ︸
M?
k

−
(

ψ?k
Γk,req

+ψ?k

)
Hk = Υ?

k, (A.9)

where we define Mk to simplify the KKT condition K3 as follows

M?
k−

(
ψ?k

Γk,req
+ψ?k

)
H?
k = Υ?

k. (A.10)

The expression of M?
k is given by

M?
k = ν?kINT +γ?k∇HWk

B1(W(t))−
∑
i∈K

(ψ?i −χ?i +λ?i )Hi. (A.11)

In order to better exploit the rank of the matrix Wk, we first focus on matrix M?
k is full

rank with Rank(M?
k) =NT. Next, we discuss matrix M?

k is not full rank.

1. Full Rank: In this case, matrix M?
k is a full rank matrix. Since Rank(H?

k) = 1,

the rank relationship of equality (A.9) yields

Rank(Υ?
k) = Rank(M?

k−H?
k). (A.12)

Based on the property of rank, where Rank(Y−Z)≥Rank(Y)−Rank(Z) [81], we

could rewrite (A.12) as follows

Rank(Υ?
k)≥ Rank(M?

k)−Rank(H?
k) =NT−1. (A.13)
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First, we assume Rank(Υ?
k) = NT− 1. Considering the complementary slackness

condition K1 : Υ?
kW?

k = 0, the null space of Υ?
k is spanned by the eigenvector x?k.

Their rank relationship follows

Rank(Υ?
k) =NT−Rank(W?

k),

⇒ Rank(W?
k) =NT− (NT−1) = 1.

(A.14)

Furthermore, W?
k can be expressed in the form of eigen-decomposition as follows

W?
k =

NT∑
i=1

λix?k(x?k)H , (A.15)

where λ1≥λ2≥ ·· ·≥λNT are the maximum eigenvalues. Next, we assume Rank(Υ?
k) =

NT, then Rank(W?
k) = 0, which leads to zero solution W?

k = 0.

Thereby, when the matrix M?
k is full rank, the optimal solution W?

k of problem in

(3.3) satisfies the rank-one constraint C7.

2. Not Full Rank: In this case, matrix M?
k is not a full rank matrix, i.e., Rank(M?

k)≤

NT. We define r = Rank(M?
k). Suppose Ξ?

k = ∑NT−r
i=1 ξ?k,i(ξ?k,i)H and the linear

combinations of vectors ξk,j span the null space of M?
k, which yields to

M?
kΞ?

k = 0, (A.16)

where Rank(Ξ?
k) =NT− r. Based on the KKT condition K2, we have

Υk � 0⇒Ξ?
kΥk ≥ 0

Ξ?
k

(
M?

k−
(

ψ?k
Γk,req

+ψ?k

)
H?
k

)
≥ 0

Ξ?
kM?

k︸ ︷︷ ︸
0

−Ξ?
k

(
ψ?k

Γk,req
+ψ?k

)
H?
k ≥ 0

⇒
(

ψ?k
Γk,req

+ψ?k

)
Ξ?
kH?

k ≤ 0.

(A.17)

Since ψ?k > 0 from the KKT condition K2, the inequality in (A.17) can yield to

Ξ?
kH?

k = 0. (A.18)

To further exploit the equality in (A.18), we have

Ξ?
k

(
ψ?k

Γk,req
+ψ?k

)
H?
k = 0⇒Ξ?

k (M?
k−Υ?

k) = 0

Ξ?
kM?

k︸ ︷︷ ︸
0

−Ξ?
kΥ?

k = 0

Ξ?
kΥ?

k = 0.

(A.19)
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From the (A.19), it is clear that Ξ?
k spans NT− r dimensions of Υ?

k. According to

the condition K1 that gives Υ?
kW?

k = 0, W?
k spans the orthogonal dimensions of

Upsilon?k. Therefore, we have

Rank(W?
k)≥ Rank(Ξ?

k) =NT− r. (A.20)

With Rank(A−B)≥ Rank(A)−Rank(B), the rank of Υ?
k is given by

Rank(Υ?
k)≥ Rank(M?

k)−Rank(H?
k) = r−1,

⇒−Rank(Υ?
k)≤ 1− r.

(A.21)

Thereby, we have
Rank(W?

k) =NT−Rank(Υ?
k)

≤NT + 1− r.
(A.22)

Based on inequalities (A.20) and (A.22), we have

NT− r ≤ Rank(W?
k)≤NT + 1− r, (A.23)

where the rank of W?
k has two cases, one is Rank(W?

k) = NT− r and another is

Rank(W?
k) =NT +1−r. When the rank of W?

k satisfy the first situation, we have

Ξ?
kΥ?

k = 0,W?
kΥ?

k = 0, ⇒Ξk = W?
k, (A.24)

which is proved in the expression of (A.19). Due to the equality Ξ?
kH?

k = 0 in

(A.18), W?
k satisfies W?

kH?
k = 0. This cannot be the optimal solution to the primal

problem, where this solution indicates zero power allocated to any sensor k during

the process of beamforming. When the rank of W?
k satisfy the second situation

(Rank(W?
k) =NT + 1− r), the rank of W?

k can be rewritten as

W?
k = [Ξ?

k ω?k],

= λ?k,ωω
?
k(ω?k)H +

NT−r∑
i=1

λk,ξξ
?
k,i(ξ?k,i)H ,

(A.25)

which is valid due to Rank(Ξ?
k) = NT− r and Ξ?

kΥ?
k = 0. In addition, λ?k,ω and

λk,ξ represent the scaling factors for corresponding basis vectors, respectively. This

optimal solution W?
k can be further written in format with rank-one expression as

follows

W̃?
k = W?

k−
NT−r∑
i=1

λk,ξξ
?
k,i(ξ?k,i)H = λ?k,ωω

?
k(ω?k)H . (A.26)
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At the same time, we have

W̃E = W?
E +

NT−r∑
i=1

λk,ξξ
?
k,i(ξ?k,i)H . (A.27)

If we can prove the rank-one solution W̃?
k equal to the original optimal solution

W?
k, which further indicates the tight rank relaxation. In order to focus on the

more precise equation, we keep the interference from energy signal wE, which is

ignored in (2.6). Thereby, the data rate can be recast as follows

R̂k = log2

1 + Tr(HkWk)
Tr(HkWE) +∑

i∈K\{k}Tr(HkWi) + δ2
s
ρk


= log2

Tr(HkWk) + Tr(HkWE) +
∑

i∈K\{k}
Tr(HkWi) + δ2

s

ρk


− log2

Tr(HkWE) +
∑

i∈K\{k}
Tr(HkWi) + δ2

s

ρk

 .
(A.28)

We follow the same principle as (3.6), the achievable rate can be further expressed

as follows

R̂k =log2

Tr(HkWk) + Tr(HkWE) +
∑

i∈K\{k}
Tr(HkWi) + δ2

s

ρk


−
∑
k∈K

Tr(Wk∇HWk
B1)−Tr(WE∇HWEB1),

(A.29)

where
∇HWk

B1 = 1
ln2

Hk

Tr(HkWE) +∑
i∈K\{k}Tr(HkWi) + δ2

s
ρk

,

∇HWEB1 = 1
ln2

Hk

Tr(HkWE) +∑
i∈K\{k}Tr(HkWi) + δ2

s
ρk

.

(A.30)

In (A.29), some unrelated constant terms are ignored. Hence, the problem formu-
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lation of (3.10) can be recast as follows

maximize
τk,ρk,Wk,WE

τk

subject to C1 :∑k∈KTr(Wk) + Tr(WE)≤ Pmax,

C2 : Tr(HkWk)
Tr(HkWE)+

∑
i∈K\{k} Tr(HkWi)+

δ2
s
ρk

≥ Γk,req, ∀k,

C3 :∑i∈KTr(HkWi) + Tr (HkWE)≥ Pk,req
η(1−ρk) ,

C5 : 0≤ ρk ≤ 1, ∀k,

C6 : τk ≤ log2

(
Tr(HkWk) + Tr(HkWE) +∑

i∈K\{k}Tr(HkWi) + δ2
s
ρk

)
−∑k∈KTr(Wk∇HWk

B1)−Tr(WE∇HWE
B1), ∀k,

C8 : Wk � 0, ∀k.

(A.31)

Since W?
E +∑

k∈KW?
k = W̃?

E +∑
k∈KW̃?

k, the constraints C1, C2 and C3 have

the same feasible sets with the solution of {W?
E,W?

k} or {W̃?
E,W̃?

k}. The final

uncertainty is about constraint C7. Accordingly, we have

C7 :∆′−
∑
k∈K

Tr(Wk∇HWk
B1)−Tr(WE∇HWEB1)

= ∆′− 2Hk

ln2
(
Tr(HkWE) +∑

i∈K\{k}Tr(HkWi) + δ2
s
ρk

) ,
= ∆′− 2Hk

ln2
(
Tr
[(

WE +∑
i∈K\{k}Wi

)
Hk

]
+ δ2

s
ρk

) ,
(A.32)

where ∆′ denotes some irrelative terms. When we put {W̃?
E,W̃?

k} into equation

(A.32), we haveW̃E +
∑

i∈K\{k}
W̃i

Hk

=
W?

E +
NT−r∑
i=1

λk,ξξ
?
k,i(ξ?k,i)H

Hk +
 ∑
i∈K\{k}

W?
k−

NT−r∑
i=1

λk,ξξ
?
k,i(ξ?k,i)H

Hk

(a)=
W?

E +
∑

i∈K\{k}
W?

k

Hk,

(A.33)

where (a) represent the proved result in (A.18), i.e., Ξ?
kH?

k = 0, and some unrelated

terms are ignored in this formula presentation. It is shown that the values of

{W̃?
E,W̃?

k} and {W?
E,W?

k} are equal in this optimization problem.
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As a result, the constraint relaxation is tight. When B?
k is full rank, then the optimal

solution W?
k satisfy the rank-one constraint. When B?

k is not full rank, then the optimal

solution W̃?
k with Rank(W̃?

k) = 1 is equivalent to the optimal solution W?
k.
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Appendix B

As mentioned before, we assume that V? and Vs denote optimal solutions of (3.14) and

(3.19), respectively. To further verify the condition that V? is equivalent to Vs , we define

the objective function in (3.14) as f1(V) and the objective function in (3.19) as f2(V,µ).

Since V? satisfy the rank-one constraint, then we could have ‖V?‖∗−‖V?‖2≤ 0. Besides,

in terms of all V that satisfies ‖V∗‖−‖V‖2 = 0, the optimal solutions V? of the problem

in (3.14) yields to f1(V?) ≤ f1(V). On the other hand, the optimal solution Vs of the

problem in (3.19) yields to f2(Vs,µs)≤ f2(V?,µs). Accordingly, we have

f2(Vs,µs)≤ f2(V?,µs),

⇒ f1(Vs) + 1
µs

(‖Vs‖∗−‖Vs‖2)≤ f1(V?) + 1
µs

(‖V?‖∗−‖V?‖2)︸ ︷︷ ︸
0

,

⇒ f1(Vs) + 1
µs

(‖Vs‖∗−‖Vs‖2)≤ f1(V?),

⇒‖Vs‖∗−‖Vs‖2 ≤ µs (f1(V?)−f1(Vs)) .

(B.1)

Suppose the feasible solution sets as {Vs} and V̄s as the limit point belonging to {Vs},

this yields to lim
s∈S

Vs = V̄, where S denotes an infinite subsequence. First, we consider

taking the limitation,i.e., s→∞, on both side of problem in (B.1) as follows

lim
s∈S

(‖Vs‖∗−‖Vs‖2)≤ lim
s∈S

µs (f1(V?)−f1(Vs)) ,

⇒‖V̄s‖∗−‖V̄s‖2 ≤ lim
s∈S

µs (f1(V?)−f1(Vs)) .
(B.2)

When the penalty factor µs is sufficiently small, such as µs→ 0, the value on the right-

hand side of the inequality in (B.2) would converge to 0. In other words, ‖V̄s‖∗−‖V̄s‖2 =

0 with a small enough penalty factor. As a result, we could conclude that the limit

point V̄s belongs to the solution of the problem in (3.14), where it satisfies the rank-one

constraint. Next, we would prove this value is an optimal solution to the problem in
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(3.14) as follows

f1(V̄s)≤ f1(V̄s) + lim
s∈S

1
µs

(‖Vs‖∗−‖Vs‖2) ,

⇒ f1(V̄s) + lim
s∈S

1
µs

(‖Vs‖∗−‖Vs‖2)≤ f1(V?),

⇒ f1(V̄s)≤ f1(V?),

(B.3)

where the objective function results with V̄s is no larger than the counterpart result with

V?. Thereby, the optimal solution V̄s of the problem in (3.19) is also the optimal solution

to the problem in (3.14).
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