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Abstract—There are two important aspects of cross-layer gains
in multiuser OFDMA systems with slow fading channels. They
are the system goodput gain as well as the packet diversity
gain. The former aspect of cross-layer designs has been well-
studied under perfect CSIT conditions and is known as the
multi-user diversity gain (MuDiv). In cross-layer OFDMA systems
with perfect CSIT, it is well known that the system throughput
(ergodic capacity) scales in the order of O(log log K) due to
the MuDiv gain, where K is the number users. However, in
slow fading channels with delayed CSIT, there will always be
potential packet errors (due to channel outage if the scheduled
data rate exceeds the instantaneous mutual information) even
if very strong channel coding is applied at the base station. In
this case, the cross-layer packet outage diversity is important to
protect the packet errors due to channel outage and there is a
natural tradeoff between the goodput gain and packet diversity.
In this paper, we shall focus on the asymptotic tradeoff analysis
between the system goodput gain and the packet outage diversity
gain in cross-layer OFDMA systems with delayed CSIT.

Index Terms—OFDMA, CSIT, slow fading, diversity, cross-
layer.

I. INTRODUCTION

IN OFDMA systems, it is well-known [1], [2] that cross-
layer scheduling (by selecting a set of users with the best

channel condition for each subcarrier) can substantially in-
crease the system spectral efficiency due to multiuser diversity
gain (MuDiv) on system throughput. However, in all these
works, the channel state knowledge at the base station (CSIT)
is assumed to be perfect. When we have perfect CSIT, packet
errors can be ignored even in slow fading channels by careful
rate adaptation as well as applying strong channel coding for
the transmitted packets. Hence, system performance is usually
evaluated based on ergodic capacity. In [3], it is shown that
system throughput (ergodic capacity) in cross-layer systems
scales with O(log log K) for multi-users systems with perfect
knowledge of CSIT at the base station where K is the number
of users in the system.In [4], an opportunistic scheduling
approach is proposed with rate feedbacks from the mobiles.In
[5], cross-layer scheduling for OFDMA systems is analyzed
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using limited feedback in the CSIT. The authors also show that
system throughput scales in the order of O(log log K) with
one bit feedback. Yet, in all these cases, due to the perfect (or
partial) feedback1 assumption, packet error (packet outage) is
not an issue as long as the error correction code is sufficiently
strong and hence, these works also considered ergodic capacity
as the performance objective.

However, in practice, the CSIT can never be perfect due
to either the CSIT estimation noise in Time Divison Du-
plex(TDD) systems or the outdate of CSIT due to feedback
delay. When the CSIT is imperfect, there will be potential
packet transmission error because of channel outage (packet
outage). This happens even if powerful error correction coding
is applied. Because of delayed CSIT, the instantaneous mutual
information is not known precisely at the base station and
hence, there is finite probability that the scheduled data
rate exceeds the instantaneous mutual information, causing
the transmitted packet to be corrupted. Hence, conventional
performance measure by throughput (ergodic capacity) fails
to account for the penalty of packet outage.In the case of
delayed CSIT in slow fading channels, the cross-layer packet
outage diversity is important to protect the packet errors due
to channel outage and there is a natural tradeoff between the
system goodput gain and packet outage diversity in cross-layer
systems.

In this paper, asymptotic tradeoff analysis between the
system goodput gain and the packet outage diversity gain in
cross-layer OFDMA 2 systems with slow frequency selective
fading and delayed CSIT are focused. The OFDMA cross-
layer design with delayed CSIT is modeled as an optimization
problem where the rate adaptation, power adaptation and
subcarrier allocation policies are designed to optimize the
system goodput (b/s/Hz successfully received by the mobiles).
We derived simple closed-form expressions for the power and
rate allocations as well as the asymptotic order of growth in
system goodput for general CSIT error σ2

e ∈ [0, 1).
The rest of the paper is organized as follows. In Section

II, we outline the OFDMA system model. In Section III, we

1Partial feedback here refers to the limited feedback. Perfect feedback here
refers to the assumption that there is no feedback errors or feedback delay in
the limited feedback.

2The OFDMA system in our paper is a concrete example to demonstrate
the idea of the paper. Actually, our analysis technique and concept in the
trade-off between diversity and goodput can be generalized and applied to
many systems which support scheduling.
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define system goodput and formulate the cross-layer design
as an optimization problem. In Section III-B, we shall give
closed-form solution for rate and power adaptation and discuss
a low-complexity subcarrier assignment policy. In Section
IV, we shall analyze the asymptotic tradeoff between system
goodput and packet outage diversity for large number of users.
In Section V, we conclude with a summary of results.

II. SYSTEM MODEL

In this paper, we shall adopt the following convention. X
denotes a matrix and x denotes a vector. X† denotes matrix
transpose and XH denotes matrix hermitian.

A. Frequency Selective Fading Channel Model and Delayed
CSIT Model

We consider a downlink transmission in OFDMA system.
The channel is assumed to be time-invariant, frequency se-
lective channel model. The number of resolvable paths are
approximately L =

⌊
W

Δfc

⌋
, where W is the signal bandwidth

and Δfc is the coherence bandwidth. Consider a time-invariant
L-tap delay line channel model, the channel impulse response
between the base station and the k-th user is given by:

h(τ ; k) =
L−1∑
n=0

h(k)
n δ(τ − n

W
) (1)

where {h(k)
n } are modeled as independent identically dis-

tributed (i.i.d. ) complex Gaussian circularly symmetric ran-
dom variables with zero mean and variance 1

L . Therefore, the
received signal of the k-th user can be represented as the
follow:

yk(t) =
L−1∑
n=0

h(k)
n x(t − n

W
) + n(t) (2)

where x(t) is the transmitted signal from the base station and
n(t) is complex white Gaussian noise with density N0.

Using nF -point IFFT and FFT in the OFDMA system, the
equivalent discrete channel model in the frequency domain
(after removing the cyclic prefix with length L) is:

yk = Hkx + nk (3)

where x and yk are nF × 1 transmit and receive vectors and
nk is the nF ×1 i.i.d. complex Gaussian channel noise vector
with zero mean and normalized covariance E[nknH

k ] = 1/nF

(so that the total noise power across the nF subcarriers is
unity). Hk is the nF×nF diagonal channel matrix between the
base station and the k-th user Hk = diag

[
H

(k)
0 , ..., H

(k)
nF −1

]
,

where H
(k)
m =

∑L−1
l=0 h

(k)
l e

−j2πlm
nF ,∀m ∈ {0, ..., nF − 1} are

the FFT of the time-domain channel taps {h(k)
0 , ..., h

(k)
L−1}.

Since H
(k)
m is a linear combination of Gaussian random

variables, {H(k)
0 , .., H

(k)
nF −1} are circularly symmetric complex

Gaussian random variables with zero mean and the correlation
between H

(k)
m and H

(k)
n is

E
[
H(k)

m H(k)
n

H
]

=
1
L

1 − e
−2jπL(m−n)

nF

1 − e
−2jπ(m−n)

nF

= ηk,m,n (4)

Observe that ηk,m,n = 0 when (m−n)L is integer multiple of
nF . Hence, we can divide {H(k)

0 , .., H
(k)
nF −1} into Ls = nF /L

groups, where each group has L i.i.d. elements, as follows:

⎡⎢⎢⎢⎢⎣
H

(k)
0

H
(k)
Ls

...

H
(k)
(L−1)Ls

⎤⎥⎥⎥⎥⎦
︸ ︷︷ ︸

H
(k)
0

⎡⎢⎢⎢⎢⎣
H

(k)
1

H
(k)
Ls+1
...

H
(k)
(L−1)Ls+1

⎤⎥⎥⎥⎥⎦
︸ ︷︷ ︸

H
(k)
1

· · ·

⎡⎢⎢⎢⎢⎣
H

(k)
Ls−1

H
(k)
2Ls−1

...

H
(k)
LLs−1

⎤⎥⎥⎥⎥⎦
︸ ︷︷ ︸

H
(k)
Ls−1

In other words, there are L independent subbands (labelled as
m = 0, 1, 2, ..., L−1) in the nF -subcarriers with Ls correlated
subcarriers in each subband.

The CSI at the base station transmitter (CSIT) is obtained
from either explicit feedback (FDD systems) or implicit feed-
back (TDD systems) using channel reciprocity between uplink
and downlink. Yet, in either case, the CSIT is outdated which
resulted from feedback or duplexing delay. Hence, for sim-
plicity, we consider TDD systems (with channel reciprocity)
and assume the CSIR is perfect but the CSIT is outdated. The
estimated CSIT (time domain) at the base station for the k-th
user is given by:

ĥ
(k)
l = h

(k)
l +Δh

(k)
l Δh

(k)
l ∼ CN(0, σ2

e) l ∈ {0, 1, .., L−1}
Hence, the estimated CSIT in frequency domain (m-th sub-
carrier) Ĥ

(k)
m after nF -point FFT of {ĥ(k)

0 , ..., ĥ
(k)
L−1} is given

by:

Ĥ(k)
m = H(k)

m + ΔH(k)
m ΔH(k)

m ∼ CN(0, σ2
e) (5)

where H
(k)
m is the actual CSIT of the m-th subcarrier for the

k-th user, ΔH
(k)
m represents the CSIT error which is circular

symmetric complex Gaussian (CSCG) random variable with
zero mean and variance σ2

e . The correlation of the CSIT error
between the m-th and n-th subcarriers of user k is given by:

E
[
ΔH(k)

m ΔH(k)
n

H
]

= σ2
e

1 − e
−2jπL(m−n)

nF

1 − e
−2jπ(m−n)

nF

(6)

Finally, the CSI between the K users are i.i.d.

B. Instantaneous Mutual Information and System Goodput

The instantaneous mutual information between the base
station and the k−th user is given by the maximum mutual
information of the channel input x and channel output yk. Let
Bk denotes the set of subband indices m = {0, 1, ..., L − 1}
assigned to the k-th user. Hence, the instantaneous mutual
information between the base station and the k-th mobile
(given the CSIR Hk) is given by:

Ck =
Ls−1∑
n=0

∑
m∈Bk

log2(1 +
nF pk|H(k)

mLs+n|2
LsNd

) (7)

where Ls is the number of correlated subcarriers in one
subband, Nd is the number of independent subbands allocated
to the k−th user and pk is the transmit power allocated to the
k-th user.
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In general, packet error is contributed by channel noise and
the channel outage. In the former case, as long as we can
provide sufficient strong channel coding (e.g. LDPC) with
sufficiently long block length (e.g. 10Kbytes) to protect the
information, it can be shown in [6] that packet errors due to
the first factor is practically negligible. On the other hand, the
channel outage effect is systematic and cannot be eliminated
by simply using strong channel coding. This is because the
instantaneous mutual information3 Ck(Hk) between the base
station and k-th user is a function of actual CSI Hk, which
is unknown to the base station. Hence, the packet will be
corrupted whenever the scheduled data rate rk exceeds the
instantaneous mutual information Ck. Hence, for simplicity,
we shall model the packet error solely by the probability that
the scheduled data rate exceeding the instantaneous mutual
information (i.e. packet error due to the channel outage only).

In order to account for potential packet errors, we shall
consider the system goodput (b/s/Hz successfully delivered
to the mobile station) as our performance measure. Since
packet errors (due to channel outage) is very important to
the overall goodput performance, we shall require diversity
to protect the information from channel outage to enhance the
chance of successful packet delivery to the mobile receivers in
the presence of outdated CSIT. By assigning Nd independent
subbands to a mobile user, we sacrifice the cross-layer goodput
gain to trade for Nd order diversity protection on the packet
outage probability. We first define the instantaneous goodput
of a packet transmission for user k as

ρ =
rk

nF
1(rk ≤ Ck) (8)

where 1(.) is an indicator function which is 1 when the event
is true and 0 otherwise. The average total goodput4 is defined
as the total average b/s/Hz successfully delivered to the K
mobiles (averaged over multiple scheduling slots) and is given
by:

Ugoodput(A,B,P ,R) =
1

nF
EĤ

{
K∑

k=1

rk Pr[rk ≤ Ck|Ĥ]

}
where R = {r1, ..., rK} is the rate allocation policy, P =
{p1, ..., pK :

∑
k pk ≤ P0} is the power allocation policy ,

{A} is the user selection policy with respect to the outdated
CSIT Ĥ, {B} is the set of subband allocation policy with
respect to Nd independent subbands and EĤ{X} denotes the
expectation of the random variable X w.r.t Ĥ. These policies
are formally defined in the next section.

III. CROSS-LAYER DESIGN FOR OFDMA SYSTEMS

In this section, we shall formulate the cross-layer scheduling
design as an optimization problem. We shall first introduce the
following definitions.

3The instantaneous mutual information represents the maximum achievable
data rate for error free transmissions.

4The utility function can incorporate fairness, we can modify the
system utility to be another function of average goodputs such as
UPF (ρ1, ρ2, ..., ρk) =

∑K
i=1 log(ρi) or Uweight(ρ1, ρ2, ..., ρk) =∑K

i=1 αiρi . Then we can follow the same procedure of this paper to derive
a scheduling algorithm which consider fairness.

Definition 1 (Rate Allocation Policy R): Let rk(Ĥ) be the
scheduled data rate of the k-th user and R = {rk(Ĥ) : k ∈
A(Ĥ)} be the rate allocation policy.

Definition 2 (Power Allocation Policy P): Let pk(Ĥ) be
the transmitted power of the k-th user and P = {pk(Ĥ) :∑

k∈A(Ĥ) pk(Ĥ) = P0} be the power allocation policy with
respect to a total transmit power P0.

Definition 3 (Admitted User Set Policy A): Let A(Ĥ) =
{k ∈ {1, K} : pk > 0} be the set of admitted users (users that
are assigned downlink subbands for transmitting payload) and
A = {A(Ĥ)} be the admitted user set allocation policy.

Definition 4 (Subcarrier Allocation Policy B ): Let
Bk(Ĥ) ⊂ {0, 1, 2, .., L − 1} be the set of subband indices
assigned to the k-th user for k ∈ A(Ĥ) such that each
selected user is assigned Nd independent subbands be the
subcarrier allocation policy with respect to Nd independent
subbands.

Definition 5 (Exponential Equality): “ .= ” denotes expo-
nential equality. Specifically, f(x) .= g(x) with respect to the
limit x → a,a = {0,∞}, if limx→a

log f(x)
log g(x) = 1.“

.≥ ” and

“
.≤ ” are defined in similar manner.
Definition 6 (Asymptotic Upper Bound): O(g(x)) denotes

asymptotic upper bound. Specifically, f(x) = O(g(x)) if
f(x) ≤ Mg(x) ∀x > x0 for some x0 and M > 0.

A. Cross-Layer Design Optimization Formulation

The cross-layer scheduling algorithm is responsible for
the allocation of channel resource at every scheduling slot.
The base station collects the delayed CSIT from the K
mobile users at the beginning of the scheduling slot and
deduces the user selection (admitted set A(Ĥ)), the sub-
band allocation {Bk(Ĥ), k ∈ A(Ĥ)}, the power allocation
{pk(Ĥ) ≥ 0, k ∈ A(Ĥ)} and the rate allocation {rk(Ĥ), k ∈
A(Ĥ)} so as to optimize the total average system goodput
Ugoodput(A,R,P ,B) at a target packet outage probability ε.
This can be written into the following optimization problem.

Problem 1 (Cross-Layer Optimization Problem ): The op-
timal power allocation policy P∗, rate allocation policy R∗,
user selection policy A∗ and subband allocation policy B∗ are
obtained by solving the following optimization problem:

arg max
P,R,A,B

Ugoodput(A,R,P ,B) s.t.

Pr{rk >

Ls−1∑
n=0

∑
m∈Bk

log2

(
1 +

nF pk

LsNd
|H(k)

mLs+n|2
)
|Ĥ} = ε

where Ls is the number of correlated subcarriers in one
subband.
The key to solve the above optimization problem
is on the modeling of the conditional packet
outage probability Pout(k, Ĥ). The cumulative
distribution function (cdf) of the random variable

Ik =
Ls−1∑
n=0

∑
m∈Bk

log2

(
1 + nF pk

NdLs
|H(k)

mLs+n|
2)

(conditioned

on the delayed CSIT Ĥ) is in general very tedious and
it is virtually impossible to obtain closed-form rate and
power solutions by brute force optimization on top of
the complicated expression. To obtain first order design
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insight and simple closed-form solutions, we shall consider
asymptotic Pout(k, Ĥ) for high and low SNR. We shall
summarize the results in the following lemmas.

Lemma 1: (Asymptotic Outage Probability for High and
Low SNR :) (P0 → ∞ or P0 → 0), the asymptotic conditional
packet outage probability Pout(k, Ĥ) is given by:

Pout(k, Ĥ) .= Fχ2
k;s2(Bk);σ2

e/Nd

(
(2

rk
LsNd − 1)LsNd

nF pk

)
(9)

where Fχ2
k ;s2(Bk);σ2

e/Nd
(x) is the cdf of non-central chi-

square random variable χ2
k = 1

Nd

∑
m∈Bk

|H(k)
mLs

|2 with
2Nd degrees of freedom, non-centrality parameter s2(Bk) =
1

Nd

∑
m∈Bk

|Ĥ(k)
mLs

|2 and variance σ2
e/Nd.

Proof 1: Due to page limitation, only sketch of the proof is
provided in appendix A. Please refer to [7] for a full version
of the paper.

The optimization Problem 1 consists of a mixture of com-
binatorial variables (A, {Bk}) and real variables ({rk}, {pk}).
We shall first obtain closed-form solution for rate and power
allocation for a given admitted user set A and subcarrier
allocation {Bk}.
B. Closed-form Solutions for Power and Rate Allocation Poli-
cies

In this section, we shall focus on deriving the asymptotically
optimal power and rate allocation solution that optimize the
system goodput for a given admitted user set A and subcarrier
allocation {Bk}. Using Lemma 1, the target packet outage
constraint in (9) for high and low SNR is equivalent to the
following:

rk = LsNd log2

(
1 +

nF pk

NdLs
F−1

χ2
k;s2(Bk);σ2

e/Nd
(ε)
)

(10)

Substituting the equivalent constraint (10) into the system
goodput, the objective function Ugoodput(A,R,P ,B) in (9) is
given by:

(1 − ε)

nF
EĤ

[∑
k∈A

LsNd log2

(
1 +

nF pk

NdLs
F−1

χ2
k
;s2(Bk);σ2

e/Nd
(ε)

)]
Taking into consideration of the total transmit power con-

straint P0, the Lagrangian function L({pk}, λ) of the opti-
mization problem in (9) is given by:

(1 − ε)LsNd

nF

∑
k∈A

log2

(
1 +

nF pk

NdLs
F−1

χ2
k
;s2(Bk);σ2

e/Nd
(ε)

)
− λpk

where λ > 0 is the Lagrange multiplier with respect to the
total transmit power constraint. Using standard optimization
techniques, the optimal power allocation is given by:

p∗k =
LsNd

nF

(
1 − ε

λ
− 1

F−1
χ2

k;s2(Bk);σ2
e/Nd

(ε)

)+

∀k ∈ A(Ĥ)

(11)
Substituting (11) into the equivalent packet outage con-

straint in (10), the optimal rate allocation r∗k is given by:

r∗k =

(
LsNd log2

(
(1 − ε)F−1

χ2
k
;s2(Bk);

σ2
e

Nd

(ε)
1

λ

))+

∀k ∈ A(Ĥ)

(12)

C. Low Complexity User Selection and Subcarrier Allocation
Policies

In this section, we focus on the combinatorial algorithm for
user selection and subcarrier allocation given a delayed CSIT
Ĥ. Using the optimal power allocation solution in (11) and
for sufficiently large average SNR constraint P0, the Lagrange
multiplier λ is given by:

λ =
|A| (1 − ε)

nF P0/NdLs +
∑

k∈A
1

F−1
χ2

k
;s2(Bk);σ2

e/Nd
(ε)

(13)

Substituting into the rate allocation solution in (12), the
conditional system goodput G∗

goodput(A, {Bk})is given by
(14) at the top of the next page. The conditional system
goodput G∗

goodput(A, {Bk}) is a function of A and {Bk}
which are combinatorial variables. The optimal A∗ and {B∗

k}
can be obtained by exhaustive search over all possible com-
binations that maximizes G∗

goodput(A, {Bk}). However, such
procedure has huge complexity because of two factors. Firstly,
the objective function G∗

goodput(A, {Bk}) in (14) is difficult
to compute and with coupled dependency on A and {Bk}.
Secondly, the combinatorial search itself is coupled between
the nF subcarriers.

Yet, we observe that for large average SNR P0, the term
F−1

χ2
k
;s2(Bk);

σ2
e

Nd

(ε)
∑

i∈A
1

F
−1
χ2

i
;s2(Bi);σ2

e/Nd
(ε)

|A| is of order O(1) (con-
stant order) and does not scale with P0. Hence, for large
P0, the first term shall dominate and the conditional system
goodput can be approximated by:

G∗
goodput(A, {Bk}) ≈ (1 − ε)Ls

nF /Nd

∑
k∈A

log2

⎛⎜⎝ F−1

χ2
k
;s2(Bk);

σ2
e

Nd

(ε)

NdLs|A|/(P0nF )

⎞⎟⎠
(15)

Observe that F−1
χ2

k
;s2;σ2

e/Nd
(x) is a increasing function of s2 for

a given x. Hence, the equivalent combinatorial search problem
for A and {Bk} is given by:

(A∗, {B∗
k}) = arg max

A,{Bk}
|Bk|=Nd

∏
k∈A

[ ∑
m∈Bk

|Ĥ(k)
mLs

|2
]

(16)

However, even with the simplified searching objective in
(16), the search for A and {Bk} are still coupled among
the nF subcarriers due to the constraint that each Bk should
contain Nd independent subbands. To address the complexity
issue, we shall propose a low complexity greedy combinatorial
search algorithm to obtain the admitted user set A∗ and the
subcarrier allocation sets {B∗

k}. The proposed algorithm is
shown to achieve close-to-optimal performance by numerical
simulation which is illuistrated in Figure 1.

The greedy algorithm is summarized below.
Greedy Algorithm for A and {Bk} at high SNR.

Step 1:Initialize A∗ = ∅,B∗
k = ∅, a user selection list

Aselection which include all user indices and a
subband selection list Bselection which include all
independent subband indices.

Step 2:Initialize a temporary list Tk for all user in Aselection

to store subband indices.
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(1 − ε)Ls

nF /Nd

∑
k∈A

log2

⎛⎜⎝F−1

χ2
k;s2(Bk);

σ2
e

Nd

(ε)

|A|

⎛⎜⎝P0nF

NdLs
+
∑
i∈A

1
F−1

χ2
i ;s2(Bi);

σ2
e

Nd

(ε)

⎞⎟⎠
⎞⎟⎠ (14)
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Fig. 1. A comparison of the average system goodput versus SNR with CSIT
error σ2

e = 0.01.

Tk = arg max
|Tk|=Nd

∑
m∈Bselection

|Ĥ(k)
mLs

|2

Step 3:Select user k = arg max
k∈Aselection

∑
m∈Tk

|Ĥ(k)
mLs

|2.
Step 4:Put the selected users into set A∗ and the correspond-

ing subbands into set B∗
k .

Step 5:Remove the selected users and the selected subbands
from Aselection and Bselection and repeated step 2
until all the independent subbands are allocated to
users.

On the other hand, the water-filling solution in (11) for low
SNR (P0 → 0) will give only one non-zero term for p∗k. In
other words, for low SNR, we have |A| = 1 only and the
p∗k = P0 for some k ∈ A. The corresponding system goodput
G∗

goodput(A, Bk) for low SNR is given by:

(1 − ε)NdLs

nF
log2

⎛⎝1 +
F−1

χ2
k
;s2(Bk);σ2

e/Nd
(ε)P0nF

NdLs

⎞⎠ for k ∈ A

Observe that F−1
χ2

k ;s2(Bk);σ2
e/Nd

(x) is a increasing function of

s2 for a given x. Hence, the equivalent combinatorial search
problem for A and Bk is given by:

(A∗, B∗
k) = arg max

k,Bk

|Bk|=Nd

[ ∑
m∈Bk

|Ĥ(k)
mLs

|2
]

(17)

In this case, the optimal combinatorial search algorithm for A
and Bk in low SNR is similar to the one in high SNR, except
that we only select one user with the corresponding subbbands
and stop the algorithm after the first iteration.

IV. ASYMPTOTIC PERFORMANCE ANALYSIS FOR

CROSS-LAYER DESIGN

In this section, we shall analyze asymptotically the order of
growth of the average system goodput with respect to some
important system parameters such as the average SNR P0, the
number of users K and the CSIT quality (CSIT error variance)
σ2

e . We shall first introduce the following important lemma
based on extreme value theorem.

Lemma 2 (Extreme Value Theorem): Let {X1, ..., XK} be
a set of K i.i.d. central chi-square random variables with 2n
degrees of freedom and variance σ2

X and X∗ = maxk Xk,φ =
σ2

X log K . We have

Pr(φ + σ2
X (n − 2) log log K ≤ X∗ ≤ φ + σ2

Xn log log K)

≥ 1 −O
(

1
log K

)
(18)

for large K .
In other words, X∗ ≈ O (σ2

X log K + σ2
Xn log log K

)
with

probability one for sufficiently large K .
Proof 2: Please refer to appendix B.

As a result, the average system goodput is given by:
Theorem 1: Asymptotic System Goodput for High and Low

SNR:

ρ∗ = EĤ[G∗∗
goodput(Ĥ)] (19)

=

⎧⎪⎪⎨⎪⎪⎩
O
[
(1 − ε) log

(
F−1

χ2
k∗ ;s̃2;σ2

e/Nd

(ε)P0

)]
for high SNR,

O
[
(1 − ε)P0F

−1

χ2
k∗ ;s̃2;σ2

e/Nd

(ε)
]

for low SNR.

for sufficiently large K where s̃2 =(
1−σ2

e

Nd
(log K + Nd log log K)

)
.

Proof 3: Please refer to appendix C.
Hence, the order of growth in the cross-layer throughput

gain is contained entirely in the inverse non-central chi-square
cdf via the non-centrality parameter s2. Yet, there is no closed
form for F−1

χ2
k;s2;σ2

e/Nd
(x) in general case. We shall discuss

the asymptotic tradeoff between cross-layer goodput gain and
the packet outage diversity Nd in the following asymptotic
cases.In addition to the asymptotic analysis, we shall also
simulate the system performance in term of average system
goodput and compare the result with asymptotic performance
in different scenarios. In our simulation, frequency selective
fading channel is considered with uniform power-delay profile
for simplicity. The number of subcarriers Nf is 1024 and the
total number of independent taps L = 16. Hence, the 1024
subcarriers are grouped into 16 subbands, each containing
Ls = 64 correlated subcarriers. The target packet error
probability ε is set to 0.01. Each point in the figure is obtained
by 5000 realizations.
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A. Frequency Diversity at Small Target Packet Outage Prob-
ability ε

We shall first introduce the following lemma about
F−1

χ2
k;s2;σ2

e/Nd
(x) for small x.

Lemma 3 (Order of Growth for small ε): Let X be a non-
central r.v. with 2n degrees of freedom, noncentral parameter
s2 and variance σ2

X . For a given s2, the inverse cdf of X can
be expressed as below for asymptotically small ε.

F−1
X (ε) .= ε1/nσ2

X(n!)1/n exp
(

s2

nσ2
X

)
(20)

Thus, the average outage probability Pout(k) is given by the
following theorem:

Theorem 2 (Frequency Diversity at Small ε ): For
sufficiently small ε, the average packet outage probability
Pout(k) scales with the SNR P0 (at a given average goodput)
in the order of:

Pout(k) = EĤ

[
Pout(k, Ĥ)

]
= O

(
P−Nd

0

)
(21)

Hence, Nd is the order of frequency diversity protection
against packet outage.

B. Cross-Layer Goodput Gains at Large K and fixed Nd

We have the following lemma about the order of growth of
inverse non-central chi-square cdf F−1

χ2
k;s2;σ2

X
(x) with respect

to s2 for large s2.
Lemma 4 (Order of Growth for large s): Let X be a non-

central random variable with 2n degrees of freedom, noncen-
trality parameter s2 > 0 and variance σ2

X . For a given ε, the
inverse cdf of X can be expressed as F−1

X (ε) .= O(s2σ2
X)

asymptotically for large s2.
Proof 4: With regrades to the proof of Lemma 3,4 and

Theorem 2,due to page limitation, the proofs are removed.
Please refer to [7] for a full version of the paper.
Using the results of Lemma 2 and Lemma 4 for large K and
σ2

e < 1, we have the following Theorem:
Theorem 3: (Asymptotic System Goodput at Large K for

High and Low SNR at fixed Nd and σ2
e < 1):

ρ∗ = EĤ[G∗∗
goodput(Ĥ)] (22)

=

{
O {(1 − ε) log

[
P0

(
1 − σ2

e

)
(log K)

]}
for high SNR,

O {(1 − ε)P0(1 − σ2
e) (log K)

}
for low SNR.

Figure 2 depicts the average system goodput perfor-
mance(bit/s/Hz) of the proposed scheduling schemes as a
function of the number of users in high SNR (20 dB) and
frequency diversity order Nd = 2. It can be seen that when
the number of user K increases, the system goodput grows as
O {log

[
(1 − σ2

e) log K
]}

due to multi-user diversity.
Remark 1: Theorem 3 is valid for estimation error σ2

e ∈
[0, 1). When going from equation (20) to (22), we used Lemma
4: F−1

χ2
k∗ ;s̃2;σ2

e/Nd

(ε) .= O(s2σ2
e), but this holds only for non-

zero and sufficiently large non central parameter s2. Hence,
the results in equation (22) holds only for σ2

e < 1. For the case
when σ2

e = 1 and s2 = 0 ,the F−1

χ2
k∗ ;s̃2;σ2

e/Nd

(ε) in Theorem

1 becomes inverse cdf of central chi square. In that case, the
average goodput is given by equation (20). As a result, the
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Fig. 2. Average system goodput versus number of users with Nd=2, different
CSIT error (σ2

e=0.01,0.05,0.1,1) at high SNR(20dB).

average goodput does not growth with the number of users as
illustrated in Figure 2.

C. Asymptotic System Goodput at Large Nd and fixed K

From equation (18) in Lemma 2, there exists K0 >
0 such that for K0 > 0, the non-central param-
eter

[
1−σ2

e

Nd
(log K + (Nd − 2) log log K)

]
≤ s̃2(Ĥ) ≤[

1−σ2
e

Nd
(log K + Nd log log K)

]
with probability one for all

Nd. As a result, consider the case for large Nd and fixed
K > K0

5. From equation (20), the first term in the equation(
1−σ2

e

Nd
(log K + Nd log log K)

)
will trend to zero as Nd

increases faster than log K while the second term will be
bounded by log log K . In this case, we have the non central
parameter s̃2 which is bounded by:

s̃2 = O {[(1 − σ2
e) (log log K)

]}
(23)

for some K > K0 > 0 such that Nd

log K → ∞.
The asymptotic goodput at Large Nd for High and Low

SNR for K > K0 is given by :

ρ∗ = EĤ[G∗∗
goodput(Ĥ)]

=

⎧⎪⎪⎨⎪⎪⎩
O
[
(1 − ε) log

(
F−1

χ2
k∗ ;s̃2;σ2

e/Nd

(ε)P0

)]
for high SNR,

O
[
(1 − ε)P0F

−1

χ2
k∗ ;s̃2;σ2

e/Nd

(ε)
]

for low SNR.
(24)

There is a factor (1−σ2
e ) in s̃2 outside the log log K in equa-

tion (23) and F−1
χ2

k;s2;σ2
X

(x) in equation (24) is an increasing

function of s̃2. Hence, we need double exponentially more
users K to compensate the penalty due to (1 − σ2

e ) in the
system goodput (via s̃2).

Figure 3 illustrates the average system goodput performance
versus Nd in high SNR (20dB) at different CSIT errors
σ2

e = 0, 0.05, 0.1, 0.15, 1. The system goodput is shown to
be a decreasing function of Nd. For large Nd, the cross-layer

5In general, the results will hold if we allow K to grow as Nd increase as
long as Nd/ log K → ∞ .
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goodput gain is decreased substantially. On the other hand,
the average packet outage probability scales in the order of
O(P−Nd

0 ). From these results, we can deduce that there is a
natural tradeoff between packet outage diversity order Nd and
the cross-layer goodput gain. Comparing with the well-known
cross-layer throughput gain of O(log log K) when we have
perfect CSIT, we observe that the efficiency of the multiuser
selection diversity (goodput) is reduced to log log log K for
large Nd. For low SNR simulation results, please refer to [7].

V. CONCLUSION

In this paper, we explore the asymptotic trade-off between
cross-layer goodput gain and packet outage in OFDMA down-
link system, with delayed CSIT in slow fading frequency
selective channel. We formulate the cross-layer design as
a mixed convex and combinational optimization problem.
Due to the delayed CSIT, it is critical to account for po-
tential packet errors (due to channel outage) and we con-
sider total system goodput as our optimization objective. By
allocating Nd independent subbands to a user, the packet
outage probability drops in the order of SNR−Nd . On
the other hand, the system goodput scales in the order of
O[(1 − ε) log(F−1

χ2
k∗ ;s̃2;σ2

e/Nd

(ε)P0)] at high SNR where s̃2 =

O {(1 − σ2
e) log log K

}
and O {(1 − σ2

e) (log K)
}

for large
Nd [K > K0] and large K [fixed Nd] respectively.

APPENDIX

A. Proof of Lemma 1

Consider the low SNR case when P0 → 0. The mutual
information between the base station and the k-th mobile user
with perfect CSIR is given by:

1
Ls

Ls−1∑
n=0

log2

( ∏
m∈Bk

(
1 +

|H(k)
mLs+n|2pknF

LsNd

))

.=
1
Ls

Ls−1∑
n=0

log2

⎛⎜⎝1 +

∑
m∈Bk

∣∣∣H(k)
mLs+n

∣∣∣2 pknF

LsNd

⎞⎟⎠
=Nd log2

⎛⎜⎝1 +

∑
m∈Bk

∣∣∣H(k)
mLs

∣∣∣2 pknF

LsN2
d

⎞⎟⎠ (25)

where the
.= is due to the fact that∏

m∈Bk

(
1 +

|H(k)
mLs+n|2pknF

LsNd

)
.= 1 + pknF

LsNd

∑
m∈Bk

∣∣∣H(k)
mLs+n

∣∣∣2
So, the packet outage probability for low SNR is given by:

Pout(k, Ĥ) (26)

.= Pr

[
Nd log2

(
1 +

nF pk

LsN2
d

∑
m∈Bk

|H(k)
mLs

|2
)

<
rk

Ls
|Ĥ
]

On the other hand, for high SNR, we first consider a
lower bound of the packet outage probability in (9). Due
to page limitation, only sketch of the proof is provided in
this paper,please refer to [7] for a full version. By using the
geometric mean less than or equal to arithmetic mean of the
mutual information, it can be proved that it has the same result
as low SNR.
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Fig. 3. Average system goodput versus packet diversity order (Nd) with
different CSIT error σ2

e at high SNR(20dB) and K=20.

Next, we shall consider an upper bound of the packet for
the packet outage probability in (9).

Let I
(k)
n =

∑
m∈Bk

log2

(
1 +

|H(k)
mLs+n|2pknF

LsNd

)
. Since

the outage event
{

1
Ls

∑Ls−1
n=0 I

(k)
n ≤ rk

Ls

}
is a subset of⋃Ls−1

n=0

{
I
(k)
n ≤ rk

Ls

}
, we have

Pr

[
1
Ls

Ls−1∑
n=0

I(k)
n ≤ rk

Ls
|Ĥ
]
≤ Pr

[
Ls−1⋃
n=0

{
I(k)
n ≤ rk

Ls

}
|Ĥ
]

≤
Ls−1∑
n=0

Pr
[
I(k)
n ≤ rk

Ls
|Ĥ
]

(a)
= Ls Pr

[
I
(k)
0 ≤ rk

Ls
|Ĥ
]

(27)

where (a) is because I
(k)
n are identically distributed. Given

the CSIT Ĥ, the random variables Hk,n inside the probability
operator in (27) are non-central chi-square distributed with
2Nd degrees of freedom, variance 1 − σ2

e and non-centrality
parameter s2 = ‖Ĥ(k)

n ‖2. Let γk,n = |H(k)
n |2 , αγ

(k)
n be the

SNR of the n-th subcarrier and define a transformation y =
log(1+αγ)

log α where α = pknF /(NdLs). After finding the joint
p.d.f. of the random variables and perform integration to find
the outage probability then combined the result with equation
(27), it can be proved that we have the same result as low
SNR.

B. Proof of Lemma 2

Consider a sequence of i.i.d. random variable xk, hav-
ing central chi-square distribution with degree of free-
dom 2n. Formally, xk is characterized by the CDF of

F (x) = 1 − e
− x

σ2
X

n−1∑
m=0

1
m!

(
x

σ2
X

)m

; the PDF of f (x) =

1
σ2n

X Γ(n)
xn−1e

− x
σn

X , x ≥ 0, where σ2
X is the variance of the

underlying complex Gaussian random variables. Define the
growth function g(x) = 1−F (x)

f(x) . It is obvious that

lim
x→∞ g(x) = 1 (28)
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From [8] and [9], we have the following expression

log[− log F K (bK + yg (bK))]

= −y + y2

2!
g
′
(bK) + y3

3!

[
g (bK) g(2) (bK) − 2g

′2 (bK)
]
... + ...

+ e−y+...
2K

+ 5e−2y+...

2K
+ ... − e−3y

8K3 + ... + ...

where bK is given by F (bK) = 1 − 1
K , i.e.

e
− bK

σ2
X

n−1∑
m=0

1
m!

(
bK

σ2
X

)m

= 1
K .In the other words, bK is the

solution of bK

σ2
X

− log
n−1∑
m=0

1
m!

(
bK

σ2
X

)m

= log K . So bK

σ2
X

−

log
(

1
(n−1)!

(
bK

σ2
X

)n−1
)

− O
(

log
(

1
(n−2)!

(
bK

σ2
X

)n−2
))

.=

log K and bK

σ2
X
−(n − 1) log

(
bK

σ2
X

)
−(n − 2)O

(
log
(

bK

σ2
X

))
.=

log K .
Thus, bK = σ2

X (log K + (n − 1) log log K) satisfies the
above equation for large K . Note that the CDF of x̃ =
max

1≤k≤K
xk is given by FK (x̃) substituting y as ± log log K

in equation (29) and from equation (28),

Pr{− log log K ≤ max
1≤k≤K

xk − bK ≤ log log K} ≥ 1−O
(

1

log K

)
.

Therefore,

Pr{σ2
X log K + σ2

X (n − 2) log log K ≤ max
1≤k≤K

xk

≤ σ2
X log K + σ2

Xn log log K}
≥ 1 −O

(
1

log K

)
(29)

C. Proof of Theorem 1

Given the CSIT Ĥ, the conditional average goodput of the
k-th user (k ∈ A∗(Ĥ)) for high SNR P0 after cross-layer
scheduling is given by:

G∗∗
goodput(Ĥ) =

(1 − ε)LsNd

nF

∑
k∈A∗

log2

⎛⎝F−1

χ2
k
;s2(Bk);σ2

e/Nd
(ε)

NdLs|A∗|
P0nF

⎞⎠
(30)

where s2(Ĥ; B∗
k) = 1

Nd

∑
m∈B∗

k
|Ĥ(k)

mLs
|2. The average

system goodput is given by ρ∗ = EĤ[G∗∗
goodput(Ĥ)]. Ob-

serve that F−1
χ2

k;s2;σ2
e/Nd

(x) is an increasing function of s2

for a given x. Consider selecting one user with the largest
s2(Ĥ; B∗

k) from K users. Using the result in Lemma 2, we

have s2(Ĥ; B∗
k) = O

(
1−σ2

e

Nd
(log K + Nd log log K)

)
with

probability 1 (for sufficiently large K). Assume that K 
 |A|
and if we ignore the inter-dependency (or coupling constraint)
in the user selection result between different users, we have
s2(Ĥ; B∗

k) = O
(

1−σ2
e

Nd
(log K + Nd log log K)

)
with proba-

bility 1 for all other users k ∈ A∗. Hence, the result follows
by direct substitution into (30).

Similarly, for low SNR (P0 → 0), the conditional average
goodput G∗∗

goodput(Ĥ)of the k-th user (k ∈ A∗(Ĥ)) for low
SNR P0 after cross-layer scheduling is given by:

(1−ε)LsNd
nF

log2(1+

F
−1

χ2
k∗ ;s2(B∗

k
);

σ2
e

Nd

(ε)

NdLs
P0nF

)
.
=(1−ε)F−1

χ2
k∗ ;s2(B∗

k
);

σ2
e

Nd

(ε)P0 (31)

where k∗ is obtained by selecting one user with the largest
s2(Ĥ; Bk) from the K users. Using the result in Lemma 2, we

have s2(Ĥ; B∗
k) = O

(
1−σ2

e

Nd
(log K + Nd log log K)

)
with

probability 1.

REFERENCES

[1] P. Svedman, “Multiuser diversity orthogonal frequency division multiple
access systems,” Master’s thesis, Signal Processing Laboratory KTH
Signals, Sensors and Systems Royal Institute of Technology, 2004.

[2] R. Knopp and P. A. Humblet, “Information capacity and power con-
trol in single-cell multiusercommunications,” in Proc. IEEE Int. Conf.
Comm.1995, vol. 1, June 1995, pp. 331–335.

[3] J. Chen, A.Berry, and L. Honig, “Large system performance of downlink
OFDMA,” in Proc. IEEE Int. Symposium on Information Theory ISIT,
pp. 1399–1403, July 2006.

[4] P. Svedmane, S. Wilson, L. Cimini, and B. Ottersten, “Opportunistic
beamforming and scheduling for OFDMA systems,” IEEE Trans. Com-
mun., Oct. 2004.

[5] S. Sanayei and A.Nosratinia, “Exploiting multiuser diversity with only
1-bit feedback,” in Proc. IEEE Wireless Communications and Networking
Conference, vol. 2, 2005, pp. 978–983.

[6] S. Chung, G. D. Forney, Jr., T. Richardson, and R. Urbanke, “On the
design of low-density parity-check codes within 0.0045 db of the shannon
limit,” IEEE Commun. Lett., vol. 5, pp. 58–60, Feb. 2001.

[7] V. K. N. Lau, W. K. Ng, and D. S. W. Hui, “Asymptotic tradeoff between
cross-layer goodput gain and outage diversity in ofdma systems with slow
fading and delayed csit,” http://ihome.ust.hk/∼eekwan/asymp-tradoff.pdf.

[8] Q. Zhou and H. Dai, “Asymptotic analysis in MIMO MRT/MRC sys-
tems,” European J. Wireless Commun. and Networking, pp. 1–8, Aug.
2006.

[9] N. T. Uzgoren, “The asymptotic development of the distribution of the
extreme values of a sample,” Studies in Mathematics and Mechanics
Presented to Richard von Mises, pp. 346–353, Academic Press, New
York, NY, USA, 1954.

Vincent K.N.Lau(M’98-SM’01) obtained a B.Eng
(Distinction 1st Hons) from the University of Hong
Kong (1989-1992) and a Ph.D. from Cambridge
University (1995-1997). He was with HK Telecom
(PCCW) as system engineer from 1992-1995 and
Bell Labs - Lucent Technologies as a member of the
technical staff from 1997-2003. He joined the De-
partment of ECE, Hong Kong University of Science
and Technology (HKUST) as an Associate Profes-
sor. At the same time, he is a technology advisor of
HKASTRI, leading the Advanced Technology Team

on Wireless Access Systems. His current research focus is on the robust cross
layer scheduling for MIMO/OFDM wireless systems with imperfect channel
state information, communication theory with limited feedback as well as
cross layer scheduling for users with heterogeneous delay requirements.

Wing Kwan Ng received the bachelor degree in electronic engineering
from the Hong Kong University of Science and Technology (HKUST) with
First class honor in 2006. He is currently working toward the MPhil degree
in HKUST. His research interests include communication and information
theory, wireless communications and wireless system .

David Shui Wing Hui (S’06) obtained B. Eng (with
First Class Honor) in Information Engineering in
2004 and M. Phil in 2007 both from the University
of Hong Kong. He is currently working toward
the Ph.D. degree at the Department of Electronic
and Computer Engineering, Hong Kong University
of Science and Technology (HKUST). His current
research interest is on the cross-layer optimization
for MIMO/OFDM wireless systems with delay re-
quirements, and applications of information theory
and queueing theory to wireless communications.


