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Abstract— In this paper, resource allocation for energy efficient
communication in orthogonal frequency division multiple access
(OFDMA) downlink networks with large numbers of base sta-
tion (BS) antennas is studied. Assuming perfect channel state
information at the transmitter (CSIT), the resource allocation
algorithm design is modeled as a non-convex optimization problem
for maximizing the energy efficiency of data transmission (bit/Joule
delivered to the users), where the circuit power consumption and
a minimum required data rate are taken into consideration. Sub-
sequently, by exploiting the properties of fractional programming,
an efficient iterative resource allocation algorithm is proposed to
solve the problem. In particular, the power allocation, subcarrier
allocation, and antenna allocation policies for each iteration are
derived. Simulation results illustrate that the proposed iterative
resource allocation algorithm converges in a small number of
iterations and unveil the trade-off between energy efficiency and
the number of antennas.

I. INTRODUCTION

The demand for high data rate multi-media applications with
certain guaranteed quality of service (QoS) has been growing
rapidly over the last decade. Multiple-input multiple-output
(MIMO) technology is considered as a viable solution for
addressing this issue, as it provides extra spatial degrees of
freedom for resource allocation. Recently, the concept of large
numbers of antennas has received growing research interest [1]-
[3]. In [1], the authors investigated channel estimation and linear
precoding techniques in time division duplex (TDD) system
with a large number of base station (BS) antennas. In [2], high
throughputs were shown in both uplink and downlink for a TDD
multi-cell system which employs multiple BSs equipped with
large numbers of antennas. In [3], a low complexity signal de-
tection algorithm was proposed for large-scale MIMO systems.
A substantial capacity gain (bit/s/Hz) and a better interference
management were observed with MIMO compared to single
antenna systems in all studies [1]-[3]. Yet, the advantages of
MIMO do not come for free. The extra energy consumption
in antenna circuitries have significant financial implications for
service providers, which has been largely overlooked in the
literature so far. As a result, energy efficient system designs,
which adopt energy efficiency (bits-per-Joule) as the perfor-
mance metric, have also recently drawn much attention in both
industry and academia.

In [4], the authors studied the energy efficiency of MIMO
sensors networks and demonstrated that MIMO systems may
not always be more energy-efficient than single antenna sys-
tems for short range communications. In [5], a power loading
algorithm was designed to minimize the energy-per-goodbit in
MIMO systems. In [6], the optimal transmission mode selection
for maximizing energy efficiency was studied for MIMO multi-
carrier systems. In [7], the tradeoff between energy efficiency,
bandwidth, and number of antennas was investigated in MIMO
multi-hop networks. However, these works considered single
user systems with a small number of antennas and the results in
[4]-[7] may not be applicable in multi-user multi-carrier systems
with a large number of transmitter antennas.
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In this paper, we address the above issues. For this purpose,
we formulate the resource allocation algorithm design as an
optimization problem and we maximize the energy efficiency
of communication in orthogonal frequency division multiple
access (OFDMA) systems. By exploiting the properties of frac-
tional programming, the considered non-convex optimization
problem in fractional form is transformed into an equivalent
optimization problem in subtractive form with a tractable solu-
tion, which can be found with an iterative algorithm.

II. OFDMA DOWNLINK NETWORK MODEL

We consider an OFDMA network which consists of a BS
with multiple antennas, K mobile users equipped with a single
antenna, and nF subcarriers. The channel gains are assumed
to be time-invariant (slow fading) and known at the BS. The
downlink received symbol at user k ∈ {1, . . . , K} on subcar-
rier i ∈ {1, . . . , nF } is given by

yi,k =
√

Pi,klkgkh
T
i,kfi,kxi,k + zi,k, (1)

where xi,k, Pi,k, and fi,k ∈ CNTi,k×1 are the transmitted
symbol, transmitted power, and precoding vector for the link
from the BS to user k on subcarrier i, respectively. CN×M is
the space of all N ×M matrices with complex entries and [·]T
denotes the transpose operation. NTi,k is the number of active
antennas allocated to user k on subcarrier i for transmission.
hi,k ∈ CNTi,k×1 is the vector of small scale fading coefficients
between the BS and user k. The elements in hi,k are assumed
to independent and identically distributed (i.i.d.). lk and gk
represent the path loss and shadowing between the BS and user
k, respectively. zi,k is additive white Gaussian noise (AWGN)
on subcarrier i at user k with zero mean and power spectral
density N0.

III. RESOURCE ALLOCATION

A. Instantaneous Channel Capacity
In this subsection, we define the adopted system performance

measure. Given perfect channel state information (CSI) at the
receiver, the channel capacity between the BS and user k on
subcarrier i with channel bandwidth W is given by

Ci,k =W log2

(
1 + Γi,k

)
and Γi,k =

Pi,klkgk|hT
i,kfi,k|

2

N0W
, (2)

where Γi,k is the received signal-to-noise ratio (SNR) at user k
on subcarrier i and |·| denotes the absolute value of a complex-
valued scalar.

The weighted sum system capacity is defined as a weighted
sum of the number of bits per second successfully delivered to
the K mobile users (bits-per-second) and is given by

U(P ,A,S) =
K∑

k=1

nF∑

i=1

wksi,kCi,k, (3)

where P , A, and S are the power allocation, antenna allocation,
and subcarrier allocation policies, respectively. wk are positive
constants provided by the upper layers, which allow the resource



allocator to prioritize certain users for the sake of fairness.
si,k ∈ {0, 1} is the binary valued subcarrier allocation variable.
Besides, we model the power dissipation in the system as the
sum of three terms [5] which can be expressed as

UTP (P ,A,S)

= max
i,k

{si,kNTi,k} × PC +
K∑

k=1

nF∑

i=1

εPi,ksi,k + P0, (4)

where PC is the constant circuit power consumption per an-
tenna, which includes the power dissipation of the transmit
filter, mixer, frequency synthesizer, and digital-to-analog con-
verter and is independent of the actual transmitted power. In
the considered system, we assume that there are a maximum
number of active antennas and a minimum number of active
antennas, i.e., Nmax and Nmin, at the BS. However, we do
not necessarily activate the maximum number of antennas for
the sake of energy efficient communication and the optimal
number of active antennas will be found in the next section
based on optimization. The physical meaning of the term
max
i,k

{si,k × NTi,k} in (4) is that if an antenna is activated,

it consumes power even if it is used only by some of the
users on some of the subcarriers. In order words, the first term
in (4) represents the total power consumed by the activated
antennas. The second term in (4) denotes the total power
consumption in the radio frequency (RF) power amplifier of
the BS. ε ≥ 1 is a constant which accounts for the inefficiency
in the power amplifier and the power efficiency is defined as
1
ε . P0 is the basic power consumed independent of the number
of transmit antennas. Hence, the weighted energy efficiency of
the considered system is defined as the total average number of
bits delivered to the users/Joule

Ueff (P ,A,S) =
U(P ,A,S)

UTP (P ,A,S)
. (5)

B. Optimization Problem Formulation
The optimal resource allocation policies (P∗,A∗,S∗) can be

obtained by solving

max
P,A,S

Ueff (P ,A,S) (6)

s.t. C1:
K∑

k=1

nF∑

i=1

si,kCi,k ≥ r, C2:
K∑

k=1

nF∑

i=1

Pi,ksi,k ≤ PT ,

C3:
K∑

k=1

nF∑

i=1

si,k ≤ 1, C4: Pi,k ≥ 0, ∀i, k,

C5: si,k ∈ {0, 1}, ∀i, k,
C6: NTi,k ∈ {Nmin, Nmin+1, Nmin+2, . . . , Nmax}, ∀i, k.

Here, C1 ensures that a minimum system data rate r is achieved.
C2 is a transmit power constraint for the BS in the downlink. C3
and C5 are imposed to guarantee that each subcarrier can serve
one user only. In other words, inter-user interference does not
exist. C4 are the boundary constraints for the power allocation
variables.

Note that the above optimization problem formulation can be
extended to the case of imperfect CSI and subcarrier reuse by
different users, as shown in the journal version of this paper
[8].

IV. SOLUTION OF THE OPTIMIZATION PROBLEM

The objective function in (6) is a non-convex function. In
general, a brute force approach is required for obtaining a global
optimal solution which is computationally infeasible even for

TABLE I
ITERATIVE RESOURCE ALLOCATION ALGORITHM.

Algorithm 1 Iterative Resource Allocation Algorithm
1: Initialize the maximum number of iterations Lmax and the maxi-

mum tolerance ε
2: Set maximum energy efficiency q = 0 and iteration index n = 0
3: repeat {Main Loop}
4: Solve the inner loop problem in (9) for a given q and obtain

resource allocation policies {P ′,A′,S ′}
5: if U(P ′,A′,S ′) − qUTP (P ′,A′,S ′) < ε then
6: Convergence = true
7: return {P∗,A∗,S∗} = {P ′,A′,S ′} and q∗ =

U(P′,A′,S′)
UTP (P′,A′,S′)

8: else
9: Set q = U(P′,A′,S′)

UTP (P′,A′,S′) and n = n + 1
10: Convergence = false
11: end if
12: until Convergence = true or n = Lmax

small size systems. In order to derive an efficient resource
allocation algorithm, we introduce the following transformation.

A. Transformation of the Objective Function

The objective function in (5) can be classified as nonlinear
fractional program [9]. For the sake of notational simplicity,
we define Θ as the set of feasible solutions of the optimization
problem in (6) and {P ,A,S} ∈ Θ. Without loss of generality,
we define the maximum energy efficiency q∗ of the considered
system as

q∗ =
U(P∗,A∗,S∗)

UTP (P∗,A∗,S∗)
= max

P,A,S

U(P ,A,S)
UTP (P ,A,S)

. (7)

We are now ready to introduce the following Theorem.
Theorem 1: The maximum energy efficiency q∗ is achieved

if and only if

max
P,A,S

U(P ,A,S) − q∗UTP (P ,A,S)

= U(P∗,A∗,S∗) − q∗UTP (P∗,A∗,S∗) = 0, (8)

for U(P ,A,S) ≥ 0 and UTP (P ,A,S) > 0.
Proof: Please refer to Appendix A for a proof of Theorem 1.

Theorem 1 reveals that for an optimization problem with an
objective function in fractional form, there exists an equiva-
lent1 objective function in subtractive form, e.g. U(P ,A,S) −
q∗UTP (P ,A,S) in the considered case. As a result, we can
focus on the equivalent objective function in the rest of the
paper.

B. Iterative Algorithm for Energy Efficiency Maximization

In this section, we propose an iterative algorithm (known as
the Dinkelbach method [9]) for solving (6) with an equivalent
objective function. The proposed algorithm is summarized in
Table I and the convergence to optimal energy efficiency is
guaranteed.

Proof: Please refer to Appendix B for the proof of conver-
gence.

As shown in Table I, in each iteration in the main loop, we
solve the following optimization problem for a given q:

max
P,A,S

U(P ,A,S) − qUTP (P ,A,S)

s.t. C1, C2, C3, C4, C5, C6. (9)

1Here, “equivalent” means both problem formulations will lead to the same
resource allocation policies.



The transformed problem in (9) is a mixed combinatorial
and non-convex optimization problem. To obtain an opti-
mal solution, an exhaustive search is needed with complex-
ity

∑Nmax

t=Nmin
t × nK

F , which is computational infeasible for
NTi,k , K, nF � 1. In order to derive an efficient resource
allocation algorithm, we solve the above problem in two steps.

Step 1 (Asymptotic Channel Capacity for NTi,k → ∞): In
the first step, the beamforming vector fi,k adopted at the BS
is chosen to be the eigenvector corresponding to the maximum
eigenvalue of hi,kh

†
i,k, i.e., fi,k = hi,k

‖hi,k‖
where ‖·‖ denotes the

Euclidean norm of a vector. The adopted beamforming scheme
is known as maximum ratio transmission (MRT). As a result,
for sufficiently large NTi,k , the capacity equation in (2) can be
expressed as

Ci,k
(a)
≈ W log2

(
Γi,k

)
and Γi,k =

Pi,klkgkNTi,k

WN0
, (10)

where (a) is due to the law of large numbers and the high SNR

assumption, i.e., limNTi,k→∞
hi,kh†

i,k

NTi,k
= 1 and log2(1 + x) ≈

log2(x) for x � 1, respectively.

Step 2 (Constraint Relaxations): In the second step, we
handle the combinatorial constraints in C5 and C6 by relaxing
the corresponding variables such that 0 ≤ si,k ≤ 1 and NTi,k

is a positive real number. For facilitating the derivation of
the resource allocation algorithm, we introduce two auxiliary
variables and define them as P̃i,k = Pi,ksi,k and ÑTi,k =
NTi,ksi,k. Then we substitute them into (9). By doing so,
the optimization problem in (9) becomes jointly concave with
respect to (w.r.t.) P̃i,k, si,k, and ÑTi,k . As a result, solving
the dual problem is equivalent to solving the primal. For this
purpose, we first need the Lagrangian function of the primal
problem. Upon rearranging terms, the Lagrangian can be written
as L(µ, γ, β,P ,A,S)

=
K∑

k=1

nF∑

i=1

(wk + γ)si,kCi,k − γr − µ
( K∑

k=1

nF∑

i=1

Pi,ksi,k − PT

)

−
nF∑

i=1

βi

( K∑

k=1

nF∑

i=1

si,k − 1
)
− q

(
UTP (P ,A,S)

)
(11)

where γ ≥ 0 and µ ≥ 0 are the Lagrange multipliers
corresponding to the required minimum capacity constraint C1
and maximum transmit power allowance C2, respectively. β
is the Lagrange multiplier vector associated with the subcar-
rier assignment constraint C3 with elements βi ≥ 0, i ∈
{1, . . . , nF }. Boundary constraints C5 and C6 will be absorbed
into the Karush-Kuhn-Tucker (KKT) conditions when deriving
the optimal resource allocation policies in the following. Thus,
the dual problem of (9) for a given parameter q is

min
µ,γ,β≥0

max
P,A,S

L(µ, γ, β,P ,A,S). (12)

Since (9) is transformed into a concave optimization problem
after step 1 and step 2, the KKT conditions are the necessary and
sufficient conditions for the optimal solution. Thus, from (12),
the closed-form resource allocation policies for the BS serving

TABLE II
COORDINATE ASCENT METHOD.

Algorithm 2 Coordinate Ascent Method for Solving (9)
1: Set the iteration indices t = 0, m = 0, maximum number of

iterations tmax, mmax
2: Initialize the Lagrange multipliers µ, γ and resource allocation

policies {Pt,At,St} for t = 0
3: repeat {Outer loop}
4: repeat {Inner loop}
5: Solve the power allocation and antenna allocation by using

(13) and (14) for all subcarriers with subcarrier allocation
policy St. Assign the solutions to Pt+1 and At+1

6: Solve the subcarrier allocation for all subcarriers by using
(15) together with Pt+1 and At+1. Assign the solution to
St+1; t = t + 1

7: until Convergence = true or t = tmax
8: Update µ and γ by gradient method or bisection method; m =

m + 1
9: until Convergence= true or m = mmax

10: return {Pt,At,St} as {P ′,A′,S ′} to line 4 in Algorithm 1

user k in subcarrier i for a given parameter q are obtained as:

P ∗
i,k =

[
B/nF (wk + γ)
ln(2)(µ + qε)

]+

, (13)

N∗
Ti,k

=

[B/nF (max
k∈Ψi

wk + γ)

ln(2)PC(q/Φi)

]Nmax

Nmin

, and (14)

s∗i,k =
{

1 if k = argmax
b

Mi,b, Mi,b ≥ βi = 0, ∀i
0 otherwise

, (15)

where Mi,b = B
nF

(wb + γ)
[
log2

(N∗
Ti,b

P∗
i,blbgb

N0W

)
−2/ ln(2)

]
.

[
x
]a
b = a, if x > a;

[
x
]a
b = x, if b ≤ x ≤ a;

[
x
]a
b = b, if b > x

and
[
x
]+ = max{0, x}. The optimal power allocation solution

in (13) is in the form of multi-level water-filling. Note that
if a user has a higher value of wk (higher priority), a higher
power will be allocated to the user since she has a higher
water level B/nF (wk+γ)

ln(2)(µ+qε) compared to other users. In (14), Ψi
denotes a selected user set for using subcarrier i and Φi =∑

b∈Ψi
1(max

k∈Ψi

wk = wb) counts the number of wk which have a

value equal to max
k∈Ψi

wk for all selected users on subcarrier i. 1(·)

denotes an indicator function which is 1 when the event is true
and 0 otherwise. On the other hand, since the dual function in
(12) is differentiable, the optimal values of µ and γ can be found
by using numerical methods such as the gradient method [8] or
the bisection method. Besides, updating βi is not necessary as
it has the same value for each user. Therefore, setting βi = 0
does not affect the subcarrier allocation in (15).

Coordinate Ascent Method for Implementing (13)-(15):
Theoretically, equations (13)-(15) provide a complete solution
for the considered resource allocation problem. However, the
dependency between (14) and (15) is a hurdle for practical
implementation. In this section, we present another iterative
algorithm to bridge the gap between theory and practice. The
algorithm is outlined in Table II. The overall iterative algorithm
in solving (9) is implemented by two nested loops in Algorithm
2. In Table II, tmax and mmax are the maximum number of
iterations for the two nested loops. Pt, St, At are the power
allocation, subcarrier allocation, and antenna allocation policies
in the t-th iteration, respectively. The inner loop, i.e., line 4 to
line 7, is solving the maximization in (12) by using the coordi-
nate ascent method for a given set of Lagrange multipliers. In
particular, in line 5, we first keep the subcarrier allocation fixed
and optimize the power allocation policy and antenna allocation
policy. Then, in line 6, we use the optimized policies Pt+1 and



At+1 from line 5 to optimize the subcarrier allocation policies.
Convergence of the inner loop to the optimum point for a given
set of Lagrange multipliers is ensured for convex optimization
problems [10]. On the other hand, the outer loop, i.e., line 3
to line 9, solves the minimization in the (12) by updating the
Lagrange multipliers.

Note that the resource allocation policies obtained in Algo-
rithm 1 and Algorithm 2 are optimal w.r.t. the relaxed problem
in high SNR. For implementing the final resource allocation
policies, we need to apply a ceiling function d·e to the antenna
allocation solution from the output of Algorithm 1, i.e., NTi,k =
dN∗

Ti,k
e.

V. RESULTS

In this section, we evaluate the system performance through
simulations. A single cell with a radius of 1 km is considered.
There are nF = 128 subcarriers with carrier center frequency
2.5 GHz and a total system bandwidth of W = 5 MHz. We
assume a noise power of N0W = −128 dBm in each subcarrier
and wk = 1 ∀k. The K desired users are uniformly distributed
between the reference distance and the cell boundary at 1 km.
The 3GPP path loss model is used with a reference distance
of d0 = 35 m and log-normal shadowing with a standard
deviation of 8 dB. The small scale fading coefficients of the
BS-to-user link are modeled as i.i.d. Rayleigh random variables
with zero means and unit variances. The average system energy
efficiency is obtained by counting the amount of data which
is successfully decoded by the users and dividing it by the
total power consumption averaged over both macroscopic and
microscopic fading. We assume a static circuit power consump-
tion of P0 = 40 dBm [11] and a data rate requirement of
r = 80 Megabit/s. PC = 41 dBm denotes the additional power
dissipation incurred by each extra antenna for transmission [12].
In practice, the value of PC depends on the application-specific
integrated circuit (ASIC) and the specific implementation. On
the other hand, we assume a power efficiency of 20% in the
RF power amplifier. i.e., ε = 1

0.2 = 5. The maximum and
minimum numbers of active antennas are set to Nmax = 100
and Nmin = 10, respectively. Note that if the resource allocator
is unable to guarantee the minimum data rate in a time slot, we
set the energy efficiency in that particular time slot to zero to
account for the corresponding failure. On the other hand, in the
following results, the “number of iterations” is referring to the
number of iterations of Algorithm 1 in Table I.

Figure 1 illustrates the energy efficiency versus the total trans-
mit power for K = 30 users. The number of iterations for the
proposed iterative resource allocation algorithm is 5 and 10. It
can be seen that the performance difference between 5 iterations
and 10 iterations is negligible which confirms the practicality of
our proposed iterative resource allocation algorithm. It can be
observed that when the maximum transmit power at the power
amplifier is large enough, e.g., PT ≥ 34 dBm, the energy effi-
ciency of the proposed algorithm approaches a constant value
since the resource allocator is not willing to consume more
power or activate more antennas, when the maximum energy
efficiency is achieved. For comparison, Figure 1 also contains
the energy efficiency of a baseline resource allocation scheme
in which resource allocation is performed for maximizing the
spectral efficiency (bit/s/Hz) in (9) except that the number
of transmit antennas is fixed to NTi,k = 10, 15, 20, ∀i, k,
respectively. It can be observed that the energy efficiency of
the baseline scheme is far from optimal in the high transmit
power regime and a fixed number of transmit antennas NTi,k

always degrades the system performance in terms of energy
efficiency. This is because in the baseline scheme, either more
power is consumed by the circuitries for operating the antennas
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Fig. 1. Energy efficiency versus maximum transmit power, PT , for
K = 30 users.
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Fig. 2. Average total power consumption, E{UTP (P,A,S)}, versus max-
imum transmit power, PT , for different resource allocation algorithms, 10
iterations, and K = 30 users.

or the number of antennas is not large enough for satisfying
the minimum data rate requirement. Note that the energy
efficiency will drop dramatically if the number of antennas
further increases from NTi,k = 20 to NTi,k > 20 in the baseline
scheme. More simulation results and detailed explanations can
be found in the journal version of this paper [8].

Figure 2 depicts the average total power consumption, i.e.,
E{UTP (P ,A,S)}, versus maximum transmit power PT for the
proposed algorithm with 10 iterations and the baseline scheme,
where E{·} denotes statistical expectation. In the low transmit
power regime, the proposed algorithm consumes more power
than the baseline scheme. This is because more antennas have to
be activated for satisfying the data rate requirement. However,
as the maximum transmit power allowance PT increases, the
proposed algorithm gradually decreases the number of activated
antennas and clips the transmit power to save energy. On the
other hand, in the high transmit power regime, the proposed al-
gorithm consumes much lesser power than the baseline scheme
since the latter one always consumes all the power in order to
maximize the spectral efficiency.

VI. CONCLUSION

In this paper, we formulated the resource allocation algo-
rithm design for OFDMA networks with large numbers of
BS antennas as a non-convex optimization problem, where the
circuit power dissipation and the system data rate requirement



were taken into consideration. An efficient iterative resource
allocation algorithm with optimized power allocation, subcarrier
allocation, and antenna allocation policies was proposed by
using fractional programming and the law of large numbers.
Our simulation results did not only show that the proposed
algorithm converges within a small number of iterations, but
also unveiled the trade-off between energy efficiency and the
total transmit power.

APPENDIX

A. Proof of Theorem 1

We now prove the forward implication of Theorem 1 by
following a similar approach as in [9]. Without loss of gen-
erality, we define q∗ and {P∗,A∗,S∗} ∈ Θ as the optimal
energy efficiency and the optimal resource allocation policy of
the original objective function in (6), respectively. Then, the
optimal energy efficiency can be expressed as

q∗ =
U(P∗,A∗,S∗)

UTP (P∗,A∗,S∗)
≥

U(P ,A,S)
UTP (P ,A,S)

, ∀{P ,A,S} ∈ Θ,

=⇒ U(P ,A,S) − q∗UTP (P ,A,S) ≤ 0 and
U(P∗,A∗,S∗) − q∗UTP (P∗,A∗,S∗) = 0. (16)

Therefore, we conclude that max
P,A,S

U(P ,A,S) −

q∗U(P ,A,S) = 0, which is achievable by resource allocation
policy {P∗,A∗,S∗}. This completes the forward implication.

Next, we prove the converse implication of Theorem 1.
Suppose {P∗

e ,A∗
e,S∗

e } is the optimal resource allocation policy
of the equivalent objective function such that
U(P∗

e ,A∗
e,S∗

e ) − q∗UTP (P∗
e ,A∗

e ,S∗
e ) = 0. Then, for any

feasible resource allocation policy {P ,A,S} ∈ Θ, we can
obtain the following inequality

U(P ,A,S) − q∗UTP (P ,A,S)
≤ U(P∗

e ,A∗
e,S

∗
e ) − q∗UTP (P∗

e ,A∗
e,S

∗
e ) = 0. (17)

The above inequality implies

U(P ,A,S)
UTP (P ,A,S)

≤ q∗ ∀{P ,A,S} ∈ Θ and

U(P∗
e ,A∗

e,S∗
e )

UTP (P∗
e ,A∗

e,S∗
e )

= q∗. (18)

In other words, the optimal resource allocation policy
{P∗

e ,A∗
e ,S∗

e } for the equivalent objective function is also the
optimal resource allocation policy for the original objective
function.

This completes the proof of the converse implication of
Theorem 1. In summary, the optimization of the original objec-
tive function and the optimization of the equivalent objective
function result in the same resource allocation policy. �

B. Proof of Algorithm Convergence

We follow a similar approach as in [9] for proving the
convergence of Algorithm 1. We first introduce the following
two propositions. For the sake of notational simplicity, we
define the equivalent objective function in (9) as F (q′) =
max
P,A,S

{U(P ,A,S) − q′UTP (P ,A,S)}.

Proposition 1: F (q′) is a strictly monotonic decreasing func-
tion in q′, i.e., F (q′′) > F (q′) if q′ > q′′.

Proof: Let {P ′,A′,S′} ∈ Θ and {P ′′,A′′,S′′} ∈ Θ be
the two distinct optimal resource allocation policies for F (q′)

and F (q′′), respectively.

F (q′′) = max
P,A,S

{U(P ,A,S) − q′′UTP (P ,A,S)} (19)

> U(P ′,A′,S′) − q′′UTP (P ′,A′,S′)
≥ U(P ′,A′,S′) − q′UTP (P ′,A′,S′)
= F (q′). �

Proposition 2: Let {P ′,A′,S′} ∈ Θ be an arbitrary feasible
solution and q′ = U(P′,A′,S′)

UT P (P′,A′,S′) , then F (q′) ≥ 0.

Proof: F (q′) = max
P,A,S

{U(P ,A,S) − q′UTP (P ,A,S)}

≥ U(P ′,A′,S′) − q′UTP (P ′,A′,S′) = 0.
�

We are now ready to prove the convergence of Algorithm 1.
Proof of Convergence: We first prove that the energy effi-

ciency q increases in each iteration. Then, we prove that if the
number of iterations is large enough, the energy efficiency q
converges to the optimal q∗ such that it satisfies the optimality
condition in Theorem 1, i.e., F (q∗) = 0.

Let {Pn,An,Sn} be the optimal resource allocation policy
in the n-th iteration. Suppose qn 6= q∗ and qn+1 6= q∗ represent
the energy efficiency of the considered system in iterations
n and n + 1, respectively. By Theorem 1 and Proposition 2,
F (qn) > 0 and F (qn+1) > 0 must be true. On the other
hand, in the proposed algorithm, we calculate qn+1 as qn+1 =

U(Pn,An,Sn)
UT P (Pn,An,Sn) . Thus, we can express F (qn) as

F (qn) = U(Pn,An,Sn) − qnUTP (Pn,An,Sn)
= UTP (Pn,An,Sn)(qn+1 − qn) > 0 (20)

=⇒ qn+1 > qn, ∵ UTP (Pn,An,Sn) > 0. (21)

By combining qn+1 > qn, Proposition 1, and Proposition
2, we can show that as long as the number of iterations
is large enough, F (qn) will eventually approach zero
and satisfy the optimality condition as stated in Theorem 1.

�
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