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Abstract— In this paper, resource allocation for energy effi-
cient communication in space division multiple access (SDMA)
downlink networks with large numbers of transmit antennas is
studied. The considered problem is modeled as a non-convex
optimization problem which takes into account the circuit power
consumption and a minimum required data rate. By exploiting
the properties of fractional programming, the considered non-
convex optimization problem in fractional form is transformed
into an equivalent optimization problem in subtractive form,
which enables the derivation of an efficient iterative resource
allocation algorithm. The optimal power allocation solution
for each iteration is derived based on a low complexity user
selection policy for maximization of the energy efficiency of data
transmission (bit/Joule delivered to the users). Simulation results
illustrate that the proposed iterative resource allocation algorithm
converges in a small number of iterations and unveil the trade-off
between energy efficiency and the number of antennas.

I. INTRODUCTION

Recently, an increasing interest in multi-media services
such as video conferencing and online high definition (HD)
video streaming has led to a tremendous demand for high
data rate communications with certain guaranteed quality of
service (QoS) properties such as a minimum required data
rate. Multiple-input multiple-output (MIMO) technology with
large numbers of antennas is considered as a viable solution for
addressing this issue [1]-[3]. In [1], the authors investigated
the uplink sum capacity (bit/s/Hz) of cellular networks for
unlimited numbers of antennas at both the base station (BS)
and the users. In [2], high throughputs were shown in both
uplink and downlink for a time-division duplex multi-cell
system which employs multiple BSs equipped with large
numbers of antennas. In [3], the authors studied the asymptotic
performance of linear receivers for large numbers of transmit
and receive antenna pairs. A substantial capacity gain and a
better interference management were observed with MIMO
compared to single antenna systems in all studies [1]-[3].Yet,
the advantages of MIMO do not come for free. The extra
power consumption in antenna circuitries and advanced signal
processing algorithms have significant financial implications
for service providers, which has been largely overlooked in
the literature so far. As a result, energy efficient system
designs, which adopt energy efficiency (bit-per-Joule) as the
performance metric, have recently drawn much attention in
both industry and academia.
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In [4], a power loading algorithm is designed to minimize
the energy-per-goodbit in MIMO systems. In [5], an energy
efficient power allocation algorithm was studied for multi-
carrier systems and frequency selective channels. In [6], a
risk-return model was proposed as a performance metric
for energy-efficient sub-optimal power allocation in cognitive
radio multi-carrier systems. However, these works considered
single user systems and the energy efficient resource allocation
algorithms proposed in [4]-[6] may not be applicable in multi-
user systems.

In this paper, we address the above issues. For this purpose,
we formulate the resource allocation problem for energy
efficient communication in space division multiple access
(SDMA) systems as an optimization problem. By exploiting
the properties of fractional programming, the considered non-
convex optimization problem in fractional form is transformed
into an equivalent optimization problem in subtractive form
with a tractable solution, which can be found with an iterative
algorithm. In each iteration, a closed-form power allocation
solution and a low complexity user selection policy are com-
puted for maximization of the network energy efficiency.

II. SDMA DOWNLINK NETWORK MODEL

We consider an SDMA network which consists of a BS
with NT antennas and K mobile users equipped with a single
antenna. The channel gains are assumed to be time-invariant
(slow fading) and known at the BS. The downlink received
symbol at user k ∈ {1, . . . , K} is given by

yk =
√

Pklkgkh
T
k fkxk + Ik + zk, (1)

Ik =
∑

j 6=k

hT
k fjxjsj

√
Pj lkgk (2)

where xk and Pk are the transmitted symbol and power
for the link from the BS to user k, respectively. Ik is the
received interference at user k due to spatial reuse for multiple
users access. fk ∈ CNT×1 is the precoding vector. CN×M

is the space of all N × M matrices with complex entries
and [·]T denotes the transpose operation. sj ∈ {0, 1} is the
user selection indicator. hk ∈ CNT ×1 is the vector of small
scale fading coefficients between the BS and user k. lk and
gk represent the path loss and shadowing between the BS and
user k. zk is additive white Gaussian noise (AWGN) with zero
mean and power spectral density N0.



III. RESOURCE ALLOCATION AND SCHEDULING

In this section, we introduce the adopted system perfor-
mance metric and formulate the corresponding resource allo-
cation problem.

A. Instantaneous Channel Capacity

In this subsection, we define the adopted system perfor-
mance measure. Given perfect channel state information (CSI)
at the receiver, the maximum channel capacity between the BS
and user k with channel bandwidth W is given by

Ck = W log2

(
1 + Γk

)
, (3)

Γk =
Pklkgk|hT

k fk|2
WN0 + |Ik|2

, (4)

where Γk is the received signal-to-interference-plus-noise ratio
(SINR) at user k and |·| denotes the absolute value of a
complex-valued scalar.

The weighted system capacity is defined as the total average
number of bit successfully delivered to the K mobile users and
is given by

U(P ,F ,S) =
K∑

k=1

wkskCk, (5)

where P , F , and S are the power, precoding coefficient, and
user selection policies, respectively. wk is a positive constant
provided by the upper layers, which allows the resource
allocator to prioritize different users for the sake of fairness.
On the other hand, we model the power dissipation in the
system as the sum of two dynamic terms which can be
expressed as [4]

UTP (P ,F ,S) = NT × PC +
K∑

k=1

εPksk + P0, (6)

where PC is a constant circuit chain power consumption
required in each transmit antenna. P0 is the basic power
consumed independent of the number of transmit antennas.
The first term in (6) represents the total power consumption
of all antennas which includes the power dissipations in the
transmit filter, mixer, frequency synthesizer, and digital-to-
analog converter. The second term denotes the total power
consumption of the power amplifier at the BS. ε ≥ 1 is
a constant which accounts for the inefficiency in the power
amplifier. For example, if ε = 5, it means that for every 10
Watt of power radiated in the RF, 50 Watt are consumed in the
power amplifier and the power efficiency is 1

ε = 1
5 = 20%.

Hence, the energy efficiency of the considered system is
defined as the total average number of bits/Joule

Ueff (P ,F ,S) =
U(P ,F ,S)

UTP (P ,F ,S)
. (7)

B. Optimization Problem Formulation
The optimal resource allocation policies (P∗,F∗,S∗) can

be obtained by solving

max
P,F ,S

Ueff (P ,F ,S)

s.t. C1:
K∑

k=1

skCk ≥ r,

C2:
K∑

k=1

Pksk ≤ PT , C3:
K∑

k=1

sk ≤ NT ,

C4: Pk ≥ 0, ∀k, C5: sk = {0, 1}, ∀k. (8)

Here, C1 specifies the minimum system data rate requirement
r. C2 is a transmit power constraint for the BS in the downlink.
C3 puts a limit to the number of users which can be served by
the BS in each transmission. C5 is imposed to guarantee each
user can at most use the channel once. In other words, the
BS is not allowed to multiplex different messages to the same
user, since this would require a sophisticated receiver at the
user, such as a successive interference cancellation receiver,
for recovering all messages. C4 are the boundary constraints
for the power allocation variables.

IV. SOLUTION OF THE OPTIMIZATION PROBLEM

The objective function in (8) is a non-convex function and
a brute force approach is required for obtaining a global
optimal solution. However, such a method has exponential
complexity with respect to (w.r.t.) the number of users which
is computationally infeasible even for small size systems. In
order to derive an efficient resource allocation algorithm, we
introduce the following transformation.

A. Transformation of the Objective Function
The objective function in (8) can be classified as s nonlinear

fractional program [7]. For the sake of notational simplicity,
we define Θ as the set of feasible solutions of the optimization
problem in (8). Without loss of generality, we define the
maximum energy efficiency q∗ of the considered system as

q∗ =
U(P∗,F∗,S∗)

UTP (P∗,F∗,S∗)

= max
P,F ,S

U(P ,F ,S)
UTP (P ,F ,S)

, ∀{P ,F ,S} ∈ Θ. (9)

We are now ready to introduce the following Theorem.
Theorem 1: The maximum energy efficiency q∗ is achieved

if and only if

max
P,F ,S

U(P ,F ,S) − q∗UTP (P ,F ,S)

= U(P∗,F∗,S∗) − q∗UTP (P∗,F∗,S∗) = 0, (10)
for U(P ,F ,S) ≥ 0 and UTP (P ,F ,S) > 0.

Proof: Please refer to Appendix A for a proof of Theorem
1.

Theorem 1 reveals that for an optimization problem with an
objective function in fractional form, there exists an equiva-
lent1 objective function in subtractive form, e.g. U(P ,F ,S)−
q∗UTP (P ,F ,S) in the considered case. As a result, we can
focus on the equivalent objective function in the rest of the
paper.

1Here, “equivalent” means both problem formulations will lead to the same
resource allocation policies.



TABLE I
ITERATIVE RESOURCE ALLOCATION ALGORITHM.

Algorithm 1 Iterative Resource Allocation Algorithm
1: Initialize the maximum number of iterations Lmax and the

maximum tolerance ε
2: Set maximum energy efficiency q = 0 and iteration index n = 0
3: repeat {Main Loop}
4: Solve the inner loop problem in (11) for a given q and obtain

resource allocation policies {P ′,F ′,S ′}
5: if U(P ′,F ′,S ′) − qUTP (P ′,F ′,S ′) < ε then
6: Convergence = true
7: return {P∗,F∗,S∗} = {P ′,F ′,S ′} and q∗ =

U(P′,F′,S′)
UTP (P′,F′,S′)

8: else
9: Set q = U(P′,F′,S′)

UTP (P′,F′,S′) and n = n + 1
10: Convergence = false
11: end if
12: until Convergence = true or n = Lmax

B. Iterative Algorithm for Energy Efficiency Maximization

In this section, we propose an iterative algorithm (known as
the Dinkelbach method [7]) for solving (8) with an equivalent
objective function. The proposed algorithm is summarized in
Table I and the convergence to optimal energy efficiency is
guaranteed.

Proof: Please refer to Appendix B for the proof of
convergence.

As shown in Table I, in each iteration in the main loop,
we solve the following optimization problem for a given
parameter q:

max
P,F ,S

U(P ,F ,S) − qUTP (P ,F ,S)

s.t. C1, C2, C3, C4, C5. (11)

The transformed problem is a mixed combinatorial and non-
convex optimization problem. The non-convex nature comes
from the power allocation variables and precoding coefficients.
The multiuser interference appears in the denominator of the
capacity equation in (3) which couples the power allocation
variables. On the other hand, the combinatorial nature comes
from the integer constraint for user selection. To obtain an
optimal solution, an exhaustive search is needed with com-
plexity

∑NT
a=1

(K
a

)
for K ≥ NT or

∑K
g=1

(NT
g

)
for NT >

K , which is computationally infeasible for NT , K � 1. In
order to derive an efficient resource allocation algorithm, we
solve the above problem in two steps by fixing the resource
allocation policies {F ,S}. In the first step, we employ a low
complexity sub-optimal user selection scheme. Then, in the
second step, we use the closed-form power allocation for
a given selected user set S with zero-forcing beamforming
(ZFBF) precoding. Note that by fixing resource allocation
policies {F ,S}, Algorithm 1 in Table I converges to a sub-
optimal solution since only the power allocation is optimized
for energy efficiency maximization.

Step 1 (δ-Orthogonal User Selection): We propose an effi-
cient user selection algorithm. Without loss of generality, we
define a column vector Υk = hk

√
gklk. Let ∆

(
Υk,Υj

)
=

|Υ†
jΥk|

‖Υj‖‖Υk‖
where ‖·‖ denotes the Euclidean norm of a vector.

Then, a δ− orthogonal user set, S⊥, is given by

S⊥ =
{
k, j

∣∣∣k, j = {1, . . . , K}, k = argmax
t

‖Υt‖2 ,

∆
(
Υk,Υj

)
≤ δ × wj , ∀j 6= k

}
, (12)

where δ and [·]† represent a threshold for measuring orthog-
onality and the conjugate transpose operation, respectively.
k = arg maxt ‖Υt‖2 represents the user who has the largest
channel gain for joint BS transmission and is able to tolerate
strong interference due to spatial reuse. In other words, we
first select the strongest user and then perform user selection
by selecting at most the NT − 1 elements in set S⊥ with
small values of ∆

(
Υk,Υj

)
, since those users introduce less

interference to the strongest user. Note that the search space
of user selection decreases from

∑NT
a=1

(K
a

)
and

∑K
g=1

(NT
g

)

to 2K − 1 for K ≥ NT and NT > K , respectively. Note
that a user with higher value of wk (priority) has a higher
chance of being selected. Note that although the proposed
algorithm can only guarantee a δ orthogonality between the
strongest user and each other selected user, it has been shown
that the proposed scheme performs well with the following
zero-forcing beamforming scheme [8].

Step 2 (Zero-Forcing Beamformimg): The considered sys-
tem can be categorized as a MIMO broadcast channel. Hence,
dirty paper coding (DPC) is optimal in achieving the multiuser
broadcast capacity region. Yet, DPC requires a very high
complexity which is considered impractical. On the contrary,
although ZFBF is a suboptimal precoding scheme, it has been
considered as a practical precoding solution due to its linear
complexity and promising performance. Therefore, we focus
on ZFBF in the rest of the paper.

Since ZFBF is used for transmission, the capacity equation
in (3) can be rewritten as

Ck = W log2

(
1 + Γk

)
with Γk =

Pklkgk|hT
k fk|2

WN0
. (13)

On the other hand, without loss of generality, we assume that
user 1 to user k are selected by searching the orthogonal set
S⊥. Define the set of selected users as S̃⊥ ⊂ S⊥ where |S̃⊥| ≤
NT . Then, we define a super channel matrix H ∈ C|S̃⊥|×NT

such that

HT =
[
Υ1 Υ2 . . . Υk

]
. (14)

The corresponding ZFBF super matrix B ∈ CNT×|S̃⊥| can
be calculated in the BS and is given by

B = H†
(
HH†

)−1
D, (15)

where D ∈ C|S̃⊥|×|S̃⊥| is a diagonal matrix with diagonal

elements γk = 1/
√[(

HH†
)−1]

k,k
=

√
lkgk

∣∣∣hT
k fk

∣∣∣. Here,

operator
[
·
]
a,b refers to the element in row a and column b of

a matrix. Note that γk represents the equivalent channel gain
between the BS and user k. Hence, the ZFBF vector fk for
user k is given by

fk =
[
B

]

:,k
, (16)

where operator
[
·
]
:,b refers to column b of a matrix.
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Fig. 1. Energy efficiency (bit-per-Joule) versus number of iterations with
different numbers of antennas NT and K = 60 users for maximum transmit
power PT = 46 dBm. The dashed lines represent the maximum achievable
energy efficiencies for different cases.

Power Allocation Solution: The power optimization vari-
ables are concave w.r.t. the objective function for a given
user selection set and a given ZFBF precoding coefficient set.
So standard optimization techniques are applicable in solving
the optimal power allocation. For this purpose, we first need
the Lagrangian function of (11). Upon rearranging terms, the
Lagrangian can be written as

L(λ, ζ) =
∑

k∈S̃⊥

(wk + ζ)Ck − λ
( ∑

k∈S̃⊥

Pk − PT

)
− rζ

−q
(
NT × PC +

∑

k∈S̃⊥

εPk + P0

)
, (17)

where λ and ζ are the Lagrange multipliers chosen to satisfy
the BS power constraint C2 and data rate requirement C1 in
(8), respectively. Note that the boundary constraint C4 will
be absorbed into the Karush-Kuhn-Tucker (KKT) conditions
when deriving the optimal solution in the following. So, by
KKT conditions, the closed-form power allocation for the BS
to serve user k for a given parameter q is obtained as

∂L(λ, ζ)
∂Pk

= 0, (18)

⇒ Pk =

[
W (wk + ζ)

(qε + λ) ln(2)
− N0W

|γk|2

]+

, (19)

where [x]+ = max{0, x}. It can be observed that variable
wk (provided by the MAC layer) affects the power allocation
by changing the water-level. In other words, high priority
users will be allocated higher transmit powers, compared to
low priority users. The optimal values of λ and ζ can be
easily found by using numerical methods such as the gradient
method or the bisection method, due to the concavity of
the transformed problem with respect to the power allocation
variables.

V. RESULTS

In this section, we evaluate the system performance through
simulations. A single cell with a radius of 1 km is considered.
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Fig. 2. Energy efficiency (bit-per-Joule) versus maximum transmit power,
PT , for K = 60 users.

The carrier center frequency is 2.5 GHz and the bandwidth is
W = 200 kHz. We assume a noise power of N0W = −123
dBm and wk = 1 ∀k. The K desired users are uniformly
distributed between the reference distance and the cell bound-
ary at 1 km. The 3rd Generation Partnership Project (3GPP)
path loss model is used with a reference distance of d0 = 35
m and log-normal shadowing with a standard deviation of 8
dB. The small scale fading coefficients of the BS-to-user link
are modeled as independent and identically distributed (i.i.d.)
Rayleigh random variables with zero means and unit variances.
The average system capacity is obtained by counting the
number of packets successfully decoded by the users averaged
over both the macroscopic and microscopic fading. We assume
a static circuit power consumption of P0 = 40 dBm [9],
a minimum data rate requirement2 of r = 21.1 Megabit/s,
and an orthogonality parameter of δ = 0.1. PC = 41 dBm
denotes the power dissipation incurred by each antenna for
transmission [10]. In practice, the value of PC depends on the
application-specific integrated circuit (ASIC) and the chosen
implementation algorithms. On the other hand, we assume
a power efficiency of 20% in the RF power amplifier. i.e.,
ε = 1

0.2 = 5. Note that if the resource allocator is unable to
guarantee the minimum data rate r in a time slot, we set the
energy efficiency and average capacity in that particular time
slot to zero to account for the corresponding failure.

A. Convergence of Iterative Algorithm

Figure 1 illustrates the evolution of the proposed iterative
algorithm for different numbers of transmit antennas NT ,
a maximum transmit power of PT = 46 dBm at the BS,
and K = 60 users. The results in Figure 1 were averaged
over 100000 independent adaptation processes where each
adaptation process involves different realizations for path loss,
shadowing, and multipath fading. It can be observed that the
iterative algorithm converges to the optimal value3 within 10
iterations for all considered numbers of transmit antennas. In

2Note that 21.1 Megabit/s is the maximum data rate for category 13 in
3GPP Release 7.

3Here, the optimality is with respect to the optimization of power allocation
given a selected user set and ZFBF transmission.



other words, the maximum system energy efficiency can be
achieved within a few iterations on average.

B. Energy Efficiency, Average Capacity, and Average Total
Power Consumption versus Transmit Power

Figure 2 illustrates the energy efficiency versus the total
transmit power for K = 60 users. The number of iterations
for the proposed iterative resource allocation algorithm is 10.
It can be observed that energy efficiency first increases and
then decreases with an increasing number of antennas. This is
because when the number of antennas is small, i.e., NT < K ,
a large throughput gain can be achieved by multiplexing the
messages of more users in the same channel via additional
antennas. However, when the number of antennas is large
enough, i.e., NT > K , the performance gain due to the
users multiplexing is saturated. In the meantime, the power
consumption per antenna increases linearly with the number
of antennas, which degrades the energy efficiency. Besides,
the energy efficiency of the proposed algorithm approaches
a constant value in the high transmit power regime, since the
resource allocator is not willing to consume more power when
the maximum energy efficiency is achieved.

Figure 2 also contains the energy efficiency of a baseline
resource allocation scheme. For the baseline scheme, we max-
imize the average system capacity (bit/s/Hz) with constraints
C1-C5 in (8), instead of the energy efficiency. The optimal
resource allocation polices for the baseline scheme can be
obtained by using the traditional water-filling approach. It can
be observed that the proposed algorithm provides a significant
performance gain in terms of energy efficiency over the
baseline scheme, especially in the high transmit power regime.
This is because the latter scheme uses excess power to increase
the system capacity by sacrificing the energy efficiency.

Figure 3 shows the average capacity versus maximum
transmit power PT for K = 60 users. We compare again
the system performance of the proposed algorithm with the
the baseline resource allocator. The number of iterations in
the proposed algorithm is set to 10. It can be observed that
the average capacity of the proposed algorithm approaches a
constant in the high transmit power regime. This is because
the proposed algorithm clips the transmit power at the BS in
order to maximize the system energy efficiency. We note that,
as expected, the baseline scheme resource allocator achieves a
higher average capacity than the proposed algorithm in the
high transmit power regime, since the baseline scheme is
always transmitting with full power. However, the superior
average capacity of the baseline scheme comes at the expense
of low energy efficiencies. On the other hand, an increasing
number of antennas in the baseline scheme benefits the average
capacity due to an improved beamforming gain.

Figure 4 depicts the average total power consumption, i.e.,
E{UTP (P ,F ,S)}, versus maximum transmit power PT for
the proposed algorithm and the baseline scheme with 10
iterations, where E{·} denotes a statistical expectation. In the
low transmit power regime, the baseline scheme consumes
the same amount of average power as the proposed algorithm
which suggests that full power transmission is optimal. How-
ever, as the maximum transmit power allowance PT increases,
the proposed algorithm stops to further consume more power
since maximum energy efficiency is achieved. On the other
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and K = 60 users for the proposed algorithm and the baseline.
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hand, the baseline still consumes all the available power and
results in a huge power consumption.

VI. CONCLUSION

In this paper, we formulated the resource allocation and
scheduling design in SDMA networks as a non-convex and
combinatorial optimization problem, in which the circuit
power dissipation and the system data rate requirement were
taken into consideration. By exploiting the properties of frac-
tional programming, the considered problem was transformed
into an equivalent problem with a tractable solution. An
efficient iterative resource allocation algorithm with closed-
form power allocation and low complexity user selection was
derived for maximization of the energy efficiency. Simula-
tion results did not only show that the proposed algorithm
converges to the optimal solution within a small number of
iterations, but demonstrated also the achievable maximum
energy efficiency.

Interesting topics for future work include studying the
impact of imperfect channel state information and optimizing
the number of antennas.



APPENDIX

A. Proof of Theorem 1
We now prove the forward implication of Theorem 1

by following a similar approach as in [7]. Without loss of
generality, we define q∗ and {P∗,F∗,S∗} ∈ Θ as the optimal
energy efficiency and the optimal resource allocation policy of
the original objective function in (8), respectively. Then, the
optimal energy efficiency can be expressed as

q∗ =
U(P∗,F∗,S∗)

UTP (P∗,F∗,S∗)
≥ U(P ,F ,S)

UTP (P ,F ,S)
, ∀{P ,F ,S} ∈ F ,

=⇒ U(P ,F ,S) − q∗UTP (P ,F ,S) ≤ 0 and
U(P∗,F∗,S∗) − q∗UTP (P∗,F∗,S∗) = 0. (20)

Therefore, we conclude that max
P,F ,S

U(P ,F ,S) −
q∗U(P ,F ,S) = 0, which is achievable by resource
allocation policy {P∗,F∗,S∗}. This completes the forward
implication.

Next, we prove the converse implication of Theorem 1. Sup-
pose {P∗

e ,F∗
e ,S∗

e } is the optimal resource allocation policy of
the equivalent objective function such that
U(P∗

e ,F∗
e ,S∗

e ) − q∗UTP (P∗
e ,F∗

e ,S∗
e ) = 0. Then, for any

feasible resource allocation policy {P ,F ,S} ∈ Θ, we can
obtain the following inequality

U(P ,F ,S) − q∗UTP (P ,F ,S)
≤ U(P∗

e ,F∗
e ,S∗

e ) − q∗UTP (P∗
e ,F∗

e ,S∗
e ) = 0. (21)

The above inequality implies
U(P ,F ,S)

UTP (P ,F ,S)
≤ q∗ ∀{P ,F ,S} ∈ F and

U(P∗
e ,F∗

e ,S∗
e )

UTP (P∗
e ,F∗

e ,S∗
e )

= q∗. (22)

In other words, the optimal resource allocation policy
{P∗

e ,F∗
e ,S∗

e } for the equivalent objective function is also the
optimal resource allocation policy for the original objective
function.

This completes the proof of the converse implication of
Theorem 1. In summary, the optimization of the original
objective function and the optimization of the equivalent
objective function result in the same resource allocation
policy. �

B. Proof of Algorithm Convergence
We follow a similar approach as in [7] for proving the

convergence of Algorithm 1. We first introduce the following
two propositions. For the sake of notational simplicity, we
define the equivalent objective function in (11) as F (q′) =
max
P,F ,S

{U(P ,F ,S) − q′UTP (P ,F ,S)}.

Proposition 1: F (q′) is a strictly monotonic decreasing
function in q′, i.e., F (q′′) > F (q′) if q′ > q′′.

Proof: Let {P ′,F ′,S′} ∈ F and {P ′′,F ′′,S′′} ∈ F be
the two distinct optimal resource allocation polices for F (q′)
and F (q′′), respectively.

F (q′′) = max
P,F ,S

{U(P ,F ,S) − q′′UTP (P ,F ,S)} (23)

> U(P ′,F ′,S′) − q′′UTP (P ′,F ′,S′)
≥ U(P ′,F ′,S′) − q′UTP (P ′,F ′,S′)
= F (q′). �

Proposition 2: Let {P ′,F ′,S′} ∈ F be an arbitrary feasi-
ble solution and q′ = U(P′,F ′,S′)

UT P (P′,F ′,S′) , then F (q′) ≥ 0.

Proof: F (q′) = max
P,F ,S

{U(P ,F ,S) − q′UTP (P ,F ,S)}

≥ U(P ′,F ′,S′) − q′UTP (P ′,F ′,S′) = 0.
�

We are now ready to prove the convergence of Algorithm 1.
Proof of Convergence: We first prove that the energy effi-

ciency q increases in each iteration. Then, we prove that if the
number of iterations is large enough, the energy efficiency q
converges to the optimal q∗ such that it satisfies the optimality
condition in Theorem 1, i.e., F (q∗) = 0.

Let {Pn,Fn,Sn} be the optimal resource allocation policy
in the n-th iteration. Suppose qn 6= q∗ and qn+1 6= q∗ represent
the energy efficiency of the considered system in iterations n
and n + 1, respectively. By Theorem 1 and Proposition 2,
F (qn) > 0 and F (qn+1) > 0 must be true. On the other
hand, in the proposed algorithm, we calculate qn+1 as qn+1 =

U(Pn,Fn,Sn)
UT P (Pn,Fn,Sn) . Thus, we can express F (qn) as

F (qn) = U(Pn,Fn,Sn) − qnUTP (Pn,Fn,Sn)
= UTP (Pn,Fn,Sn)(qn+1 − qn) > 0 (24)

=⇒ qn+1 > qn, ∵ UTP (Pn,Fn,Sn) > 0. (25)

By combining qn+1 > qn, Proposition 1, and Proposition
2, we can show that as long as the number of iterations
is large enough, F (qn) will eventually approach zero and
satisfy the optimality condition as stated in Theorem 1.

�
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