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Abstract—In this paper, power allocation for energy-efficient
point-to-point machine-to-machine (M2M) communication sys-
tems with multiple energy harvesting sources is studied. Under a
deterministic system setting, we formulate the power allocation
problem as a non-convex optimization problem over a finite
horizon taking into account the circuit energy consumption, finite
battery storage capacities, and a minimum required data rate.
The considered non-convex optimization problem is transformed
into a convex optimization problem by exploiting the properties
of fractional programming which results in an efficient optimal
off-line iterative power allocation algorithm. In each iteration, the
transformed problem is solved by using dual decomposition and a
recursive power allocation solution is obtained for maximization
of the energy efficiency of data transmission (bit/Joule delivered
to the receiver).

I. INTRODUCTION

Recently, a large amount of work has been devoted to
machine-to-machine (M2M) communication due to its wide
spread applications in e-health care, smart city, and remote
monitoring, etc. In practice, M2M sensor type devices are
usually small and inexpensive which puts stringent constraints
(i.e., bandwidth and energy consumption) on the system design
[1]. On the other hand, green communication has received
much attention in recent years driven by environmental con-
cerns [2], [3]. As a result, M2M communication systems are
not only envisioned to be energy-efficient, but also to be self-
sustainable. In the literature, a tremendous number of green
technologies/methods have been proposed for maximizing the
energy efficiency (bit-per-Joule) of wireless communication
systems [3]-[7]. Among these technologies, energy harvesting
is particularly appealing and suitable for M2M communication
since each M2M device can harvest energy from natural
renewable energy sources such as solar, wind, and vibration,
etc, thereby reducing substantially the operating cost of the
service providers.

The introduction of energy harvesting capabilities into M2M
systems poses many interesting new challenges for the trans-
mission design due to the time varying availability of renew-
able energy sources. In [4] and [5], optimal packet scheduling
and power allocation algorithms were proposed for energy
harvesting systems to minimize the transmission completion
time, respectively. However, these works assumed an infinite
battery capacity in the energy harvester and the obtained
results may not be applicable to the case of finite battery
storage. Besides, they did not take into account the circuit

energy consumption and the maximum energy efficiency of
these systems is still unknown even for the case of point-
to-point communication. In [6] and [7], the authors proposed
an optimal power control time sequence for maximizing the
throughput by a deadline with a single energy harvester for
different channel scenarios. Yet, the intermittent nature of
energy harvesting of a single energy source will cause the
power availability at the M2M device to be highly random.
In other words, such single energy harvester design may
not be able to guarantee the demanding quality of service
requirements of M2M applications such as a minimum data
rate requirement.

In this paper, we address the above issues. We study the
structure of the optimal off–line power allocation solution
where we assume that non-causal information of channel state
information (CSI) and energy arrivals is available at the trans-
mitter. The derived off–line solution constitutes a performance
upper bound which sheds some light on the design of efficient
on–line solutions in future research. We formulate the power
allocation problem for energy-efficient M2M communication
with multiple energy harvesters as an optimization problem.
By using nonlinear fractional programming, the considered
non-convex optimization problem in fractional form is trans-
formed into an equivalent optimization problem in subtractive
form with a tractable solution, which can be found with an
iterative algorithm. In each iteration, dual decomposition is
used and a recursive closed-form power allocation solution is
computed for maximization of the system energy efficiency.

II. SYSTEM MODEL

We consider a single link continuous time narrowband M2M
communication system. The transmission time is T seconds.
We assume that the transmitter adapts the power allocation L
times for a given value of T . Note that the optimal value of L
and the time instant of each adaption operation will be found
in the next section. The data symbol received at the user at
time instant t, 0 ≤ t ≤ T , is given by

y(t) =
√

P (t)g(t)h(t)x(t) + z(t), (1)

where P (t) and x(t) are the transmitted power and the
transmitted symbol at time t, respectively. h(t) and g(t) are
the small scale fading coefficient and the path loss between
transmitter and receiver at time t, respectively. z(t) is the
additive white Gaussian noise (AWGN) at time t with zero
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Fig. 1. A transmitter with multiple energy harvesting sources.

mean and variance N0W , where N0 is the noise power spectral
density and W is the signal bandwidth.

A. Time Varying Fading Model and Energy Supply Model

We adopt a time varying system model similar to the
one in [6]. At the transmitter, there are N different types
of energy harvesters for supplying the energy required for
transmission by the power amplifier (PA), cf. Figure 1. For
instance, the M2M sensor can extract wind energy or solar
energy with the help of a wind harvester and a solar energy
harvester, respectively. As a result, the instantaneous total
radio frequency (RF) transmit power at the PA in time instant
t can be written as

P (t) =
N
∑

i=1

Pi(t), 0 ≤ t ≤ T, (2)

where Pi(t) is the instantaneous power transmitted by the
power amplifier, which is fueled by energy harvester i, i ∈
{1, . . . , N}.

We assume that the changes in the channel gains and energy
arrivals in energy harvester i are stochastic processes in time
which can be modeled as Poisson counting processes with
rates λF and λEi , respectively [6], [7]. Therefore, changes in
the channel gains and the energy arrivals, respectively, occur
in a countable number of time instants, which are indexed as
tF1 , tF2 . . . and tEi

1 , tEi
2 . . ., respectively. The inter-occurrence

times tFa −tFa−1, a ∈ {1, 2, . . .}, and tEi

b −tEi

b−1, b ∈ {1, 2, . . .},
are exponentially distributed with means 1/λF and 1/λEi ,
respectively. Note that we set tEi

0 = tF0 = 0 for convenience.
A block fading time varying communication channel model is
considered. In other words, the fading level in 0 < t ≤ tF1
is constant but changes to an independent value in the next
time interval tF1 < t ≤ tF2 , and so on. Similarly, Ei,a units of
energy arrive (to be harvested) at time tEi

a in energy harvester
i, cf. Figure 2. The incoming energies are collected by the
N energy harvesters and buffered in the battery before they
are used in data transmission. On the other hand, we assume
that E0 units of energy arrive/(are available) in the battery
of energy harvester i at tEi

0 = 0 and the maximum amount
of energy storage in the battery is denoted by Emaxi

. In the
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Fig. 2. An illustration of epoches and the meaning of Ein
i (·) for different

events and different arrival time for energy harvester i. Fading changes and
energies are harvested at time instants denoted by × and ◦, respectively.

following, we refer to a change in the channel gains or in the
energy level in any one of the batteries as an event and to
the time interval between two consecutive events as an epoch.
Specifically, epoch a is defined as the time interval [ta−1, ta),
where ta−1 and ta are the times at which successive events
happen, cf. Figure 2.

B. Physical Constraints on the Energy Harvesters

There are two inherent constraints on each energy harvester:

C1:
∫ tEb −δ

0
εPi(u) du ≤

b−1
∑

j=0

Ei,j , ∀b ∈ {1, 2, . . .}, ∀i (3)

C2:
di(t)
∑

j=0

Ei,j −
∫ t

0
εPi(u) du ≤ Emaxi , 0 ≤ t ≤ T, ∀i,(4)

where Ei,j is the amount of energy harvested by energy
harvester i at energy arrival j at time tj . δ → 0 is an
infinitesimal positive constant for modeling purpose. di(t) =
argmax

a
{tEi

a : tEi
a ≤ t} and ε ≥ 1 is a constant which

accounts for the inefficiency of the PA. For instance, if ε = 5,
50 Watts of power are consumed in the PA for every 10
Watts of power radiated in the RF and the power efficiency
is 1

ε = 1
5 = 20%. Constraint C1 implies that in every time

instant, if the transmitter draws energy from energy harvester
i to cover the energy required at the PA, it is constrained to
use at most the amount of stored energy currently available in
energy harvester i (causality), although there will be possibly
more energy arrivals in the future. Constraint C2 states that
the energy level in energy harvester i never exceeds Emaxi

to
prevent the occurrence of an energy overflow in the battery.

III. POWER OPTIMIZATION PROBLEM FORMULATION

In the following, we design the power allocation algorithm
based on an information theoretic approach which inherently
assumes that the data buffer at the transmitter is always full1.

1In practice, if there is no data in the buffer, the transmitter can simply
shut off the PA and store all the harvested energy if possible.



A. Instantaneous Channel Capacity

In this subsection, we define the adopted system perfor-
mance measure. Given perfect CSI at the receiver, the channel
capacity between the transmitter and receiver over a transmis-
sion period of T second(s) with bandwidth W is given by

C(P) =
∫ T

0
W log2

(

1 + P (t)Γ(t)
)

dt and

Γ(t) =
g(t)|h(t)|2

N0W
, (5)

where Γ(t) is the received channel gain-to-noise ratio (CNR)
at the receiver at time t and P = {Pi(t) ≥ 0, ∀i, 0 ≤ t ≤ T }
is the power allocation policy. On the other hand, we take
into account the total energy consumption of the system by
including it in the optimization objective function. For this
purpose, we model the weighted energy dissipation in the
system as the sum of two terms which can be expressed as

UTP (P) =
∫ T

0
ε

N
∑

i=1

φiPi(t) dt + PCT, (6)

where φi > 0 is a non-negative constant weight imposed
on the use of energy harvester i and φi 6= φk,∀i 6= k. In
particular, the value of φi can be interpreted as the cost or
preference in using energy harvester i. For instance, if energy
harvester i exploits solar energy, the transmitter may prefer
to use battery i on sunny days for transmission by setting
φi → 0. On the other hand, PC in (6) is the constant required
signal processing power2 at each time instant which includes
the power dissipations in the mixer, transmit filter, frequency
synthesizer, and digital-to-analog converter (DAC), etc. Hence,
the weighted energy efficiency of the considered system over
a time period of T seconds is defined as the total average
number of received bits/Joule

Ueff (P) =
C(P)

UTP (P)
. (7)

B. Optimization Problem Formulation

The optimal power allocation policy, P∗, can be obtained
by solving

max
P

Ueff (P) (8)

s.t. C1, C2,

C3: C(P) ≥ Rmin, C4:
N
∑

i=1

Pi(t) ≤ Pmax, 0 ≤ t ≤ T,

C5: Pi(t) ≥ 0, ∀i, 0 ≤ t ≤ T,

where C3 specifies the minimum system data rate requirement
Rmin. C3 can also be interpreted as a delay constraint for data
transmission since at least Rmin amount of data has to be
transmitted by the end of time T . In particle, such constraint

2We assume that there is a constant energy supply from a non-renewable
energy source (e.g. from power grid) for supplying the energy required in
signal processing. Note that we can incorporate the constant energy supply
into (6) by treating it as the N -th energy harvester which has the highest
value of weight φN .

is needed for real time M2M communication services such
as vehicle and asset tracking. Note that although variable
Rmin in C3 is not an optimization variable in this paper, a
balance between energy efficiency and system capacity can be
struck by varying Rmin. C4 is a constraint on the maximum
transmit power of the transmitter. For instance, if Zigbee is
used for M2M communication, the maximum transmit power
is Pmax = 1 W in the US. C5 is the non-negative constraint
on the power allocation variables.

IV. SOLUTION OF THE OPTIMIZATION PROBLEM

The optimization problem in (8) is non-convex due to the
fractional form of the objective function. We note that there
is no standard approach for solving non-convex optimization
problems. In order to derive an efficient power allocation algo-
rithm for the considered problem, we introduce the following
transformation.

A. Transformation of the Objective Function

The objective function in (8) can be classified as nonlinear
fractional program [8] and has some interesting properties that
will be introduced in the following. Without loss of generality,
we define the maximum energy efficiency q∗ of the considered
system as

q∗ =
C(P∗)

UTP (P∗)
= max

P

C(P)
UTP (P)

. (9)

Then, we can establish the following theorem.
Theorem 1: The maximum energy efficiency q∗ is achieved

if and only if the optimal power allocation policy satisfies the
following condition:

max
P

C(P)− q∗UTP (P) (10)

= C(P∗)− q∗UTP (P∗) = 0,

for C(P) ≥ 0 and UTP (P) > 0.
Proof: We can follow a similar approach as in [9] to prove

Theorem 1. The detailed proof is omitted here because of
space constraints.

By Theorem 1, for any optimization problem with an ob-
jective function in fractional form, there exists an equivalent3

objective function in subtractive form, e.g. C(P)−q∗UTP (P)
in the considered case. As a result, we can focus on this
equivalent objective function in the rest of the paper.

B. Iterative Algorithm for Energy Efficiency Maximization

In this section, we adopt an iterative algorithm (known as
the Dinkelbach method) for solving (8) with an equivalent
objective function. The proposed algorithm is summarized in
Table I and the convergence to the optimal energy efficiency
is guaranteed if we are able to solve the inner problem (11)
in each iteration.

Proof: Please refer to [9] for a proof of convergence.

3Here, “equivalent” means that both problem formulations lead to the same
optimal power allocation policy.



TABLE I
ITERATIVE POWER ALLOCATION ALGORITHM.

Algorithm 1 Iterative Power Allocation Algorithm
1: Initialize the maximum number of iterations Lmax and the

maximum tolerance ε
2: Set maximum energy efficiency q = 0 and iteration index

n = 0
3: repeat {Main Loop}
4: Solve the inner loop problem in (11) for a given q and

obtain power allocation policy {P ′}
5: if C(P ′)− qUTP (P ′) < ε then
6: Convergence = true
7: return {P∗} = {P ′} and q∗ = C(P′)

UTP (P′)
8: else
9: Set q = C(P′)

UTP (P′) and n = n+ 1
10: Convergence = false
11: end if
12: until Convergence = true or n = Lmax

As shown in Table I, in each iteration of the main loop,
we solve the following optimization problem for a given
parameter q:

max
P

C(P)− qUTP (P)

s.t. C1, C2, C3, C4, C5. (11)

Solution of the Main Loop Problem: Although the objective
function is now in a subtractive form which is easier to handle,
there is still an obstacle in solving the above problem. The
optimal power allocation policy is expected to be time varying
in the considered duration of T seconds. However, it is unclear
how often the transmitter should update the power allocation
policy which is a hurdle for designing a practical power allo-
cation algorithm. In order to strike a balance between solution
tractability and computational complexity, we introduce the
following lemma which provides valuable insight into the time
varying dynamic of the optimal power allocation policy.

Lemma 1: The optimal power allocation policy maximizing
the system energy efficiency does not change within an epoch.

Proof: Please refer to the Appendix for a proof of Lemma
1.

As revealed by Lemma 1, the optimal power allocation
policy must be kept constant in each epoch for maximizing
the system energy efficiency. As a result, we can discretize
the integrals and continuous variables involved in (11). In
other words, the number of constraints in (11) reduce to
countable quantities. Without loss of generality, we assume
that the channel states change M ≥ 0 times and energy arrives
K ≥ 0 times in the N energy sources in the duration of [0, T ].
Specifically, we have L = M +K epoch(s) for the considered
duration of T seconds which includes the epoch caused by E0
at t = 0 for all energy harvesters. Besides, time instant T is
treated as an additional fading epoch with zero channel gain
to terminate the process. We define the length of each epoch
as lj = tj − tj−1 where epoch j ∈ {1, 2, . . . , L} is defined as

the time interval [tj−1, tj), cf. Figure 2. Note that t0 is defined
as t0 = 0. For the sake of notational simplicity and clarity, we
replace the continuous time variables with the corresponding
discrete time variables, i.e., P (t) → P [j], Pi(t) → Pi[j], and
Γ(t) → Γ[j]. Then, the weighted average system throughput
and the total weighted energy consumption can be re-written
as

C(P) =
L
∑

j=1

ljC[j] and

UTP (P) =
L
∑

j=1

ljPC +
L
∑

j=1

ljε
N
∑

i=1

Pi[j]φi, (12)

respectively, where C[j] = W log2
(

1+ (
∑N

i=1 Pi[j])Γ[j]
)

is
the channel capacity between the transmitter and the receiver
in epoch l. As a result, the optimization problem in (11) is
transformed into the following convex optimization problem:

max
P

C(P)− qUTP (P)

C1:
e

∑

j=1

ljεPi[j] ≤
e

∑

j=1

Ein
i [j], ∀e, ∀i

C2:
r

∑

j=1

Ein
i [j]−

r−1
∑

j=1

εljPi[j] ≤ Emaxi
, ∀r, ∀i

C3:
L
∑

j=1

ljC[j] ≥ Rmin, C4: leP [e] ≤ lePmax, ∀e,

C5: Pi[e] ≥ 0, ∀i, e, (13)

where e ∈ {1, 2, . . . , L} and r ∈ {2, . . . , L + 1}. In (13),
Ein

i [j] is defined as the energy which arrives in epoch j in
battery i. Hence, Ein

i [j] = Ei,a for some a if event j is
an energy arrival and Ein

i [j] = 0 if event j is a channel
gain change, cf. Figure 2. Now, the transformed problem is
jointly concave with respect to all optimization variables4, and
under some mild conditions [10], solving the dual problem is
equivalent to solving the primal problem.

C. Dual Problem Formulation

In this subsection, we solve the power allocation and
scheduling optimization problem by solving its dual. For this
purpose, we first need the Lagrangian function of the primal
problem which can be written as

L(γ,β, ρ,µ,P) =
L
∑

j=1

lj(1 + ρ)C[j]− ρRmin

−
N
∑

i=1

L
∑

j=1

γi,j
(

j
∑

m=1

lmεPi[m]−
j

∑

m=1

Ein
i [m]

)

−q
(

L
∑

j=1

ljPC +
L
∑

j=1

ljε
N
∑

i=1

Pi[j]φi

)

4We can follow a similar approach as in Appendix A to prove the convexity
of the above problem for the discrete time model.



−
N
∑

i=1

L+1
∑

j=2

βi,j

(

j
∑

m=1

Ein
i [m]−

j−1
∑

m=1

εlmPi[m]− Emaxi

)

−
L
∑

j=1

µj

(

lj
N
∑

i=1

Pi[j]− ljPmax

)

, (14)

where γ is the Lagrange multiplier vector associated with the
causality constraint C1 in drawing energy from each energy
harvester with elements γi,j , i ∈ {1, . . . , N}, j ∈ {1, . . . , L}.
β is the Lagrange multiplier vector corresponding to the
maximum energy level constraint C2 in the battery of the
energy harvester with elements βi,j where βi,1 = 0, ∀i. ρ is
the Lagrange multiplier corresponding to the minimum data
rate requirement Rmin in C5. µ is the Lagrange multiplier
vector for constraint C4 on the maximum power with elements
µj . Note that the boundary constraints C5 are absorbed into
the Karush-Kuhn-Tucker (KKT) conditions when deriving the
optimal solution in Section IV-D.

Thus, the dual problem is given by

min
γ,β,ρ,µ≥0

max
P

L(γ,β, ρ,µ,P). (15)

D. Dual Decomposition and Sub-Problem Solution

By Lagrange dual decomposition, the dual problem is
decomposed into two parts (nested loops): the first part (inner
loop) is known as sub-problem; the second part (outer loop) is
the master problem [9]. Then, the dual problem can be solved
iteratively, where in each iteration the transmitter solves the
sub-problem (inner loop) by using KKT conditions for a fixed
set of Lagrange multipliers, and the master problem (outer
loop) is solved using gradient method.

Let P ∗
i [j] denotes the optimal power allocation solution of

the subproblem for energy harvester i in epoch j. Without loss
of generality, we assume φ1 < φ2 < . . . < φN for the sake of
notational simplicity. Using standard optimization techniques
and the KKT conditions, the optimal power allocations for
the N energy sources in epoch j are given by the following
recursive equation:

P ∗
1 [j]=

[

W (1 + ρ)
(ln(2)A1[j])

−
1

Γ[j]

]+

and (16)

P ∗
i+1[j]=

[

W (1 + ρ)
(ln(2)Ai+1[j])

−
1

Γ[j]
−

i
∑

d=1

P ∗
d [j]

]+

,(17)

where Ai[j]=
L
∑

e=j

γi,eε−
L
∑

e=j

βi,e+1ε+ qφiε+ µj . (18)

The power allocation solutions in (16) and (17) can be
interpreted as a form of water-filling. In particular, variable
ρ forces the transmitter to assign more power for transmission
if the data rate requirement Rmin becomes stringent. Interest-
ingly, the optimal values of P ∗

i [j], ∀i, have a unidirectional
dependence with each other according to the weights φi, i.e.,
the power drawn from an energy source with a higher weight
depends on the power drawn from the energy sources with
lesser weights, but not vice versa. Specifically, as can be seen

in (17), P ∗
1 [j] decreases the water-level in calculating the value

of P ∗
i+1[j]. In other words, P ∗

1 [j] reduces the amount of energy
drawn from the less preferable energy sources (higher values
of φi) for maximization of energy efficiency.

E. Solution of the Master Dual Problem

To solve the master minimization problem in (15), i.e., to
find γ, β, ρ, and µ for a given P , the gradient method can
be used since the dual function is differentiable. The gradient
update equations are given by:

γi,j(ς + 1)=
[

γi,j(ς)− ξ1(ς)

×
(

j
∑

m=1

Ein
i [m]− εPi[m]lm

)]+
, ∀i, j, (19)

βi,r(ς + 1)=
[

βi,r(ς)− ξ2(ς)

×
(

Emaxi
−

r
∑

m=1

Ein
i [m]+

r
∑

m=1

εlmPi[m]
)]+
,∀i,r,(20)

ρ(ς + 1)=
[

ρ(ς)− ξ3(ς)×
(

L
∑

j=1

ljC[j]−Rmin

)]+
, (21)

µj(ς + 1)=
[

µj(ς)− ξ4(ς)×
(

Pmax −
N
∑

i=1

Pi[j]
)]+

, ∀j, (22)

where j ∈ {1, . . . L}, r ∈ {2, . . . L}, index ς ≥ 0 is the
iteration index, and ξu(ς), u ∈ {1, . . . , 4}, are positive step
sizes. Then, the updated Lagrange multipliers in (19)-(22)
are used for solving the subproblem in (15) via updating
the power allocation solution according to (16)-(18). Since
the transformed problem in (13) is convex, the duality gap
between dual optimum and primal optimum is zero and it is
guaranteed that the iteration between the master problem and
the subproblem converges to the optimal solution of (11) in
the main loop, if the chosen step sizes satisfy the infinite travel
conditions [10].

V. RESULTS AND DISCUSSIONS

In this section, we evaluate the system performance using
simulations. We assume a transmission duration of T = 10
seconds, a carrier center frequency of 2.4 GHz, a signal
bandwidth of W = 10 kHz, a noise power of N0W = −134
dBm, and the distance between transmitter and receiver is 50
meters. The small scale fading coefficients of the transmitter
and receiver are generated as Rayleigh random variables with
unit variances. The static circuit power consumption is set to
PC = 23 dBm [11], the minimum data rate requirement of
the system is Rmin = 200 kbits/s, and the maximum transmit
power is 1 W. The number of energy sources will be specified
in each case study and each energy harvester has a maximum
energy storage of Emaxi

= 10 J, ∀i and an initial energy
E0 = 0.05 J in the battery. The amount of energy that can be
harvested by each energy harvester in each energy epoch is
assumed to be uniformly distributed in [0, 1] J [7]. The channel
changes with rate λf = 200 ms. On the other hand, we assume
a power efficiency of 35% in the PA, i.e., ε = 1

0.35 = 2.8571.
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Fig. 3. Energy efficiency (bit-per-Joule) versus energy arrival rate, λEi
, for

the proposed algorithm and the baseline with different numbers of energy
harvesters.

Note that if the resource allocator is unable to guarantee the
minimum data rate Rmin in T , we set the energy efficiency
and the average system throughput for that channel realization
to zero to account for the corresponding failure. The average
system energy efficiency is obtained by counting the number
of bits which are successfully decoded by the receiver over
the total energy consumption averaged over the microscopic
fading. Unless further specified, in the following results, the
“number of iterations” refers to the number of iterations of
Algorithm 1 in Table I.

A. Energy Efficiency versus Energy Arrival Rates

Figure 3 illustrates the average energy efficiency versus
the energy arrival rates, λEi , for different numbers of energy
harvesters. We define a vector ~φ = [φ1 . . . φi . . . φN ]. For the
case study of 1, 2, 3, and 4 energy harvester(s), the weight(s)
of φi is/are set to ~φ1 = [1], ~φ2 = [0.5 1], ~φ3 = [0.1 0.5 1],
and ~φ4 = [0.1−∆ 0.1+∆ 0.5 1], respectively, where ∆ → 0
is a small positive constant for studying the effect of multiple
energy harvester diversity. For an energy harvester with weight
φi = 1, a traditional continuous constant energy supply with
an instantaneous power of 1 W is assumed. The case of
~φ1 = [1] is treated as a baseline scheme for comparison. The
energy harvesters with weights φi < 1, represent some forms
of clean energy such as solar energy and wind energy, etc.
The number of iterations for the proposed iterative resource
allocation algorithm is 5 and 10. It can be observed that
the performance difference between 5 and 10 iterations is
negligible which confirms the practicality of the proposed
algorithm. On the other hand, the growth of energy efficiency
has a diminishing return for high energy arrival rates. Indeed,
when the energy arrival rate increases from a small value,
the transmitter has a higher energy level in each battery
for performing power allocation and thus the system energy
efficiency is enhanced. However, when the arrival rates of
energy become exceedingly large, the transmitter is forced to
discharge the batteries in order to prevent a battery overflow,
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Fig. 4. Average system capacity (kbit/s) versus energy arrival rate, λEi
, for

the proposed algorithm and the baseline.

cf. C2 in (4). As a result, the transmitter has to transmit
an excess amount of energy for discharging the batteries
which decreases the system energy efficiency gain due to a
higher energy arrival rate. It can be observed that there is
an energy efficiency gain if we switch the case from ~φ2 to
~φ3. This is because in ~φ3, a more energy efficient source is
available for transmission compared to ~φ2. Besides, a form
of multiple energy harvester diversity can be observed in
the energy efficiency when we switch from ~φ3 to ~φ4. Since
∆ → 0, the performance gain is coming from the transmitter in
exploiting energy from different energy sources which changes
the intermittent nature of energy availability compared to the
case of single energy source. On the other hand, the proposed
algorithm provides a significant performance gain compared
to the baseline scheme. This is because the baseline scheme
can only drawn energy from a less energy-efficient source.

B. Average System Capacity versus Energy Arrival Rates

Figure 4 shows the average system capacity versus the
energy arrival rates, λEi , for different numbers of energy har-
vesters. We compare the system performance of the proposed
algorithm again with the baseline scheme. The number of
iterations in the proposed algorithm is set to 10. It can be
observed that the average system capacity of the proposed
algorithm increases with the energy arrival rates. This is
because more energy is available for data transmission which
results in a capacity gain. We note that, as expected, the
baseline scheme achieves a smaller average system capacity
than the proposed algorithm since the proposed algorithm is
able to exploit energy from different energy sources in T
seconds.

VI. CONCLUSION

In this paper, we formulated the power allocation algorithm
design for a point-to-point M2M communication systems
with multiple energy sources as a non-convex optimization



problem, in which the circuit energy consumption, the finite
battery storage capacity, and the system data rate requirement
were taken into consideration. By exploiting the properties
of nonlinear fractional programming, the considered prob-
lem was transformed into an equivalent convex optimization
problem with a tractable solution. An efficient iterative off-
line power allocation algorithm with recursive closed-form
power allocation was derived for maximization of the energy
efficiency. Simulation results did not only show that the
proposed algorithm converges to the optimal solution within
a small number of iterations, but unveiled also the achievable
maximum energy efficiency. Interesting topics for future work
include studying the optimal on-line solution in multi-channel
M2M systems.

APPENDIX - PROOF OF LEMMA 1

The proof of Lemma 1 is divided into two parts. In the first
part, we prove the convexity of the optimization problem in
(11). Then, in the second part, we prove a necessary condition
for the optimal power allocation policy based on the result in
part one.

1) Proof of the Convexity of the Transformed Problem in
(11): We first consider the concavity of the objective function
on a per subcarrier basis with respect to all optimization
variables. For the sake of notational simplicity, we define the
channel capacity between the transmitter and the receiver at
time instant t as C(t) = W log2(1 + P (t)Γ(t)), respectively.
Let the objective function in (11) at time instant t be f(t,P) =
C(t)−q(ε

∑N
i=1 φiPi(t)+PCt). Then, we denote the Hessian

matrix of function f(t,P) by H(f(t,P)) and the eigenvalues
of H(f(t,P)) by ϕ1, ϕ2, . . . , and ϕN , respectively. After
some algebraic manipulation, the eigenvalues of H(f(t,P))
are given by

ϕ1 = ϕ2 = . . . = ϕN−1 = 0, (23)

ϕN =
−Γ2(t)N

∑N
i=1 Pi(t)

ln(2)(
∑N

i=1 Pi(t)Γ(t) + 1)2
≤ 0. (24)

Hence, H(f(t,P)) is a negative semi-definite matrix since
ϕi ≤ 0. Therefore, f(t,P) is jointly concave with respect to
(w.r.t.) optimization variables Pi(t) at time instant t. Then,
the integration of f(t,P) over t preserves the concavity of
the objective function in (11) [10]. On the other hand, the
constraints C1-C5 in (11) span a convex feasible set and thus
the transformed problem is a concave optimization problem.

2) Optimality of a Constant Power Allocation Policy in
Each Epoch: Without loss of generality, we consider a time
interval [t1, t2) of epoch 1 and a time instant τ1, where
t1 ≤ τ1 < t2. Suppose an adaptive power allocation policy
is adopted in t1 ≤ τ1 < t2 such that two constant power
allocation policies, {P1} and {P2}, are applied in t1 ≤ t < τ1
and τ1 ≤ t < t2, respectively. We assume that {P1} and
{P2} are feasible solutions to (11) while P1 6= P2. Now, we
define a third power allocation policy {P3} such that P3 =
P1(τ1−t1)+P2(t2−τ1)

t2−t1
. Note that arithmetic operations between

any two power allocation policies are defined element-wise.

Then, we apply power allocation policy5 {P3} to the entire
epoch 1 and integrate f(t,P) over time interval [t1, t2) which
yields:
∫ t2

t1
f(t,P3) dt

(a)
≥

∫ t2

t1

τ1 − t1
t2 − t1

f(t,P1) +
t2 − τ1
t2 − t1

f(t,P2) dt

= (τ1 − t1)f(t,P1) + (t2 − τ1)f(t,P2)

=
∫ τ1

t1
f(t,P1) dt+

∫ t2

τ1
f(t,P2) dt, (25)

where (a) is due to the concavity of f(t,P). In other words,
for any adaptive power allocation policy within an epoch, there
always exists at least one constant power allocation policy
which outperforms the adaptive approach. As a result, the
optimal power allocation policy is non-adaptive within each
epoch.
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