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Abstract— In this paper, resource allocation for energy efficient
communication in multi-cell orthogonal frequency division mul-
tiple access (OFDMA) downlink networks with cooperative base
stations (BSs) is studied. The considered problem is formulated
as a non-convex optimization problem which takes into account
the circuit power consumption, the limited backhaul capacity,
and the minimum required data rate for joint BS zero-forcing
beamforming (ZFBF) transmission. By exploiting the properties of
fractional programming, the considered non-convex optimization
problem in fractional form is transformed into an equivalent
optimization problem in subtractive form, which enables the
derivation of an efficient iterative resource allocation algorithm.
For each iteration, the optimal power allocation solution is derived
with a low complexity suboptimal subcarrier allocation policy
for maximization of the energy efficiency of data transmission
(bit/Joule delivered to the users). Simulation results illustrate that
the proposed iterative resource allocation algorithm converges in
a small number of iterations, and unveil the trade-off between
energy efficiency and network capacity.

I. INTRODUCTION

Cooperative communication for wireless networks has re-
ceived considerable interest in both industry and academia as
it provides extra degrees of freedom in resource allocation.
A particularly interesting approach is base station (BS) co-
operation for mitigating strong multi-cell interference due to
aggressive/universal frequency reuse in the network. In the
past decade, a number of interference mitigation techniques
have been proposed in the literature, including successive
interference cancellation (SIC) and interference nulling through
multiple antennas, for alleviating the negative side-effects of
aggressive/universal frequency reuse. Unfortunately, those tech-
niques may be too complex for low-power battery driven
mobile receiver units. On the contrary, BS cooperation shifts the
signal processing burden to the BSs and provides a promising
system performance [1]-[3]. In [1], the sum-rate of multi-cell
zero-forcing beamforming (ZFBF) systems was studied under
the assumption of the Wyner interference model for a large
number of users. In [2] and [3], the authors investigated the
optimal block diagonalization precoding matrix and the optimal
max-min beamformer in multi-cell environments, respectively.
However, the results in [1]-[3] are based on the ideal backhaul
assumption such that an unlimited amount of control signals,
user channel information, and precoding data can be exchanged.
Besides, if a multi-carrier system is considered, the results in
[1]-[3] which are valid for single-carrier transmission, may no
longer be applicable.

Recently, an increasing interest in power hungry services
such as video conferencing and online high definition (HD)
video streaming has led to a tremendous demand for high data
rate communications. Multi-cell orthogonal frequency division
multiple access (OFDMA) with BS cooperation is considered
as a possible solution for fulfilling this demand [4], [5], [6]. In
[4] and [5], user assignment and BS assignment in multi-cell

OFDMA systems with limited backhaul capacity constraints
were studied, respectively. In [6], the authors proposed a
dynamic frequency allocation scheme with fractional frequency
reuse with equal power allocation across all cooperating BSs. A
substantial capacity gain and a better interference management
can be achieved, compared to non-cooperative systems in all
studies [1]-[6]. Yet, the advantages of BS cooperation do not
come for free. They have significant financial implications
for service providers due to the high power consumption in
electronic circuitries, radio frequency (RF) transmission, and
data exchange via backhaul links. These factors have been over-
looked in the literature, e.g. [1]-[6]. In fact, energy efficiency
(bit-per-Joule) may be a better performance metric compared
to system capacity (bit-per-second-per-Hz) in evaluating the
utilization of resources.

In this paper, we address the above issues. For this pur-
pose, we formulate the resource allocation problem for en-
ergy efficient communication in multi-cell OFDMA systems
with limited backhaul capacity as an optimization problem.
By exploiting the properties of fractional programming, the
considered non-convex optimization problem in fractional form
is transformed into an equivalent optimization problem in
subtractive form with a tractable solution, which can be found
with an iterative algorithm. In each iteration, a closed-form
power allocation solution and a low complexity user selection
policy are computed for maximization of the network energy
efficiency.

II. MULTI-CELL OFDMA NETWORK MODEL

A. Multi-Cell System Model
We consider a multi-cell OFDMA network which consists

of a total of M BSs and K mobile users. All transceivers
are equipped with a single antenna, cf. Figure 1. We assume
universal frequency reuse and the M BSs share the total
bandwidth B. The channel state information (CSI) is assumed
to be perfectly known at a central unit and all computations
are performed in this unit. All BSs are cooperating with each
other by sharing the CSI and data symbols of all selected
users via capacity limited backhaul communication links. Note
that the energy consumptions incurred by exchanging CSI and
other overheads are not considered here since they are relatively
insignificant, compared to the resources used for data exchange.
On the other hand, intra-cell interference does not exist since
each subcarrier is only occupied by one user in each cell.

B. OFDMA Channel Model
We consider an OFDMA system with nF subcarriers. The

channel impulse response is assumed to be time-invariant within
each frame. Suppose user k ∈ {1, . . . , K} is associated1

1The data symbols for user k are first available at BS m only and are
forwarded to other BSs via backhaul links.
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Fig. 1. A multi-cell system with M = 3 cells. There are in total K = 27
users in the system. Each transceiver is equipped with a single antenna.

with BS m ∈ {1, . . . , M}. Let wj
Bm,Bc

(i) be the precoding
coefficient used by BS m to suppress the inter-cell interference
caused by BS c ∈ {1, . . . , M} in subcarrier i ∈ {1, . . . , nF }
for user j ∈ {1, . . . , K}. Then, the transmitted signal from BS
m to all selected users on subcarrier i is given by

∑

k∈S(i)

xk
m(i) =

M∑
c=1

∑

k∈S(i)

wk
Bm,Bc

(i)
√

P k
Bm

(i)uk(i) (1)

where xk
m(i) =

∑M
c=1 wk

Bm,c
(i)

√
P k

Bm
(i)uk(i) is the pre-coded

signal transmitted from BS m for user k on subcarrier i, P k
Bm

(i)
is the transmit power for the link between BS m and user k
in subcarrier i, uk(i) is the transmitted information symbol for
user k on subcarrier i, and S(i) is a user set selected for using
subcarrier i and the cardinality of the set is |S(i)| ≤ M, ∀i.

The received signal at user k in subcarrier i is given by

Y k(i) =
( M∑

c=1

Hk
Bc

(i)wk
Bc,Bm

(i)
√

P k
Bc

(i)lkBc

)
uk(i) (2)

+
M∑

m=1

M∑
c=1
c 6=m

∑

j∈S(i)
j 6=k

√
P j

Bm
(i)lkBm

Hk
Bm

(i)wj
Bm,Bc

(i)uj(i) + zk(i),

where lkBm
represents the path loss between BS m and user

k. zk(i) is the additive white Gaussian noise (AWGN) in
subcarrier i at user k with zero mean and variance σ2

z . Hk
Bm

(i)
is the small scale fading coefficient between the BS m and user
k in subcarrier i.

C. Backhaul Model
To facilitate the implementation of an efficient resource

allocation algorithm, we assume orthogonal frequency division
multiplexing (OFDM) wireline backhaul connections2 with nF

subcarriers. There are M such low cost backhaul connections
between each pair of BSs for multiplexing the data symbols of
a maximum of M users. In other words, multiuser interference
does not exist in the backhaul links. Since user k is associated
with BS m, BS m has to forward the data symbols of user k

2OFDM has been widely used in low cost backhaul wireline communication
systems such as digital subscriber line (DSL) [7].

to the other M − 1 BSs for joint cooperation. The data symbol
of user k received at BS c from BS m is given by

Y k
Bm,Bc

(i) = P k
Bm,Bc

(i)GBm,Bc
(i)uk(i) + nc(i), (3)

where P k
Bm,Bc

(i) and GBm,Bc
(i) are the allocated power and

power attenuation factor in the backhaul connection between BS
m and BS c in subcarrier i, respectively. nc(i) is the AWGN
in subcarrier i at BS c with zero mean and variance σ2

Bc
.

III. RESOURCE ALLOCATION AND SCHEDULING

A. Instantaneous Channel Capacity
In this subsection, we define the adopted system performance

measure. Given perfect CSI at the receiver, the maximum
channel capacity between all the cooperating BSs and user k
on subcarrier i with subcarrier bandwidth B

nF
is given by

Ck(i) =
B
nF

log2

(
1 + Γk(i)

)
, (4)

Γk(i) =

∣∣∣ ∑M
c=1 Hk

Bc
(i)wk

Bc,Bm
(i)

√
P k

Bc
(i)lkBc

∣∣∣
2

σ2
z + Ik(i)

, (5)

Ik(i) =
∣∣∣

M∑
m=1

M∑
c=1
c 6=m

∑

j∈S(i)
j 6=k

√
P j

Bm
(i)lkBm

Hk
Bm

(i)wj
Bm,Bc

(i)uj(i)
∣∣∣
2

,

(6)

where Γk(i) and Ik(i) are the received signal-to-interference-
plus-noise ratio (SINR) and the received interference power at
user k on subcarrier i, respectively. On the other hand, we
assume the total bandwidth of each backhaul link is also B, thus
the channel capacity between BS m and BS c in the backhaul
link for the data of user k in subcarrier i is given by

Ck
Bm,Bc

(i) =
B
nF

log2

(
1 +

P k
Bm,Bc

(i)|GBm,Bc
(i)|2

σ2
Bc

)
. (7)

To simplify the subsequent mathematical expressions and with-
out loss of generality, we assume in the following identical
noise variances at all BSs and all subcarriers, i.e., σ2

Bc
= σ2

B .
The instantaneous capacity (bit/s/Hz successfully delivered to
user k) of user k in subcarrier i is given by

ρk(i)=min
{

Ck(i), Ck
Bm,B1

(i), Ck
Bm,B2

(i), . . . , Ck
Bm,BM

(i)︸ ︷︷ ︸
M − 1 backhaul connections

}
.

(8)

The average weighted system capacity is defined as the total
average number of bits successfully delivered to the K mobile
users and is given by

U(P,W,S) =
M∑

m=1

∑

k∈Am

αk

nF∑

i=1

sk(i)× ρk(i), (9)

where P , W , and S are the power, precoding coefficient,
and subcarrier allocation policies, respectively. Am is the user
admission set of BS m and sk(i) ∈ {0, 1} is the subcarrier
allocation indicator. 0 < αk ≤ 1 is a positive constant provided
by the upper layers, which allows the resource allocator to
give different priorities to different users and to enforce certain
notions of fairness. On the other hand, for designing a resource
allocation algorithm for energy efficient communication, the
total power consumption should be included in the optimiza-
tion objective function. Thus, we model the power dissipation



UTP (P,W,S) in the system as the sum of two dynamic terms
and one static term:

UTP (P,W,S) =
M∑

m=1

M∑
c=1
c 6=m

∑

k∈Ac

nF∑

i=1

εP k
Bm,Bc

(i)sk(i)

+PC ×M+
M∑

m=1

M∑
c=1

K∑

k=1

nF∑

i=1

εP k
Bm

(i)|wk
Bm,Bc

(i)|2sk(i),(10)

where PC > 0 is a constant signal processing power in each
BS. The first term in (10) represents the power consumption
for data exchange via the limited capacity backhaul connections
between the BSs. The last two terms represent the constant total
circuit power consumption and the total power dissipation in the
power amplifiers of the M BSs, respectively. ε ≥ 1 is a constant
which accounts for the inefficiency of the power amplifier. For
example, if ε = 5, it means that for every 10 Watts of power
radiated in the radio frequency (RF), 50 Watts are consumed in
the power amplifier and the power efficiency is 1

ε = 1
5 = 20%.

Hence, the energy efficiency of the considered system is defined
as the total average number of bits/Joule

Ueff (P,W,S) =
U(P,W,S)

UTP (P,W,S)
. (11)

B. Optimization Problem Formulation

The optimal power allocation policy, P∗, precoding policy,
W∗, and subcarrier allocation policy, S∗, can be obtained by
solving

max
P,W,S

Ueff (P,W,S)

s.t. C1:
M∑

c=1

K∑

k=1

nF∑

i=1

|wk
Bm,Bc

(i)|2P k
Bm

(i)sk(i)

+
M∑

c=1
c 6=m

K∑

k=1
k∈Ac

nF∑

i=1

P k
Bm,Bc

(i)sk(i) ≤ PT , ∀m

C2:
M∑

m=1

K∑

k∈Am

nF∑

i=1

sk(i)ρk(i) ≥ R,

C3:
K∑

k=1

sk(i) ≤ M, ∀i, C4: sk(i) = {0, 1}, ∀i, k,

C5: P k
Bm

(i), P k
Bm,Bc

(i) ≥ 0, ∀i, k,m, c, (12)

where C1 is a joint power constraint3 of RF transmission and
backhaul transmission for each BS. C2 specifies the minimum
system data rate requirement R. Note that although variable R
in C2 is not an optimization variable in this paper, a balance
between energy efficiency and aggregate system capacity can
be struck by varying R. C3 is the subcarrier reuse constraint.
C3 and C4 are imposed to guarantee that each subcarrier can
be shared by M users, but each user can only use a subcarrier
once. In other words, selected users are not allowed to multiplex
different messages on the same subcarrier, since a sophisticated
receiver would be required at each user, such as a SIC receiver,
to recover more than one messages.

3We assume that the power amplifiers in both the backhaul transmission and
the RF transmission at each BS share a single power source.

TABLE I
ITERATIVE RESOURCE ALLOCATION ALGORITHM.

Algorithm 1 Iterative Resource Allocation Algorithm
1: Initialize the maximum number of iterations Lmax and the

maximum tolerance ε
2: Set maximum energy efficiency q = 0 and iteration index

n = 0
3: repeat {Main Loop}
4: Solve the inner loop problem in (15) for a given q and

obtain resource allocation policies {P ′,W ′,S ′}
5: if U(P ′,W ′,S ′)− qUTP (P ′,W ′,S ′) < ε then
6: Convergence = true
7: return {P∗,W∗,S∗} = {P ′,W ′,S ′} and q∗ =

U(P′,W′,S′)
UT P (P′,W′,S′)

8: else
9: Set q = U(P′,W′,S′)

UT P (P′,W′,S′) and n = n + 1
10: Convergence = false
11: end if
12: until Convergence = true or n = Lmax

IV. SOLUTION OF THE OPTIMIZATION PROBLEM

The objective function in (12) is a ratio of two functions
which is generally a non-convex function. As a result, a brute
force approach is required for obtaining a global optimal solu-
tion. However, such a method has exponential complexity with
respect to the number of subcarriers and the number of users
which is computationally infeasible even for small size systems.
In order to derive an efficient resource allocation algorithm, we
introduce the following transformation.

A. Transformation of the Objective Function

The objective function in (12) can be classified as nonlinear
fractional program [8]. For the sake of notational simplicity,
we define F as the set of feasible solutions of the optimization
problem in (12) and {P,W,S} ∈ F . Without loss of generality,
we define the maximum energy efficiency q∗ of the considered
system as

q∗ =
U(P∗,W∗,S∗)

UTP (P∗,W∗,S∗) = max
P,W,S

U(P,W,S)
UTP (P,W,S)

. (13)

We are now ready to introduce the following Theorem.
Theorem 1: The maximum energy efficiency q∗ is achieved

if and only if

max
P,W,S

U(P,W,S)− q∗UTP (P,W,S)

= U(P∗,W∗,S∗)− q∗UTP (P∗,W∗,S∗) = 0, (14)
for U(P,W,S) ≥ 0 and UTP (P,W,S) > 0.

for U(P,W,S) ≥ 0 and UTP (P,W,S) > 0.
Proof: Please refer to Appendix A for a proof of Theorem

1.
By Theorem 1, for any optimization problem with an objec-
tive function in fractional form, there exists an equivalent4
objective function in subtractive form, e.g. U(P,W,S) −
q∗UTP (P,W,S), in the considered case. As a result, we can
focus on the equivalent objective function in the rest of the
paper.

4Here, “equivalent” means that both problem formulations will lead to the
same resource allocation policies.



B. Iterative Algorithm for Energy Efficiency Maximization
In this section, we propose an iterative algorithm (known as

the Dinkelbach method [8]) for solving (12) with an equivalent
objective function. The proposed algorithm is summarized in
Table I and the convergence to the optimal energy efficiency is
guaranteed.

Proof: Please refer to Appendix B for the proof of con-
vergence.

As shown in Table I, in each iteration in the main loop, we
solve the following optimization problem for a given parameter
q:

max
P,W,S

U(P,W,S)− qUTP (P,W,S)

s.t. C1, C2, C3, C4, C5. (15)

1) Solution of the Main Loop Problem: The transformed
problem is a mixed combinatorial and non-convex optimiza-
tion problem. The non-convex nature comes from the power
allocation variables and precoding coefficients. The multiuser
interference appears in the denominator of the capacity equation
in (4) which couples the power allocation variables. On the
other hand, the combinatorial nature comes from the integer
constraint for subcarrier allocation. To obtain an optimal solu-

tion, an exhaustive search is needed with complexity n
∑M

g=1 (K
g )

F ,
which is computational infeasible for nF À K À M . In order
to derive an efficient resource allocation algorithm, we solve
the above problem in two steps by fixing resource allocation
policies {W,S}. In the first step, we propose a low complexity
sub-optimal user selection scheme. Then, in the second step, we
derive the closed-form power allocation for a given selected
user set with ZFBF precoding. Note that by fixing resource
allocation policies {W,S}, Algorithm 1 in Table I converges
to a sub-optimal solution since only the power allocation is
optimized for energy efficiency maximization.

Step 1 (Near Orthogonal User Selection): We
propose an efficient user selection algorithm. Without
loss of generality, we define a row vector ~Hk

BS(i) =[
Hk

B1
(i)

√
lkB1

Hk
B2

(i)
√

lkB2
. . . Hk

BM
(i)

√
lkBM

]
which

represents the super-channel between all BSs and user k with
elements Hk

Bm
(i)

√
lkBm

, k ∈ {1, . . . , K}, m ∈ {1, . . . , M},
representing the channel coefficient between BS m and user k

on subcarrier i. Let ∆
(

~Hk
BS(i), ~Hj

BS(i)
)

= | ~Hk
BS(i)( ~Hj

BS(i))†|
‖ ~Hk

BS(i)‖‖ ~Hj
BS(i)‖

where ‖·‖ and [·]† denote the Euclidean norm of a vector and
the conjugate transpose operation, respectively. Then, a near
orthogonal user set for subcarrier i, i.e., S⊥(i), is given by

S⊥(i) =
{

k, j
∣∣∣k, j = {1, . . . , K}, k = arg max

t
‖ ~Ht

BS(i)‖2 ,

∆
(

~Hk
BS(i), ~Hj

BS(i)
)
≤ δ × αj , ∀j 6= k

}
, (16)

where δ represent a threshold for measuring orthogonality.
k = arg maxt ‖ ~Ht

BS(i)‖2 represents the user who has the
largest channel gain for joint BS transmission and is able to
tolerate strong interference due to subcarrier reuse. Note that a
user with higher value of αk (priority) has a higher chance to
be selected. On the other hand, as δ → 0, each selected user in
the set is increasingly orthogonal to user k, i.e., the strongest
user. In other words, users associated with the set cause less
interference to the user with the strongest channel gain. Hence,
we can first select the strongest user and then perform user

selection on subcarrier i by selecting at most the M−1 smallest
elements of ∆

(
~Hk

BS(i), ~Hj
BS(i)

)
in set S⊥(i), since those

users introduce less interference to the strongest user. Note that
the search space of each subcarrier decreases from

∑M
g=1

(
K
g

)

to 2K − 1 and 2K−1∑M
g=1 (K

g ) ¿ 1 for K À M . Note that although
the proposed algorithm can only guarantee near orthogonality
between the strongest user and each other selected user, it has
been shown that the proposed scheme performs well with the
following zero-forcing beamforming scheme [9].

Step 2 (Zero-Forcing Beamformimg): In fact, the multi-cell
network with full BS cooperation can be considered as a MIMO
broadcast channel. It can be shown that dirty paper coding
(DPC) is optimal in achieving the multiuser broadcast capacity
region. However, DPC requires a very high complexity which
is considered impractical. On the contrary, although ZFBF is
a suboptimal precoding scheme, it has been considered as a
practical precoding solution, due to its linear complexity and
promising performance. Besides, it can be shown that the near-
orthogonal user selection algorithm together with ZFBF can
achieve the same asymptotic sum capacity performance as DPC
[9]. Therefore, we focus on ZFBF in the rest of the paper.

Since ZFBF is used for transmission, the capacity equation
in (4) can be rewritten as

Ck(i) =
B
nF

log2

(
1 + Γk(i)

)
and (17)

Γk(i) =

∣∣∣ ∑M
c=1

√
lkBc

Hk
Bc

(i)wk
Bc,Bm

(i)
∣∣∣
2

P k
B(i)

σ2
z

, (18)

where P k
B(i) = P k

B1
(i) = P k

B2
(i) = . . . = P k

BM
(i) due

to ZFBF transmission. On the other hand, without loss of
generality, we assume that user 1 to user k are selected for using
subcarrier i by searching the orthogonal set S⊥(i). Define a
selected user set as S̃⊥(i) ⊂ S⊥(i) where |S̃⊥(i)| ≤ M . Then,
we define a super channel matrix HB(i) ∈ C|S̃⊥(i)|×M such
that

HT
B(i) =

[(
H1

B(i)
)T (

H2
B(i)

)T
. . .

(
Hk

B(i)
)T

]
. (19)

Here, C|S̃⊥(i)|×M and (·)T are the space of all |S̃⊥(i)| × M
matrices with complex entries and the matrix transpose opera-
tion, respectively. Then, the corresponding ZFBF super matrix
B(i) ∈ CM×|S̃⊥(i)| can be calculated in the centralized unit
and is given by

B(i) = H†
B(i)

(
HB(i)H†

B(i)
)−1

D(i), (20)

where D(i) ∈ C|S̃⊥(i)|×|S̃⊥(i)| is a diagonal matrix with

diagonal elements γk(i) = 1/

√[(
HB(i)H†

B(i)
)−1]

k,k
=

∣∣∣ ∑M
c=1

√
lkBc

Hk
Bc

(i)wk
Bc,Bm

(i)
∣∣∣. Here, operator

[·]
a,b

refers to
the element in row a and column b of a matrix. Note that γk(i)
represents the equivalent channel gain between all BSs and user
k on subcarrier i. Hence, the ZFBF coefficient wk

Bc,Bm
(i) is

given by

wk
Bc,Bm

(i) =
[
B(i)

]
c,k

. (21)

The centralized unit delivers the relevant ZFBF coefficients to
each BS via another backhaul connection, cf. Figure 1.



Power Allocation Solution: It can be observed from (9)
that for a joint power constraint of RF transmission power and
backhaul transmission power in each BS, the capacity is always
limited by a bottleneck link. Therefore, the maximum capacity
between BSs and user k in subcarrier i occurs when

Ck
Bm

(i)=Ck
Bm,Bd

(i), ∀d={1, . . . , M}\m,

⇒ P k
Bm,Bc

(i)GBm,Bc
=P k

Bm,Bd
(i)GBm,Bd

,∀c, d. (22)

In other words, the transmit powers in the backhaul links in
subcarrier i from BS m to the other M − 1 BSs are identical.
In order to derive a closed-form solution for power allocation,
we define an auxiliary variable

P k
Tm

(i) = P k
Bm

(i)|wk
Bm,Bm

(i)|2+
M∑

c=1,c6=m

P k
Bm,Bc

(i)

= P k
B(i)|wk

Bm,Bm
(i)|2+

M∑

c=1,c6=m

P k
Bm,Bc

(i) (23)

which represents the power consumption of BS m for user k in
both RF transmission and backhaul transmission in subcarrier
i. Note that since user k is associated with BS m, so BS m
will not receive any data symbol of user k from other BSs, i.e,
P k

Bc,Bm
(i) = 0,∀c, k ∈ Am. The problem in (15) with ZFBF

and near orthogonal user selection is concave with respect to
the power optimization variables, so by standard optimization
techniques and Karush-Kuhn-Tucker (KKT) conditions, the
closed-form power allocation for BSs to serve user k for a
given parameter q is obtained as

P k
Tm

(i)=

[
(B/nF )(αk + η)/ ln(2)

qε
(
1 +

∑M
c=1
c 6=m

Ak
Bc,Bm

(i)
)

+ λm + Ωk
m(i)

(24)

− |wk
Bm,Bm

(i)|2σ2
z + ΞBm

|γk(i)|2
|γk(i)|2

]+

, (25)

ΞBm
=

M∑

c=1,c6=m

σ2
B

GBm,Bc

, Ωk
m(i)=

M∑
c=1
c 6=m

λcA
k
Bc,Bm

(i), (26)

Ak
Bc,Bm

(i)=
σ2

z |wk
Bc,Bm

(i)|2
|wk

Bm,Bm
(i)|2σ2

z + ΞBm
|γk(i)|2 , (27)

P k
Bm,Bc

(i)=
|γk(i)|2P k

Tm
(i)σ2

B( |wk
Bm,Bm

(i)|2σ2
z

ΞBm
+ |γk(i)|2)(GBm,Bc

ΞBm
)
, (28)

P k
B(i)=P k

Bm
(i)=

P k
Tm

(i)σ2
z

|wk
Bm,Bm

(i)|2σ2
z + ΞBm

|γk(i)|2 , (29)

where [x]+ = max{0, x}. λm and η are the Lagrange multipli-
ers chosen to satisfy the individual BS power constraint C1 and
data rate requirement C2 in (12), respectively. Ωk

m(i) represents
the influence of the other BSs created by their power allocations
on subcarrier i. The optimal values of λm and η can be easily
found by using numerical methods such as the gradient method
or the bisection method, due to the concavity of the transformed
problem with respect to the power allocation variables.

V. RESULTS AND DISCUSSIONS

In this section, we evaluate the system performance with the
proposed resource allocation and scheduling algorithm using
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Fig. 2. Energy efficiency (bit-per-Joule) versus number of iterations with
different maximum transmit powers per BS, PT , and different numbers of users
K. The dashed lines represent the maximum achievable energy efficiencies for
different cases.

simulations. A multi-cell system with 3 cells is considered. Each
cell has a radius of 1 km. The number of subcarriers is nF = 64
with carrier center frequency 2.5 GHz, system bandwidth B = 5
MHz, and αk = 1,∀k. Each subcarrier for both RF transmission
and backhaul connection has a bandwidth of 78 kHz and the
noise variance is σ2

B = σ2
z = −125 dBm. The 3GPP path

loss model is used [10]. The small scale fading coefficients
of the BS-to-users links are generated as independent and
identically distributed (i.i.d.) Rayleigh random variables with
zero means and unit variances. We assume that all BSs have the
same maximum transmit power PT . Each backhaul connection
is assumed to be implemented by DSL with a 24 American
Wire Gauge copper cable. The signal attenuation GBc,Bm for
the corresponding backhaul connection is in the order of −20
dB/km. The average system energy efficiency is obtained by
counting the number of packets which are successfully decoded
by the users over the total power consumption averaged over
both macroscopic and microscopic fading. Unless specified
otherwise, we assume a static circuit power consumption of
PC = 50 dBm [11], a data rate requirement of R = 2
bit/s/Hz/cell, and an orthogonality parameter of δ = 0.1. On the
other hand, we assume a power efficiency of 20% for the power
amplifiers used in both the backhaul and RF, i.e., ε = 1

0.2 = 5.

A. Convergence of Iterative Algorithm 1

Figure 2 illustrates the evolution of the proposed iterative
algorithm for different numbers of users and different maximum
transmit powers at each BS. The results in Figure 2 were
averaged over 100000 independent adaptation processes where
each adaptation process involves different realizations for the
path loss and the multipath fading. It can be observed that the
iterative algorithm converges to the optimal value5 within 10
iterations for all considered numbers of transmit antennas. In
other words, the maximum system energy efficiency can be
achieved within a few iterations on average with a superlinear
convergence rate [12].

B. Energy Efficiency versus Transmit Power

Figure 3 illustrates the average energy efficiency versus the
total transmit power in each cell, PT , for different numbers

5Here, the optimality is with respect to the optimization of power allocation
given a selected user set and ZFBF transmission.
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Fig. 3. Energy efficiency (bit-per-Joule) versus maximum transmit power, PT ,
for different numbers of users.

of users. The number of iterations for the proposed iterative
resource allocation algorithm is 10. It can be observed that
an increasing number of users benefits the system in terms
of energy efficiency. This is because the proposed resource
allocation and scheduling algorithm is able to exploit multi-
user diversity (MUD). Indeed, MUD introduces an extra power
gain [13, Chapter 6.6] in the system which provides further
energy savings. Yet, the power gain due to MUD is diminishing
when K is large. Figure 3 also contains the energy efficiency
of a baseline resource allocation scheme. For the baseline
scheme, we maximize the average system capacity (bit/s/Hz)
with constraints C1-C5 in (12), instead of the energy efficiency.
Simulation results in this figure demonstrate that in the low
transmit power regime, both algorithms perform nearly the
same in terms of energy efficiency. Yet, the proposed algorithm
provides a significant performance gain in the high transmit
power regime. This is because the baseline scheme uses excess
power to increase the average system capacity by sacrificing
the system energy efficiency.

C. Average System Capacity versus Transmit Power

Figure 4 shows the average system capacity versus maximum
transmit power PT for different numbers of users. We compare
the system performance of the proposed algorithm again with
the baseline scheme. The number of iterations in the proposed
algorithm is set to 10. It can be observed that the average system
capacity of the proposed algorithm approaches a constant in
the high transmit power regime. This is because the proposed
algorithm clips the power in both backhaul transmission and RF
transmission at the BS, in order to maximize the system energy
efficiency. We note that, as expected, the baseline scheme
achieves a higher average system capacity than the proposed
algorithm since the former scheme consumes all the available
transmit power in all scenarios. However, the superior average
system capacity of the baseline scheme comes at the expense of
low energy efficiency. On the other hand, an increasing number
of users benefit the average capacity in all cases due to MUD.

VI. CONCLUSIONS

In this paper, we formulated the resource allocation and
scheduling design for multi-cell OFDMA networks as a non-
convex and combinatorial optimization problem, in which the
circuit power dissipation, the limited backhaul capacity, and
the system data rate requirement were taken into consideration.
By exploiting the properties of fractional programming, the
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Fig. 4. Average system capacity versus maximum transmit power, PT , for
different numbers of users.

considered problem was transformed into an equivalent prob-
lem with a tractable solution. An efficient iterative resource
allocation algorithm with closed-form power allocation and low
complexity user selection was derived for maximization of the
energy efficiency. Simulation results did not only show that the
proposed algorithm converges to the optimal solution within a
small number of iterations, but demonstrated also the achievable
maximum energy efficiency in BS cooperation with limited
capacity backhaul connections.

APPENDIX

A. Proof of Theorem 1
We now prove the forward implication of Theorem 1 by

following a similar approach as in [8]. Without loss of gen-
erality, we define q∗ and {P∗,W∗,S∗} ∈ F as the optimal
energy efficiency and the optimal resource allocation policy of
the original objective function in (12), respectively. Then, the
optimal energy efficiency can be expressed as

q∗ =
U(P∗,W∗,S∗)

UTP (P∗,W∗,S∗) ≥
U(P,W,S)

UTP (P,W,S)
, ∀{P,W,S} ∈ F ,

=⇒ U(P,W,S)− q∗UTP (P,W,S) ≤ 0 and
U(P∗,W∗,S∗)− q∗UTP (P∗,W∗,S∗) = 0. (30)

Therefore, we conclude that max
P,W,S

U(P,W,S) −
q∗U(P,W,S) = 0, which is achievable by resource allocation
policy {P∗,W∗,S∗}. This completes the forward implication.

Next, we prove the converse implication of Theorem 1.
Suppose {P∗e ,W∗

e ,S∗e } is the optimal resource allocation policy
of the equivalent objective function such that U(P∗e ,W∗

e ,S∗e )−
q∗UTP (P∗e ,W∗

e ,S∗e ) = 0. Then, for any feasible resource
allocation policy {P,W,S} ∈ F , we can obtain the following
inequality

U(P,W,S)− q∗UTP (P,W,S)
≤ U(P∗e ,W∗

e ,S∗e )− q∗UTP (P∗e ,W∗
e ,S∗e ) = 0. (31)

The above inequality implies

U(P,W,S)
UTP (P,W,S)

≤ q∗ ∀{P,W,S} ∈ F and

U(P∗e ,W∗
e ,S∗e )

UTP (P∗e ,W∗
e ,S∗e )

= q∗. (32)

In other words, the optimal resource allocation policy
{P∗e ,W∗

e ,S∗e } for the equivalent objective function is also the



optimal resource allocation policy for the original objective
function.

This completes the proof of the converse implication of
Theorem 1. In summary, the optimization of the original objec-
tive function and the optimization of the equivalent objective
function result in the same resource allocation policy. ¤

B. Proof of Algorithm Convergence

We follow a similar approach as in [8] for proving the
convergence of Algorithm 1. We first introduce the following
two propositions. For the sake of notational simplicity, we
define the equivalent objective function in (15) as F (q′) =
max
P,W,S

{U(P,W,S)− q′UTP (P,W,S)}.

Proposition 1: F (q′) is a strictly monotonic decreasing func-
tion in q′, i.e., F (q′′) > F (q′) if q′ > q′′.

Proof: Let {P ′,W ′,S ′} ∈ F and {P ′′,W ′′,S ′′} ∈ F be
the two distinct optimal resource allocation polices for F (q′)
and F (q′′), respectively.

F (q′′) = max
P,W,S

{U(P,W,S)− q′′UTP (P,W,S)} (33)

> U(P ′,W ′,S ′)− q′′UTP (P ′,W ′,S ′)
≥ U(P ′,W ′,S ′)− q′UTP (P ′,W ′,S ′)
= F (q′). ¤

Proposition 2: Let {P ′,W ′,S ′} ∈ F be an arbitrary feasible
solution and q′ = U(P′,W′,S′)

UT P (P′,W′,S′) , then F (q′) ≥ 0.
Proof: F (q′) = max

P,W,S
{U(P,W,S)− q′UTP (P,W,S)}

≥ U(P ′,W ′,S ′)− q′UTP (P ′,W ′,S ′) = 0.

¤
We are now ready to prove the convergence of Algorithm 1.

Proof of Convergence: We first prove that the energy effi-
ciency q increases in each iteration. Then, we prove that if the
number of iterations is large enough, the energy efficiency q
converges to the optimal q∗ such that it satisfies the optimality
condition in Theorem 1, i.e., F (q∗) = 0.

Let {Pn,Wn,Sn} be the optimal resource allocation policy
in the n-th iteration. Suppose qn 6= q∗ and qn+1 6= q∗ represent
the energy efficiency of the considered system in iterations
n and n + 1, respectively. By Theorem 1 and Proposition 2,
F (qn) > 0 and F (qn+1) > 0 must be true. On the other
hand, in the proposed algorithm, we calculate qn+1 as qn+1 =

U(Pn,Wn,Sn)
UT P (Pn,Wn,Sn) . Thus, we can express F (qn) as

F (qn) = U(Pn,Wn,Sn)− qnUTP (Pn,Wn,Sn)
= UTP (Pn,Wn,Sn)(qn+1 − qn) > 0 (34)

=⇒ qn+1 > qn, ∵ UTP (Pn,Wn,Sn) > 0. (35)

By combining qn+1 > qn, Proposition 1, and Proposition
2, we can show that as long as the number of iterations
is large enough, F (qn) will eventually approach zero
and satisfy the optimality condition as stated in Theorem 1.

¤
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