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Abstract—In this paper, resource allocation for energy-efficient
communication in an orthogonal frequency division multiple
access (OFDMA) downlink network with a large number of
transmit antennas is studied. The considered problem is modeled
as a non-convex optimization problem which takes into account
the circuit power consumption, imperfect channel state informa-
tion at the transmitter (CSIT), and different quality of service
(QoS) requirements including a minimum required data rate
and a maximum tolerable channel outage probability. The power
allocation, data rate adaptation, antenna allocation, and subcar-
rier allocation policies are optimized for maximization of the
energy efficiency of data transmission (bit/Joule delivered to the
users). By exploiting the properties of fractional programming,
the resulting non-convex optimization problem in fractional
form is transformed into an equivalent optimization problem
in subtractive form, which leads to an efficient iterative resource
allocation algorithm. In each iteration, the objective function is
lower bounded by a concave function which can be maximized
by using dual decomposition. Simulation results illustrate that
the proposed iterative resource allocation algorithm converges
in a small number of iterations and demonstrate the trade-off
between energy efficiency and the number of transmit antennas.

Index Terms—Energy efficiency, green communication, mul-
tiuser MIMO, large numbers of antennas, resource allocation.

I. INTRODUCTION

MUltiple-input multiple-output (MIMO) technology pro-
vides extra degrees of freedom which facilitate mul-

tiplexing gains and diversity gains. It can be shown that the
ergodic capacity of a MIMO fading channel increases prac-
tically linearly with the minimum of the number of transmit
and receiver antennas [1], [2]. Hence, it is not surprising that
MIMO has attracted a lot of research interest in the past decade
since it enables significant performance enhancement without
requiring additional transmit power and bandwidth resources.
However, the complexity of MIMO receivers limits the gains
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that can be achieved in practice, especially for handheld
devices. An alternative is multiuser MIMO [3], [4] where a
transmitter with a large number of antennas serves multiple
single antenna users. In [3], the authors investigated the uplink
sum capacity (bit-per-second-per-Hertz) of cellular networks
assuming unlimited numbers of antennas at both the base
station (BS) and the users. In [4], high throughputs for both the
uplink and the downlink were shown for a time-division du-
plex multi-cell system which employed multiple BSs equipped
with large numbers of antennas. In [3], [4], substantial capacity
gains and better interference management capabilities were
observed for MIMO, compared to single antenna systems.
On the other hand, due to its high spectral efficiency and
resistance to multipath fading, orthogonal frequency division
multiple access (OFDMA) is a promising candidate for high
speed wireless multiuser communication networks, such as
3GPP Long Term Evolution Advanced (LTE-A), IEEE 802.16
Worldwide Interoperability for Microwave Access (WiMAX),
and IEEE 802.22 Wireless Regional Area Networks (WRAN).
In an OFDMA system, the fading coefficients of different sub-
carriers are likely to be statistically independent for different
users. With channel state information at the transmitter (CSIT),
the maximum system capacity can be achieved by selecting the
best user for each subcarrier and adapting the corresponding
transmit power [5], [6].

Recently, an increasing interest in multi-media services such
as video conferencing and online high definition (HD) video
streaming has led to a tremendous demand for high data rate
communications with certain guaranteed quality of service
(QoS) properties. The combination of MIMO and OFDMA
is considered a viable solution for achieving these high data
rates [7], [8], [9]. In fact, the data rate improvement due to
multiple antennas is unlimited if we allow the numbers of
antennas employed at both the transmitter and the receiver
to grow. Yet, the advantages of MIMO and OFDMA do not
come for free. They have significant financial implications
for service providers due to the rapidly increasing cost for
energy consumption in circuitries, which is often overlooked
in the literature [4]-[9]. As a result, energy-efficient system
designs, which adopt energy efficiency (bit-per-Joule) as the
performance metric, have recently drawn much attention in
both industry and academia [10]-[16]. In [10], a power loading
algorithm is designed to minimize the energy-per-goodbit of
a MIMO system. In [11] and [12], power allocation algo-
rithms for energy-efficient multi-carrier systems were studied
for macro-cell and hybrid cell structures, respectively. In
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[14] and [15], energy-efficient link adaptation for a linear
sum rate-dependent dynamic circuit power consumption was
considered. In [16], a risk-return model was proposed as a
performance metric for energy-efficient power allocation in
multi-carrier systems. However, all of these works assume that
perfect global channel state information (CSI) of all links is
available at the base station (BS). Hence, the power allocation
can be done optimally and channel outage [1] can be avoided
by data rate adaptation. However, in practice, CSIT is hardly
perfect due to the mobility of users and/or estimation errors.
Thus, channel outages occur with a non-zero probability and
maximum tolerable outage probability requirements should
be taken into consideration. Furthermore, if user selection
and link adaptation are jointly optimized in MIMO-OFDMA
systems, the energy-efficient resource allocation algorithms
proposed in [10]-[16], which were designed for perfect CSIT
and a single user, are no longer applicable1. In addition, the
number of active antennas used for transmission has been
assumed to be fixed in the existing literature, e.g. [1]-[16].
In other words, the optimal number of active antennas used
for transmission has not been investigated, at least not from
an energy efficiency point of view.

Motivated by the aforementioned observations, we for-
mulate the resource allocation problem for energy-efficient
communication in OFDMA systems with a large number of
antennas and imperfect CSIT as an optimization problem.
In particular, we optimize the number of activated anten-
nas jointly with power allocation, subcarrier allocation, and
data rate adaption for energy efficiency maximization. By
exploiting the properties of fractional programming, the con-
sidered non-convex optimization problem in fractional form
is transformed into an equivalent optimization problem in
subtractive form whose solution can be computed with an
iterative algorithm. Because of the large numbers of antennas,
the iterative algorithm requires only path loss and shadowing
information. In other words, the BS updates the resource
allocation policies based on the realizations of path loss and
shadowing, which only change in the order of seconds. In each
iteration, the transformed objective function is further lower
bounded by a concave function which can be maximized by
using dual decomposition. As a result, closed-form power, data
rate, antenna, and subcarrier allocation policies are obtained
for maximizing the energy efficiency in each iteration.

The remainder of the paper is organized as follows. In
Section II, we outline the signalling model and circuit power
consumption model for downlink OFDMA systems. In Section
III, we define the performance metric and formulate the
resource allocation with imperfect CSIT as an optimization
problem. In Section IV, the non-convex optimization problem
is solved via an iterative algorithm. Section V presents nu-
merical performance results, and in Section VI, we conclude
with a brief summary of our results.

II. OFDMA DOWNLINK NETWORK MODEL

In this section, after introducing the notation used in this
paper, we present the adopted channel and signal models.

1Although the notion of goodbit was introduced in [10], data rate adaptation
was not considered for maximization of the goodbit for a given outage
probability requirement.
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Fig. 1. Illustration of an OFDMA downlink network. There are one BS with
a large number of antennas and K = 9 desired users equipped with a single
antenna.

A. Notation

A complex Gaussian random variable with mean μ and vari-
ance σ2 is denoted by CN (μ, σ2), and ∼ means “distributed
as”. In this paper, the following conventions are adopted.
O(g(x)) denotes an asymptotic upper bound. Specifically,
f(x) = O(g(x)) if lim

x→∞| f(x)g(x) | ≤ N for 0 < N < ∞.
[
x
]+

=

max{0, x}.
[
x
]a
b

= a, if x > a;
[
x
]a
b

= x, if b ≤ x ≤
a;
[
x
]a
b
= b, if b > x. Θ(g(x)) denotes an asymptotically tight

bound, i.e., f(x) = Θ(g(x)) if lim
x→∞c|g(x)| ≤ lim

x→∞|f(x)| ≤
lim
x→∞d|g(x)| for some constants c ≤ d. E{·} denotes statistical

expectation. CN×M is the space of all N ×M matrices with
complex entries. ‖·‖ and |·| denote the Euclidean norm of
a matrix/vector and the absolute value of a complex-valued
scalar, respectively. [·]† , [·]T , and [·] represent the conjugate
transpose, transpose, and conjugate operations, respectively.
tr(S) denotes the trace of matrix S. �(·) denotes the real part
of a complex number. 1(·) denotes an indicator function which
is 1 when the event is true and 0 otherwise.

B. Channel Model

We consider an OFDMA network which consists of a BS
with multiple antennas and K mobile users equipped with
a single antenna, cf. Figure 1. The impulse responses of all
channels are assumed to be time-invariant (slow fading). There
are nF subcarriers in each orthogonal frequency division
multiplexing (OFDM) symbol. The downlink received symbol
at user k ∈ {1, . . . , K} on subcarrier i ∈ {1, . . . , nF } is
given by

yi,k =
√
Pi,klkgkh

T
i,k f̂i,kxi,k

+
∑
j �=k

hT
i,k f̂i,jxi,j

√
Pi,j lkgksi,j

︸ ︷︷ ︸
Subcarrier reuse interference

+zi,k, (1)

where xi,k and f̂i,k ∈ C
NTi,k

×1 are the transmitted data
symbol and the precoding vector used by the BS to transmit
to user k on subcarrier i, respectively. NTi,k

is the number
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of active antennas allocated to user k on subcarrier i for
transmission. Pi,k is the transmit power for the link from the
BS to user k in subcarrier i. si,j ∈ {0, 1} is the subcarrier
allocation indicator in subcarrier i for user j. hi,k ∈ C

NTi,k
×1

contains the small scale fading coefficients between the BS and
user k on subcarrier i. lk and gk represent the path loss and
the shadowing between the BS and user k, respectively. zi,k
is the additive white Gaussian noise (AWGN) in subcarrier i
at user k with distribution CN (0, N0), where N0 is the noise
power spectral density.

C. Channel State Information

In the following, since path loss and shadowing are slowly
varying random processes which both change on the order of
seconds for low mobility users, we assume that the path loss
and shadowing coefficients can be estimated perfectly. For the
multipath fading, we assume that the users can obtain perfect
estimates of the BS-to-user fading gains hT

i,k f̂i,k ∈ C1×1, i ∈
{1, . . . , nF }, k ∈ {1, . . . ,K} for signal detection purpose.
However, the corresponding CSIT, i.e., hi,k ∈ C

NTi,k
×1 may

be outdated/inaccurate at the BS because of the mobility of
the users or errors in uplink channel estimation. To capture
this effect, we model the multipath fading CSIT of the link
between the BS and user k on subcarrier i as

hi,k = ĥi,k +Δhi,k, (2)

where ĥi,k and Δhi,k denote the estimated CSIT vector
and the CSIT error vector, respectively. ĥi,k and Δhi,k are
Gaussian random vectors and each vector has independent
elements with respect to user index k. Besides, the elements of
vectors hi,k, ĥi,k, and Δhi,k have zero means and normalized
variances of 1, 1−σ2

e , and σ2
e , respectively. Assuming a min-

imum mean square error (MMSE) estimator, the CSIT error
vector and the actual CSIT vector are mutually uncorrelated.
However, the fading gains of a given user may be correlated
across different subcarriers.

III. RESOURCE ALLOCATION

In this section, we introduce the adopted system per-
formance metric and formulate the corresponding resource
allocation problem.

A. Instantaneous Channel Capacity and Outage Capacity

In this subsection, we define the adopted system perfor-
mance metric. Given perfect CSI at the receiver, the channel
capacity between the BS and user k on subcarrier i with
subcarrier bandwidth W is given by

Ci,k = W log2

(
1 + Γi,k

)
with (3)

Γi,k =
Pi,klkgk|hT

i,k f̂i,k|2
WN0 +

∑
j �=k|hT

i,k f̂i,j |2Pi,jsi,j lkgk
, (4)

where Γi,k is the received signal-to-interference-plus-noise
ratio (SINR) at user k on subcarrier i. The beamforming
vector adopted at the BS is chosen to be the eigenvector
corresponding to the maximum eigenvalue of ĥi,kĥ

T
i,k, i.e,

f̂i,k =
ĥi,k

‖ĥi,k‖ , which is known as maximum ratio transmission
(MRT). Note that zero-forcing beamforming (ZFBF) is not
considered in this paper since it requires the inversion of an
NTi,k

×NTi,k
matrix on each subcarrier for each user, which

is computational expensive for large NTi,k
, nF , and K .

On the other hand, we adopt the outage capacity [1] as
performance metric to account for the packet decoding errors
in slow fading. The average weighted system outage capacity
is defined as the total average number of bit/s successfully
delivered to the K mobile users and is given by

U(P ,A,R,S)

=

K∑
k=1

wk

nF∑
i=1

si,kE
{
Ri,k × 1

(
Ri,k ≤ Ci,k

)}

=

K∑
k=1

wk

nF∑
i=1

si,kRi,k Pr
[
Ri,k ≤ Ci,k

]
, (5)

where P ,A,R, and S are the power, antenna, data rate,
and subcarrier allocation policies, respectively. Ri,k is the
scheduled data rate for user k on subcarrier i. 0 ≤ wk ≤ 1 is
a positive constant provided by the upper layers, which allows
the resource allocator to give different priorities to different
users and to enforce certain notions of fairness. On the other
hand, for designing an energy-efficient resource allocation
algorithm, the total power consumption has to be included in
the optimization objective function. Thus, we model the power
dissipation, UTP (P ,A,R,S), of the system as the sum of two
dynamic terms and one static term [10]:

UTP (P ,A,R,S)
= max

i,k
{si,k ×NTi,k

} × PC︸ ︷︷ ︸
Circuit power consumption of all antennas at the BS

+

K∑
k=1

nF∑
i=1

ρPi,ksi,k︸ ︷︷ ︸
BS power amplifier

+P0, (6)

where PC is the constant circuit power consumption per
antenna which includes the power dissipations in the transmit
filter, mixer, frequency synthesizer, and digital-to-analog con-
verter which are independent of the actual transmitted power.
In the considered system, we assume that there is a maximum
number of antennas, Nmax, at the BS. However, we only acti-
vate some of them for the sake of energy-efficient communica-
tion2. The physical meaning of the term max

i,k
{si,k ×NTi,k

}
is that an antenna consumes power whenever it is activated
even if it is used only by some of the users on some of
the subcarriers3. ρ ≥ 1 is a constant which accounts for the
inefficiency of the power amplifier. For example, if ρ = 5,
for every 10 Watts of radiated power in the RF, 50 Watts are
consumed in the power amplifier and the power efficiency is

2The optimized number of active antennas will be found in next section
by solving an optimization problem.

3Note that multiplexing the data of different users over different antennas
for a fixed number of users would not increase the scheduled data rate Ri,k

because of the large number of antennas and the use of MRT precoding.
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1
ρ = 1

5 = 20%. P0 is the basic power consumed at the BS
independent of the number of transmit antennas. Hence, the
energy efficiency of the considered system is defined as the
total average number of bit/Joule successfully delivered to the
users which is given by

Ueff (P ,A,R,S) =
U(P ,A,R,S)

UTP (P ,A,R,S) . (7)

B. Optimization Problem Formulation

The optimal power allocation policy, P∗, antenna allocation
policy, A∗, data rate adaption policy, R∗, and subcarrier
allocation policy, S∗, can be obtained by solving

max
P,A,R,S,

Ueff (P ,A,R,S)

s.t. C1:
K∑

k=1

nF∑
i=1

si,kRi,k ≥ r, C2:
K∑

k=1

nF∑
i=1

Pi,ksi,k ≤ PT ,

C3:Pr
(
Ci,k < Ri,k

)
≤ ε, ∀i, k,

C4: Pi,k ≥ 0, ∀i, k, C5: si,k = {0, 1}, ∀i, k,
C6: NTi,k

= {1, 2, 3, . . . , Nmax}, NTi,k
∈ Z

+ ∀i, k,
where Z+ denotes the set of positive integers. C1 specifies
the minimum system data rate requirement r. C2 is a transmit
power constraint for the BS in the downlink. The value of PT

in C2 puts a limit on the amount of out-of-cell interference
in the downlink. C3 specifies the channel outage probability
requirement ε. Note that the number of active antennas is
an optimization variable in this paper. Hence, the imperfect
CSI of the multipath fading can only be acquired by the BS
after the resource allocator has decided on the number of
active antennas. Therefore, the outage probability conditioned
on the multipath fading, which is commonly considered in
the literature, cannot be adopted in C3. C5 is a combina-
torial constraint on the subcarrier assignment. Furthermore,
C5 implicitly imposes a fairness constraint, since no user
can dominate the subcarrier reuse process. In other words,
selected users are not allowed to multiplex different messages
on the same subcarrier, since a sophisticated receiver would
be required at each user, such as a successive interference
cancellation receiver, to recover more than one message.
Besides, the weaker users have a higher chance of being
selected for reusing a subcarrier. C4 is the boundary constraint
for the power allocation variables. C6 is the combinatorial
constraint on the number of antennas.

Remark 1: We note that instead of the sum rate constraint
in C1, an individual data rate requirement for each user could
be imposed by applying a similar approach as in [17] or [18]
on top of the adopted problem formulation. In this case, the
individual data rate requirement of each user would act as a
Lagrange multiplier, γk, k ∈ {1, . . . ,K}, which would appear
in the resource allocation policy solution, in (18)-(21). The γk
would have a similar effect as variable wk in (18)-(21), except
γk would be adjustable within a scheduling slot for satisfying
the individual data rate requirement. However, it has been
shown that if individual data rate requirements are imposed, a
resource hungry user consumes almost all the system resources
most of the time [17]. In other words, unveiling a trade-off

between energy efficiency (EE) and spectral efficiency (SE)
under such a problem formulation seems impossible, since
the degrees of freedom in resource allocation are decreased
significantly in this case.

IV. SOLUTION OF THE OPTIMIZATION PROBLEM

The objective function in (8) is a non-convex function.
In general, a brute force approach is required for obtaining
a global optimal solution. However, such a method has ex-
ponential complexity with respect to (w.r.t.) the number of
subcarriers which is computationally infeasible even for small
size systems. In order to obtain an efficient resource allocation
algorithm, we introduce the following transformation.

A. Problem Transformation

The fractional objective function in (7) can be classified as
a nonlinear fractional program [19]. For the sake of notational
simplicity, we define F as the set of feasible solutions of the
optimization problem in (8). Without loss of generality, we
define the maximum energy efficiency q∗ of the considered
system as

q∗ =
U(P∗,A∗,R∗,S∗)

UTP (P∗,A∗,R∗,S∗)
(8)

= max
P,A,R,S

U(P ,A,R,S)
UTP (P ,A,R,S) , ∀{P ,A,R,S} ∈ F .

We are now ready to introduce the following Theorem.
Theorem 1: The maximum energy efficiency q∗ is achieved

if and only if

max
P,A,R,S

U(P ,A,R,S)− q∗UTP (P ,A,R,S) (9)

= U(P∗,A∗,R∗,S∗)− q∗UTP (P∗,A∗,R∗,S∗)
= 0,

for U(P ,A,R,S) ≥ 0 and UTP (P ,A,R,S) > 0.
Proof: Since Ueff (P ,A,R,S) is well defined, Theorem

1 can be proved by following a similar approach as in [19].
Theorem 1 reveals that for an optimization problem

with an objective function in fractional form, there exists
an equivalent4 objective function in subtractive form, e.g.
U(P ,A,R,S) − q∗UTP (P ,A,R,S) in the considered case.
As a result, we can focus on the equivalent objective function
in the rest of the paper.

B. Iterative Algorithm for Energy Efficiency Maximization

In this section, we propose an iterative algorithm (known as
the Dinkelbach method [19]) for solving (8) with an equivalent
objective function. The proposed algorithm is summarized in
Table I and the convergence to the optimal energy efficiency
is guaranteed.

Proof: Please refer to Appendix A for the proof of
convergence.

4Here, “equivalent” means that both problem formulations lead to the same
resource allocation policies.
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TABLE I
ITERATIVE RESOURCE ALLOCATION ALGORITHM.

Algorithm 1 Iterative Resource Allocation Algorithm
1: Initialize the maximum number of iterations Lmax and the

maximum tolerance ε
2: Set maximum energy efficiency q = 0 and iteration index

n = 0
3: repeat {Main Loop}
4: Solve the inner loop problem in (10) for a given q and

obtain resource allocation policies {P ′,A′,R′,S ′}
5: if U(P ′,A′,R′,S ′)− qUTP (P ′,A′,R′,S ′) < ε then
6: Convergence = true
7: return {P∗,A∗,R∗,S∗} = {P ′,A′,R′,S ′} and

q∗ = U(P′,A′,R′,S′)
UTP (P′,A′,R′,S′)

8: else
9: Set q = U(P′,A′,R′,S′)

UTP (P′,A′,R′,S′) and n = n+ 1
10: Convergence = false
11: end if
12: until Convergence = true or n = Lmax

As shown in Table I, in each iteration in the main loop (line
4 in Table I), we solve the following optimization problem for
a given parameter q:

max
P,A,R,S

U(P ,A,R,S)− qUTP (P ,A,R,S)
s.t. C1, C2, C3, C4, C5, C6. (10)

In the following, dual decomposition is applied for deriving
a tractable sub-optimal solution of the main loop problem after
a series of approximations5.

1) Sub-Optimal Solution of the Main Loop Problem: The
transformed problem is a mixed combinatorial and non-convex
optimization problem. In order to derive an efficient resource
allocation algorithm, we introduce the following proposition
by taking advantage of the large numbers of antennas.

Proposition 1 (Equivalent Data Rate): For a given outage
probability ε 
 1 in C3, the equivalent data rate which
incorporates the outage probability on subcarrier i for user
k is given by

Ri,k (11)

= (1 − ε)W log2

(
1 +

Pi,klkgkNTi,k
(1 − σ2

e)(1 − δ)

WN0 +
∑

j �=k(
2
ε )Pi,jsi,j lkgk

)
,

where 0 < δ < 1 is a constant backoff factor. Note that
NTi,k

≥ �Nth� and �Nth� is the solution of (33) in Appendix
B and denotes the minimum number of antennas required for
Proposition 1 to hold.

Proof: Please refer to Appendix B for a proof of Proposition
1 and the meaning of δ.

The next step in solving the considered problem is to handle
the inter-user interference on each subcarrier. To this end, we
introduce an additional constraint C7 to the original problem

5The tightness of the proposed approximations will be verified in the
simulation section.

which is given by

C7:
∑
j �=k

(
2

ε
)Pi,jsi,j lkgk ≤ I, ∀k, i. (12)

C7 can be interpreted as the maximum inter-user interfer-
ence temperature [20] (tolerable interference level) in each
subcarrier. In general, adding an additional constraint to the
optimization problem results in a performance lower bound
of the original problem due to the smaller feasible set. By
varying6 the value of I , the resource allocator is able to
control the amount of interference in each subcarrier to
improve the system performance. Furthermore, by substituting∑

j �=k(
2
ε )Pi,jsi,j lkgk in (12) by I , the inter-user interference

can be decoupled from the objective function, which facilitates
the design of an efficient resource allocation algorithm. Then,
the scheduled data rate between the BS and user k on
subcarrier i can be lower bounded by

Ri,k = (1− ε)W log2

(
1 +

Pi,klkgkNTi,k
(1− σ2

e)(1 − δ)

WN0 + I

)
> (1− ε)W log2

( Pi,klkgk
WN0 + I

)
+ (1− ε)W log2

(
NTi,k

(1− σ2
e)(1 − δ)

)
. (13)

By substituting the lower bound on the outage equivalent data
rate in (13) into (10), a modified objective function, which
incorporates the channel outage requirement, can be obtained
for the main loop problem in (10). Indeed, it can be observed
that the scheduled data rate for user k on subcarrier i in (13)
depends only on the path loss and shadowing information of
user k due to the large number of antennas. In other words,
the dervied resource allocation policy will be identical for all
subcarriers of user k.

To handle the combinatorial constraints C5 and C6, cf. (8),
we follow the approach in [21] and relax constraints C5 and
C6. In particular, we allow si,k to be a real value between zero
and one instead of a Boolean, while NTi,k

can be a positive
real value. Then, si,k can be interpreted as a time sharing
factor for the K users for utilizing subcarrier i. Although
the relaxations of NTi,k

and si,k are generally sub-optimal,
they facilitate the design of an efficient resource allocation
algorithm. Therefore, using the equivalent data rate in Propo-
sition 1, the auxiliary time-shared powers P̃i,k = Pi,ksi,k, the
auxiliary time-shared number of antennas, ÑTi,k

= NTi,k
si,k,

and the continuous relaxation of both C5 and C6, we can

6The maximum inter-user interference temperature variable I is not an
optimization variable in the proposed framework. However, a suitable value
of I can be found via simulation in an off-line manner.
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rewrite the problem in (10) for a given parameter q as

max
P,A,R,S

Ũ(P ,A,R,S)− qŨTP (P ,A,R,S)
s.t. C4,

C1:
K∑

k=1

nF∑
i=1

si,kR̃i,k ≥ r, C2:
K∑

k=1

nF∑
i=1

P̃i,k ≤ PT ,

C5: 0 ≤ si,k ≤ 1, ∀i, k,
C6: Nmax ≥ ÑTi,k

≥
⌈
Ñth

⌉
, ∀i, k,

C7:
∑
j �=k

(
2

ε
)P̃i,jsi,j lkgk ≤ I, ∀i, k, (14)

where Ũ(P ,A,R,S) = U(P ,A,R,S)
∣∣∣
Pi,k=

P̃i,k
si,k

,NTi,k
=

ÑTi,k
si,k

,

ŨTP (P ,A,R,S) = UTP (P ,A,R,S)
∣∣∣
Pi,k=

P̃i,k
si,k

,NTi,k
=

ÑTi,k
si,k

,

and R̃i,k = Ri,k

∣∣∣
Pi,k=

P̃i,k
si,k

,NTi,k
=

ÑTi,k
si,k

.

The transformed problem in (14) is now jointly concave
w.r.t. all optimization variables, cf. Appendix C. Thus, under
some mild conditions [22], it can be shown that strong duality
holds and the duality gap is equal to zero. In other words,
solving the dual problem is equivalent to solving the primal
problem7.

2) Dual Problem: In this subsection, we solve the main
loop problem in (14) by solving its dual. For this purpose,
we first need the Lagrangian function of the primal problem.
Upon rearranging terms, the Lagrangian can be written as

L(μ, γ, θ,P ,A,R,S)

=
K∑

k=1

(wk + γ)

nF∑
i=1

si,kR̃i,k − μ
K∑

k=1

nF∑
i=1

P̃i,k + μPT − γr

− q
(
max
i,k

{ÑTi,k
} × PC +

K∑
k=1

nF∑
i=1

ρP̃i,k + P0

)

−
K∑

k=1

nF∑
i=1

θi,k

(∑
j �=k

(
2

ε
)P̃i,j lkgk − I

)
, (15)

where μ ≥ 0 and γ ≥ 0 are the Lagrange multipliers corre-
sponding to the power constraint and the required minimum
outage capacity constraint, respectively. θ is the Lagrange
multiplier vector associated with the inter-user interference
temperature constraint C7 with elements θi,k ≥ 0. The
boundary constraints C4, C5, and C6 will be absorbed into
the Karush-Kuhn-Tucker (KKT) conditions when deriving the
resource allocation policy in the following. Thus, the dual
problem of (14) is given by

min
μ,γ,θ≥0

max
P,A,R,S

L(μ, γ, θ,P ,A,R,S). (16)

In the following, we solve the above dual problem iteratively
by decomposing it into two layers: Layer 1 consists of nF

subproblems with identical structure; Layer 2 is the master
dual problem to be solved with the gradient method.

7Note that by solving (14) instead of (10) in each main loop iteration of
Algorithm 1, cf. Table 1, the algorithm converges to a lower bound for the
maximum energy efficiency of (8).

Dual Decomposition and Layer 1 Solution: By dual decom-
position, the BS first solves the following Layer 1 subproblem

max
P,A,R,S

L(μ, γ, θ,P ,A,R,S) (17)

for a fixed set of Lagrange multipliers and a given parame-
ter q. Using standard optimization techniques and the KKT
conditions, the power allocation for user k on subcarrier i is
obtained as

P̃ ∗
i,k = si,kP

∗
i,k = si,k

[
(1 − ε)W (wk + γ)

(ln(2))(μ+ qρ+Ωi,k)

]
, where

Ωi,k =
∑
j �=k

θi,k(
2

ε
)ljgj (18)

represents the interference to the other users created by this
power allocation. The power allocation has the form of multi-
level water-filling. It can be observed that the energy efficiency
variable q ≥ 0 prevents energy inefficient transmission by
truncating the water-levels. On the contrary, a large value of
Ωi,k results in a lower water-level in the power allocation to
reduce the interference caused to the other users such that
constraint C7 in (14) is satisfied.

Similarly, the close-to-optimal8 number of activated anten-
nas for user k on subcarrier i is given by

Ñ∗
Ti,k

(19)

= N∗
Ti,k

si,k =

[⌈ (1− ε)W (max
k∈Ψi

wk + γ)

PC(
q
Φi

) ln(2)

⌉]Nmax


Nth�
si,k,

where Ψi denotes a selected user set for using subcarrier i
and Φi =

∑
b∈Ψi

1(max
k∈Ψi

wk = wb) counts the number of wk

which have a value equal to max
k∈Ψi

wk for all selected users. If

the data rate constraint C1 in (8) is stringent, the dual variable
γ is large and forces the resource allocator to assign more
antennas to all selected users, cf. (19), such that constraint
C1 can be satisfied. Besides, (19) reveals that all users will
eventually use the same number of antennas. This behavior
can be explained by the following example: Suppose user 1
and user 2 are using N1 and N2 antennas such that N1 > N2.
Yet, from user 2’s point of view, the cost for N1 −N2 extra
antennas has been paid by user 1 already. Therefore, since
no extra cost has to be paid, user 2 is willing to use extra
antennas until N2 = N1, since this will benefit the system
performance.

In order to obtain the subcarrier allocation, we take the
derivative of the subproblem objective function w.r.t. si,k,

which yields ∂L(μ,γ,θ,P,A,R,S)
∂si,k

∣∣∣∣∣
Pi,k=P∗

i,k,NTi,k
=N∗

Ti,k

= Mi,k,

where Mi,k ≥ 0 can be interpreted as the marginal benefit
[23] for allocating subcarrier i to user k and is given by

Mi,k=(1− ε)W (wk + γ)

(
log2

( P ∗
i,klkgk

WN0 + I

)

+ log2

(
N∗

Ti,k
(1− σ2

e)(1− δ)
)
− 2/ ln(2)

)
.(20)

8Here, the sub-optimality is due to the floor and ceiling functions in (19)
which are required for fulfilling the combinatorial constraint in practice.
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Mi,k ≥ 0 has the physical meaning that users with negative
scheduled data rate on subcarrier i are not selected as they
can only provide a negative marginal benefit to the system.

On the contrary, if a user has a larger weight wk and enjoys
good channel conditions with positive data rate on subcarrier
i, he/she can provide a higher marginal benefit to the system.
Thus, the allocation of subcarrier i at the BS is based on the
following criterion:

s∗i,k = 1 if Mi,k ≥ 0 and s∗i,k = 0 otherwise. (21)

As explained earlier, since the multipath fading has vanished
because of the beamforming with a large number of antennas,
all the subcarriers of user k experience the same channel gain.
Hence, the resource allocation policy for user k on subcarrier i,
i.e., (18)-(21), is identical to that of the other nF−1 subcarriers
of user k. Indeed, (21) can be interpreted as a chunk-based
subcarrier allocation. In other words, if subcarrier i is allocated
to user k, the other nF − 1 subcarriers are also be allocated
to user k since they provide the same marginal benefit. As
a result, the complexity of solving the Layer 1 problem is
reduced by a factor of nF .

Finally, the data rate allocation R∗
i,k is obtained by substi-

tuting (18) and (19) into the lower bound of the equivalent
data rate in (13) for the subcarriers with si,k = 1.

Solution of Layer 2 Master Problem: The dual function is
differentiable and, hence, the gradient method can be used to
solve the Layer 2 master problem in (16) which leads to

μ(m+ 1)=
[
μ(m)− ξ1(m)× (PT −

K∑
k=1

nF∑
i=1

P̃i,k)
]+
, (22)

γ(m+ 1)=
[
γ(m)− ξ2(m)× (

K∑
k=1

nF∑
i=1

si,kR̃i,k − r)
]+
,(23)

θi,k(m+ 1)=
[
θi,k(m)− ξ3(m)

× (I −
∑
j �=k

(
2

ε
)Pi,jsi,j lkgk)

]+
∀i, k, (24)

where index m ≥ 0 is the iteration index and ξu(m),
u ∈ {1, 2, 3}, are positive step sizes. Since the transformed
problem for a given parameter q is concave in nature, it is
guaranteed that the iteration between Layer 1 and Layer 2
converges to the optimal solution of (14) in the main loop, if
the chosen step sizes satisfy the infinite travel condition [22],
[24]. Then, the updated Lagrange multipliers in (22)-(24) are
used for solving the subproblems in (17) via updating the
resource allocation policies.

Although equations (18)-(24) provide a solution for solving
the main loop problem (line 4, Table I), (19) involves non-
causal knowledge of the subcarrier allocation process for all
users. This can be easily resolved by the coordinate ascent
method [25], [26]. Due to page limitation, we only provide a
sketch of this method. For each set of Lagrange multipliers
and a given parameter q, we first keep si,k fixed and find
the optimized number of antennas NTi,k

and the optimized
power allocation Pi,k by using (18) and (19), respectively.
Then, we solve for si,k by using (21) while keeping both
NTi,k

and Pi,k fixed. The process is repeated iteratively. Once
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Fig. 2. The normalized performance of the proposed algorithm versus the
maximum interference-temperature-to-noise ratio I

N0W
for different values of

PT and different numbers of users. The y-axis is normalized by a performance
upper bound.

convergence is achieved, we can use (22)-(24) to update the
Lagrange multipliers.

A summary of the overall algorithm is given in Table I.
In each iteration of the main loop (line 3 in Table I), we
solve the main loop problem in (14) for a given parameter
q by dual decomposition and the coordinate ascent method,
cf. (14)-(24). After obtaining the solution in the main loop,
we update parameter q and use it for solving the main loop
problem in the next iteration. This procedure is repeated until
the proposed algorithm converges.

Note that because of the large number of antennas, the
algorithm in Table I requires only path loss and shadowing
information9. In other words, we have to execute the algorithm
only in accordance with the coherence time of shadowing and
path loss which is in the order of seconds for low mobility
users.

V. RESULTS

In this section, we evaluate the system performance through
simulations. A single cell with a radius of 1 km is considered,
cf. Figure 1. The simulation parameters can be found in
Table II. In practice, the values of PC and P0 depend on
the application-specific integrated circuits (ASIC) and the
implementation. The values of PC and P0 adopted in this
paper are for illustration purpose and are based on [27] and
[28], respectively. Note that if the resource allocator is unable
to guarantee the minimum data rate in a time slot, we set the
energy efficiency and outage capacity in that particular time
slot to zero to account for the corresponding failure. On the
other hand, in the following results, the “number of iterations”
is referring to the number of iterations of Algorithm 1 in
Table I. Besides, we use (3) and (7) directly for computing
the channel capacity and energy efficiency, respectively.

9The calculation of the power, data rate, antenna, and subcarrier allocations
are based on the path loss and shadowing information. However, the compu-

tation of precoding vector f̂i,k =
ĥi,k

‖ĥi,k‖
requires multipath information.
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TABLE II
SYSTEM PARAMETERS

Cell radius 1 km
Reference distance d0 35 m
Users distribution Uniformly distributed between d0 and cell boundary
Small scale fading distribution Rayleigh fading with unit variance
Carrier center frequency 2.5 GHz
Number of subcarriers nF 256
Total bandwidth 5 MHz
Subcarrier bandwidth 19.5 kHz
Noise power per subcarrier N0W −131 dBm
Channel path loss model 3GPP- Urban Micro
Lognormal shadowing Standard deviation of 8 dB
Circuit power per antenna PC 30 dBm [27]
Static circuit power consumption P0 40 dBm [28]
Minimum data rate requirement r 7 bit/s/Hz
Power amplifier (PA) power efficiency 1/ρ = 0.2
Constant back-off factor δ 0.3
CSIT error variance σ2

e (unless specified) 0.1
Outage probability requirement ε 0.1
Nth 33
Nmax 100

A. Energy Efficiency versus Maximum Inter-user Interference
Temperature I

In this section, we focus on the impact of the value of I
on the system energy efficiency. As can be seen from (12)
and (13), the multi-user interference temperature I , which is
the key for transforming the main loop problem in (14) into
a convex optimization problem, plays an important role in
the proposed resource allocation algorithm. The value of I
puts a limit on the subcarrier reuse by controlling the amount
of interference temperature10. For instance, by setting I = 0,
each subcarrier can be used by one user only. On the contrary,
I 
 1 allows all users to transmit simultaneously on the
same subcarrier. Figure 2 shows the energy efficiency of the
proposed algorithm versus the value of I for different PT and
different numbers of users K . The y-axis is normalized by
an upper bound on the energy efficiency of the considered
system 11, such that it illustrates the achievable percentage
of the energy efficiency of the reference scheme. The x-axis
is the interference temperature-to-noise ratio, i.e., I

N0W
. It

can be seen that for a wide range of I
N0W

values, we can
achieve more than 90% of the upper bound performance while
benefiting from the convexity of the transformed problem.
Furthermore, the choice of I is dependent on the number of
users. This is because a higher value of I

N0W
can be tolerated

for a larger number of users as the selected users can better
cope with the co-channel interference in each subcarrier due
to multiuser diversity (MUD). On the other hand, as expected,
the optimal value of I is not sensitive to PT when PT is large,
since the resource allocator clips the total transmit power for

10In practice, suitable values for I for implementing the proposed algorithm
can be found in an off-line manner.

11The upper bound is obtained by assuming perfect channel state informa-
tion is available at the base station. In addition, we remove constraints C3,
C5, C6, and C7 from the optimization problem in (8) for obtaining the upper
bound performance. The resulting optimization problem can be solved by
using the Dinkelbach method and the spectrum balancing algorithm from [25].
Note that the spectrum balancing algorithm is a close-to-optimal numerical
method for solving non-convex optimization problems in multicarrier systems.
However, it converges slowly and is computationally infeasible for large size
systems.
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Fig. 3. Energy efficiency versus the number of iterations with K = 15
users for different maximum transmit powers, PT , and channel estimation
error variance σ2

e = 0.1.

energy efficiency maximization, cf. (18).
In the following simulations, a fixed value of I is chosen

for the proposed algorithm in each simulation point, such
that we always achieve more than 90% of the average energy
efficiency of the upper bound performance.

B. Convergence of Iterative Algorithm

Figure 3 illustrates the evolution of the proposed iterative
algorithm for different values of the maximum transmit power,
PT , at the BS and K = 15 users. The results in Figure 3 were
averaged over 100000 independent adaptation processes where
each adaptation process involves different realizations of path
loss, shadowing, and multipath fading. It can be observed that
the iterative algorithm converges to 90% of the upper bound
performance within 10 iterations for all considered numbers
of transmit antennas.
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Fig. 4. Energy efficiency versus maximum transmit power, PT , for different
resource allocation algorithms with channel estimation error variance σ2

e =
0.1. The minimum required number of antennas is Nth = 33.

C. Energy Efficiency and Average Outage Capacity versus
Transmit Power

Figure 4 illustrates the energy efficiency versus the total
transmit power for K = 15 users. The number of iterations
for the proposed iterative resource allocation algorithm is 5
and 10. The performance difference between 5 iterations and
10 iterations is negligible which confirms the practicality of
our proposed iterative resource allocation algorithm. It can be
observed that when the maximum transmit power at the power
amplifier is large enough, e.g., PT ≥ 40 dBm, the energy
efficiency of the proposed algorithm approaches a constant
value since the resource allocator is not willing to consume
more power or activate more antennas, when the maximum
energy efficiency is achieved. For comparison, Figure 4 also
contains the energy efficiency of a baseline resource allocation
scheme in which resource allocation is performed in the same
manner as in the proposed scheme, except that the number
of transmit antennas is fixed to NTi,k

= Nth, 40, 60, 80, ∀i, k,
respectively. In other words, the baseline scheme optimizes
energy efficiency only in terms of resource allocation policies
{P ,R,S}, while the proposed algorithm optimizes energy ef-
ficiency in terms of resource allocation policies {P ,A,R,S}.
It can be observed that activating a fixed number of transmit
antennas NTi,k

degrades the system performance in terms of
energy efficiency. This is because in the baseline scheme,
either more power is consumed by the circuitries for operating
the antennas or the number of antennas is not large enough for
satisfying the minimum data rate requirement. On the other
hand, in the high transmit power regime, the performance
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Fig. 5. Average outage capacity (bit/s/Hz) versus maximum transmit power,
PT , for different resource allocation algorithms, channel estimation error
variance σ2

e = 0.1, and K = 15 users.

gain of the proposed algorithm over the baseline scheme
with small NTi,k

is reduced. This is due to the fact that in
the high transmit power regime, the data rate requirement is
satisfied because of the high transmit power and the proposed
algorithm tends to use the minimum number of antennas. In
fact, the circuit power required for activating an extra antenna
is relatively high, compared to the power consumed in the RF.
Therefore, the proposed algorithm activates a relatively small
number of antennas in the high transmit power regime and
thus the performance gain due to antenna allocation becomes
less significant.

Figure 5 shows the average outage capacity versus maxi-
mum transmit power PT for K = 15 users. We compare the
system performance of the proposed algorithm again with the
baseline resource allocator. The number of iterations in the
proposed algorithm is set to 5 and 10. It can be observed
that the average outage capacity of the proposed algorithm
approaches a constant in the high transmit power regime.
This is because the proposed algorithm clips the transmit
power at the BS in order to maximize the system energy
efficiency. We note that, as expected, the baseline scheme
resource allocator achieves a higher average outage capacity
than the proposed algorithm in the high transmit power regime
for most cases (except for NTi,k

= Nth), since the proposed
algorithm tends to use a smaller number of antennas. However,
the superior average outage capacity of the baseline scheme
comes at the expense of low energy efficiencies. On the
contrary, in the low transmit power regime, i.e., PT ≤ 25
dBm, the proposed algorithm has a higher average outage
capacity than the baseline scheme with NTi,k

≤ 60 since the
baseline scheme is not able to meet the data rate constraint
due to insufficient numbers of antennas. On the other hand, an
increasing number of antennas in the baseline scheme benefits
the average outage capacity due to an improved beamforming
gain. However, there is a diminishing return when NTi,k

is
large due to the channel hardening effect [1] in the desired
channels.

Figure 6 depicts the average total power consumption, i.e.,
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Fig. 6. Average total power consumption, E{UTP (P,A,R,S)}, versus
maximum transmit power, PT , for different resource allocation algorithms,
channel estimation error variance σ2

e = 0.1, 10 iterations, and K = 15 users.

E{UTP (P ,A,R,S)}, versus maximum transmit power PT

for the proposed algorithm and the baseline scheme for 10
iterations. In the regime of PT ≤ 30 dBm, the proposed
algorithm consumes more power than the baseline scheme
with NTi,k

≤ 40. This is because more antennas have to be
activated for satisfying the data rate requirement. However,
as the maximum transmit power allowance PT increases, the
proposed algorithm gradually approaches a constant power
consumption since neither further increasing the transmit
power nor activating more antennas benefits the system energy
efficiency.

D. Energy Efficiency versus Number of Users

Figure 7 depicts the energy efficiency versus the number
of users. Different CSIT error variances σ2

e , PT = 46 dBm,
and 10 iterations of the proposed algorithm are considered.
It can be observed that the energy efficiency grows with the
number of users since the proposed resource allocation and
scheduling algorithm is able to exploit MUD. In general,
MUD introduces an extra power gain [1, Chapter 6.6] to the
system which provides further energy savings. Indeed, since
a large number of transmit antennas reduces the multipath
propagation fluctuations in each channel and causes channel
hardening, the potentially achievable MUD gain due to the
multipath channel vanishes. Yet, the MUD gain obtained from
path loss and shadowing is still beneficial for the system
performance in terms of energy efficiency. For comparison,
Figure 7 also contains the energy efficiency of the baseline
scheme mentioned in Section V-C with NTi,k

= 60, ∀i, k.
Figure 7 shows that although the baseline scheme is able to
exploit MUD, the energy efficiency of the proposed resource
allocation algorithm is superior to the baseline scheme in all
considered scenarios, due to the optimization of the number
of antennas.

VI. CONCLUSION

In this paper, we formulated the resource allocation for
energy-efficient OFDMA systems with a large number of
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antennas as a mixed non-convex and combinatorial optimiza-
tion problem, in which circuit power consumption, minimum
data rate requirements, and outage probability constraints
were taken into consideration. An efficient iterative resource
allocation algorithm with closed-form power adaption, antenna
allocation, data rate adaption, and subcarrier allocation was
derived for maximization of the number of received bit-per-
Joule at the users. Simulation results did not only show that
the proposed algorithm converges to the solution within a
small number of iterations, but demonstrated also the trade-
off between energy efficiency and the number of transmit
antennas: The use of a large number of antennas is always
beneficial for the system outage capacity, even if the CSIT is
imperfect. However, an exceedingly large number of antennas
may not be a cost effective solution for improving the system
performance, at least not from an energy efficiency point of
view.

APPENDIX

A. Proof of Algorithm Convergence

We follow a similar approach as in [19] for proving
the convergence of Algorithm I. We first introduce two
propositions. For the sake of notational simplicity, we de-
fine the equivalent objective function in (10) as F (q′) =
max

P,A,R,S
{U(P ,A,R,S)− q′UTP (P ,A,R,S)}.

Proposition 2: F (q′) is a strictly monotonic decreasing
function in q′, i.e., F (q′′) > F (q′) if q′ > q′′.

Proof: Let {P ′,A′,R′,S ′} ∈ F and
{P ′′,A′′,R′′,S ′′} ∈ F be the two distinct optimal resource
allocation policies for F (q′) and F (q′′), respectively. F (q′′)

= max
P,A,R,S

{U(P ,A,R,S)− q′′UTP (P ,A,R,S)}
= U(P ′′,A′′,R′′,S ′′)− q′′UTP (P ′′,A′′,R′′,S ′′)
> U(P ′,A′,R′,S ′)− q′′UTP (P ′,A′,R′,S ′)
≥ U(P ′,A′,R′,S ′)− q′UTP (P ′,A′,R′,S ′)
= F (q′). (25)
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Proposition 3: Let {P ′,A′,R′,S ′} ∈ F be an arbitrary
feasible solution and
q′ = U(P′,A′,R′,S′)

UTP (P′,A′,R′,S′) , then F (q′) ≥ 0.
Proof:

F (q′)
= max

P,A,R,S
{U(P ,A,R,S)− q′UTP (P ,A,R,S)}

≥ U(P ′,A′,R′,S ′)− q′UTP (P ′,A′,R′,S ′) = 0.(26)

We are now ready to prove the convergence of Algorithm 1.
Proof of Convergence: We first prove that the energy

efficiency q increases in each iteration. Then, we prove that
if the number of iterations is large enough, the energy ef-
ficiency q converges to the optimal q∗ such that it satisfies
the optimality condition in Theorem 1, i.e., F (q∗) = 0. Let
{Pn,An,Rn,Sn} be the optimal resource allocation policies
in the n-th iteration. Suppose qn �= q∗ and qn+1 �= q∗

represent the energy efficiencies of the considered system
in iterations n and n + 1, respectively. By Theorem 1 and
Proposition 3, F (qn) > 0 and F (qn+1) > 0 must be true. On
the other hand, in the proposed algorithm, we calculate qn+1

as qn+1 = U(Pn,An,Rn,Sn)
UTP (Pn,An,Rn,Sn)

. Thus, we can express F (qn) as

F (qn)

= U(Pn,An,Rn,Sn)− qnUTP (Pn,An,Rn,Sn)

= UTP (Pn,An,Rn,Sn)(qn+1 − qn)

> 0 =⇒ qn+1 > qn, ∵ UTP (Pn,An,Rn,Sn) > 0.(27)

By combining qn+1 > qn, Proposition 2, and Proposition 3,
we can show that as long as the number of iterations is large
enough, F (qn) will eventually approach zero and satisfy the
optimality condition as stated in Theorem 1.

B. Proof of Proposition 1

The outage probability requirement in C3 is a compli-
cated non-convex function of data rates and powers, and
a closed-form expression for the corresponding distribution
function is not available. Therefore, we tackle this issue by
the following approximations. We focus on an upper bound
on the actual outage probability by bounding Pr(Γi,k <
c) = Pr(Ci,k < Ri,k), 1 ≤ k ≤ K, with an outage
probability requirement ε, where Γi,k is defined in (3) and

c = 2
Ri,k
W − 1. For notational simplicity, we define variables

Φj = |hT
i,k f̂i,j |2Pi,jsi,j lkgk ≥ 0, ∀j �= k, Φ =

∑
j �=k Φj +

N0W , and B = Pi,klkgk|hT
i,k f̂i,k|2. Suppose now we restrict

the resource allocator such that Pr
(
Φ ≥ c2

)
≤ ε

2 and

Pr
(
B ≤ c1

)
= ε

2 , where c1
c2

= c = 2
Ri,k
W − 1 is a function of

the scheduled data rate, and c1 and c2 are positive constants
that will be specified in the following. Hence, the actual outage
probability can be expressed as

Pr
(
Ci,k < Ri,k

)
= Pr

(B
c1
c2 < Φ

∣∣∣B ≤ c1

)
︸ ︷︷ ︸

a′

Pr
(
B ≤ c1

)

+Pr
(B
c1
c2 < Φ

∣∣∣B > c1

)
︸ ︷︷ ︸

b′

Pr
(
B > c1

)
. (28)

For calculating b′, it can be observed that b′ ≤ ε
2 since B

c1
>

1 and Pr
(
Φ ≥ c2

)
≤ ε

2 . On the other hand, a′ ≤ 1. Thus,

the actual outage probability Pr
(
Ci,k < Ri,k

)
is bounded by

Pr
(
Ci,k < Ri,k

)
≤ ε

2
+

ε

2
(1− ε

2
)

= ε− ε2

4
≈ ε for ε 
 1. (29)

In other words, the outage probability requirement
Pr
(
Ci,k < Ri,k

)
≤ ε is satisfied if we guarantee Pr

(
Φ ≥

c2

)
≤ ε

2 and Pr
(
B ≤ c1

)
= ε

2 .

Next, we calculate Pr
(
Φ ≥ c2

)
which represents the

probability that the sum power of the K − 1 inter-user
interferers exceeds c2. Let c2 =

∑
j �=k ηj +N0W , where ηj

are dummy variables. We obtain

Pr
(
Φ ≥ c2

)
= Pr

(∑
j �=k

Φj +N0W ≥
∑
j �=k

ηj +N0W
)

(a)

≤ E{∑j �=k Φj}∑
j �=k ηj

=

∑
j �=k Pi,jsi,j lkgk∑

j �=k ηj
, (30)

where (a) is due to Markov’s inequality [29], [30]. Note that
although Markov’s inequality may not be the tightest upper
bound for the corresponding outage probability, it has been
widely adopted in the literature [29], [30] for calculating
the outage probability in interference channels, since it only
requires the first moment of the random variable. As a result,
if we set ηj = Pi,jsi,j lkgk(

2
ε ), then we have12

Pr
(
Φ ≥ c2

)
= Pr

(∑
j �=k

|hT
i,k f̂i,j |2Pi,jsi,j lkgk ≥

∑
j �=k

2

ε
Pi,jsi,j lkgk

)
≤ ε

2
. (31)

For calculating Pr
(
B ≤ c1

)
, we consider

|hT
i,k f̂i,k|2 (32)

=
[(
ĥT
i,k +ΔhT

i,k

) ĥi,k

‖ĥi,k‖
]2

= ‖ĥi,k‖2 + 2�(ΔhT
i,kĥi,k) +

‖ΔhT
i,kĥi,k‖2

‖ĥi,k‖2
(c)≈ ‖ĥi,k‖2 = Θ

(
NTi,k

(1− σ2
e)
)

for NTi,k
→ ∞,

where (c) is due to the fact that ‖ĥi,k‖2 scales with NTi,k
in

the order of Θ(NTi,k
(1− σ2

e)) for NTi,k
→ ∞, thanks to the

law of large numbers. Note that ‖ĥi,k‖2 is a random variable if
NTi,k

is an unknown before solving the optimization problem.

On the other hand, the term 2�(ΔhT
i,kĥi,k) +

‖ΔhT
i,kĥi,k‖2

‖ĥi,k‖2

scales only in the order of O(1) which can be neglected for

12Note that in [4], [31], the denominator of the SINR is approximated by
only its mean value. However, this approximation cannot guarantee a small
channel outage probability requirement ε.
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large NTi,k
. By choosing c1 = Pi,klkgkNTi,k

(1− σ2
e)(1− δ),

Pr
(
B ≤ c1

)
can be upper bounded by its Chernoff bound as

Pr
(
B ≤ c1

)
≈ Pr

(
‖ĥi,k‖2 ≤ NTi,k

(1 − σ2
e)(1 − δ)

)
≤ φNTi,k exp

(
(1− φ)NTi,k

)
=

ε

2
, (33)

where φ = (1 − σ2
e)(1 − δ) and 0 < δ < 1 is a constant

backoff factor. Mathematically, δ represents the deviation of
(1 − σ2

e) from ‖ĥi,k‖2

NTi,k

, for a finite value of NTi,k
. For a

given outage probability requirement ε and backoff factor δ,
solving (33) for NTi,k

results in the minimum required Nth

for satisfying the outage requirement. Note that for a target
outage probability requirement ε, the actual outage probability
for the case of NTi,k

≥ Nth will be less than ε since

φNTi,k exp
(
(1− φ)NTi,k

)
is a decreasing function of NTi,k

.
Therefore, by combining (31) and (33), a scheduled data rate
of Ri,k = (1 − ε)W log2

(
1 + c1

c2

)
= (1 − ε)W log2

(
1 +

Pi,klkgkNTi,k
(1−σ2

e)(1−δ)

WN0+
∑

j �=k(
2
ε )Pi,jsi,j lkgk

)
can satisfy the outage probability

requirement Pr
(
Ci,k < Ri,k

)
≤ ε which proves in Proposi-

tion 1. We note that the use of the strong law of large numbers
in (32) makes the optimization of NTi,k

possible since NTi,k

becomes a part of the equivalent channel gain.

C. Proof of the Concavity of the Transformed Problem in (14)

For notational simplicity, we drop the subindices and scal-
ing constants of all optimization variables in this section
such that the transformed objective function in (14) can be
expressed as the summation of two functions with variables
P, s, and NT , i.e., y = f + t, where f = s log2(P/s) +
s log2(NT /s) and t = −qŨTP (P ,A,R,S). Let H(f) and
λ1, λ2, λ3 be the Hessian matrix of function f and the eigen-
values of H(f), respectively. The Hessian matrix of function
f and the trace of the Hessian matrix are given by

H(f) =

⎡
⎢⎣

−2
s ln(2)

1
P ln(2)

1
NT ln(2)

1
P ln(2)

−s
P 2 ln(2) 0

1
NT ln(2) 0 −s

N2
T ln(2)

⎤
⎥⎦ and

tr
(
H(f)

)
=

3∑
t=1

λt = −s2 P 2 + s2 N2
T + 2P 2N2

T

s P 2N2
T ln(2)

,(34)

respectively. Besides, it can be shown that the eigenvalues of
the Hessian matrix are given by

λ1 × λ2 =
s2 + P 2 +N2

T

P 2 N2
T ln2(2)

≥ 0, λ3 = 0. (35)

From (35), λ1 and λ2 must be either both positive or both neg-
ative. Therefore, by combining the above with tr

(
H(f)

)
≤ 0,

we conclude that λ1, λ2 ≤ 0. Since λt ≤ 0, ∀t, so H(f) is
a negative semi-definite matrix and f is jointly concave w.r.t.
P, s, and NT . On the other hand, function t is a jointly concave
function13 of P, s, and NT so the concavity of function f is

13Note that maxi,k{ÑTi,k
} is a convex function with respect to ÑTi,k

.

Therefore, −qŨTP (P,A,R,S) is a concave function with respect to ÑTi,k

since −qmaxi,k{ÑTi,k
} is a concave function with respect to ÑTi,k

.

not destroyed by adding function f and function t. Therefore,
the transformed objective function is jointly concave w.r.t. all
the optimization variables.
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