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Abstract—We study resource allocation for energy-efficient
communication in multi-cell orthogonal frequency division mul-
tiple access (OFDMA) downlink networks with cooperative base
stations (BSs). We formulate the resource allocation problem for
joint BS zero-forcing beamforming (ZFBF) transmission as a
non-convex optimization problem which takes into account the
circuit power consumption, the limited backhaul capacity, and
the minimum required data rate. We transform the considered
problem in fractional form into an equivalent optimization
problem in subtractive form, which enables the derivation of
an efficient iterative resource allocation algorithm. In each
iteration, a low-complexity suboptimal semi-orthogonal user
selection policy is computed. Besides, by using the concept of
perturbation function, we show that in the considered systems
under some general conditions, the duality gap with respect
to the power optimization variables is zero despite the non-
convexity of the primal problem. Thus, dual decomposition can
be used in each iteration to derive an efficient closed-form power
allocation solution for maximization of the energy efficiency of
data transmission (bit/Joule delivered to the users). Simulation
results illustrate that the proposed iterative resource allocation
algorithm converges in a small number of iterations, and unveil
the trade-off between energy efficiency, network capacity, and
backhaul capacity: (1) In the low transmit power regime, an
algorithm which achieves the maximum spectral efficiency may
also achieve the maximum energy efficiency; (2) a high spectral
efficiency does not necessarily result in a high energy efficiency;
(3) spectral efficiency is always limited by the backhaul capacity;
(4) energy efficiency increases with the backhaul capacity only
until the maximum energy efficiency is achieved.

Index Terms—Energy efficiency, green communication, net-
work MIMO, limited backhaul, non-convex optimization, re-
source allocation.

I. INTRODUCTION

ORTHOGONAL frequency division multiple access
(OFDMA) is the preferred multiple access scheme for

high speed wireless multiuser communication networks, such
as 3GPP Long Term Evolution Advanced (LTE-A) [1], IEEE
802.16 Worldwide Interoperability for Microwave Access
(WiMAX) [2], and IEEE 802.22 Wireless Regional Area
Networks (WRANs) [3], due to its high spectral efficiency and
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resistance to multipath fading. OFDMA converts a wideband
channel into a number of orthogonal narrowband subcarrier
channels which facilitate the multiplexing of users data. In
practice, the fading coefficients of different subcarriers are
likely statistically independent for different users. With chan-
nel state information at the transmitter (CSIT), the maximum
system capacity can be achieved by selecting the best user
for each subcarrier and adapting the corresponding transmit
power [4], [5].

On the other hand, cooperative communication for wireless
networks has received considerable interest in both industry
and academia as it provides extra degrees of freedom in
resource allocation. A particularly interesting approach is base
station (BS) cooperation for mitigation of strong multi-cell
interference caused by aggressive/universal frequency reuse
in the network. In the past decade, a number of interference
mitigation techniques have been proposed in the literature,
including successive interference cancellation (SIC) and inter-
ference nulling through multiple antennas, for alleviating the
negative side-effects of aggressive/universal frequency reuse.
Unfortunately, those techniques may be too complex for low-
power battery driven mobile receiver units. On the contrary,
BS cooperation, which is known as network multiple-input
multiple-output (MIMO), shifts the signal processing burden
to the BSs and provides a promising system performance [6]-
[11]. In particular, all BSs share the channel state information
(CSI) and the data of all users through backhaul communi-
cation links, which enables coordinated transmission. In [6],
the sum rate of multi-cell zero-forcing beamforming (ZFBF)
systems was studied for the Wyner interference model and
a large number of users. In [7] and [8], the authors derived
the optimal block diagonalization precoding matrix and the
optimal max-min beamformer for multi-cell environments,
respectively. However, the results in [6]-[8] are based on the
ideal backhaul assumption such that an unlimited amount
of control signals, user channel information, and precoding
data can be exchanged. In practice, the backhaul capacity
can be limited due to the deployment costs of the backhaul
links. Besides, if a multi-carrier system is considered, the
results in [6]-[8], which are valid for the single-carrier case,
may no longer be applicable. Furthermore, numerous resource
allocation algorithms were designed for different system con-
figurations utilizing only the CSI in multi-cell systems but
ignoring the possibility of data exchange, e.g. [9]-[11]. Yet,
this kind of cooperation may not be able to fully exploit the
potential performance gains achievable by BS cooperation,
since the backhaul capacity is not fully utilized.
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Recently, an increasing interest in high data rate services
such as video conferencing and online high definition video
streaming has led to a tremendous demand for a better utiliza-
tion of limited resources, i.e., energy and bandwidth. Multi-
cell OFDMA with BS cooperation is considered as a possible
solution for fulfilling this demand [12]-[14]. In [12] and [13],
user assignment and BS assignment in multi-cell OFDMA
systems with backhaul capacity constraints were studied,
respectively. In [14], the authors proposed dynamic frequency
allocation with fractional frequency reuse and equal power
allocation across all cooperating BSs. In all studies [6]-[14], a
substantial capacity gain and better interference management
are reported compared to non-cooperative systems. Yet, the
advantages of BS cooperation do not come for free. They
have significant financial implications for service providers
due to the high power consumption in electronic circuitries,
radio frequency (RF) transmission, and data exchange via
backhaul links. Thus, energy efficiency (bit-per-Joule) may
be a better performance metric compared to system capacity
(bit-per-second-per-Hz) in evaluating the utilization of re-
sources in such systems [15]-[20]. In [18], power adaptation
for maximizing the energy efficiency in frequency-selective
channels is considered for a multi-carrier single cell system.
In [19], a risk-return model was proposed for energy-efficient
power allocation. In [20], the authors studied joint power
allocation and user selection for OFDMA hybrid marco-cell
and micro-cell systems. However, energy efficiency has not
been considered for multi-cell systems with limited backhaul
capacity in the literature, e.g. [6]-[20], at least not from a
resource allocation point of view.

In this paper, we address the above issues and study the
trade-off between energy efficiency, backhaul capacity, and
network capacity. To this end, we formulate the resource allo-
cation problem for energy-efficient communication in multi-
cell OFDMA systems with limited backhaul capacity as an
optimization problem. By exploiting the properties of frac-
tional programming, the considered non-convex optimization
problem1 in fractional form is transformed into an equivalent
optimization problem in subtractive form with a tractable
solution, which can be found with an iterative algorithm. In
each iteration, a sub-optimal low-complexity user selection
policy is computed and ZFBF is performed. We show that
the duality gap for the resulting power allocation problem is
zero2 when the number of subcarriers is sufficiently large,
despite the non-convexity of the problem3. As a result, dual
decomposition is used in each iteration to derive a closed-form
power allocation solution for maximization of the network
energy efficiency.

II. MULTI-CELL OFDMA NETWORK MODEL

In this section, after introducing the notation used in this
paper, we present the adopted channel and signal models.

1Non-convex optimization is a general terminology referring to an opti-
mization problem neither minimizing a convex function over convex sets, nor
maximizing a concave function over convex sets.

2Note that the result of zero duality gap in multi-carrier system derived
in this paper can be applied to any well defined function and the considered
power allocation optimization problem is just an illustrative example.

3In other words, the proposed resource allocation algorithm is optimal with
respect to the power allocation variables.
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Fig. 1. A multi-cell system with M = 3 cells and a fully connected backhaul
link topology. There are in total K = 45 users in the system. Each transceiver
is equipped with a single antenna.

A. Notation

In this paper, the following conventions are adopted.[
x
]+

= max{0, x}. CN×M is the space of all N×M matrices
with complex entries. RN represents an N -dimensional real-
valued column vector. ‖·‖ and |·| denote the Euclidean norm of
a matrix/vector and the absolute value of a complex number,
respectively. Operator

[
·
]
a,b

refers to the element in row a

and column b of a matrix. [·]† and [·]T represent the conjugate
transpose and transpose operations, respectively. |S| denotes
the cardinality of a set S. The operators “ ≥ ” and “ ≤ ”
for vectors are defined element-wise. E{·} denotes statistical
expectation.

B. Multi-Cell System Model and Central Unit

We consider a multi-cell OFDMA network which consists
of a total of M BSs and K mobile users. All transceivers
are equipped with a single antenna, cf. Figure 1. We assume
universal frequency reuse and the M BSs share a total band-
width of B Hertz. The global CSI is assumed to be perfectly
known at a central unit and all computations are performed in
this unit. Based on the available CSI, the central unit decides
the resource allocation policy and broadcasts it to all BSs via
backhaul connections which are dedicated to control signals
only. On the other hand, all BSs are cooperating with each
other by sharing the CSI and the data symbols of all selected
users via capacity limited backhaul communication links. Note
that the energy consumptions incurred by exchanging CSI and
other overheads such as control signals are not considered
here since they are relatively insignificant compared to the
resources used for data exchange.

C. OFDMA Channel Model

We consider an OFDMA system with nF subcarriers. The
channel impulse response is assumed to be time-invariant
within each frame. Suppose user k ∈ {1, . . . , K} is associ-
ated with BS m ∈ {1, . . . , M}. Let wk

Bm
(i) be the precoding

coefficient used by BS m in subcarrier i ∈ {1, . . . , nF } for
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user k. Then, the transmitted signal from BS m to all selected
users on subcarrier i is given by∑

k∈S(i)

xk
m(i) =

∑
k∈S(i)

wk
Bm

(i)
√
P k
Bm

(i)uk(i), (1)

where xk
m(i) = wk

Bm
(i)
√
P k
Bm

(i)uk(i) is the pre-coded signal

transmitted from BS m for user k on subcarrier i, P k
Bm

(i) is
the transmit power for the link between BS m and user k in
subcarrier i, uk(i) is the transmitted information symbol for
user k on subcarrier i, and S(i) is the set of users selected
for using subcarrier i and the cardinality of the set is |S(i)| ≤
M, ∀i.

The signal received from the M BSs at user k on subcarrier
i is given by

Y k(i) (2)

=

(
M∑
c=1

Hk
Bc

(i)wk
Bc

(i)
√
P k
Bc

(i)lkBc

)
uk(i)

+
M∑

m=1

∑
j∈S(i)

j �=k

√
P j
Bm

(i)lkBm
Hk

Bm
(i)wj

Bm
(i)uj(i)

︸ ︷︷ ︸
Multiple Access Interference

+zk(i),

where lkBm
represents the path loss between BS m and user

k, zk(i) is the additive white Gaussian noise (AWGN) in
subcarrier i at user k with zero mean and variance σ2

z , and
Hk

Bm
(i) is the small scale fading coefficient between BS m

and user k in subcarrier i.

D. Backhaul Model

In practice, the backhaul signal model depends on the
specific implementation. For instance, digital subscriber lines
(DSL) and optical fibers are able to deliver high data rates
by using orthogonal frequency division multiplexing (OFDM)
and wavelength division multiplexing (WDM), respectively.
Yet, the media over which is transmitted in the backhaul in
both cases are different. In order to provide a general model
for the backhaul, we do not assume a particular type/medium
for the backhaul. Instead, we focus on the backhaul capacity
of the Nm outgoing backhaul connections of BS m, i.e.,
RBmNm

. The value of Nm depends on the backhaul con-
nection topology. For instance, a fully connected topology
in a 3-cell system, cf. Figure 1, requires Nm = 2 outgoing
connections for each BS. Furthermore, in order to isolate
the considered problem from specific implementation assump-
tions, we assume that each backhaul has a fixed average power
consumption of PBH .

III. RESOURCE ALLOCATION AND SCHEDULING

A. Instantaneous Channel Capacity

In this subsection, we define the adopted system per-
formance measure. Given perfect CSI at the receiver, the
maximum channel capacity between all the cooperating BSs

and user k on subcarrier i with subcarrier bandwidth B
nF

is
given by

Ck(i) =
B
nF

log2

(
1 + Γk(i)

)
, (3)

Γk(i) =

∣∣∣∑M
c=1 H

k
Bc

(i)wk
Bc

(i)
√

P k
Bc

(i)lkBc

∣∣∣2
σ2
z + Ik(i)

, (4)

Ik(i) =
∑

j∈S(i)
j �=k

∣∣∣ M∑
m=1

√
P j
Bm

(i)wj
Bm

(i)
√
lkBm

Hk
Bm

(i)
∣∣∣2,(5)

where Γk(i) and Ik(i) are the received signal-to-interference-
plus-noise ratio (SINR) and the received interference power
at user k on subcarrier i, respectively.

The weighted system capacity is defined as the total number
of bits successfully delivered to the K mobile users and is
given by

U(P ,W ,S) =
M∑

m=1

∑
k∈Am

αk

nF∑
i=1

sk(i)Ck(i), (6)

where P , W , and S are the power, precoding coefficient,
and subcarrier allocation policies, respectively. Am is the user
admission set of BS m and each user can only be admitted to
one BS. sk(i) ∈ {0, 1} is the subcarrier allocation indicator.
Note that since the resources in the network are limited in
general, not every user in the admission set Am can be
allocated subcarriers in all time instances. 0 < αk ≤ 1 is a
positive constant provided by the upper layers, which allows
the resource allocator to give different priorities to different
users and to enforce certain notions of fairness such as
proportional fairness and max-min fairness [21], [22]. On the
other hand, for designing a resource allocation algorithm for
energy-efficient communication, the total power consumption
should be included in the optimization objective function.
Thus, we model the power dissipation in the system as the
sum of two static terms and one dynamic term as follows
[23]:

UTP (P ,W ,S) = PC ×M + δ × PBH (7)

+

M∑
m=1

∑
k∈Am

nF∑
i=1

εP k
Bm

(i)|wk
Bm

(i)|2sk(i),

where PC is the constant signal processing power4 required
at each BS which includes the power dissipations in the
transmit filter, mixer, frequency synthesizer, and digital-to-
analog converter, etc. PC × M represents the total signal
processing power consumed by the M BSs. The second term
in (7) denotes the total power dissipation in the backhaul links
where δ is an integer variable which indicates the number
of backhaul links in the system. For instance, the topology
considered in Figure 1 requires δ =

∑M
m=1 Nm = 6 backhaul

connections. The last term in (7) represents the total power
consumption in the power amplifiers of the M BSs. ε ≥ 1 is

4Note that by taking into account the circuit power consumption in the
equation, we have a more accurate system model for revealing system energy
efficiency. This is because the circuit power consumption will increase sub-
stantially in next generation communication systems due to their sophisticated
transceivers designs [23].
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a constant which accounts for the inefficiency of the power
amplifier. For example, if ε = 5, it means that for every 10
Watts of power radiated in the RF, 50 Watts are consumed in
the power amplifier and the power efficiency is 1

ε = 1
5 = 20%.

Hence, the weighted energy efficiency of the considered
system is defined as the total average number of bits/Joule

Ueff (P ,W ,S) =
U(P ,W ,S)

UTP (P ,W ,S) . (8)

B. Optimization Problem Formulation

The optimal power allocation policy, P∗, precoding policy,
W∗, and subcarrier allocation policy, S∗, can be obtained by
solving

max
P,W,S

Ueff (P ,W ,S)

s.t. C1:
∑

k∈Am

nF∑
i=1

|wk
Bm

(i)|2P k
Bm

(i)sk(i) ≤ PTm , ∀m,

C2:
M∑

m=1

∑
k∈Am

nF∑
i=1

sk(i)Ck(i) ≥ Rmin,

C3:
∑

k∈Am

nF∑
i=1

sk(i)Ck(i) ≤ Rmaxm
, ∀m,

C4:
K∑

k=1

sk(i) ≤ M, ∀i, C5: sk(i) = {0, 1}, ∀i, k,

C6: P k
Bm

(i) ≥ 0, ∀i, k,m, (9)

where C1 is the individual power constraint of BS m. The
value of PTm in C1 puts a limit on the amount of interference
generated to the non-cooperative cells in the downlink. C2
specifies the minimum system data rate requirement Rmin.
Note that although variable Rmin in C2 is not an optimization
variable in this paper, a balance between energy efficiency and
aggregate system capacity can be struck by varying Rmin. In
particular, Rmin can be used to provide a guaranteed quality
of service to the system and to avoid solutions that are highly
energy-efficient but have a low spectral efficiency. Further-
more, we note that even with the system level minimum data
rate requirement, the considered network MIMO case is differ-
ent from the single-cell MIMO case. This is because the per-
formance of the network MIMO system may be limited by the
backhaul capacity and the antennas in the system are not co-
located. In C3, Rmaxm

= min{RBm1
, RBm2

, . . . , RBmNm
}.

The operator min{·} in Rmaxm accounts for the fact that
the system capacity contributed by a BS is limited by the
bottleneck backhaul capacity of that BS. Indeed, C3 is a
generalized constraint on the backhaul capacities which is
applicable to different topologies such as the star connection
topology [24, Chapter 1] and the fully connected topology5

[24, Chapter 4]. Besides, C3 puts a limit on the maximum
data rate of each BS due to the limited backhaul capacity. If
RBmaxm

→ ∞∀m, then C3 is always satisfied automatically,

5In a star connection topology, the network has a hub to convey messages.
In other words, all the message exchanges between BSs have to first pass
through this hub. In a fully connected topology, all BSs are connected to
each other. As a result, a fully connected network does not require the usage
of switches/hubs.

i.e., the backhaul capacity is much larger than the wireless link
capacity. C4 is the subcarrier reuse constraint. C4 and C5 are
imposed to guarantee that each subcarrier can be shared by M
users, but each user can only use a subcarrier once. In other
words, selected users are not allowed to multiplex different
messages on the same subcarrier, since a sophisticated receiver
would be required at the users, such as an SIC receiver, to
recover more than one messages.

IV. SOLUTION OF THE OPTIMIZATION PROBLEM

The objective function in (9) is a ratio of two functions
which generally results in a non-convex function. We note
that there is no standard approach for solving non-convex
optimization problems. However, in order to derive an efficient
resource allocation algorithm for the considered problem, we
introduce the following transformation.

A. Transformation of the Objective Function

The objective function in (9) can be classified as nonlinear
fractional program [25]. For the sake of notational simplicity,
we define F as the set of feasible solutions of the optimization
problem in (9). Without loss of generality, we define the
maximum energy efficiency q∗ of the considered system as

q∗ =
U(P∗,W∗,S∗)

UTP (P∗,W∗,S∗)

= max
P,W,S

U(P ,W ,S)
UTP (P ,W ,S) , ∀{P ,W ,S} ∈ F .(10)

We are now ready to introduce the following Theorem.
Theorem 1: The maximum energy efficiency q∗ is achieved

if and only if

max
P,W,S

U(P ,W ,S)− q∗UTP (P ,W ,S) (11)

= U(P∗,W∗,S∗)− q∗UTP (P∗,W∗,S∗) = 0,

for U(P ,W ,S) ≥ 0 and UTP (P ,W ,S) > 0.
Proof: Please refer to [25] or [26] for a proof of Theorem

1.
By Theorem 1, for any optimization problem with an objective
function in fractional form, there exists an equivalent6 objec-
tive function in subtractive form, e.g. U(P ,W ,S)
−q∗UTP (P ,W ,S), in the considered case. As a result, we
can focus on the equivalent objective function in the rest of
the paper.

Remark 1: The problem formulation above focuses on en-
ergy efficiency maximization which can be interpreted as
a generalized problem formulation for aggregate weighted
network throughput maximization. Indeed, the value of q∗ in
(11) can be interpreted as the penalty to the energy efficiency
due to exceedingly high power consumption. If we force
q∗ = 0, i.e., there is no penalty in using exceedingly high
power, then the transformed objective function U(P ,W ,S)−
q∗UTP (P ,W ,S) will become the weighted network aggregate
throughput7.

6Here, “equivalent” means that both problem formulations lead to the same
resource allocation policies.

7Note that the optimal value of q∗ for energy efficiency maximization has
to be found via optimization.
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TABLE I
ITERATIVE RESOURCE ALLOCATION ALGORITHM.

Algorithm 1 Iterative Resource Allocation Algorithm
1: Initialize the maximum number of iterations Lmax and the

maximum tolerance ε
2: Set maximum energy efficiency q = 0 and iteration index

n = 0
3: repeat {Main Loop}
4: Solve the inner loop problem in (12) for a given q and

obtain resource allocation policies {P ′,W ′,S ′}
5: if U(P ′,W ′,S ′)− qUTP (P ′,W ′,S ′) < ε then
6: Convergence = true
7: return {P∗,W∗,S∗} = {P ′,W ′,S ′} and q∗ =

U(P′,W′,S′)
UTP (P′,W′,S′)

8: else
9: Set q = U(P′,W′,S′)

UTP (P′,W′,S′) and n = n+ 1
10: Convergence = false
11: end if
12: until Convergence = true or n = Lmax

B. Iterative Algorithm for Energy Efficiency Maximization

In this section, we propose an iterative algorithm (known as
the Dinkelbach method [25]) for solving (9) with an equivalent
objective function. The proposed algorithm is summarized in
Table I and the convergence to the optimal energy efficiency
is guaranteed if we are able to solve the inner problem (12)
in each iteration.

Proof: Please refer to [25] or [26] for a proof of conver-
gence.

As shown in Table I, in each iteration of the main loop,
we solve the following optimization problem for a given
parameter q:

max
P,W,S

U(P ,W ,S)− qUTP (P ,W ,S)

s.t. C1, C2, C3, C4, C5, C6. (12)

Solution of the Main Loop Problem: The transformed prob-
lem is a mixed combinatorial and non-convex optimization
problem. The non-convex nature comes from the power alloca-
tion variables and precoding coefficients. The multiuser inter-
ference appears in the denominator of the SINR expression in
(4) which couples the power allocation variables. On the other
hand, the combinatorial nature comes from the integer con-
straint for subcarrier allocation. To obtain an optimal solution,
an exhaustive search is needed with complexity

∑M
g=1

(
K
g

)nF

,
which is computationally infeasible for K 	 M . In order to
derive an efficient resource allocation algorithm, we solve the
above problem in three steps. In the first step, we employ a
sub-optimal low-complexity user selection scheme. Then, in
the second step, we calculate the ZFBF coefficients for a given
selected user set S. In the final step, we optimize the transmit
power at each BS for energy efficiency maximization. We note
that by fixing resource allocation policies {W ,S}, Algorithm
1 in Table I converges to the maximum energy efficiency with
respect to the power allocation variables. However, it is a
suboptimal solution from a joint optimization point of view.

TABLE II
SEMI-ORTHOGONAL USER SELECTION ALGORITHM.

Algorithm 2 Semi-Orthogonal User Selection Algorithm

1: Initialize auxiliary user set Tt = {1, . . . ,K}, orthogonality
parameter η, vector subspace Φ = {�φ(1), . . . , �φ(t)}, itera-
tion index t = 1, and S⊥(i) = ∅, where �φ(t) ∈ C1×M .

2: Update S⊥(i) → S⊥(i)
⋃
π(t), π(t) =

argmax
a∈Tt

‖ �Ha
BS(i)‖2, �φ(1) = �H

π(t)
BS (i), Tt+1 = Tt/{π(t)}.

3: repeat
4: For each user k ∈ Tt, calculate a vector �Hk

⊥(i) ∈ C1×M

which is orthogonal to Φ as

�Hk
⊥(i) =

�Hk
BS(i)−

t−1∑
r=1

�Hk
BS(i)

�φ†
(r)

‖�φ(r)‖2
�φ(r).

5: Update S⊥(i) → S⊥(i)
⋃
π(t), π(t) =

argmax
a∈Tt

‖ �Ha
⊥(i)‖2, �φ(t) = �H

π(t)
⊥ (i).

6: if |S⊥(i)| ≤ M , then
7: Calculate Tt+1 as

Tt+1=

{
k ∈ Tt, k �= π(t),

| �Hk
BS(i)

�φ†
(t)|

‖ �Hk
BS(i)‖‖�φ(t)‖

< η × αk

}
,

t= t+ 1.

8: end if
9: until Tt = ∅ or |S⊥(i)| = M

Step 1 (Semi-Orthogonal User Selection [27]): We
propose an efficient user selection algorithm. Without
loss of generality, we define a row vector �Hk

BS(i) =[
Hk

B1
(i)
√
lkB1

Hk
B2

(i)
√

lkB2
. . . Hk

BM
(i)
√
lkBM

]
is a super-

channel vector between all BSs and user k with elements
Hk

Bm
(i)
√
lkBm

, k ∈ {1, . . . , K}, m ∈ {1, . . . , M}, repre-
senting the channel coefficient between BS m and user k
on subcarrier i. Let S⊥(i) be a semi-orthogonal user set for
subcarrier i. Then, the adopted semi-orthogonal user selection
procedure for each subcarrier is summarized in Table II. Φ is
a vector subspace which is defined as Φ = {�φ(1), . . . , �φ(t)}
where �φ(t) are the vectors which span the the subspace. Tt is
an auxiliary user set for executing the algorithm. η in line 7
in Table II represents a threshold for measuring orthogonality.
Note that a user with a higher value of αk (priority) has a
higher chance of being selected. On the other hand, as η → 0,
the selected users in the set are increasingly orthogonal to
each other. In other words, users associated with set S⊥(i)
cause less interference to other users in the set. Note that
with the proposed user selection scheme, the search space
for each subcarrier decreases from

∑M
a=1

(
K
a

)
to 2KM and

2KM∑
M
a=1 (

K
a)

� 1 for K 	 M . Note that although the proposed

algorithm is suboptimal, it has been shown in [27] that the
proposed scheme performs well in combination with zero-
forcing beamforming.

Step 2 (Zero-Forcing Beamformimg): A multi-cell network
with full BS cooperation can be interpreted as a MIMO
broadcast channel. It can be shown that dirty paper coding
(DPC) is optimal in achieving the multiuser broadcast capac-
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ity region. However, DPC requires a very high complexity
which is considered impractical. On the contrary, although
ZFBF is a suboptimal precoding scheme, it is considered a
practical solution, due to its linear complexity and promising
performance. Besides, it can be shown that the proposed semi-
orthogonal user selection algorithm together with ZFBF can
achieve the same asymptotic sum capacity performance as
DPC [27]. Therefore, we focus on ZFBF in the rest of the
paper.

If ZFBF is used for transmission, the capacity equation in
(3) can be rewritten as

Ck(i) =
B
nF

log2

(
1 + Γk(i)

)
where

Γk(i) =

∣∣∣∑M
c=1

√
lkBc

Hk
Bc

(i)wk
Bc

(i)
∣∣∣2P k

Bm
(i)

σ2
z

. (13)

P k
Bm

(i) = P k
B1

(i) = P k
B2

(i) = . . . = P k
BM

(i) is an imposed
constraint together with ZFBF8. There are two reasons for
imposing this constraint. First, it allows us to separate the
power allocation variables from the precoding coefficients.
Second, it simplifies the design of power control9. Let us
consider the above scenario and ZFBF precoding with the
above assumption, then the total transmit power of the M BSs
to user k on subcarrier i is given by

∑M
c=1 P

k
Bc

(i)|wk
Bc

(i)|2 =

P k
Bm

(i), since
∑M

c=1 |wk
Bc

(i)|2 = 1 [29]. In other words, the
precoding coefficients are decoupled from the power allocation
variables and the precoding coefficients do not increase the
total power consumption. Besides, we can directly control
the total amount of transmit power from the M BSs to user
k on subcarrier i via optimizing P k

Bm
(i). Without loss of

generality, we assume that user 1 to user k are selected for
using subcarrier i, i.e., {1, . . . , k} ∈ S⊥(i). Let us define a
super channel matrix HB(i) ∈ C

|S⊥(i)|×M such that

HT
B(i) =

[(
�H1
BS(i)

)T ( �H2
BS(i)

)T
. . .
(
�Hk
BS(i)

)T ] . (14)

Then, the corresponding ZFBF super matrix B(i) ∈
CM×|S⊥(i)| can be calculated in the centralized unit and is
given by

B(i) = H†
B(i)

(
HB(i)H

†
B(i)

)−1

D(i), (15)

where D(i) ∈ C|S⊥(i)|×|S⊥(i)| is a diagonal matrix with
diagonal elements

γk(i) = 1/

√[(
HB(i)H

†
B(i)

)−1]
k,k

=∣∣∣∑M
c=1

√
lkBc

Hk
Bc

(i)wk
Bc

(i)
∣∣∣. Note that γk(i) represents

the equivalent channel gain between all BSs and user k
on subcarrier i for ZFBF transmission. Hence, the ZFBF

8Indeed, the transmit power from BS m to user k on subcarrier i is
P k
Bm

(i)|wk
Bm

(i)|2 instead of P k
Bm

(i). So even if we enforce P k
Bm

(i) =

P k
B1

(i) = P k
B2

(i) = . . . = P k
BM

(i), the actual transmit powers to
user k from M base stations (BSs) are not identical since in general
|wk

B1
(i)|2 �= |wk

B2
(i)|2 �= . . . �= |wk

BM
(i)|2.

9The above approach is commonly used in literature [12], [28] for decou-
pling the power allocation variables from the precoding coefficients and for
the design of simple yet efficient resource allocation algorithms for multiple
antenna systems.

coefficient wk
Bc

(i) is given by

wk
Bc

(i) =
[
B(i)

]
c,k

∀k ∈ S⊥(i) (16)

and the central unit delivers the relevant ZFBF coefficients
to each BS via additional backhaul connections which are
dedicated to control signals.

Dual Problem: The final step in solving the main loop
problem is to optimize the power allocation. For a given set
of selected users and ZFBF transmission, the problem in (12)
is still non-convex due to constraint C3. In general, a non-
zero duality gap exists if we solve (12) by solving its dual.
However, we will demonstrate that the duality gap is always
zero when the number of subcarriers is sufficiently large. This
result is summarized in the following theorem.

Theorem 2: Let P and D denote the optimal values of the
primal and the dual problem in (12), respectively. For a given
selected user set and ZFBF transmission, if the number of
subcarriers is sufficiently large10, then strong duality holds
and the duality gap is zero, i.e., P = D.

Proof: Please refer to Appendix for a proof of Theorem 2.
By Theorem 2, we solve the main loop problem in (12) by

solving its dual. For this purpose, we first need the Lagrangian
function of the primal problem. Upon rearranging terms, the
Lagrangian can be written as

L(λ,β, θ,P)

=

M∑
m=1

nF∑
i=1

∑
k∈Am∩S⊥(i)

(αk + θ − βm)Ck(i)− θRmin

−
M∑

m=1

λm

( nF∑
i=1

∑
k∈S⊥(i)

|wk
Bm

(i)|2P k
Bm

(i)− PTm

)

− q
( M∑

m=1

∑
k∈Am∩S⊥(i)

nF∑
i=1

εP k
Bm

(i)|wk
Bm

(i)|2 + δPBH

)

+

M∑
m=1

βmRmaxm − q(PC ×M), (17)

where θ ≥ 0 is the Lagrange multiplier corresponding to the
required minimum capacity constraint C2. λ and β are the
Lagrange multiplier vectors associated with individual power
constraint C1 and maximum backhaul capacity constraint C3
with elements λm ≥ 0 and βm ≥ 0, m ∈ {1, . . . , M},
respectively. Boundary constraint C6 will be absorbed into
the Karush-Kuhn-Tucker (KKT) conditions when deriving the
optimal power allocation in the following. Thus, the dual
problem of (12), for a given selected user set and ZFBF
transmission, is given by

D = min
λ,β, θ≥0

max
P

L(λ,β, θ,P). (18)

10In [30], the authors used simulations to show that the duality gap is
virtually zero for 8 subcarriers in an OFDMA system. In practical systems
such as Long-Term-Evolution (LTE), the number of subcarriers can vary from
128 to 2048 [31]. In other words, the condition of a “sufficiently large number
of subcarriers” is always satisfied in practice. Note that [30] does not provide
any analytical evidence in support of their results. In contrast, the proof
provided in our paper is rigorous as it is based on showing the existence
of a saddle point of the Lagrangian function by using the concavity of the
perturbation function.
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Fig. 2. Illustration of the dual decomposition of a large scale problem into
a two-layer problem.

In the following, we solve the above dual problem iteratively
by decomposing it into two layers via dual decomposition:
Layer 1, the maximization over P in (18), consists of M×nF

subproblems with identical structure; Layer 2, the minimiza-
tion over λ, β, and θ in (18), is the master dual problem to
be solved by the gradient method, cf. Figure 2.

Layer 1 Solution (Power Allocation): By Theorem 2, the
KKT conditions are the necessary and sufficient conditions for
the optimal solution. Thus, the closed-form power allocation
for the BSs serving user k in subcarrier i for a given parameter
q is obtained as

P k
Bm

(i) =

[
B/nF (αk + θ − βm)

ln(2)Ωk(i)
− σ2

z

|γk(i)|2

]+
and

P k
Ba

(i) = P k
Bm

(i)∀a �= m, (19)

where Ωk(i) =
( M∑

c=1

(λc + qε)|wk
Bc

(i)|2
)

(20)

and P k
Ba

(i) = P k
Bm

(i)∀a �= m is due to the imposed
assumption after (13). The optimal power allocation solution
in (19) is in the form of multi-level water filling. Note that if a
user has a higher value of αk (higher priority), a higher power
will be allocated to the user since she has a higher water level
B/nF (αk+θ−βm)

ln(2)Ωk(i) compared to other users. βm ≥ 0 controls
the scheduled data rate via adjusting the water level of the
power allocation in (19), such that the scheduled data rate will
not exceed the backhaul capacity limit. Ωk(i) represents the
influence of the power consumption of other BSs on the joint
transmission on subcarrier i for user k. On the other hand,
although PC and PBH do not appear in (19), they influence
the solution of the dual problem via the updating process of q.
From Table I, both PC and PBH are used to update the value
of q in each iteration. Then, the updated q is used to derive
the solution of the dual problem in the next iteration.

Solution of Layer 2 (Master Problem): To solve the Layer
2 master minimization problem in (18), i.e, to find λ, β, and
θ for a given P , the gradient method can be used since the
dual function is differentiable. The gradient update equations

are given by:

λm(n+ 1) =
[
λm(n)− ξ1(n) (21)

×
(
PTm−

nF∑
i=1

∑
k∈S⊥(i)

|wk
Bm

(i)|2P k
Bm

(i)
)]+

, ∀m,

θ(n+ 1) =
[
θ(n)− ξ2(n) (22)

×
( M∑

m=1

nF∑
i=1

∑
k∈Am∩S⊥(i)

Ck(i)−Rmin

)]+
,

βm(n+ 1) =
[
βm(n)− ξ3(n) (23)

×
(
Rmaxm −

nF∑
i=1

∑
k∈Am∩S⊥(i)

Ck(i)
)]+

, ∀m,

where index n ≥ 0 is the iteration index and ξu(m), u ∈
{1, 2, 3}, are positive step sizes. Then, the updated Lagrange
multipliers in (21)-(23) are used for solving the Layer 1
subproblems in (18) via updating the resource allocation
policies, cf. Figure 2. By Theorem 2, the duality gap is zero
and it is guaranteed that the iteration between Layer 1 and
Layer 2 converges to the optimal solution of (12) with respect
to the power allocation variables in the main loop, if the
chosen step sizes satisfy the infinite travel condition [32], [33].

V. RESULTS AND DISCUSSIONS

In this section, we evaluate the system performance for the
proposed resource allocation and scheduling algorithm using
simulations. A multi-cell system with 3 cells is considered.
The inter-site distance between each pair of BSs is 500 meters
as suggested in the 3GPP specification [31]. The number of
subcarriers is nF = 128 with carrier center frequency 2.5
GHz, system bandwidth B = 1.25 MHz, and αk = 1, ∀k. Note
that by setting αk = 1, ∀k, we obtain the achievable maximum
network capacity. Each subcarrier for RF transmission has a
bandwidth of 9.7656 kHz and the noise variance is σ2

z = −134
dBm. The 3GPP urban path loss model is used [31]. The small
scale fading coefficients of the BS-to-user links are generated
as independent and identically distributed (i.i.d.) Rayleigh
random variables with unit variances. We assume that all BSs
have the same maximum transmit power, i.e., PTm = PT , ∀m.
Besides, a fully connected backhaul connection topology is
considered for simulation purpose, i.e., there are δ = 6 con-
nections, cf. Figure 1. For the backhaul connections, we adopt
the specifications of a commercial optical fiber modem [34]
which supports three types of data rates for backhaul within
a distance of 2.5 km: R1 = 11.184 Mbit/s, R2 = 34.368
Mbit/s, and R3 = 44.736 Mbit/s11. The power consumption
of each backhaul link is PBH = 15 Watts as specified in
[34]. The average system energy efficiency is obtained by
counting the amount of data which are successfully decoded
by the users and dividing it by the total power consumption
averaged over both macroscopic and microscopic fading. We
assume a static circuit power consumption of PC = 40 dBm
[23], a data rate requirement of Rmin = 4 bit/s/Hz/cell, and an

11The values of the backhaul capacities used in the paper are for illustration
purpose. In practice, the choice of backhaul capacities should scale with the
bandwidth and the number of subcarriers used in the RF transmission.
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Fig. 3. Energy efficiency (bit-per-Joule) versus number of iterations with
different maximum transmit power allowances per BS, PT , and different
backhaul capacities, Rmaxm , for K = 45 users. The dashed lines represent
the maximum achievable energy efficiencies with respect to the power
allocation variables for different cases.

orthogonality parameter of η = 0.1. Furthermore, we assume
a power efficiency of 20% for the power amplifiers used in the
RF, i.e., ε = 1

0.2 = 5. In the following results, the “number
of iterations” refers to the number of outer loop iterations of
Algorithm 1 in Table I. For each inner loop, we set the number
of iterations to five.

A. Convergence of Iterative Algorithm 1 and Duality Gap

Figure 3 illustrates the evolution of the proposed iterative
algorithm for different numbers of users and different max-
imum transmit powers at each BS. The results in Figure 3
were averaged over 100000 independent adaptation processes
where each adaptation process involves a different realization
of the path loss and the multipath fading12. Note that the
maximum energy efficiency in the figure is with respect to
power allocation optimization. It can be observed that the
iterative algorithm converges to the optimal value within 5
iterations for all considered numbers of transmit antennas. On
the other hand, the inner loop converges within 5 iterations on
average. In other words, the overall algorithm takes in total
around 25 iterations (inner loop + outer loop) to converge to
the dual optimal for a given set of selected users and ZFBF
transmission.

Figure 4 shows the duality gap, D − P, versus the maxi-
mum transmit power allowance at each BS, PT , for different
maximum backhaul capacities. The primal problem is solved
by using the power allocation solution obtained with the dual
decomposition. It can be seen that the duality gap is practically
zero for the considered cases, despite the non-convexity of the
primal problem. The few small non-zero spikes in the duality
gap (in the order of 10−7) are mainly due to a finite-precision
arithmetic of computation and a finite number of iterations in
solving the dual problem.

12In general, the number of iterations (outer loop) required for the algorithm
to converge can be different for different channel realizations. As a results,
we show the average energy efficiency over 100000 channel realizations.
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Fig. 4. Duality gap versus the maximum transmit power allowance at each
BS, PT , for different backhaul capacities Rmaxm .

B. Energy Efficiency and Average Capacity versus Transmit
Power

Figure 5(a) illustrates the energy efficiency versus the max-
imum transmit power allowance at each BS, PT , for K = 45
users. The number of iterations for the proposed iterative
resource allocation algorithm is 5 and 10 for different backhaul
capacities. It can be seen that the performance difference
between 5 iterations and 10 iterations is negligible which
confirms the practicality of our proposed iterative resource
allocation algorithm.

In Figure 5(b), we set the number of iterations in the
proposed algorithm to 5 and study the trade-off between
energy efficiency, maximum transmit power, and backhaul
capacity. It can be observed that when both the maximum
transmit power allowance at the power amplifier and the
capacities of the backhaul links are large enough, e.g., PT ≥
30 dBm and Rmaxm ≥ R2 ∀m, the energy efficiency of
the proposed algorithm approaches a constant value since the
resource allocator is not willing to consume more power, when
the maximum energy efficiency is achieved. Besides, further
increasing the backhaul capacities from Rmaxm

= R2 ∀m to
Rmaxm

= R3 ∀m is not beneficial for energy efficiency as
the system performance is now confined by the capacity of
the radio links. However, for the case of backhaul capacity
Rmaxm = R1 ∀m, the energy efficiency is quickly saturated
even if the transmit powers at the BSs are low since the system
capacity is always limited by the bottleneck of the backhaul
connections. For comparison, Figure 5(b) also contains the
energy efficiency of a baseline resource allocation scheme in
which we maximize the weighted system capacity (bit/s/Hz)
with constraints C1-C6 in (9) for a given selected users set
and ZFBF transmission, instead of the energy efficiency. It can
be observed that in the low transmit power regime with high
backhaul capacity, i.e., PT < 30 dBm and Rmaxm

≥ R2 ∀m,
the baseline scheme has virtually the same performance as
the proposed algorithm. In other words, this result suggests
that in the low transmit power regime, transmitting with
the maximum available power is the most energy-efficient
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Fig. 5. Energy efficiency (bit-per-Joule) versus the maximum transmit power
allowance at each BS, PT , for different resource allocation algorithms and
different backhaul capacities with K = 45 users.

option. However, the energy efficiency of the baseline scheme
decreases dramatically in the high transmit power regime.
This is because there is a diminishing return in the system
capacity with respect to the increment of transmit power.
Meanwhile, the total power consumption scales linearly with
respect to the transmit power. Hence, the capacity gain is
unable to compensate for the negative impact of the total
power consumption in the RF amplifiers and results in a low
energy efficiency. On the other hand, for Rmaxm

= R1 ∀m, the
proposed algorithm and the baseline scheme achieve the same
energy efficiencies as the degrees of freedom in the resource
allocation are limited by the small backhaul capacities.

Figure 6 shows the average system capacity (bit/s/Hz/cell)
versus the maximum transmit power PT for K = 45 users
and different backhaul capacities. We compare the system
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Fig. 6. Average system capacity (bit/s/Hz/cell) versus the maximum transmit
power allowance at each BS, PT , for different resource allocation algorithms
and different backhaul capacities with K = 45 users. The number of iterations
for the proposed algorithm is set to 5.

performance of the proposed algorithm again with the baseline
scheme. The number of iterations in the proposed algorithm
is set to 5. It can be observed that the average system
capacity of the proposed algorithm approaches a constant in
the high transmit power and high backhaul capacity regimes,
i.e, PT ≥ 30 dBm and Rmaxm

≥ R2 ∀m. This is because
the proposed algorithm clips the transmit power at the BSs
in order to maximize the system energy efficiency. However,
when the backhaul capacity is small, i.e., Rmaxm = R1 ∀m,
the maximum achievable average system capacities of both the
proposed algorithm and the baseline scheme do not scale with
the transmit power. We note that, as expected, the baseline
scheme achieves a higher average system capacity than the
proposed algorithm in the high transmit power regime for
Rmaxm

≥ R2 ∀m since the former scheme consumes all
the available transmit power in all scenarios. However, the
superior average system capacity of the baseline scheme
comes at the expense of low energy efficiency as shown
in Figure 5(b). On the other hand, increasing the backhaul
capacity beyond Rmaxm = R2 ∀m is not beneficial for the
average system capacity as the wireless communication links
are the bottleneck links.

Figure 7 depicts the average total power consumption,
i.e., E{UTP (P ,W ,S)}, versus the maximum transmit power
PT for the proposed algorithm and the baseline scheme for
5 iterations. In the considered transmit power regimes, the
proposed algorithm consumes less power than the baseline
scheme for the case of Rmaxm

≥ R2 ∀m. This is because
the proposed algorithm clips the transmit power for energy
efficiency maximization. However, when the backhaul capac-
ity is the limiting factor, i.e., Rmaxm

= R1 ∀m, both the
baseline scheme and the proposed algorithm consume almost
the same amount of power since the transmit power usage is
confined by the backhaul capacity instead of energy efficiency
maximization.
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capacities, 5 iterations, and K = 45 users.
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Fig. 8. Energy efficiency (bit-per-Joule) versus the number of users K for
different maximum transmit power allowances at each BS, PT , and different
backhaul capacities.

C. Energy Efficiency and Average System Capacity versus
Number of Users

Figures 8 and 9 depict the energy efficiency and the average
system capacity versus the number of users, respectively.
Different backhaul capacities, different maximum transmit
power allowances PT at the BSs, and 5 iterations of the
proposed algorithm are considered. It can be observed that for
Rmaxm ≥ R2 ∀m, both the energy efficiency and the average
system capacity grow with the number of users since the pro-
posed resource allocation and scheduling algorithm is able to
exploit multiuser diversity (MUD) due to the semi-orthogonal
user selection algorithm. In general, MUD introduces an extra
power gain [35, Chapter 6.6] to the system which provides
further energy savings. Yet, when the backhaul capacity is
the performance limiting factor, i.e., Rmaxm

= R1 ∀m, the
proposed algorithm is unable to take advantage of MUD since
the performance gain due to joint BS transmission is limited
by the small backhaul capacities. As a result, both the average
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Fig. 9. Average system capacity (bit/s/Hz/cell) versus the number of users
K for different maximum transmit power allowances at each BS, PT , and
different backhaul capacities.

system capacity and the energy efficiency remain constant
when the backhaul is the bottleneck.

VI. CONCLUSIONS

In this paper, we formulated the resource allocation and
scheduling design for multi-cell OFDMA networks with joint
BS ZFBF transmission as a non-convex and combinatorial
optimization problem, in which the circuit power dissipation,
the limited backhaul capacity, and the system data rate re-
quirement were taken into consideration. By exploiting the
properties of fractional programming, the considered problem
was transformed into an equivalent problem with a tractable
iterative solution. In each iteration, a low complexity user
selection and ZFBF are performed for maximization of the
energy efficiency. Furthermore, we demonstrated that when
the number of subcarriers is sufficiently large, the duality gap
for the power allocation problem is practically zero despite
the non-convexity of the primal problem. As a result, an
efficient closed-form power allocation can be obtained in each
iteration via dual decomposition. Simulation results showed
that the proposed algorithm converges within a small number
of iterations and unveiled a trade-off between energy effi-
ciency, network capacity, and backhaul capacity. In particular,
(1) in the low transmit power regime, an algorithm which
achieves the maximum spectral efficiency may also achieve
the maximum energy efficiency; (2) a high spectral efficiency
does not necessarily result in a high energy efficiency; (3)
spectral efficiency is always limited by the backhaul capacity;
(4) energy efficiency increases with the backhaul capacity only
until the maximum energy efficiency is achieved.

Interesting topics for future work include studying the
impact of imperfect CSIT and multiple-antenna BSs.

APPENDIX- PROOF OF THEOREM 2

As mentioned in the main text, the transformed optimization
problem for given parameter q, selected user set, and ZFBF
transmission is a non-convex optimization problem due to
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Fig. 10. Geometric interpretation of duality and perturbation function for concave and non-convex optimization problems with a 1-dimensional perturbation
vector y ∈ R1 for illustration. The shaded areas represent the set of values of the primal problem for different perturbations y ∈ R1.

constraint C3. In general, a non-zero duality gap exists if
we solve the transformed problem by solving its dual, cf.
Figure 10(b). However, we demonstrate in the following that
when a non-convex optimization problem satisfies certain
conditions, the duality gap is always zero. Before introducing
another important theorem for the proof of Theorem 2, we first
introduce the concept of perturbation function. For the sake
of notational simplicity and to avoid ambiguity, we use the
following notations. We use v〈·〉 to denote a function v and
(·) to denote brackets. Without loss of generality, the primal
optimization problem in (12) can be written in general form
as

P = max
pk

i ≥0

nF∑
i=1

fi〈pk
i 〉

s.t.
nF∑
i=1

gi〈pk
i 〉 ≤ 0, (24)

where fi〈·〉 : CK → R and gi〈·〉 : CK → RL are
arbitrary continuous functions. L and 0 are the total number
of inequality constraints and a column vector with all zero
elements, respectively. pk

i ∈ RK represents a feasible solution
vector of the primal problem in general form. Indeed, (24) is
a general representation of an optimization problem and the
physical meaning of vector pk

i is not limited to transmit power.
Note that we do not make any assumption on the concavity
of functions fi〈·〉 and gi〈·〉. Then, the perturbation function
is defined as [36], [37]

v〈y〉 = max
pk

i ≥0

nF∑
i=1

fi〈pk
i 〉

s.t.
nF∑
i=1

gi〈pk
i 〉 ≤ y, (25)

where y ∈ R
L is a perturbation vector. A geometrical

interpretation of the perturbation function is given in Figure
10. The perturbation function v〈y〉 corresponds to the upper

envelope of the shaded areas in Figure 10. Note that v〈y〉 is
a non-decreasing function of y since a larger value of each
element in y results in a larger feasible set. The Lagrangian
function of (24) can be expressed as

L〈pk
i ,u〉 =

nF∑
i=1

fi〈pk
i 〉 − uT

(
gi〈pk

i 〉
)

(26)

where u ∈ RL,u ≥ 0 is a vector of Lagrange multipliers.
Thus, the corresponding dual problem is given by

D = min
u≥0

max
pk

i

L〈pk
i ,u〉. (27)

Indeed, from a geometrical point of view, the dual problem
is equivalent to finding the slope u of the supporting hyper-
plane of the perturbation function at y = 0, i.e., v〈y〉 = v〈0〉,
such that its intercept on the P-axis is minimal, cf. Figure
10(a).

We are now ready to introduce the following theorem.
Theorem 3: If the perturbation function v〈y〉 is a concave

function of y, then the duality gap is zero despite the convexity
of the primal problem13, i.e., D = P.

Proof of Theorem 3:

The main idea of the proof is based on [37, Theorem
6.2.7] which states that a zero duality gap is equivalent to the
existence of a saddle point of the Lagrangian function. Before
proceeding to the proof of Theorem 3, let us first show how
the concavity of the perturbation function v〈y〉 can be used
to prove the existence of a saddle point of the Lagrangian
function.

Suppose v〈y〉 is a concave function with respect to y, then
there exists a hyperplane that supports the hypograph of v〈y〉
for any y ∈ RL, cf. Figure 10. Thus, by the definition of

13It is obvious that if the primal problem is concave, then the perturbation
function v〈y〉 will be a concave function of y. However, the reverse is not
necessarily true.
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concavity [32, Chapter 3.1.3], there exists some vector ũ such
that

v〈y〉 ≤ v〈0〉+ ũT (y − 0), (28)

where ũ ∈ RL is known as the sub-gradient of v〈·〉.
Next, let pk∗

i be the optimal solution of optimization prob-
lem (24). Then, (pk∗

i , ũ) is a saddle point of the Lagrangian
function if ũ ≥ 0 and (pk∗

i , ũ) satisfies

L〈pk∗
i ,u〉 ≥ L〈pk∗

i , ũ〉 ≥ L〈pk
i , ũ〉, ∀pk

i ≥ 0,u ≥ 0. (29)

First, we prove ũ ≥ 0 by contradiction. In order to relate
(26) and (28), we consider a vector Δ ∈ RL,Δ ≥ 0
which corresponds to the condition

∑nF

i=1 gi〈pk
i 〉 ≤ 0 of the

Lagrangian function in (26). By the non-decreasing property
of the perturbation function, we have v〈y + Δ〉 ≥ v〈y〉. As
a result, we obtain the following inequality

v〈y〉 ≤ v〈y +Δ〉 ≤ v〈0〉+ ũT (y +Δ− 0) (30)

which holds for arbitrary vectors Δ ≥ 0 and y. Now, we put
y = 0 into (30) which yields

v〈0〉 ≤ v〈0〉+ ũTΔ. (31)

Suppose now, there exists one element in ũ which takes a
negative value. Then, we can always choose a vector Δ such
that ũTΔ < 0 which violates the inequality in (31). Thus,
ũ ≥ 0 has to be true. Second, we prove ũT

∑nF

i=1 gi〈pk∗
i 〉 =

0. Again, we consider the hyperplane in (28) with input vector
y =

∑nF

i=1 gi〈pk∗
i 〉. Since pk∗

i is the optimal solution of the
primal problem in (24),

∑nF

i=1 gi〈pk∗
i 〉 ≤ 0 must hold. There-

fore, v
〈∑nF

i=1 gi〈pk∗
i 〉
〉

= v〈0〉 and ũT
∑nF

i=1 gi〈pk∗
i 〉 = 0

must be true for satisfying (28). Now, we are ready to prove
the right hand side of (29). Let us first consider the following:

L〈pk∗
i , ũ〉 =

nF∑
i=1

fi〈pk∗
i 〉 − ũT

(
gi〈pk∗

i 〉
)
=

nF∑
i=1

fi〈pk∗
i 〉

= v〈0〉 ≥ v〈y〉 − ũTy, ∀y. (32)

Suppose pk
i is a feasible solution of the primal problem. Then,

pk
i is also a feasible solution of the perturbation function v〈·〉

if we set the perturbation vector y such that y =
∑nF

i=1 gi〈pk
i 〉.

Then, we substitute y =
∑nF

i=1 gi〈pk
i 〉 into (32) which yields

L〈pk∗
i , ũ〉 = v〈0〉 ≥ v

〈 nF∑
i=1

gi〈pk
i 〉
〉
− ũT

nF∑
i=1

gi〈pk
i 〉

(a)

≥ v
〈 nF∑

i=1

gi〈pk
i 〉
〉
+ ũT

nF∑
i=1

gi〈pk
i 〉

= L〈pk
i , ũ〉, (33)

where (a) is due to
∑nF

i=1 gi〈pk
i 〉 ≤ 0.

On the other hand, the left hand side inequality in (29) can
be proved as follows:

L〈pk∗
i , ũ〉

=

nF∑
i=1

fi〈pk∗
i 〉 − ũT

(
gi〈pk∗

i 〉
)
=

nF∑
i=1

fi〈pk∗
i 〉

≤
nF∑
i=1

fi〈pk∗
i 〉 − uT

(
gi〈pk∗

i 〉
)

= L〈pk∗
i ,u〉 ∵ gi〈pk∗

i 〉 ≤ 0,u ≥ 0. (34)

Therefore, 〈pk∗
i , ũ〉 is a saddle point of the Lagrangian func-

tion and by [37, Theorem 6.2.5], the duality gap is zero.
In other words, the concavity of the perturbation function

v〈y〉 with respect to y is the key to proving that the duality
gap is zero. The final step in proving Theorem 2 is to prove
that v〈y〉 is a concave function of y, i.e.,

v〈ρy + (1− ρ)x〉 ≥ ρv〈y〉+ (1 − ρ)v〈x〉 (35)

for 0 ≤ ρ ≤ 1, where x ∈ RL is another perturbation vector
such that x − y �= 0. Indeed, the concavity condition of
the perturbation function is always satisfied in multi-carrier
systems if frequency sharing is possible. For explaining the
concept of frequency sharing, let pk∗

xi
and pk∗

yi
be the two

optimal resource allocation policies with respect to the pertur-
bation functions v〈x〉 and v〈y〉, respectively. Then, frequency
sharing means that ∀ρ ∈ [0, 1], we can implement the optimal
resource allocation policies pk∗

xi
and pk∗

yi
at the same time

on a portion ρ of the subcarrier bandwidth and a portion
1−ρ of the subcarrier bandwidth, respectively. The basic idea
for implementing frequency sharing in practice is to divide
the total bandwidth B into a set of infinitesimally narrow
subcarriers. As the number of subcarriers nF in B increases,
the bandwidth of each subcarrier becomes smaller and the
channel gains in each subcarrier approaches a constant value.
In the limiting case of nF → ∞, the channel gains of adjacent
subcarriers are approximately the same14 which facilitates
frequency sharing. As a result, the original bandwidth of each
subcarrier can be divided into two portions, i.e., (1 − ρ) and
ρ, having the same channel gain. Then, for the perturbation
function v〈ρy+(1−ρ)x〉, by construction, we implement the
resource allocation policies pk∗

xi
and pk∗

yi
in portion one and

portion two, respectively. Then, by exploiting the properties
of the constraints15 in (12), the constraints become a linear
combination of the constraints in v〈x〉 and v〈y〉 due to
the flatness of the channel over neighbouring subcarriers.
Therefore, v〈ρy + (1 − ρ)x〉 ≥ ρv〈y〉 + (1 − ρ)v〈x〉 holds
immediately16 due to linearity. In other words, the perturbation
function v〈y〉 is a concave function with respect to y under
frequency sharing.

So, by combining Theorem 3 and the condition nF → ∞,
Theorem 2 is proved.
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