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Abstract— Large-scale integration of intermittent wind energy can
put a large burden on the utility company in balancing system
demand and supply. As more and more dispersed wind energy
suppliers connect to the system for electricity supply, the power
system suffers from increased operation cost and risk caused by
the discrepant interests of energy suppliers and the utility company.
Energy suppliers may only concern about maximizing their own
profits by pushing as much energy into the grid as possible, while
neglecting the risk of steep ramps in wind generation. In this paper,
exploiting the two-way communication capability in smart grid, we
propose interactive ramp control of wind energy integration by
aligning the individual pursuits of the energy suppliers and the utility
company for social welfare maximization. The optimal wind energy
integration and generator ramp control are investigated in an offline
social welfare optimization problem assuming full knowledge of future
wind energy and load demand. Moreover, the benefits of storage are
exploited in our proposed storage-aided generation range adaption
scheme to reduce the potential risk caused by inaccurate wind energy
forecasts and the ramping latency of slow generators. Furthermore,
a suboptimal storage-aided generation range adaption scheme with
low computational complexity is presented for online control of
wind integration when wind energy forecasts are unavailable. Our
simulation results show that interactive ramp control is necessary to
achieve efficient and secure wind energy integration and with the aid
of storage, the power system’s ramping capability can be improved
at lower operation cost.

Index Terms— Smart grid, large-scale integration, ramp control

I. INTRODUCTION

Wind energy is considered as eco-friendly, sustainable, and
increasingly important energy source for the future power system.
However, due to its inherent temporal variations, the presence
of wind energy can cause an operational burden in frequency
regulation and stabilization for balancing power generation and
load [1]. Besides, wind generation is not fully predictable. For
large-scale integration, the steep ramps in wind energy [2] increase
the power system’s risk of supply shortage and over-generation
[3]. Thus, the effective integration of volatile wind energy into the
power grid with manageable supply uncertainty and guaranteed
system reliability becomes a crucial issue.

Wind generation is traditionally dispatched as “negative load” in
the unit commitment process [4] due to the limited controllability
of wind energy compared to conventional energy sources like coal
and gas. For large-scale integration, the utility company (UC)
needs to provide enough operating reserves of online or offline
generation capacity of conventional generators to deal with the
large ramps in wind generation. The optimal reserve requirement
that achieves minimum operation cost was investigated in [3]
using a two-stage stochastic unit commitment model. However,
scheduling wind energy as an inelastic (“must-take”) negative load
can lead to costly system operation for large-scale wind generation
integration because of the high reliance on expensive fast operating
reserves [5].
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Alexander von Humboldt Foundation.

Active scheduling through wind generation curtailment and
ramp rate control1 has been recently proposed to promote large-
scale wind energy integration at balanced operation costs [6]–
[9]. In [6], the variations of the residual load, i.e., the part of
the load that is not served by wind energy, are shown to be
accelerated due to large ramps of wind energy for large-scale
integration. Besides, the authors demonstrate that by curtailing
wind generation ramps, e.g., through controlling the pitch angle
of a wind turbine, the ramps in the residual load can be managed
with less costly slow generators, thus lowering average operation
cost [6]. Furthermore, wind generation curtailment can relax the
transmission line constraints in the distribution system and increase
the effective wind energy usage within acceptable voltage/current
variation levels [7]. On the other hand, the use of storage in
ramp control decouples the generation and consumption of wind
energy and can lead to an improvement in both operation cost
and wind energy usage [8], [9]. However, wind energy curtailment
and ramp control need to be planned based on accurate forecasts
of wind generation and load demand over a large time period;
otherwise, the limited ramping capability of slow generators may
result in ramping violations. Sensitivity to both forecast errors and
accumulated forecast errors hampers the realtime implementation
of wind energy curtailment schemes. Moreover, the charging and
discharging operations can reduce the storage lifetime with current
storage techniques [10]. This effect can not be simply neglected in
exploring the role of storage to promote large-scale wind energy
integration.

The above research [3]–[9] has focused on centralized control
of wind energy integration from the UC’s perspective. As the
grid interface for wind integration becomes standardized with the
application of power electronics [11], it is expected that more and
more dispersed wind generators, including private wind farms and
home-use wind turbines, will connect to the power system for
electricity supply. This trend requires an intelligent ramp control
for the aggregate wind generations. However, coordinating the
renewable energy suppliers (RESs) with the UC poses a challenge
for achieving efficient wind energy integration and secure power
system operation. Since the operational burdens and costs incurred
by wind energy ramps (e.g., in generator ramp control) are usually
unseen at the RES’s side, RESs may try to integrate as much
renewable energy as possible for their own profit maximization,
which can deteriorate power system security in case of “over-
generation”.

Exploiting the two-way communication capability of smart grid,
interactive ramp control of the integration process is possible based
on realtime information exchange between the UC and the RESs.
In this context, this paper investigates the optimal interactive ramp
control for large-scale integration of dispersed wind generation
to align the behaviors of the RESs and the UC in wind energy

1The term “wind curtailment” stresses the reduction of the wind generation level,
while “ramp control” emphasizes on restricting the rate of change of generation
levels. In this paper, since we focus on a time slotted system, the two terms are
used interchangeably.
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integration and generator ramp control. By modeling the prefer-
ences and behaviors of both UC and RESs, the social welfare, i.e.,
the net system benefit minus the system operation cost (including
storage operation cost accounting for the impact of charging
and discharging on the storage lifetime), is proposed as system
control objective. The optimal wind energy integration considering
the generator’s ramping requirements are obtained based on an
offline optimization problem assuming full knowledge of wind
energy arrivals and load demands. Furthermore, in addressing the
sensitivity problem caused by forecast errors, we propose a storage-
aided generation range adaption scheme to extend the ramping
capability of slow generators by properly utilizing the storage
units. A suboptimal online storage-aided ramp control scheme is
implemented assuming no knowledge of future wind generations.
Simulation results show the benefits of interactive ramp control
in achieving efficient and reliable wind energy integration, and
with the aid of storage, the system’s ramping capability can be
strengthened at low operation cost.

The rest of this paper is organized as follows: Section II presents
the system model in detail. In Section III, the social welfare
optimization problem is investigated, and a suboptimal online
scheme for storage-aided generation range adaption is proposed.
Section IV presents simulation results for the proposed schemes
and finally, Section V concludes the paper.

II. SYSTEM MODEL

A. Deregulated Power System and Wind Integration Control

For a deregulated electricity system, assume N RESs, denoted
by N , |N | = N (|·| denotes the cardinality of a set), connect
to the power system to provide electricity generated by their own
wind farms. The UC of the power system operates conventional
generators to accommodate the time-varying wind energy supply
and to maintain the system’s operational security. The RESs and
the UC are connected via a two-way communication network. The
activities of the RESs and the UC are synchronized. Fig. 1 depicts
the system model.

The system’s operation cycle is divided into K time slots,
each of which has a duration of ∆t. The wind generation and
system load are assumed to be constant over one time slot2.
In our proposed interactive ramp control, the UC and the RESs
collaborate in wind integration and generator ramp control through
information exchange over the communication network. The UC
allocates the serving load, which is assumed inelastic (“must-
take”), to the RESs in the generation ramp control process at
the beginning of each time slot. In response, the RESs serve the
allocated load by managing the energy flows in wind generation
and storage charging/discharging. Let dk be the total load at time
k. The amount of serving load allocated to RES i at time k is
denoted by d

(i)
k ,∀i ∈ N , and the total allocation does not exceed

the total demand load,

dk ≥
N∑
i=1

d
(i)
k , ∀k. (1)

To maintain the total supply and demand balanced, the residual
load, (dk −

∑N
i=1 d

(i)
k ), is served by the UC using conventional

generators.
The need for interactive ramp control lies in two aspects. First,

the amount of wind energy integration of RESs depends on the
ramping capability of the conventional generators in the power
system. This is because the time-varying wind energy supply will

2The time scale defined above is used for the fine control (in seconds or minutes)
of instantaneously varying wind generations. In practice, a large time scale (e.g. an
hour) can be used for the coarser ramp control of average wind generations [12].
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Fig. 1. Power system model.

“accelerate” the fluctuations in the residual load [6], which has
to be accommodated by the UC. On the other hand, the load
allocation and the generator ramp control at the UC are based
not only on the system load and the conventional generators’
ramping status, but also on the feedback information from the RES
regarding the amount of wind generation and the stored energy.
The details of RES energy management and UC generation ramp
control will be explained in Sections II-B and II-C, respectively.

Considering the UC as a virtual “consumer” of wind energy,
the end customer’s role is not considered in this paper. During the
energy exchange, the UC gains environmental and/or economical
benefits from “consuming” (integrating) wind energy; while the
RESs gain monetary revenue from the UC for wind energy supply.
The revenue of RESs is either determined by the energy price and
the amount of integrated energy at each time slot or specified
in a predefined contract3. Based on microeconomic theory, the
UC’s corresponding level of satisfaction is modeled as a sum of
utility values gained from each RES’s renewable energy supply,∑N

i=1 Ud(d
(i)
k , δd), where Ud(·) models the UC’s utility value

regarding one RES’s wind integration and δd reflects the UC’s
preference for wind energy integration. The value of δd depends
on the installed wind generation capacity, the generation variation
statistics of the RESs, and the government’s subsidy policy on
wind integration.

Utility function Ud(d
(i)
k , δd) is assumed to satisfy the following

properties [13]:
(i) The utility function is nondecreasing and concave, i.e., the

marginal benefit is nonincreasing, with respect to the wind
energy supply d

(i)
k ;

(ii) The utility function increases with preference δd of integrating
wind energy;

(iii) The utility function value is nonnegative and equals zero when
there is no supply.

An example of a utility function that fulfills the above properties
is the quadratic utility function, which has been largely used in
recent practice in energy consumption modeling [13],

Ud (x, δd) =

{
δdx− αd

2 x2 if 0 ≤ x < δd
αd

δ2d
2αd

if x ≥ δd
αd

, (2)

where αd is a pre-determined parameter.

B. RES Energy Management

The energy management at the RESs focuses on serving the
allocated load with intermittent wind generation, as shown in
Fig. 2. Let the wind energy arrival of RES i at time k be e

(i)
k .

The actual amount of wind generation at time k, denoted as
p
(i)
k , depends on the ramp control decisions of the system. The

adjustment of wind generation can be done by controlling the pitch
angles of wind turbines. In this paper, we assume the conversion

3The revenue of RESs is not modeled in this paper, since it cancels with the
UC’s payment in the social welfare objective.
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loss during the wind generation process is negligible, which leads
to

0 ≤ p
(i)
k ≤ e

(i)
k , ∀i, k. (3)

Besides, a portion of the RESs, denoted by Ns ⊆ N , |Ns| =
Ns ≤ N , are equipped with energy storage units to store excess
wind generation for backup use during low generation periods4. At
time k, a RES with storage can decide to charge (discharge) the
storage units with an amount of s(i)c,k (s(i)d,k) of energy. The storage
status, denoted as q

(i)
k , evolves as

q
(i)
k = q

(i)
k−1 + ηcs

(i)
c,k − s

(i)
d,k/ηd, ∀i, k (4)

where q
(i)
0 is the initial storage status for RES i; ηc and ηd denote

the charging and the discharging efficiencies, respectively, and
ηc, ηd ∈ (0, 1]. The maximal energy capacity of the storage unit
is denoted as Bmax, and a minimum amount of Bmin of energy
needs to be held in the storage unit. Then, we have

Bmin ≤ q
(i)
k ≤ Bmax,∀i ∈ Ns,∀k. (5)

Considering the maximal charging and discharging powers, de-
noted as Qc and Qd, respectively, we get

0 ≤ s
(i)
d,k ≤ Qd∆t; 0 ≤ s

(i)
c,k ≤ Qc∆t, ∀i ∈ Ns,∀k. (6)

Note that, if storage is unavailable, then we set q
(i)
k = s

(i)
c,k =

s
(i)
d,k = 0,∀i /∈ Ns,∀k.

In each time slot, the RESs supply wind energy from their
generated and stored energy. The amount of supplied energy is
equal to the assigned load, i.e.,

p
(i)
k − s

(i)
c,k + s

(i)
d,k = d

(i)
k , ∀i, k. (7)

The decision vector of RES i at time k is denoted as x
(i)
k =

[p
(i)
k , s

(i)
c,k, s

(i)
d,k]. Instead of manual decisions, a central controller

is responsible for information collection and decision making, on
behalf of the RESs.

The charging and discharging process can reduce the lifetime
of energy storage and this effect should be taken into account
in the storage operation cost [10]. Assuming linear charging
and discharging “prices” ρcs

(i)
c,k and ρds

(i)
d,k, i.e., the marginal

storage operation costs are proportional to the amount of charged

4In this paper, each RES is assumed to be a pure energy supplier and charging
the storage units with grid power is not allowed.

and discharged energy, respectively, the storage operation cost is
modeled as [10]

C
(i)
ek

(
s
(i)
c,k, s

(i)
d,k

)
=

ρc
2

(
s
(i)
c,k

)2

+
ρd
2

(
s
(i)
d,k

)2

(8)

where ρc and ρd are constants.

C. UC Generation Ramp Control

The generator ramp control is responsible for the RESs’ load
allocation and the residual load accommodation so that the ramping
requirements of the conventional generators are satisfied. The con-
ventional generators can be categorized as slow and fast generators
with different ramping capability. Slow generators such as basic
load generators and load following generators [15] have lower
ramping rates, but can provide large amounts of cheap electricity.
Usually, slow generators are scheduled to serve the basic load
and less flexible load in the system. By contrast, fast generators,
including peaking generators and spinning/non-spinning generators
[3], have higher ramping rates and can respond within seconds at
the expense of a higher cost due to the use of expensive fuels (e.g.,
gas). Fast generators are mainly used as operating reserves to deal
with fluctuations in renewable supply and peak load.

Both fast and slow generators can contribute to accommodating
the residual load. To this end, the residual load is decomposed into
a slow-varying component, ds,k, and a fast-varying component,
df,k,

dk −
N∑
i=1

d
(i)
k = ds,k + df,k, ∀k, (9)

where ds,k and df,k are accommodated by slow and fast generators,
respectively. The values of ds,k and df,k are determined by the
generator ramping capability [3],

−Rmax
s ∆t ≤ ds,k − ds,k−1 ≤ Rmax

s ∆t, ∀k, (10)

−Rmax
f ∆t ≤ df,k − df,k−1 ≤ Rmax

f ∆t, ∀k, (11)

where Rmax
s and Rmax

f are the maximal ramping rates for slow
and fast generators, respectively, and Rmax

f ≫ Rmax
s .

Due to the lower ramping rate and expensive startup cost, the
slow generator output is limited to a certain generation range [15],

Gmin
s ∆t ≤ ds,k ≤ Gmax

s ∆t, ∀k, (12)

where Gmin
s and Gmax

s are the corresponding minimum and
maximal generation powers of the slow generators. In contrast,
the fast generators’ output is mainly constrained by the generation
capacity Gmax

f . Thus, we have

0 ≤ df,k ≤ Gmax
f ∆t, ∀k. (13)

The control vector at the UC is denoted as yk =
[ds,k, df,k, {d(i)k }Ni=1]. The generator ramp control incurs a total
cost equal to the sum of the generation costs of the slow and fast
generators, denoted by Cs (·) and Cf (·), respectively. Since each
type of generator is actually a mix of generators with different
capacities and costs, the empirical generation costs for slow and
fast generators are piecewise linear and can be approximated by a
quadratic function [14]:

Cm (Lk) =
am
2

L2
k + bmLk + cm, m ∈ {s, f}, (14)

where Lk denotes the generation level of the slow/fast generators;
the fixed parameters am, bm, and cm satisfy am > 0, bm ≥ 0,
cm ≥ 0, and afLk + bf > asLk + bs,∀Lk > 0, implying that for
the same amount of energy generation, the marginal cost of fast
generators is larger than that of slow generators.
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III. OPTIMAL WIND ENERGY SUPPLY WITH RAMP CONTROL

A. Social Welfare Optimization with Full Generation Range

The ramps in wind energy can result in higher costs for
conventional generator ramp control. However, the RESs are fully
unaware of such burden. Without ramp control, the RESs might
simply inject as much wind energy into the grid as possible to
increase their profits, which can deteriorate the system security in
case of reserve shortage. To align the activities of all participants
in the ramp control of wind energy integration, the social welfare,
i.e., the net benefit of both the RESs and the UC minus the various
system costs [13], is considered as the system control objective.
Considering a finite time horizon of M time slots, the social
welfare function is defined as the sum of the energy integration
utility functions minus the total cost incurred in ramp control and
storage operation during the whole time period:

W (x,y) =

M∑
k=1

Wk (xk,yk) , (15)

with

Wk (xk,yk) =
N∑
i=1

[
Ud

(
d
(i)
k , δd

)
− C

(i)
ek

(
s
(i)
c,k, s

(i)
d,k

)]
−Cs (ds,k)− Cf (df,k),

(16)

where x = [x1, · · · ,xM ], xk = [x
(1)
k , · · · ,x(N)

k ], and y =
[y1, · · · ,yM ].

The optimal ramp control needs to be planned over a long
time horizon and requires full knowledge of the future wind
energy arrivals and load demand. Here, the offline social welfare
optimization problem is solved first by assuming that wind energy
and load demand are fully predictable. In a realtime system, the
online control relies on dealing with the uncertainty inherent in
wind energy and load demand. The offline optimum provides an
upper bound for the performance of online schemes.

Assuming the wind energy and load demand are fully known or
can be accurately forecast over the horizon of M time slots, the
slow generators can be allowed to ramp in the full generation range,
i.e., ds,k ∈ [Gmin

s ∆t, Gmax
f ∆t]. The social welfare optimization

problem with full generation range is formulated as,

Maximize
x,y

W (x,y)

Subject to (1), (3)− (7), (9)− (13).
(17)

Problem (17) is a concave maximization problem [17] and can be
solved by standard numerical solvers such as CVX [18]. Although
an analytical solution is unavailable, the following observation can
be made.

Proposition 1: The optimal charging and discharging decisions,
s
(i)∗
c,k and s

(i)∗
d,k , are complementary in each time slot, i.e., s(i)∗c,k ·

s
(i)∗
d,k = 0, if the storage has i) infinite capacity, Bmax →∞, or ii)

full charge/discharge efficiency, ηc = ηd = 100%.
According to Proposition 1, an ideal storage is either charged

or discharged in each time slot. We provide a sketch of the proof
for i) by contradiction in [19]. The proof of ii) is similar.

B. Storage-Aided Generation Range Adaption and Online Imple-
mentation

The online implementation of the social welfare optimization
scheme is hampered by: i) the ramping capability limitations of
slow generators and ii) the reliance on (accurate) information about
future wind energy arrivals and load demand. If the forecasts of
wind energy and load demand are inaccurate or unavailable, full
range generation ramping can put the system under risk of either
insufficient energy supply or excess energy supply, due to the

slow generator’s latency in ramping up and down in consecutive
time slots. Here, generation range adaption and the role of storage
are explored to guarantee the requirements of system security
when forecasts of wind energy and load demand are inaccurate
or unavailable.

1) Storage-Aided Generation Range Adaption: A direct method
to avoid the ramping latency of slow generators is to restrict the
output variations of the slow generators to their ramping range,
i.e.,

gmin∆t ≤ ds,k ≤ gmax∆t, (18)

where gmin and gmax are the allowable generation power limits.
The values of gmin and gmax satisfy

0 ≤ gmax − gmin ≤ Rmax
s , (19)

gmin ≥ Gmin
s , gmax ≤ Gmax

s . (20)

On the other hand, (18) can result in inefficient ramp control
when the slow generators have enough ramping capability but
can not ramp to the desired generation power due to (18). To
overcome this problem, the role of storage is exploited to extend
the effective output range of the slow generators, instead of only
using storage for wind energy backup in the previous schemes.
The idea is to temporarily offset the generation range constraint
by the amount of stored energy at the current time, denoted as
qstor,k =

∑N
i=1 (q

(i)
k −Bmin), so that slow generators can attain

a lower generation output level. The adjustment of the generation
range requires the RESs to feedback their storage status at each
time slot. The instantaneous generation range is then given by

gmin − ηdqstor,k ≤ ds,k/∆t ≤ gmax − ηdqstor,k, ∀k, (21)

where gmin and gmax also satisfy (19), (20), but can have larger
values than in (18). If storage is unavailable, (18) and (21) become
the same.

The following optimization problem determines the optimal
generation power range [g∗min, g

∗
max] for given forecasts of wind

energy and load demand in M time slots,

Maximize
x,y,gmin,gmax

W (x,y)

Subject to (1), (3)− (7), (9)− (13), (19)− (21).
(22)

If the forecasts of wind energy and load demand are accurate,
Problem (22) determines the optimal performance of the storage-
aided generation range adaption scheme.

2) Suboptimal Online Implementation: With generation range
adaption, the ramping constraint of the slow generators between
consecutive time slots will not be violated even if the information
about future wind energy and load demand is unknown. However,
if the optimization problem (22) is directly decoupled into each
time slot, i.e.,

Maximize
xk,yk

Wk (xk,yk)

Subject to (1), (3)− (7), (9)− (13), (18)− (20),
(23)

the storage would become inactive, since the system tries to
minimize the storage operation cost at each time slot. Thus, a
key question of online design remains how to effectively operate
the storage when realizations of future wind generation and load
demand are unavailable.

Although dynamic programming offers a strong mathematical
tool in dealing with uncertainty, its high computation complexity
is overwhelming for an online scheme. Here, we propose a
heuristic storage management scheme for online implementation
of the storage-aided generation range method, which guarantees
system security during the slow generator ramping process. Our
scheme targets a reduced computation complexity in dealing with
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Algorithm 1 Suboptimal online scheme: Initialization stage
1: Initialization: k ← 0;
2: while ηdqstor,k < g0 − dmin do
3: Full charging if storage is not full: s(i)c,k = e

(i)
k , s

(i)
d,k = 0;

4: Stored energy update: qstor,k ← qstor,k + ηc
∑N

i=1 s
(i)
ck

5: Time update: k ← k + 1;
6: end while
7: Generation range adjustment: gmin ← g0, gmax ← g0

Algorithm 2 Suboptimal online scheme: Normal stage
1: while k ≤M do
2: if dk −

∑N
i=1 e

(i)
k − ds,k−1 ≤ Rmax

s AND k < M then
3: Charge setting: s(i)c,k = βp

(i)
k , s

(i)
d,k = 0;

4: else
5: Discharge setting: s(i)c,k = 0, s

(i)
d,k ≥ 0, while guaranteeing

ηdqstor,k ≥ g0 − dmin;
6: end if
7: Decision making for xk,yk at time k by solving (23)

together with charge/discharge settings;
8: Stored energy update: qstor,k ← qstor,k +∑N

i=1 (ηcs
(i)
ck − ηds

(i)
dk )

9: Time update: k ← k + 1;
10: end while

uncertainty compared with the dynamic programming approach.
The details of the proposed scheme are shown in Algorithms 1
and 2. The control procedure is divided into initialization and
normal stages according to the level of stored energy qstor,k. In
the initialization stage, the storages are charged to provide enough
offset for the generation range of the slow generators such that
the slow generators can accommodate the minimum load dmin in
case there are no wind energy arrivals. Full charging is preferred
if the storage is not full, to speed up the initialization process.
Once the desired stored energy is available, the generation range
[gmin, gmax] is set to the predefined range [g0, g0] corresponding
to current average wind energy and average load demand, and the
control procedure transitions to the normal stage. In the normal
stage, a heuristic storage management scheme with complementary
charging and discharging decisions (based on Proposition 1 by
assuming sufficiently large storage size) is applied to extend the
effective ramping range and the utilization of the slow generators:

• when the difference between load demand and total wind
energy arrival falls into the ramping range of the slow
generators, charge at least β (0 < β < 1) portion of wind
generation p

(i)
k into the storage;

• otherwise, discharge is allowed while the remaining energy
should be maintained above the minimum offset level g0 −
dmin.

With this heuristic storage operation scheme, optimization prob-
lem (23) is solved at the beginning of each time slot for online
decision-making for wind energy integration and generator ramp
control. The system needs to keep records of the previous genera-
tion power. The values of the generation power range [g0, g0] and
the charging threshold β are set for different expected, instead of
instantaneous, levels of wind energy and load demand. To this end,
historical data records of the wind energy and load demand can
be used to determine the settings of [g0, g0] (e.g., input historical
data into (22)) and β.

IV. SIMULATION RESULTS

Consider a system with one UC and N = 20 RESs. The power
load in the system is composed of a basic load of 20 MW, which is

TABLE I
UC GENERATOR CONFIGURATION [6].

Generator type Slow gen. Fast gen.
Ramp rate (MW/5 min) Rmax

s = 10 Rmax
f = 50

Generation capacity Gmin
s = 10 Gmax

f = 60
(MW) Gmax

s = 100
Generation cost as = 0.005$/MW2 af = 0.04$/MW2

bs = 60$/MW bf = 160$/MW

TABLE II
RES STORAGE CONFIGURATION [16].

Efficiency ηc = ηd = 95%
Rating (MW/5 min) Qc = Qd = 200 kW/sec

Capacity Bmax = 800 kWh, Bmin = 0 kWh
Operation cost ρc = ρd = 7.5$/MW2

time invariant, and a flexible load, which is uniformly distributed
in [0, 40] MW [15]. The renewable energy generation at each RES
is modeled as an ON-OFF process with a probability of 0.3 for
the “ON” state. The timescale of the system is ∆t = 5 min, and
M = 20 time slots are adopted for the control time horizon. Table I
shows the generator configuration at the UC. We assume each RES
is equipped with a storage, i.e., Ns = 20, with the configuration
shown in Table II.

The quadratic utility function in (2) is adopted for evaluation.
The preference factor of the UC towards renewable energy integra-
tion is set to δd = 60 and αd = δd

E{
∑N

i=1 e
(i)
k /N}

where E{·} denotes
the expectation operation, i.e., the UC’s maximal satisfaction is
achieved when the wind energy supply is no less than the mean
(expected) wind generation level at each RES.

Three offline schemes are evaluated assuming full knowledge of
wind energy and load demand: i) integration with full generation
range (cf. (17)), ii) integration with adaptive generation range
(cf. the storage-aided generation range adaption scheme in (22)),
and iii) maximal integration (denoted as “max”), in which the
power system maximizes the total amount of integrated wind
energy instead of the social welfare. Besides, the proposed online
suboptimal scheme of generation range adaption (cf. (23)) is
assessed assuming forecasts of wind energy and load demand are
unavailable. The maximal wind energy integration is considered
as the baseline scheme for wind energy integration. To study the
benefits of wind energy integration, we set a reference value of
social welfare, denoted as W ∗

0 , as the optimal social welfare of
the full generation range scheme without wind energy integration.
The difference between the social welfare of each wind integration
scheme and W ∗

0 then defines the social welfare surplus due to wind
energy integration.

Figure 3 shows the social welfare surplus per time slot for
different wind energy arrival levels. The performances of the offline
schemes are compared first. From the figure, maximal wind energy
integration achieves the lowest social welfare. This implies, simply
integrating as much wind energy as possible can be detrimental to
the social welfare since the wind ramps can penalize the operation
costs of the power system. Thus, ramp control is necessary to
manage wind energy variations and to promote efficient wind
energy utilization. Besides, generation range adaption can avoid
the risk of ramping violations in slow generators when forecasts of
wind energy and load demand are inaccurate. However, restricting
the output range of the slow generators results in increased usage
of (expensive) fast generators. Thus, the generation range adaption
scheme causes a loss in social welfare compared to the full
generation range scheme, especially when storage is unavailable.
The gap between the adaptive and full generation range schemes
is reduced with the aid of storage, as the generation range of slow
generators can be effectively extended.
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Fig. 3. Social welfare surplus vs. wind energy arrival.

TABLE III
PARAMETERS FOR ONLINE SCHEME (g0 = g0 +Rmax

s ).

Wind arrivals (MW) 2 4 6 8 10

g0 (MW) 22.5 23.4 23.0 22.3 21.2

β 0.7 0.65 0.6 0.3 0.3

Wind arrivals (MW) 12 14 16 18 20

g0 (MW) 19.9 18.2 16.5 14.4 12.9

β 0.06 0.03 0.03 0.01 0.01

The proposed online scheme is evaluated with the parameter
settings in Table III, where the values for the generation power
range [g0, g0] are set to the average values of [g∗min, g

∗
max] in (22)

with 1000 realizations of the wind energy and load demand. From
Fig. 3, despite the loss of information about future wind energy
and load demand, the proposed online scheme outperforms the
offline generation range adaption scheme without storage and the
maximal integration scheme.

The impact of the storage size on social welfare is investigated in
Fig. 4 with 10 MW wind arrivals. If wind energy and load demand
are fully known, the social welfare value for the generation range
adaption scheme increases faster with the storage size than that
for the full generation range scheme, decreasing the performance
gap between the two schemes. This is because larger storage
size offers more flexibility in extending the generation range of
slow generators. However, in the proposed online scheme, the
performance gains achieved with increased storage size are limited
due to the loss of information about future wind energy and load
demand.

10
0

10
1

10
2

10
3

10
4

0

50

100

150

Storage size [kWh]

S
o
c
ia

l 
w

e
lf
a

re
 s

u
rp

lu
s
 p

e
r 

ti
m

e
 s

lo
t

full, offline

adaptive, offline

adaptive, online

max, offline

Fig. 4. Social welfare surplus vs. storage size

V. CONCLUSION

In this paper, socially optimal wind generation ramp control with
dispersed energy suppliers is investigated. To this end, the pursuits
or revenues of both energy suppliers and the utility company are
aligned in the social welfare objective. The optimal wind energy
integration and generator ramp control are characterized by solving
an offline social welfare optimization problem, which requires full
knowledge of the future wind energy and load demand. Storage-
aided ramp control with generation range adaption is proposed to
guarantee power system security during the ramping process of
the slow generators when wind energy forecasts are inaccurate. A
suboptimal online storage-aided scheme is presented for the case
when a forecast for the amount of future wind energy arrival is
unavailable. Simulation results show that the offline storage-aided
generation range adaption scheme can attain high social welfare,
and the performance gaps between adaptive and full generation
range schemes are decreased by increasing the storage size. How-
ever, suboptimal online scheme suffers a performance loss due to
the lack of information about the future wind generation.
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