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Abstract—In this work, we consider a point–to–point com-
munication link where the transmitter has a hybrid supply of
energy. Specifically, the hybrid energy is supplied by a constant
energy source and an energy harvester, which harvests energy
from its surrounding environment and stores it in a battery which
suffers from energy leakage. Our goal is to minimize the power
consumed by the constant energy source for transmission of a
given amount of data in a given number of time intervals. Two
scenarios are considered for packet arrival. In the first scenario,
we assume that all data packets have arrived before transmission
begins, whereas in the second scenario, we assume that data
packets are arriving during the course of data transmission. For
both scenarios, we propose an optimal offline transmit power
allocation scheme which provides insight into how to efficiently
consume the energy supplied by the constant energy source and
the energy harvester. For offline power allocation, we assume
that causal and non–causal information regarding the channel
and the amount of harvested energy is available a priori. For
optimal online power allocation, we adopt a stochastic dynamic
programming (DP) approach for both considered scenarios. For
online power allocation, only causal information regarding the
channel and the amount of harvested energy is assumed available.
Due to the inherent high complexity of DP, we propose subop-
timal online algorithms which are appealing because of their
low complexity. Simulation results reveal that the offline scheme
performs best among all considered schemes and the suboptimal
online scheme provides a good performance–complexity tradeoff.

Index Terms—Energy harvesting, hybrid energy supply, power
allocation, convex optimization, dynamic programming.

I. INTRODUCTION

GREEN communication has attracted significant attention
in academia and industry as the rapidly increasing en-

ergy consumption of the equipment in wireless communication
systems has raised environmental concerns [1], [2]. In the
literature, a number of power allocation schemes, which
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aim to provide a balance between energy consumption and
performance, have been reported for different wireless com-
munication systems [3]– [6]. Most of these works assume that
the energies are supplied by a constant energy source and/or
a rechargeable battery. However, recently energy harvesting
(EH) has attracted considerable interest as an environmen-
tally friendlier supply of energy for communication nodes
compared to traditional sources of energy. EH nodes harvest
energy from their surroundings using solar, thermoelectric,
and motion effects or by exploiting some other physical
phenomenon. Therefore, the harvested energy is practically
free of cost and can ensure a perpetual supply of energy.

Recently, transmission strategies and power allocation poli-
cies for EH nodes in wireless communication systems have
been studied in [7]– [10]. In [7], a point–to–point non–
cooperative link with an EH transmitter was considered and
different transmission policies were provided for maximizing
the system capacity. In [8], a similar system model was
considered and dynamic programming (DP) was employed
to allocate the transmit power for the case when causal
channel state information (CSI) is available. On the other
hand, transmission time minimization and transmission packet
scheduling in EH systems were considered in [9]. Short–term
throughput maximization and transmission completion time
minimization were studied in [10], where also the energy
replenishment process and storage constraints of the recharge-
able batteries were taken into account. Furthermore, in [11],
a source–relay–destination link with an EH source and an
EH relay was considered and both offline and online power
allocation schemes were proposed to maximize the end–to–
end system throughput. A deterministic EH model for the
Gaussian relay channel, which assumes a priori knowledge of
the energy arrival times and the amount of harvested energy,
was considered in [12], and delay and no–delay constrained
types of traffic were studied.

The above works on communication systems with EH
capability [7]– [12] assume that EH is the only source of
energy for the transmitter. However, from a practical point
of view, to achieve both reliable and green communication,
it is desirable to have a hybrid source of energy due to the
intermittent nature of the harvested energy, cf. [13]. A hybrid
energy source is a combination of a constant energy source,
e.g., power grid, diesel generator etc., and an EH source which
harvests energy from solar, wind, thermal, or electromechan-
ical effects. The concept of hybrid energy sources has also
drawn interest from industry. For instance, Huawei has already
developed base stations for rural areas which draw their energy
from both solar panels and diesel generators [14]. Motivated

1536-1276/13$31.00 c© 2013 IEEE



6256 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 12, NO. 12, DECEMBER 2013

by these considerations, in this paper, we consider a single
communication link where the transmitter (e.g. a base station)
is equipped with a hybrid energy source, cf. Fig. 1(a), which
comprises a constant energy source and an energy harvester.
The constant energy source is assumed to be fed by a costly
and/or non–environmentally friendly generator, e.g., a diesel
fuel power generator in a remote location or a nuclear power
plant. In contrast, the harvested energy is green and stems
from a sustainable source of energy.

In this paper, our aim is to minimize the amount of energy
drawn from the constant energy source, such that the harvested
energy is efficiently utilized for transmitting a given number
of data packets over a finite number of transmission intervals.
We assume that there is a battery in the hybrid energy
source to store the harvested energy. We consider a non–ideal
battery which may leak a fraction of the stored energy over
time. Thereby, the leakage depends on the charging and/or
discharging effect, the chemical properties of the material,
etc. [15], [16]. Note that our problem formulation is different
from that in [7]– [12] and [15]– [17], as [7]– [12] and [15]–
[17] consider throughput maximization and/or transmission
time minimization for communication systems employing EH
sources only without exploiting a constant energy source. The
solution of the optimization problem considered in this paper
provides insights regarding the optimal power allocation policy
for communication systems with hybrid energy sources and
thereby facilitates the design of reliable green communication
systems.

We consider two scenarios for the arrival process of the
data packets into the data queue at the transmitter. In Scenario
1, the data packets that have to be transmitted arrive before
the transmission begins and no packets arrive during the
transmission, cf. Fig. 1(b). In Scenario 2, the data packets
may arrive during the course of transmission, cf. Fig. 1(c). For
both scenarios, we derive offline and online (real–time) power
allocation schemes that minimize the total amount of energy
drawn from the constant energy source. Offline schemes are
of interest when the amount of harvested energy, the channel
signal-to-noise ratio (SNR), and the amount of incoming data
for all transmission intervals are known a priori. However, in
practice, the amount of the harvested energy, the channel SNR,
and the incoming data packets (for Scenario 2) are random in
nature and cannot be predicted in advance. Therefore, in this
case, online power allocation schemes relying only on causal
information regarding the channel SNR, the harvested energy,
and the amount of data to be transmitted are required. Nev-
ertheless, offline schemes provide useful performance upper
bounds for the more practical online schemes. We propose
optimal online power allocation schemes for both considered
scenarios using a stochastic DP approach. To avoid the high
complexity inherent to DP, we also propose suboptimal online
algorithms.

The remainder of this paper is organized as follows. In
Section II, the system model for the EH system is presented.
Offline and online power allocation schemes for Scenarios 1
and 2 are provided in Sections III and IV, respectively. In
Section V, the effectiveness of the proposed power allocation
schemes is evaluated based on simulations. Section VI con-
cludes this paper.
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Fig. 1. (a) System model for a communication link where the trans-
mitter has a hybrid energy supply. (b) Illustration of Scenario 1 with K
transmission intervals, channel SNRs γk , and harvested energies Hk , where
k ∈ {1, 2, · · · ,K}. Here, RT bits arrive before transmission begins. (c)
Illustration of Scenario 2. Here, Rk bits arrive just before time interval, k.

II. SYSTEM MODEL

System Description: We consider a single communication
link, where a transmitter (source), S, communicates with a
receiver (destination), D, as shown in Fig. 1(a). We assume
that S has a data queue with infinite capacity which can
store data packets temporarily before their transmission. The
energy required by S for signal transmission and processing
is supplied by a hybrid source of energy. The hybrid source
includes a constant energy source, possibly connected through
a cable to the power grid, and an EH module which harvests
energy from the surroundings. The harvested energy is stored
in a battery that can store at most Bmax Joules of energy. We
consider a deadline of K transmission intervals and assume
that data transmission is packet based. The duration of each
transmission interval is T and without loss of generality, we
assume T = 1s.

We consider two scenarios for packet arrivals. In Scenario
1, we assume that RT bits have arrived at S before the
transmission starts and have to be transmitted in K trans-
mission intervals, cf. Fig. 1(b). We assume that additional bits
do not arrive during the transmission. On the other hand, in
Scenario 2, we assume that Rk bits arrive immediately before
transmission interval k, where k ∈ {1, 2, · · · ,K}, and all bits
have to be transmitted by the end of the last transmission
interval K , cf. Fig. 1(c).
Channel Model: We assume that the transmitted packets
contain Gaussian–distributed symbols and the transmission
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is impaired by additive white Gaussian noise (AWGN). Let
γk denote the channel SNR of the S–D link, which is
assumed to be independent and identically distributed (i.i.d.)
over the time intervals. For future reference, we introduce the
average SNR of the S–D link as γ̄. We denote total transmit
power in interval k ∈ {1, 2, · · · ,K} by PE,k + PH,k, where
PE,k and PH,k are supplied by the constant energy source
and the energy harvester, respectively. Furthermore, the total
powers drawn from the constant energy source and the energy
harvesting source are given by ρPE,k and ρPH,k, respectively.
Here, ρ ≥ 1 is a constant that accounts for the inefficiency
of the non–ideal power amplifier. For instance, if ρ = 2, 100
Watts of power are consumed in the power amplifier for every
50 Watts of power radiated in the radio frequency, and the
efficiency of the power amplifier in this case is 1

ρ = 50%. We
assume that the power required for signal processing at the
transmitter, which is constant in each time interval, is supplied
by the constant energy source and is excluded from the power
allocation algorithm design.
Hybrid Energy Model: We assume that Ek is the maximum
energy that can be drawn from the constant energy source
in each interval, excluding the required constant signal pro-
cessing power1. On the other hand, the energy harvester at S
collects Hk ≤ Bmax Joules of energy from its surroundings
at the end of the kth interval. Hk is modeled as an ergodic
random process with average EH rate HR � E{Hk}, where
E{·} denotes statistical expectation. Due to the inefficiency
of the battery, a fraction of the stored harvested energy may
be lost. We adopt the energy loss model from [18], [19] to
incorporate the imperfections of the battery. We assume that
a factor of 1− μ of the stored harvested energy is leaked per
time interval, where 0 ≤ μ < 1 represents the efficiency of the
battery per time interval. Similar to [8], we assume that the
harvested energy stored in the battery increases and decreases
linearly provided the maximum storage capacity Bmax is not
exceeded, i.e.,

Bk+1 = min{μ(Bk − ρPH,k) +Hk, Bmax}, ∀k, (1)

where B1 = H0 ≥ 0 denotes the available energy before
transmission starts. Thus, Bk follows a first–order Markov
process which depends only on the current state of the
battery. Due to the finite storage capacity and the leakage
of the battery, it is beneficial to draw the energy for packet
transmission as quickly as possible from the battery so that
more harvested energy can be stored in the future, and thus
the amount of possibly wasted harvested energy is minimized.

III. OFFLINE POWER ALLOCATION

In this section, we develop offline power allocation strate-
gies for Scenarios 1 and 2. For offline power allocation, it is
assumed that both the causal and the non–causal information
regarding the channel SNR and the harvested energy are
available a priori. For offline power allocation, Scenario 1
may be viewed as a special case of Scenario 2 by setting
R1 = RT and Rk = 0, where k = 2, 3, · · · ,K . Hence,
we only formulate and describe the optimization problem for

1We consider the general case where Ek may change from one transmission
interval to the next. However, for the simulation results shown in Section V,
we assume a constant energy supply, i.e., Ek = E, ∀k.

Scenario 2 in detail. We then obtain the solution for Scenario
1 by setting R1 = RT and Rk = 0, k = 2, 3, · · · ,K , see
Section III-B.

A. Offline Power Allocation for Scenario 2

We formulate the offline optimization problem for Scenario
2 as follows:

min
PE,k≥0, PH,k≥0, δH,k≥0

K∑
k=1

ρPE,k (2)

s.t.
q∑

k=1

log2(1 + γk(PE,k + PH,k))≤
q∑

k=1

Rk, ∀q (3)

K∑
k=1

log2(1 + γk(PE,k + PH,k)) =

K∑
k=1

Rk (4)

l∑
k=1

ρμl−kPH,k ≤
l−1∑
k=0

μl−k−1(Hk − δH,k), ∀l (5)

q∑
k=0

μq−k(Hk − δH,k)−
q∑

k=1

ρμq−k+1PH,k ≤ Bmax, ∀q (6)

ρPE,k ≤ Ek, ∀k, (7)

where l ∈ {1, 2, · · · ,K}, q ∈ {1, 2,· · · ,K − 1}, and
k ∈ {1, 2, · · · ,K}. Constraint (3) provides the flexibility to
transmit the incoming data packets in future time intervals.
Constraint (4) ensures that all the data packets are transmitted
by a deadline of K transmission intervals. Constraint (5)
stems from the causality constraint on the harvested energy
and constraint (6) ensures that the harvested energy does not
exceed the limited storage capacity of the battery. Thereby,
δH,k is a slack variable that ensures that problem (2)–(7) is
always feasible. In particular, δH,k represents the amount of
harvested energy that is wasted in time interval k because of
the limited storage capacity of the battery2. The limitation on
the amount of energy drawn from the constant energy source is
reflected in constraint (7). Note that for a given time interval,
for the constant energy supply, any extra amount of energy
which is not used for transmission cannot be transferred to
the next interval.

Problem (2)–(7) is not a convex optimization problem
because of the non–convexity of constraint (3) and the non–
affinity of constraint (4). We combine (3) and (4) and trans-
form problem (2)–(7) into the following problem:

min
PE,k≥0, PH,k≥0, δH,k≥0

K∑
k=1

ρPE,k (8)

s.t.
K∑
k=l

log2(1 + γk(PE,k + PH,k))≥
K∑
k=l

Rk, ∀l (9)

Constraints (5)− (7), (10)

where l ∈ {1, 2, · · · ,K}. However, constraint (9) is an
equivalent representation of constraints (3) and (4), and hence
problem (8)–(10) is equivalent to problem (2)–(7), i.e., both
problems have the same optimal solution. Problem (8)–(10)

2For example, if Hk is large (Hk is a random variable and cannot be
controlled in the optimization problem) and Bmax is small, then if δH,k

was omitted, constraint (6) would not be satisfied and problem (2)–(7) would
become infeasible.
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is a convex optimization problem and thus can be solved
optimally and efficiently [20]. We note that problem (8)–(10)
is not always feasible. Assuming Rk, channel SNRs, γk, and
harvested energies, Hk, are given for all time intervals, i.e.,
k ∈ {1, 2, · · · ,K}, a sufficient (but not necessary) condition
for feasibility of problem (8)–(10) is

K∑
k=1

log2(1 +
γk
ρ
(Ek +Hk)) ≥

K∑
k=1

Rk. (11)

If the problem is not feasible, we can extend the number of
transmission intervals to K∗ > K by following similar steps
as in [7] to avoid infeasibility. Note that during time intervals
k′ ∈ {K + 1,K + 2, · · · ,K∗}, we have to assume that no
additional data packets arrive at S to avoid the possibility
of facing further infeasibility. It is worth mentioning that
problem (8)–(10) is always feasible if Ek → ∞, ∀k, i.e.,
when the constant energy supply is (practically) unlimited. In
the following, we assume that problem (8)–(10) is feasible.

As problem (8)–(10) satisfies Slater’s constraint qualifica-
tion and is jointly convex in PE,k, PH,k, and δH,k, the duality
gap between the dual optimum and the primal optimum is zero
[20]. Therefore, we solve the problem by solving its dual. For
this purpose, we first provide the Lagrangian of problem (8)–
(10) which can be written as

L =

K∑
k=1

ρPE,k +

K∑
k=1

βk (ρPE,k − Ek)

+

K∑
l=1

αl

(
l∑

k=1

ρμl−kPH,k −
l−1∑
k=0

μl−k−1(Hk − δH,k)

)

+
K−1∑
q=1

ξq

(
q∑

k=0

μq−k(Hk − δH,k)−
q∑

k=1

ρμq−k+1PH,k−Bmax

)

−
K∑
l=1

λl

(
K∑
k=l

log2(1 + γk(PE,k + PH,k))−
K∑
k=l

Rk

)
(12)

where λl ≥ 0, αl ≥ 0, ξq ≥ 0, and βk ≥ 0 are the Lagrange
multipliers associated with constraints (9), (5), (6), and (7),
respectively. Note that the boundary conditions PE,k ≥ 0,
PH,k ≥ 0, and δH,k ≥ 0 are absorbed into the Karush–Kuhn–
Tucker (KKT) conditions for deriving the optimal PE,k, PH,k,
and δH,k. The dual of problem (8)–(10) can be stated as

max
λl≥0, αl≥0, ξq≥0, βk≥0

min
PE,k≥0, PH,k≥0, δH,k≥0

L. (13)

Using standard optimization techniques and the KKT opti-
mality conditions, the optimal PE,k, PH,k , and δH,k can be
obtained as

P ∗
E,k =

[
ΞE,k − 1

γk
− PH,k

]+
, (14)

P ∗
H,k =

[
ΞH,k− 1

γk
−PE,k

]+
, and (15)

δ∗H,k =[
k−1∑
i=0

μk−i(Hi−δH,i)−
k∑

i=1

μk−i+1ρPH,i+Hk−Bmax

]+
, (16)

respectively, where [x]+ = max{x, 0} and δH,0 = 0. The
power allocation solutions in (14) and (15) can be interpreted

as a form of water–filling, where ΞE,k =
∑k

j=1 λj

ρ ln(2)(1+βk)
and

ΞH,k =
∑k

j=1 λj

ρ ln(2)(
∑K

j=k αjμj−k−∑K−1
j=k

ξjμj−k+1)
are the water

levels associated with P ∗
E,k and P ∗

H,k , respectively. P ∗
E,k and

P ∗
H,k depend on each other due to constraint (9).

From (15), we observe that when Bmax = ∞, we have
ξq = 0, ∀q, and in this case, the optimum water level for
the EH source, ΞH,k, is monotonically non–decreasing. In
this case, all harvested energy can be stored in the battery
and thus P ∗

H,k can be more efficiently distributed over the
time intervals to minimize the use of the constant energy
source. However, when Bmax is finite and if constraint (6)
is satisfied with equality, i.e., at least one ξq �= 0, ∀q, then
the monotonicity of the optimum water level no longer holds.
However, when constraint (6) is not satisfied with equality, the
optimum water level is monotonically non–decreasing even for
finite Bmax. Furthermore, we observe from (14) that whenever
constraint (7) is not satisfied with equality, i.e., βk = 0, the
optimum water level for the constant energy source, ΞE,k, is
monotonically non–decreasing for increasing k.

We calculate the optimal Lagrange multipliers required in
(14)–(16) via an iterative procedure [20]. We define t as
the iteration index. For a given set of Lagrange multipliers
(λ(t), αl(t), ξq(t), βk(t)) and a given value of P ∗

H,k(t − 1),
we obtain P ∗

E,k(t) using (14) and then calculate P ∗
H,k(t) based

on (15) by using P ∗
E,k(t) as PE,k. We also calculate δ∗H,k(t)

based on (16) by using P ∗
H,k(t) as PH,k. The initial set of

Lagrange multipliers (λl(1), αl(1), ξq(1), βk(1)) are chosen
from the feasible set, i.e., λl(1) ≥ 0, αl(1) ≥ 0, ξq(1) ≥
0, βk(1) ≥ 0. However, to calculate PE,k(1) for t = 1,
PH,k(0) ≥ 0 is chosen such that (5) and (6) are satisfied.
We update the Lagrange multipliers as follows:

λl(t+ 1) =

[
λl(t)−Υ1(t)

(
K∑
k=l

log2(1 + γk(PE,k + PH,k))

−
K∑
k=l

Rk

)]+
, (17)

αl(t+ 1) =

[
αl(t)+Υ2(t)

(
l∑

k=1

ρμl−kP ∗
H,k(t)

−
l−1∑
k=0

μl−k−1(Hk − δ∗H,k(t))

)]+
, (18)

ξq(t+ 1) =

[
ξq(t)+ Υ3(t)

(
q∑

k=0

μq−k(Hk− δ∗H,k(t))

−
q∑

k=1

ρμq−k+1P ∗
H,k(t)−Bmax

)]+
, (19)

βk(t+ 1) =
[
βk(t) + Υ4(t)

(
ρP ∗

E,k(t)− Ek

)]+
, (20)

where l ∈ {1, 2, · · · ,K}, q ∈ {1, 2, · · · ,K − 1}, and
k ∈ {1, 2, · · · ,K}. Here, Υn(t), n ∈ {1, · · · , 4}, are positive
step sizes. With the updated Lagrange multipliers, we solve
P ∗
E,k(t + 1) and P ∗

H,k(t + 1) again and the same procedure
continues until convergence. Note that due to the convexity of
problem (8)–(10), the convergence to the optimal solution is
guaranteed as long as the step sizes satisfy the infinite travel
condition [20].
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B. Offline Power Allocation for Scenario 1

For Scenario 1, P ∗
E,k, P ∗

H,k, and δ∗H,k are also
given by (14), (15), and (16), respectively, but with
λk = 0 for k ∈ {2, 3, · · · ,K}, i.e., the water lev-
els are given by ΞE,k = λ1

ρ ln(2)(1+βk)
and ΞH,k =

λ1

ρ ln(2)(
∑K

j=k αjμj−k−∑K−1
j=k ξjμj−k+1)

. Furthermore, in (17), we

have to set R1 = RT and Rk = 0, k = 2, 3, · · · ,K . We note
that the numerators of the optimum water levels ΞE,k and
ΞH,k for Scenario 1 contain only one Lagrange multiplier,
λ1. Therefore, whenever constraint (7) is not satisfied with
equality, i.e., βk = 0, ∀k, the optimum water level of PE,k

for Scenario 1 remains constant. However, Bmax has the same
impact on P ∗

H,k for Scenario 1 as for Scenario 2.

C. Complexity of the Proposed Offline Power Allocation
Schemes

In the offline power allocation scheme, we solve a convex
optimization problem where the number of constraints is a
function of K . The required computational complexity to solve
a convex optimization problem is polynomial in the size of the
problem [20]. Therefore, for both considered scenarios, the
worst–case computational complexity of the proposed offline
power allocation scheme is polynomial in the number of time
intervals K [20].

IV. ONLINE POWER ALLOCATION

In practice, only causal information of channels and har-
vested energies is available for power allocation. Therefore,
the offline power allocation scheme is not readily applicable
as in a given time interval k, the future CSI and the upcoming
harvested energy are not known in advance. In this section,
for both considered scenarios, we propose an optimal and a
suboptimal, less complex online power allocation schemes.
For the online schemes, the random data arrivals in Scenario 2
during transmission play an important role3. Since this feature
is not present in Scenario 1, to improve the clarity of our paper,
we describe the online power allocation schemes for Scenarios
1 and 2 separately.

A. Optimal Online Power Allocation

For optimal online power allocation, we employ a stochastic
DP approach [8], [21] which exploits the causal information
regarding the channel SNRs, the harvested energies, and their
probability density functions (pdfs). For Scenario 2, the causal
information regarding the incoming data bits and the pdf of
the data bit arrival process also have to be known. Note
that the pdfs of the channel SNR, the harvested energy,
and the incoming data bits can be obtained via long–term
measurements.

3For example, for optimal power allocation, different system state defini-
tions and Bellman’s equations result for Scenarios 1 and 2 [8]. Therefore,
neither of the optimal online schemes be directly considered as a special case
of the other.

1) Scenario 1: Let c
(1)
k � (γk, Hk−1, Bk, D

(1)
k−1, Tk) de-

note the state of the system in time interval k which includes
channel SNR γk, incoming harvested energy Hk−1, stored
harvested energy Bk, the total number of remaining bits
to be transmitted over the following time intervals D

(1)
k−1,

and the remaining number of time intervals Tk. D
(1)
k−1 is

calculated at the end of time interval (k − 1). Our aim is
to minimize the amount of energy drawn from the constant
energy source over K intervals and we assume the initial state
c
(1)
1 = (γ1, H0, B1, D

(1)
0 , T1) is known. We define a policy

p(1) = {PE,k(c
(1)
k ), PH,k(c

(1)
k ), ∀c(1)k , k = 1, 2, · · · ,K}, as

feasible if the constraints [PE,k(c
(1)
k ), PH,k(c

(1)
k )] 	 0 and

ρPE,k(c
(1)
k ) ≤ Ek, ρPH,k(c

(1)
k ) ≤ Bk are satisfied for all

k. Moreover,

D
(1)
k = D

(1)
k−1 − log2(1 + γk(PE,k + PH,k)) (21)

for k ∈ {1, 2, · · · ,K} and D
(1)
0 = RT . The objective function

to be minimized can be reformulated as [8]

W (p(1)) =

K∑
k=1

E{ρPE,k|c(1)1 , p(1)}, (22)

where the expectation is with respect to the channel SNR
and the harvested energy. In particular, for a given c

(1)
1 , the

minimum amount of energy drawn from the constant energy
source can be obtained as

W ∗ = min
p(1)∈P

W (p(1)), (23)

where P denotes the space of all feasible policies. In general,
the optimization of PE,k and PH,k cannot be performed inde-
pendently in each time interval because of the EH constraints.
Therefore, to obtain W ∗, we adopt a stochastic DP approach
by using Bellman’s equations [8].

To this end, we denote the minimum energy drawn
from the constant energy source in time interval k as
J
(1)
k (Ek, Bk, D

(1)
k−1). For a given c

(1)
1 , the total minimum

energy W ∗ is given by J
(1)
1 (E1, B1, D

(1)
0 ), which can be re-

cursively obtained from J
(1)
K (EK , BK , D

(1)
K−1), J

(1)
K−1(EK−1,

BK−1, D
(1)
K−2), · · · , J (1)

2 (E2, B2, D
(1)
1 ) [8]. For the last time

interval K , we have J
(1)
K (EK , BK , D

(1)
K−1) =

min
PE,K≥0, PH,K≥0

ρPE,K≤EK

ρPH,K≤BK

log2(1+γK(PE,K+PH,K))≥D
(1)
K−1

ρPE,K (24)

and for time interval k ∈ {1, 2, · · · ,K − 1}, we have

J
(1)
k (Ek, Bk, D

(1)
k−1) = min

PE,k≥0, PH,k≥0
ρPE,k≤Ek

ρPH,k≤Bk

ρPE,k

+J̄
(1)
k+1(Ek+1, Bk−PH,k,D

(1)
k−1−log2(1+γk(PE,k+PH,k))),(25)

where

J̄
(1)
k+1(Ek+1, Bk−PH,k, D

(1)
k−1 − log2(1 + γk(PE,k + PH,k)))

= Eγ̃k+1,H̃k

{
J
(1)
k+1(Ek+1,min{μ(Bk−PH,k)+H̃k, Bmax},
D

(1)
k−1 − log2(1 + γk(PE,k + PH,k)))

}
. (26)

Here, γ̃k+1 represents the random SNR in the (k+1)th interval
where the SNR γk in the kth interval is known. Similarly, H̃k
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denotes the random harvested energy in the kth time interval
where the harvested energy Hk−1 in the (k − 1)th interval is
known and Ek is assumed to be known for all time intervals.
The pdfs of the channel SNR and the harvested energy have
to be known for evaluation of (26). It can be shown that the
cost functions in (24) and (25) are jointly convex in PE,k

and PH,k. Therefore, (24) and (25) are convex optimization
problems and can be solved efficiently and optimally [20].
Note that (25) and (26) may not be feasible for all γ̃k+1 and
H̃k. We discard the results corresponding to those γ̃k+1 and
H̃k which provide infeasible solutions and only consider those
γ̃k+1 and H̃k which provide feasible results in (25) and (26).

Using (24) and (25), P ∗
E,k and P ∗

H,k, k ∈ {1, 2, · · · ,K},
can be obtained for different possible values of γk and Bk.
The results are stored in a look–up table. This is done before
transmission starts. When transmission starts, for a given
realization of γk and Bk, in time interval k, those values of
P ∗
E,k and P ∗

H,k that correspond to that realization are taken
from the look–up table. If (25) is not feasible for a given γk
and Bk in an interval k due to an insufficient available amount
of energy for transmitting the required number of data bits,
the transmitter transmits as many bits as possible using the
available power, i.e., P ∗

H,k = Bk

ρ and P ∗
E,k = Ek

ρ . If (24)
is not feasible for a given γK and BK , then the transmitter
extends the transmission deadline from K to K∗ > K to
ensure that all the bits are transmitted by the K∗th interval.

2) Scenario 2: We follow similar steps as for Scenario 1
and employ a stochastic DP approach also for Scenario 2.
However, different from Scenario 1, the main challenge here
is how to incorporate the random nature of the data bit arrival
process to account for the effect of data arrivals in future time
intervals.

Let c(2)k � (γk, Hk−1, Bk, Rk, D
(2)
k−1, Tk) denote the state

for time interval k, where

D
(2)
k = D

(2)
k−1 − log2(1 + γk(PE,k + PH,k)) +Rk+1 (27)

represents the total number of remaining bits to be transmitted
over the following time intervals which is calculated at the end
of a given time interval (k−1). In particular, D(2)

0 = R1. Note
that unlike Scenario 1, the number of bits Rk which arrive
immediately before interval k, is now considered as one of
the state elements for Scenario 2. We assume the initial state
c
(2)
1 = (γ1, H0, B1, R1, D

(2)
0 , T1) is known. We define a pol-

icy p(2) = {PE,k(c
(2)
k ), PH,k(c

(2)
k ), ∀c(2)k , k = 1, 2, · · · ,K},

as feasible if the constraints [PE,k(c
(2)
k ), PH,k(c

(2)
k )] 	 0 and

ρPE,k(c
(2)
k ) ≤ Ek, ρPH,k(c

(2)
k ) ≤ Bk are satisfied for all k.

For a given c
(2)
1 , the minimum energy drawn from the constant

energy source can be obtained as

W ∗ = min
p(2)∈P

K∑
k=1

E{ρPE,k|c(2)1 , p(2)}, (28)

where the expectation is taken also with respect to the in-
coming data packets in addition to the channel SNR and
the harvested energy. We use again Bellman’s equations
to obtain W ∗ for Scenario 2 and hence denote the min-
imum energy drawn from the constant energy source in
time interval k as J

(2)
k (Ek, Bk, D

(2)
k−1) [8]. For a given

c
(2)
1 , the total minimum energy W ∗ = J

(2)
1 (E1, B1, D

(2)
0 )

can be recursively obtained from J
(2)
K (EK , BK , D

(2)
K−1),

J
(2)
K−1(EK−1, BK−1, D

(2)
K−2), · · · , J (2)

2 (E2, B2, D
(2)
1 ). For the

last time interval K , we have J
(2)
K (EK , BK , D

(2)
K−1) =

min
PE,K≥0, PH,K≥0

ρPE,K≤EK

ρPH,K≤BK

log2(1+γK(PE,K+PH,K))≥D
(2)
K−1

ρPE,K (29)

and for time interval k, we obtain

J
(2)
k (Ek, Bk, D

(2)
k−1) = min

PE,k≥0, PH,k≥0
ρPE,k≤Ek

ρPH,k≤Bk

ρPE,k

+J̄
(2)
k+1(Ek+1, Bk−PH,k,D

(2)
k−1−log2(1+γk(PE,k+PH,k))),(30)

where

J̄
(2)
k+1(Ek+1, Bk−PH,k, D

(2)
k−1−log2(1+γk(PE,k + PH,k))) =

Eγ̃k+1,H̃k,R̃k+2

{
J
(2)
k+1(Ek+1,min{μ(Bk−PH,k)+Hk,Bmax},

D
(1)
k−1−log2(1+γk(PE,k+PH,k))+R̃k+2)

}
. (31)

Here, R̃k+2 represents the random incoming data bits at the
source just before the (k+2)th interval. It can be shown that
the cost functions in (29) and (30) are jointly convex in PE,k

and PH,k [20]. A possible infeasibility of (30) and (31) can
be handled by following the same procedure as in case of
Scenario 1. Furthermore, using (29) and (30), P ∗

E,k and P ∗
H,k,

k ∈ {1, 2, · · · ,K}, are obtained for different possible values
of γk, Bk, and Rk offline and the results are stored in look–up
tables and used during the course of transmission.

B. Suboptimal Online Power Allocation

In the proposed DP–based optimal online power allocation
algorithm, for a given transmission interval k, we take into
account the average effect of all succeeding time intervals,
cf. (26) and (31). Due to the recursive nature of DP, the
computational complexity of this approach increases exponen-
tially with increasing K . For this reason, in the following,
we propose a suboptimal but efficient online power allocation
scheme, which performs close to the optimal DP approach
with reduced complexity. To this end, we assume that the
average SNR γ̄ is known along with the causal information
of the channel SNRs, harvested energies, and the data arrivals
(for Scenario 2). As the optimal offline algorithm results in
water–filling solutions for P ∗

E,k and P ∗
H,k, our objective is to

design an online algorithm which adaptively sets the required
number of data bits to be transmitted according to the current
CSI. How the target number of data bits to be transmitted is
obtained is summarized in the following property.

Property 1: Suppose P ′ is the power that a transmitter can
use to send a required amount of data either in the current time
interval k or in the next time interval k+1. Assuming that the
transmitter only has causal information of the channel SNR,
the gain of allocating P ′ in interval k instead of in interval
k + 1 can be lower bounded by log2

(
γk

γ̄

)
.

Proof: The expected gain in allocating P ′ in the current
time interval k over future time interval k + 1 is given by

ΔG = log2(1 + γkP
′)− Eγ̃k+1

{log2(1 + γ̃k+1P
′)} . (32)
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Using Jensen’s inequality Eγ̃k+1
{log2(1 + γ̃k+1P

′)} ≤
log2(1 + γ̄P ′) in (32) yields

ΔG ≥ log2(1 + γkP
′)− log2(1 + γ̄P ′) ≈ log2

(
γk
γ̄

)
(33)

where the approximation holds for sufficiently large P ′.
The significance of using the lower bound of ΔG in (33)

for the proposed suboptimal online power allocation algorithm
will become apparent in the problem formulations for Scenar-
ios 1 and 2 in the following. Note that exploiting ΔG in its
original form in the suboptimal online power allocation would
result in a non–convex optimization problem, which would be
difficult to solve.

1) Scenario 1: Based on the findings in Property 1, we
formulate the optimization problem for a given time interval
k ∈ {1, 2, · · · ,K − 1} as follows

min
PE,k≥0, PH,k≥0

ρPE,k (34)

s.t. log2(1 + γk(PE,k + PH,k)) ≥ ϑ
(1)
k (35)

ρPH,k ≤ Bk, (36)

ρPH,k ≥ min

{
(1 − μ)Bk,

2ϑ
(1)
k − 1

γk

}
, (37)

ρPE,k ≤ Ek, (38)

where ϑ
(1)
k = max

{
0,min

{
D

(1)
k−1

Tk
+ log2

(
γk

γ̄

)
, D

(1)
k−1

}}
.

If problem (34)–(38) is not feasible in an interval k due to
an insufficient available amount of energy for transmitting
the required number of data bits, constraint (35) is relaxed
and the transmitter transmits as many bits as possible using
the available power, i.e., P ∗

H,k = Bk

ρ and P ∗
E,k = Ek

ρ .
Let us assume that optimization problem (34)–(38) is always
feasible for all time intervals k ∈ {1, 2, · · · ,K − 1} for
power allocation algorithm design. The right hand side of (35)
incorporates the adaptive transmission of data packets based
on the channel condition. In particular, based on Property
1, for a given interval k, if the channel SNR is better than
the average channel SNR, i.e., γk > γ̄, in addition to the

average data rate
D

(1)
k−1

Tk
, we allow the transmission of an extra

log2

(
γk

γ̄

)
> 0 data bits. However, if the channel SNR is

worse than the average channel SNR, i.e., γk < γ̄, we transmit

less than the average data rate
D

(1)
k−1

Tk
since log2

(
γk

γ̄

)
< 0.

We note that (35) implicitly includes a cost associated with
missing the deadline as ϑ

(1)
k is inversely proportional to the

remaining number of time intervals, Tk. However, for the
Kth time interval, the right hand side of (35) is replaced
by D

(1)
K−1. This means that in the last time interval, all the

remaining data packets are transmitted irrespective of the
channel condition provided that a sufficient amount of energy
can be drawn from the constant energy source and the stored
harvested energy. Furthermore, in the right hand side of (37),
the term (1 − μ)Bk incorporates the effect of μ on PH,k in
the optimization problem. For example, if μ is very small i.e.,
most of the stored harvested energy is lost due to leakage,
(37) forces PH,k to use up all stored energy completely in the
current time interval so that the losses in future time intervals

are minimized. Moreover, 2ϑ
(1)
k −1
γk

in (37) further avoids the

possible waste of the harvested energy in the current time
interval. For example, in some cases, using ρPH,k ≥ (1−μ)Bk

might result in log2(1 + γk(P
∗
E,k + P ∗

H,k)) > ϑ
(1)
k which

would lead to a waste of energy. This is avoided by adopting

min

{
(1− μ)Bk,

2ϑ
(1)
k −1
γk

}
as the lower bound for PH,k. This

choice efficiently reduces the loss of harvested energy in the
current and future time intervals. If problem (34)–(38) is not
feasible for time interval K , then the transmitter extends the
transmission deadline from K to K∗ > K to ensure that all
the bits are transmitted by the K∗th interval.

Problem (34)–(38) is a convex optimization problem and
can be solved optimally and efficiently [20]. The Lagrangian
of problem (34)–(38) is given by

L′
1 =ρPE,k−λ′

k

(
log2(1 + γk(PE,k + PH,k))−ϑ

(1)
k

)
+ α′

k(ρPH,k −Bk) + ξ′k((1 − μ)Bk − ρPH,k)

+ β′
k(ρPE,k − Ek), (39)

where λ′
k, α′

k, ξ′k, and β′
k represent the Lagrange multipliers

associated with (35), (36), (37), and (38), respectively. The
dual of problem (34)–(38) can be stated as

max
λ′
k≥0, α′

k≥0, ξ′k≥0, β′
k≥0

min
PE,k≥0, PH,k≥0

L′
1. (40)

Using standard optimization procedures and KKT optimality
conditions, the optimal PH,k and PE,k can be obtained as

P ∗
E,k =

[
λ′
k

ρ ln(2)(1 + β′
k)

− 1

γk
− PH,k

]+
and (41)

P ∗
H,k =

[
λ′
k

ρ ln(2)(α′
k − ξ′k)

− 1

γk
− PE,k

]+
, (42)

respectively. We observe that the optimal solutions for PE,k

and PH,k depend only on causal information regarding the
instantaneous channel SNR and harvested energy and also
on the average SNR, γ̄, through the Lagrange multipliers.
Moreover, (41) and (42) have a water–filling structure. Similar
to the offline power allocation algorithm, the optimal Lagrange
multipliers in (41), (42) can be obtained iteratively.

2) Scenario 2: The suboptimal online power allocation for
Scenario 2 can also be obtained from problem (34)–(38) after
replacing ϑ

(1)
k by ϑ

(2)
k , where ϑ

(2)
k = max

{
0,min

{(
D

(2)
k−1+

log2

(
γk

γ̄

))
, D

(2)
k−1

}}
. Hence, for Scenario 2, P ∗

E,k and P ∗
H,k

are also given by (41) and (42), respectively, but with λ′
k

and ξ′k being replaced by λ′′
k and ξ′′k , respectively. λ′′

k and
ξ′′k represent the Lagrange multipliers associated with (35)
and (37), where ϑ

(1)
k is replaced by ϑ

(2)
k . Similar to Scenario

1, the optimal solutions of PE,k and PH,k for Scenario 2
depend on the causal knowledge of the instantaneous channel
SNR, harvested energy, and the average SNR, γ̄, through
the Lagrange multipliers. Moreover, the optimal solutions of
PE,k and PH,k for Scenario 2 are also influenced by the
number of data bits that have just arrived through the Lagrange
multipliers.

C. Complexity of the Proposed Online Power Allocation
Schemes

The complexity of the optimal DP based online power
allocation scheme increases exponentially with K . For the
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suboptimal online scheme, we solve a convex optimization
problem for each time interval and the size of each convex
problem does not depend on K . Hence, the complexity of the
suboptimal online scheme is linear in K .

V. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
power allocation schemes for Scenarios 1 and 2. We assume
that in each time interval Hk, k ∈ {0, 1, · · · ,K − 1},
independently takes a value from the set {0, HR, 2HR}, where
all elements of the set are equiprobable. For all presented
simulation results, Bmax = 50 Joules and ρ = 2.5, which
corresponds to a power amplifier efficiency of 40%4. In
Figs. 3–10, we assume E1 = E2 = · · · = EK = 40 Joules
whereas in Fig. 2, we assume E1 = E2 = · · · = EK = 8
Joules. As we consider a small duration for each time interval
(T = 1s), the battery efficiency per interval is high [19]. Thus,
we assume μ = 0.99 for all the figures except for Fig. 9.
The channel SNR follows an exponential distribution with
means γ̄ = 10 dB for Fig. 2, and γ̄ = 25 dB for Figs. 3–
10. For Scenario 2, Rk follows a uniform distribution with
mean Ravg . For the simulation results in Figs. 3–8 and 10,
104 randomly generated realizations of the channel SNRs,
harvested energies, and incoming data packets (for Scenario
2) are considered to obtain the average consumed powers. The
total powers drawn from the constant energy source and the
harvested energy are denoted as PE,Tot =

∑K
k=1 ρPE,k and

PH,Tot =
∑K

k=1 ρPH,k , respectively.
For comparison, we consider two baseline schemes for

offline optimization in Figs. 3–5. In baseline scheme 1, we
minimize the total consumed power, i.e., the sum of the
powers drawn from the constant energy source and the en-
ergy harvester. The offline optimization problems for baseline
scheme 1 are obtained by adopting

∑K
k=1 ρ(PH,k + PE,k) as

objective function in (2) for Scenarios 1 and 2, respectively.
The objective of baseline scheme 1 is to minimize the total
consumed energy rather than the consumed non–renewable
energy. In baseline scheme 2, we define the number of data
bits to be transmitted in each interval k as RT /K and Rk for
Scenarios 1 and 2, respectively. In each interval k, at first we
draw power from the harvested energy and if the harvested
energy cannot satisfy the bit rate requirement, then we draw
power from the constant energy source. It is worth mentioning
that baseline scheme 1 follows a common approach for power
minimization in the existing wireless communication systems
whereas baseline scheme 2 is a naive and basic policy that
prioritizes consuming renewable energy first.

A. Behavior of Offline Power Allocation Over Time Intervals
k

In Fig. 2, we show the optimum power levels of PE,k and
PH,k for the offline and suboptimal online power allocation
schemes for Scenario 1 as functions of the time intervals k. In
addition, we also show the inverse channel SNR 1

γk
and Hk

as well as the water levels of PE,k and PH,k for the offline
scheme. HR = 2, RT = 40, and K = 10 are adopted in this
figure.

4We consider a class A/B power amplifier with a moderate efficiency [22].
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Fig. 2. Harvested energy Hk , fading level, water level, and optimal PE,k

for Scenario 1 vs. time interval k for K = 10 and HR = 2 Joules.

For the optimal offline power allocation scheme, we observe
that the water level of PE,k, ΞE,k, does not remain constant
over the time intervals. As Ek is not large enough, Lagrange
multiplier βk, associated with constraint (7), can be non–zero
and this causes ΞE,k to vary with k. For all time intervals,
ΞE,k − P ∗

H,k is larger than the inverse channel SNR and
thus P ∗

E,k > 0. We also observe that the water level of
PH,k, ΞH,k is monotonically non–decreasing. As Bmax is
sufficiently large for the considered case, (6) is not met with
equality and thus ξk = 0, for k ∈ {1, 2, · · · , 9}. This forces
ΞH,k either to remain constant or to increase. In time interval
k = 2, ΞH,k − P ∗

E,k is less than the inverse channel SNR
and therefore P ∗

H,k = 0. In the rest of the time intervals,
ΞH,k − P ∗

E,k is greater than the inverse channel SNR and
therefore P ∗

H,k > 0. We observe for the suboptimal online
power allocation scheme that due to the lack of non–causal
information, this scheme cannot make full use of the harvested
energy and thereby increases the power drawn from the
constant energy source. For instance, we observe that in k = 2,
although the inverse channel SNR is high, the suboptimal
online scheme draws more power from the harvested energy
than the optimal offline scheme and therefore cannot exploit
the good channel condition (low 1/γk) in k = 4 due to
the lack of stored harvested energy in the battery. Moreover,
compared to the offline scheme, the suboptimal online scheme
consumes more energy from the constant energy source in
k ∈ {4, 5}. Also, although no energy is harvested at the
end of interval k = 7, the offline scheme still draws energy
from the battery to transmit data bits in k = 8 to exploit
the good channel condition. On the other hand, suboptimal
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Fig. 3. Consumed power for Scenario 1 vs. HR for K = 10 and RT = 75
bits. Only offline schemes are considered.

online scheme cannot draw harvested energy at the beginning
of k = 8, because it has already used up the stored harvested
energy in k < 7. As the offline scheme has non–causal
knowledge about the channel SNR and the harvested energy,
this scheme can adjust the power levels in all the intervals
to minimize the total power consumption from the constant
energy source.

B. Comparison of the Proposed Offline Schemes with the
Baseline Schemes

Fig. 3 shows PE,Tot and PH,Tot vs. the harvesting rate
HR for Scenario 1, where RT = 75 bits and K = 10.
The upper and lower subfigures compare the proposed scheme
with baseline schemes 1 and 2, respectively. We observe that
PE,Tot decreases with increasing HR for the proposed and
the baseline schemes. Since we minimize the power drawn
from the constant energy source and the amount of data to
be transmitted is constant, as the harvesting rate increases,
more harvested energy is available for use which results in
increased consumption of harvested energy and decreased
consumption from the constant energy source. We observe that
the PE,Tot (PH,Tot) curve of the proposed scheme always
remains below (above) the PE,Tot (PH,Tot) curves of both
baseline schemes, and that the gap between the schemes
increases as the harvesting rate HR increases. As expected,
for HR = 0 Joule, i.e., when there is no harvested energy, the
proposed scheme and baseline scheme 1 yield the same PE,Tot

and PH,Tot = 0. However, for HR = 0 Joule, the proposed
scheme and baseline scheme 2 yield different PE,Tot. As
baseline scheme 2 has to transmit a fixed number of data bits
in each time interval irrespective of the channel conditions, it
is less flexible and consumes a large amount of power from the
constant energy source. In particular, for HR = 1.5 Joules, we
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Fig. 4. Consumed power for Scenario 1 vs. RT for K = 10 and HR = 6.75
Joules. Only offline schemes are considered.

observe that adopting the proposed scheme allows to save 7
Watts and 55 Watts of power drawn from the constant energy
source compared to baseline schemes 1 and 2, respectively.

We have also included the total powers consumed by the
proposed and the baseline schemes in Fig. 3. We observe
that for baseline scheme 1, the increase of PH,Tot with
increasing HR exactly compensates the decrease of PE,Tot

with increasing HR, and therefore, the total consumed power
does not change with HR. Intuitively, as baseline scheme
1 minimizes the total consumed energy, HR has no impact
on the total power consumption. On the other hand, for the
proposed scheme, for large HR, PH,Tot increases faster with
HR than PE,Tot decreases with HR. As a result, the total
consumed power increases with HR after a certain threshold.
The reason for the higher total power consumption is the
increase in power drawn from the energy harvester to decrease
the consumption from the constant energy source. Similar
to the proposed scheme, the total power consumption of
baseline scheme 2 is also influenced by HR and increases
with increasing HR.

In Figs. 4 and 5, we compare the performance of the
proposed and the baseline offline schemes for Scenarios 1 and
2 as functions of the amount of transmitted data. In particular,
Fig. 4 shows PE,Tot and PH,Tot vs. RT for Scenario 1
whereas in Fig 5 we present PE,Tot and PH,Tot vs. RavgK for

Scenario 2 where Ravg = (1/K)
K∑

k=1

Rk. For both scenarios,

we adopt HR = 6.75 Joules and K = 10. We observe that the
transmit powers, PE,Tot and PH,Tot, increase with increasing
RT (Ravg) because the larger the amount of data that has to be
transmitted, the higher the required transmit power. However,
the rate of increase is not the same for PE,Tot and PH,Tot. The
rate with which PE,Tot increases is small for low RT (Ravg),
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Fig. 5. Consumed power for Scenario 2 vs. RavgK for K = 10 and
HR = 6.75 Joules. Only offline schemes are considered.

because for low RT (Ravg), the consumed power is mainly
drawn from the energy harvester. On the other hand, for large
RT (Ravg), PE,Tot increases rapidly as the harvested energy
alone is not sufficient to supply the required power completely.
Moreover, for large RT (Ravg), PH,Tot saturates because the
maximum energy that the energy harvester can provide is

limited by
K∑

k=1

Hk. We observe again that in both scenarios our

proposed schemes are more efficient in reducing PE,Tot than
baseline schemes 1 and 2, respectively. For comparison, we
also show PE,Tot for the proposed and baseline scheme 1 for
HR = 0 Joule (i.e., no energy harvester) and observe that both
schemes yield identical results as expected. Besides, PE,Tot

for HR = 0 Joule is always larger than PE,Tot for HR = 6.75
Joules as without the supplement of the energy harvester, the
constant energy source has to supply all the required power.
Moreover, a comparison of the powers consumed in Scenario
1 and Scenario 2 reveals that Scenario 1 requires a (slightly)
lower PE,Tot than Scenario 2. This can be explained by the
fact that knowing the amount of data to be transmitted before
the transmission starts provides more flexibility to allocate the
transmit powers over the transmission intervals than when the
data packets arrive during the course of transmission.

C. Comparison of the Proposed Offline and Online Schemes

Fig. 6 shows PE,Tot and PH,Tot vs. the harvesting rate HR

for Scenario 1 for all considered power allocation schemes. We
assume RT = 30 bits and K = 4. We observe that PE,Tot

(PH,Tot) decreases (increases) with HR for all power alloca-
tion schemes. As expected the offline power allocation scheme
performs better than the online power allocation schemes
for all HR. Moreover, the optimal DP based online scheme
outperforms the suboptimal online scheme because DP makes
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Fig. 6. Consumed power for Scenario 1 vs. HR for K = 4 and RT = 30
bits.
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bits.

optimal use of the statistical properties of the channel SNR and
the harvested energy. We observe that the performance gaps
between the offline scheme and the online schemes increase
with increasing HR. Having non–causal knowledge regarding
the channel SNR and the harvested energy helps more in
minimizing PE,Tot for high HR than for low HR. However,
for low HR, the gap between the offline and online schemes
for PH,Tot is very small as all the harvested energies are used
up for low HR regardless of the non–causal information (of
the channel SNR and the harvested energy) for the considered
RT . On the contrary, for high HR, the offline scheme makes
efficient use of HR whereas the online schemes may under–
utilize the harvested energy and result in a lower PH,Tot. It
is worth mentioning that a similar behavior can be observed
for Scenario 2 (not shown here).

Fig. 7 shows PE,Tot and PH,Tot vs. the harvesting rate HR

for Scenario 1, for the offline and suboptimal online power
allocation schemes for K = 40 and RT = 300 bits. The
optimal DP based online power allocation scheme has not been
implemented here because of its inherent high computational
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Fig. 8. Consumed power for Scenarios 1 and 2 vs. HR for K = 100 and

RT =
K∑

k=1
Rk = 500 bits.

complexity for large K . We observe that the performance gap
between the offline and suboptimal online power allocation
schemes increases with increasing HR as also observed in
Fig. 6. However, the performance gap between the offline
PE,Tot and the suboptimal online PE,Tot is larger in Fig. 7
compared to Fig. 6 for all HR. In fact, exploiting non–causal
knowledge of the channel SNR and the incoming harvested
energy is more beneficial for large K than for small K . Note
that a similar behavior can be observed for Scenario 2 (not
shown).

In Fig. 8, we show PE,Tot and PH,Tot vs. HR for Scenarios
1 and 2 for the suboptimal online power allocation scheme.

Here, we assume K = 100 and RT =
K∑

k=1

Rk = 500 bits.

We observe that Scenario 1 requires a lower PE,Tot than
Scenario 2 for all considered HR. The random arrival of data
packets in Scenario 2 introduces additional restrictions for
power allocation compared to Scenario 1, where the amount
of data to be transmitted is known before transmission starts.
Hence, the observations made for Scenarios 1 and 2 for the
offline scheme in Figs. 4 and 5 also translate to the suboptimal
online scheme. On the other hand, since for the considered

example RT =
K∑

k=1

Rk = 500 bits have to be transmitted in

only 100 time intervals, the harvested energy is completely
used in both scenarios for all considered values of HR. Thus,
we observe in Fig. 8 no significant difference for PH,Tot

between Scenarios 1 and 2.

D. Effect of μ on the Proposed Schemes

In Fig. 9, we show ρPH,k vs. time interval k for
the optimal offline and suboptimal online power alloca-
tion schemes for K = 9, HR = 2 Joules, γ̄ = 25
dB, RT = 50 bits, and three different values of μ,
namely μ = {0, 0.5, 1.0}. We assume [γ1 γ2 · · · γ10] =
[104.02 23.86 219.11 145.77 190.44107.76 119.56 623.05
102.54 156.01] for all the considered μ. We observe that when
μ = 0, i.e., when the battery cannot store the harvested energy
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Fig. 9. PH,k for Scenario 1 vs. k for K = 9 and HR = 2 Joules.

TABLE I
PH,Tot OBTAINED FOR THE PARAMETERS USED FOR FIG. 9 FOR OFFLINE

AND SUBOPTIMAL ONLINE POWER ALLOCATION SCHEMES.

μ Offline (Joules) Suboptimal online (Joules)

1.0 9.93 9.21

0.5 8.32 8.16

0 10 10

at all, the offline and suboptimal online schemes use up all of
the harvested energy immediately (right after its arrival) in the
current time interval to avoid any possible loss of the harvested
energy. Increasing μ helps the offline and suboptimal online
schemes to store the harvested energy if necessary, and to use
it when the channel is better. This property is observed for
μ = 0.5 and μ = 1.0. In Table I, we show PH,Tot obtained for
the considered offline and suboptimal online power allocation

schemes for
8∑

k=0

Hk = 10 Joules and the value of μ assumed

in Fig. 9. We observe that for μ = 0.5 and μ = 1, the offline
scheme consumes more harvested energy than the suboptimal
online scheme. However, for μ = 0, all the harvested energy is
used by both the considered schemes as any stored harvested
energy would be completely lost.

E. Impact of Various EH Profiles

In Fig. 10, we show the impact of different EH profiles
on PE,Tot and PH,Tot for Scenario 1 as a function of RT .
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different EH profiles.

We assume K = 50 and consider offline power allocation.
Two cases, denoted as Case A and Case B, are considered
here to show the impact of two different EH profiles on
the consumed powers. Case A assumes an EH profile, where
the energy is harvested in every third time interval, whereas
Case B considers another EH profile, where the energy is
harvested in every time interval. In both cases, the average
EH rate is 5 Joules/interval and the channel SNR changes
in every time interval. We observe from Fig. 10 that the
PE,Tot (PH,Tot) curve for Case B is always below (above)
the PE,tot (PH,Tot) curve for Case A. In Case A, the energy
is harvested at a slower rate than in Case B, i.e., in Case A
there is less flexibility for power allocation. Thus, more energy
is consumed from the constant energy source for Case A to
transmit the required amount of data bits.

VI. CONCLUSIONS

In this paper, we optimized the power allocation for a
point–to–point communication system with a hybrid energy
source. The hybrid energy source includes a constant energy
source (non–renewable) and an energy harvester (renewable).
The harvested energy is stored in a battery which is modeled
as a storage system with leakage. We proposed to minimize
the amount of power drawn from the constant energy source
to make full use of the harvested energy. We presented
optimal offline, optimal online, and suboptimal online power
allocation schemes for two different data arrival scenarios. We
used stochastic DP to implement the optimal online power
allocation scheme. Because of the inherently high complexity
of DP, a low–complexity suboptimal online power allocation
scheme was also proposed. A comparison of the proposed
power allocation schemes with baseline schemes revealed that
the proposed schemes significantly reduce the power drawn
from the constant energy source and utilize the harvested
energy more efficiently. Moreover, simulation results revealed
that if the data to be transmitted arrives randomly over
the transmission intervals, the power consumption from the
constant energy source is always higher than if the data arrives
before transmission starts.
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