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Abstract—This paper considers orthogonal frequency division
multiple access (OFDMA) systems with simultaneous wireless
information and power transfer. We study the resource allocation
algorithm design for maximization of the energy efficiency of data
transmission (bits/Joule delivered to the receivers). In particular,
we focus on power splitting hybrid receivers which are able to
split the received signals into two power streams for concurrent
information decoding and energy harvesting. Two scenarios are
investigated considering different power splitting abilities of the
receivers. In the first scenario, we assume receivers which can
split the received power into a continuous set of power streams
with arbitrary power splitting ratios. In the second scenario, we
examine receivers which can split the received power only into
a discrete set of power streams with fixed power splitting ratios.
For both scenarios, we formulate the corresponding algorithm
design as a non-convex optimization problem which takes into
account the circuit power consumption, the minimum data
rate requirements of delay constrained services, the minimum
required system data rate, and the minimum amount of power
that has to be delivered to the receivers. By exploiting fractional
programming and dual decomposition, suboptimal iterative re-
source allocation algorithms are developed to solve the non-
convex problems. Simulation results illustrate that the proposed
iterative resource allocation algorithms approach the optimal
solution within a small number of iterations and unveil the trade-
off between energy efficiency, system capacity, and wireless power
transfer: (1) wireless power transfer enhances the system energy
efficiency by harvesting energy in the radio frequency, especially
in the interference limited regime; (2) the presence of multiple
receivers is beneficial for the system capacity, but not necessarily
for the system energy efficiency.

Index Terms—Energy efficiency, green communications, wire-
less information and power transfer, non-convex optimization.

I. INTRODUCTION

ORTHOGONAL frequency division multiple access
(OFDMA) has been widely adopted as the air interface

in high speed wireless multiuser communication networks,
due to its immunity to channel delay spread and flexibility
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E. S. Lo is with the Centre Tecnològic de Telecomunicacions de Catalunya
- Hong Kong (CTTC-HK) (e-mail: ernest.lo@cttc.hk).

This paper has been presented in part at the IEEE Wireless Communications
and Networking Conference (WCNC) 2013 [1] and the IEEE International
Conference on Communications (ICC) 2013 [2]. This work was supported
in part by the AvH Professorship Program of the Alexander von Humboldt
Foundation.

Digital Object Identifier 10.1109/TWC.2013.103113.130470

in resource allocation. In an OFDMA system, a wideband
frequency selective spectrum is converted into a number
of orthogonal narrowband frequency flat subcarrier channels
which facilitates the multiplexing of users’ data and the
exploitation of multiuser diversity. On the other hand, next
generation communication systems are expected to support
multiple users and to guarantee quality of service (QoS). The
increasing demand for high data rate and ubiquitous services
has led to a high energy consumption in both transmitter(s)
and receiver(s). Unfortunately, portable mobile devices are
usually only equipped with limited energy supplies (batter-
ies) which creates bottlenecks in perpetuating the lifetime
of networks. Besides, the battery capacity has improved at
a very slow pace over the past decades and is unable to
satisfy the new energy requirements [3]. Consequently, energy-
efficient mobile communication system design has become
a prominent approach for addressing this issue in energy
limited networks [1]–[7]. Specifically, an enormous number of
technologies/methods such as energy harvesting and resource
allocation optimization have been proposed in the literature for
improving the energy efficiency (bits-per-Joule) of wireless
communication systems. Among the proposed technologies,
energy harvesting from the environment is particularly ap-
pealing as it constitutes a perpetual energy source. More
importantly, it provides self-sustainability to systems and is
virtually free of cost. In practice, numerous renewable energy
sources can be exploited for energy harvesting, including solar,
tide, geothermal, and wind. However, these natural energy
sources are usually location, weather, or climate dependent and
may not always be available in enclosed/indoor environments
or suitable for mobile devices. On the other hand, wireless
power transfer technology, which enables the receivers to scav-
enge energy from propagating electromagnetic waves (EM)
in radio frequency (RF), has gained recent attention in both
industry and academia [8]–[14]. Indeed, RF signals carry both
information and energy simultaneously. Thus, the RF energy
radiated by the transmitter(s) can be recycled at the receivers
for prolonging the lifetime of networks. Yet, the utilization
of EM waves as a carrier for simultaneous information and
power transfer poses many new research challenges for both
resource allocation algorithm and receiver design. In [10] and
[11], the fundamental trade-off between wireless information
and wireless power transfer was studied for flat fading and
frequency selective fading, respectively. Specifically, an ideal
receiver was assumed in [10] and [11] such that information
decoding and energy harvesting can be performed on the
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Fig. 1. An OFDMA downlink communication system with K = 3 mobile receivers. The upper half of the figure illustrates a block diagram of the transceiver
model for wireless information and power transfer.

same received signal which is not possible in practice yet.
As a compromise solution, three different types of receivers,
namely power splitting, separated, and time-switching re-
ceivers, were proposed in [12], [13]. In particular, the power
splitting receiver splits the received power into two power
streams with a certain power splitting ratio for facilitating
simultaneous energy harvesting and information decoding in
the receiver. The authors in [12] and [13] investigated the rate-
energy regions for different types of receivers in two-user and
point-to-point single carrier systems, respectively. However,
the problem formulations in [12] and [13] do not take into
account the heterogeneous data rate requirements of users and
the solutions may not meet any data rate requirements and are
not applicable to multi-carrier systems with arbitrary numbers
of users. On the other hand, the authors in [14] focused on the
resource allocation algorithm design for a point-to-point single
user system with power splitting receiver in ergodic fading
channels. Yet, the assumption of channel ergodicity may not
be well justified for delay sensitive services in practice since
the transmitted data symbols of these services experience slow
fading. Besides, the high power consumption in electronic
circuitries and RF transmission have been overlooked in [10]–
[14] but play an important role in designing energy efficient
communication systems [15], [16]. In other words, the energy
efficiency of systems with energy harvesting receivers remains
unknown. In fact, if a portion of the transmitted RF energy
can be harvested by the RF energy harvesting receivers, the
system energy efficiency may improve. Yet, the system models
adopted in [10]–[14] do not consider the energy recycling pro-
cess from an energy efficiency point of view. Thus, it is unclear
under what conditions energy harvesting receivers improve
the system energy efficiency compared to traditional receivers
which cannot harvest energy. By incorporating the circuit
power consumption and the RF energy harvesting ability of

the receivers into the problem formulation, we presented in [1]
and [2] two energy efficient resource allocation algorithms for
multicarrier systems employing separated receivers and power
splitting receivers, respectively. Nevertheless, [1] and [2] do
not fully exploit the degrees of freedom in resource allocation
since data multiplexing of different users on different subcar-
riers was not considered. Moreover, the algorithm proposed
in [2] incurs a high computation complexity at the transmitter
since the optimal power splitting ratio is found via full search
over a continuous variable. Furthermore, the power splitting
ratio may take only discrete levels in practice and the results
in [2], which were obtained for continuous power splitting
ratios, are not applicable in this case.

In this paper, we address the above issues. To this end, we
formulate the resource allocation algorithm design for energy
efficient communication in OFDMA systems with simultane-
ous wireless information and power transfer as an optimization
problem. In particular, we focus on the algorithm design for
power splitting receivers and consider both continuous and
discrete power splitting ratios. Besides, data multiplexing of
users on different subcarriers is incorporated into the problem
formulation. The resulting non-convex optimization problems
are solved by iterative algorithms which combine nonlinear
fractional programming and dual decomposition. Simulation
results illustrate an interesting trade-off between energy effi-
ciency, wireless power transfer, and multiuser diversity.

II. SYSTEM MODEL

In this section, we present the adopted OFDMA signal
model and the model for the hybrid information and energy
harvesting receiver.

A. OFDMA Channel Model

We consider an OFDMA downlink system in which a
transmitter services K mobile receivers. In particular, each
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mobile receiver is able to decode information and harvest
energy from the received radio signals. All transceivers are
equipped with a single antenna, cf. Figure 1. The total system
bandwidth is B Hertz and there are nF subcarriers. We
focus on quasi-static block fading channels and assume that
the downlink channel gains can be accurately obtained by
feedback from the receivers. The downlink received symbol
at receiver k ∈ {1, . . . , K} on subcarrier i ∈ {1, . . . , nF } is
given by

Yi,k =
√
Pi,klkgkHi,kXi,k + Ii,k + Za

i,k, (1)

where Xi,k, Pi,k, and Hi,k are the transmitted data symbol,
the transmitted power, and the multipath fading coefficient
from the transmitter to receiver k on subcarrier i, respectively.
lk and gk represent the path loss and shadowing attenuation
from the transmitter to receiver k, respectively. Za

i,k is the
additive white Gaussian noise (AWGN) originating from the
antenna on subcarrier i of receiver k. It is modeled as Gaussian
random variable with zero mean and variance σ2

za , cf. Figure
1. Ii,k is the received aggregate co-channel interference on
subcarrier i of receiver k with zero mean and variance σ2

Ii,k
.

Ii,k is emitted by unintended transmitters sharing the same
frequency channel.

B. Hybrid Information and Energy Harvesting Receiver

In practice, the model of an energy harvesting receiver
depends on its specific implementation. For example, electro-
magnetic induction and electromagnetic radiation are able to
transfer wireless power [11], [14]. Nevertheless, the associated
hardware circuitries in the receivers and the corresponding
energy harvesting efficiency can be significantly different. Be-
sides, the signal used for decoding the modulated information
cannot be used for harvesting energy due to hardware limita-
tions [14]. In order to isolate the resource allocation algorithm
design from the specific hardware implementation details, we
do not assume a particular type of energy harvesting receiver.
In this paper, we focus on receivers which consist of an energy
harvesting unit and a conventional signal processing core unit
for concurrent energy harvesting and information decoding, cf.
Figure 1. In particular, we adopt a receiver which splits the
received signal into two power streams [14] in the RF front
end with power splitting ratios1 ρIi,k and ρEi,k. Subsequently,
the two power streams with power splitting ratios ρEi,k and
ρIi,k are used for harvesting the energy and decoding the
information contained in the signal, respectively. Indeed, by
imposing power splitting ratios2 of ρIi,k = 1, ρEi,k = 0 and
ρIi,k = 0, ρEi,k = 1, the hybrid receiver reduces to a tradition in-
formation receiver or energy harvesting receiver, respectively.
Furthermore, we assume that the harvested energy is used to
replenish a rechargeable battery at the receiver. Besides, each
receiver has a fixed power consumption of PCR Watts which
is used for maintaining the routine operations in the receiver

1Indeed, ρIi,k and ρEi,k represent the fractions of the received power of
user k on subcarrier i used for information decoding and energy harvesting,
respectively. Yet, we follow the convention in the literature [14] and adopt
the term “power splitting ratios” in the paper.

2In this paper, a perfect passive power splitting unit is assumed; i.e., the
power splitting does not incur any power consumption and does not introduce
any power loss or signal processing noise to the system.

and is independent of the amount of harvested power. We note
that in practice the receivers may be powered by more than
one energy source and the harvested energy may be used as
a supplement for supporting the energy consumption3 of the
receivers [17].

III. RESOURCE ALLOCATION - CONTINUOUS SET OF

POWER SPLITTING RATIOS

In this section, we consider the resource allocation algo-
rithm design for maximizing the system energy efficiency
for the case of a continuous set of power splitting ratios.
The derived solution provides not only a useful guideline for
choosing a suitable number of discrete power splitting ratios
in the power splitting unit, but also serves as a performance
benchmark for the case of discrete power splitting ratios. Now,
we define the system energy efficiency by first introducing
the weighted system capacity and the power dissipation of the
system.

A. System Energy Efficiency

Assuming the availability of perfect channel state infor-
mation (CSI) at the receiver, the channel capacity between
the transmitter and receiver k on subcarrier i with subcarrier
bandwidth W = B/nF is given by4

Ci,k = W log2

(
1 + Pi,kΓi,k

)
and

Γi,k =
ρIi,klkgk|Hi,k|2

ρIi,k(σ
2
za + σ2

Ii,k
) + σ2

zs

, (2)

where σ2
zs is the signal processing noise power at the receiver

and Pi,kΓi,k is the received signal-to-interference-plus-noise
ratio (SINR) on subcarrier i at receiver k.

The weighted system capacity is defined as the aggregate
number of bits delivered to K receivers and is given by

U(P ,S,ρ) =
nF∑
i=1

K∑
k=1

αksi,kCi,k [bits/s], (3)

where P = {Pi,k ≥ 0, ∀i, k} is the power allocation policy,
S = {si,k ∈ {0, 1}, ∀i, k} is the subcarrier allocation pol-
icy, and ρ = {ρIi,k, ρEi,k ≥ 0, ∀i, k} is the power splitting
policy with variables ρIi,k and ρEi,k introduced in Section
II-B. αk ≥ 0, ∀k, is a non-negative weight which accounts
for the priorities of different receivers and is specified by
the application layer. In practice, proportional fairness and
max-min fairness can be achieved by varying the values
of αk over time5 [20]. On the other hand, for facilitating
the resource allocation algorithm design, we incorporate the
total power consumption of the system into the optimization
objective function. In particular, the power consumption of the

3In this paper, the unit of Joule-per-second is used for energy consumption.
Thus, the terms “power” and “energy” are interchangeable.

4The received interference signal Ii,k on each subcarrier is treated as
AWGN in order to simplify the algorithm design [13], [18].

5Optimizing the value of αk for achieving different system objectives is
beyond the scope of this paper. Interested readers may refer to [19] for further
details.
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considered system, UTP (P ,S,ρ), consists of five terms and
can be expressed as:

UTP (P ,S,ρ) = PCT +KPCR +

K∑
k=1

nF∑
i=1

εPi,ksi,k

−
K∑

k=1

QDk
−

K∑
k=1

QIk [Joule/s], (4)

where QDk
=
nF∑
i=1

( K∑
j=1

Pi,jsi,j

)
lkgk|Hi,k|2ηkρEi,k︸ ︷︷ ︸

Power harvested from information signal at receiver k

(5)

and QIk =

nF∑
i=1

(σ2
za + σ2

Ii,k
)ρEi,kηk︸ ︷︷ ︸

Power harvested from interference signal
and antenna noise at receiver k

. (6)

The first three terms in (4), i.e., PCT + KPCR +∑K
k=1

∑nF

i=1 εPi,ksi,k, represent the power dissipation re-
quired for supporting reliable communication. PCT > 0 is
the constant signal processing circuit power consumption in
the transmitters, caused by filters, frequency synthesizer, etc.,
and is independent of the power radiated by the transmitter.
Variables KPCR and

∑K
k=1

∑nF

i=1 εPi,ksi,k denote the total
circuit power consumption in the K receivers and the power
dissipation in the power amplifier of the transmitter, respec-
tively. To model the power inefficiency of the power amplifier,
we introduce a multiplicative constant, ε ≥ 1, for the power
radiated by the transmitter in (4) which takes into account
the joint effect of the drain efficiency and the power amplifier
output backoff [15]. For example, if ε = 10, then 10 Watts
of power are consumed in the power amplifier for every 1
Watt of power radiated in the RF; the wasted power during
the power amplification is dissipated as heat. On the other
hand, the last two terms in (4), i.e., −∑K

k=1 QDk
−∑K

k=1 QIk ,
represent the harvested energy at the K receivers. The minus
sign in front of

∑K
k=1 QDk

in (4) indicates that a portion
of the power radiated in the RF from the transmitter can be
harvested by the K receivers. Besides, 0 ≤ ηk ≤ 1 in (5)
and (6) is a constant which denotes the energy harvesting
efficiency of mobile receiver k in converting the received
radio signal to electrical energy for storage. In fact, the term
ηklkgk|Hi,k|2ρEi,k in (5) can be interpreted as a frequency
selective power transfer efficiency for transferring power from
the transmitter to receiver k on subcarrier i. Similarly, the
minus sign in front of

∑K
k=1 QIk in (4) accounts for the ability

of the receivers to harvest energy from interference signals.
The weighted energy efficiency of the considered system
is defined as the total average number of bits successfully
conveyed to the K receivers per Joule consumed energy and
is given by

Ueff (P ,S,ρ) =
U(P ,S,ρ)

UTP (P ,S,ρ) [bits/Joule]. (7)

It is interesting to note that the weighted energy efficiency
is a quasi-concave function with respect to the power al-
location variables, cf. Appendix A. The quasi-concavity of

Ueff (P ,S,ρ) can be exploited to show the quasi-concavity
of a transformed version of the resource allocation problem,
cf. Section III-B, Remark 2. Furthermore, strong interference
can act as an energy source which supplies energy to the
receivers and facilitates energy savings in the system. This
effect is not captured by other system models used in the
literature [18], [21]. Therefore, unlike systems with non-
energy harvesting receivers, systems with energy harvesting
receivers may benefit from interference as far as energy
efficiency is concerned. The energy efficiency gain due to the
introduction of energy harvesting receivers will be evaluated in
the simulation section. On the other hand, we emphasize that
the objective function of the considered problem formulation
does not capture how the receivers utilize the harvested energy.
For instance, if the receivers use the harvested energy for
extending their lifetime, an additional system capacity gain
may be achieved since the receivers have more time to
receive information. In other cases, the receivers may use the
harvested energy for uplink transmission which also results in
a system capacity gain.

Remark 1: Mathematically, it is possible that
UTP (P ,S,ρ) takes a negative value. Yet, UTP (P ,S,ρ)> 0
always holds for the considered system due to the
following reasons. First, it can be observed that∑nF

i=1

∑K
k=1 εPi,ksi,k ≥ ∑nF

i=1

∑K
k=1 Pi,ksi,k >

∑K
k=1 QDk

,
where the strict inequality is due to the second law
of thermodynamics from physics. In particular, the
communication channel between the transmitter and the
K receivers is a passive system which does not introduce
extra energy. Besides, the energy of the desired signal
received at the receiver is attenuated due to path loss
and energy scavenging inefficiency. Second, we consider
a system where the transmitter and the receivers consume
non-negligible amounts of power [16] for signal processing
such that PCT +KPCR >

∑K
k=1 QIk .

B. Optimization Problem Formulation

The optimal power allocation policy, P∗, subcarrier alloca-
tion policy, S∗, and power splitting policy ρ∗, can be obtained
by solving the following optimization problem:

max
P,S,ρ

Ueff (P ,S,ρ) (8)

s.t. C1: QDk
+QIk ≥ P req

mink
, ∀k,

C2:
nF∑
i=1

K∑
k=1

Pi,ksi,k ≤ Pmax,

C3: PCT +

nF∑
i=1

K∑
k=1

εPi,ksi,k ≤ PPG,

C4:
nF∑
i=1

K∑
k=1

si,kCi,k ≥ Rmin,

C5:
nF∑
i=1

si,kCi,k ≥ Rmink
, ∀k ∈ D,

C6: Pi,k ≥ 0, ∀i, k, C7: si,k ∈ {0, 1}, ∀i, k,
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C8:
K∑

k=1

si,k ≤ 1, ∀i, C9: ρEL ≤ ρEi,k ≤ ρEU , ∀i, k,

C10: ρIL ≤ ρIi,ksi,k ≤ ρIU , ∀i, k,
C11: ρIi,ksi,k + ρEi,k ≤ 1, ∀i, k, C12: ρEi,k = ρEj,k, ∀k, i �= j.

Variable P req
mink

in C1 is a constant which specifies the
minimum required power transfer to receiver k. The value
of Pmax in C2 puts an upper limit on the power radiated
by the transmitter. The value of Pmax is a constant which
depends on the hardware limitations of the power amplifier.
C3 limits the maximum power supplied by the power grid
for supporting the power consumption of the transmitter to
PPG, cf. Figure 1. Rmin in C4 is the minimum required data
rate of the system. Although Rmin is not an optimization
variable in this paper, we can strike a balance between the
system energy efficiency and the total system throughput by
varying its value. In particular, when Rmin is increasing,
the resource allocator may increase the transmit power for
satisfying the higher data rate requirement by sacrificing the
system energy efficiency. C5 is the minimum required data
rate Rmink

for the delay constrained services of receiver
k, and is specified by the application layer, and D denotes
a set of receivers having delay constrained services. C6 is
the non-negative orthant constraint for the power allocation
variables. C7 and C8 indicate that each subcarrier can be
allocated to at most one receiver exclusively in conveying
information; inter-user interference is avoided in the system.
Besides, C8 indicates that some subcarriers can be excluded
from the subcarrier selection process for energy efficiency
maximization. Boundary variables ρEU and ρEL in C9 denote
the constant upper and lower bounds of the power splitting
ratio for harvesting energy, respectively. The bounds are used
to account for the limited capability of the receivers in splitting
the received power. Similarly, ρIU and ρIL in C10 denote the
constant upper and lower bounds of the power splitting ratio
for information decoding where ρEU+ρIL = 1 and ρEL+ρIU = 1.
C11 is the power splitting constraint of the hybrid information
and energy harvesting receivers. Its physical meaning is that
the power splitting unit, see Figure 1, is a passive device and
no extra power gain can be achieved by the power splitting
process. C12 constrains the power spitting ratio for energy
harvesting, ρEi,k, such that it is identical for all subcarriers
in each receiver. Theoretically, ρEi,k can be different across
different subcarriers. However, in this case, an analog adaptive
passive frequency selective power splitter is required which
results in a high system complexity. Therefore, we consider
the more practical scenario where ρEi,k = ρEj,k, ∀k, ∀j �= i.
We do not explicitly impose ρIi,k = ρIj,k, ∀k, ∀j �= i, in the
problem formulation. We note that it can be deduced that if
both subcarrier i and subcarrier j are allocated to user k for
information decoding, ρIi,k = ρIj,k will hold eventually due
to the constraint ρEi,k = ρEj,k, ∀k, j �= i. However, imposing
ρIi,k = ρIj,k, ∀k, j �= i explicitly at the very beginning in the
problem formulation makes the development for an efficient
solution of the optimization problem more cumbersome.

C. Solution of the Optimization Problem

The key challenge in solving (8) is the lack of convexity of
the problem formulation. In particular, although the objective
function in (8) is quasi-concave with respect to the power
allocation variables, the objective function is a jointly non-
convex function with respect to {P ,S,ρ}. Besides, constraints
C1–C12 do not span a convex solution set due to the integer
constraint for subcarrier allocation in C7 and the coupled
optimization variables in C1. In general, there is no standard
approach for solving non-convex optimization problems. In
the extreme case, an exhaustive search or branch-and-bound
method is needed to obtain the global optimal solution which
is computationally infeasible even for small K and nF .
In order to make the problem tractable, we transform the
objective function and approximate the transformed objective
function in order to simplify the problem. Subsequently, we
use the constraint relaxation approach for handling the integer
constraint C7 to obtain a close-to-optimal resource allocation
algorithm. Next, we introduce the objective function transfor-
mation via a parametric approach from nonlinear fractional
programming.

D. Transformation of the Objective Function

For notational simplicity, we define F as the set of feasible
solutions6 of the optimization problem in (8) spanned by
constraints C1–C12. Without loss of generality, we assume
that {P ,S,ρ} ∈ F and we denote q∗ as the maximum energy
efficiency of the considered system which can be expressed
as

q∗ =
U(P∗,S∗,ρ∗)

UTP (P∗,S∗,ρ∗)
= max

P,S,ρ

U(P ,S,ρ)
UTP (P ,S,ρ) . (9)

Now, we introduce the following important Theorem which
is borrowed from nonlinear fractional programming [22] for
solving the optimization problem in (8).

Theorem 1: The resource allocation policy achieves the
maximum energy efficiency q∗ if and only if

max
P,S,ρ

U(P ,S,ρ)− q∗UTP (P ,S,ρ)
= U(P∗,S∗,ρ∗)− q∗UTP (P∗,S∗,ρ∗) = 0, (10)

for U(P ,S,ρ) ≥ 0 and UTP (P ,S,ρ) > 0.
Proof: Please refer to [7, Appendix A] for a proof of

Theorem 1.
Theorem 1 provides a necessary and sufficient condition in

describing the optimal resource allocation policy. In particu-
lar, for an optimization problem with an objective function
in fractional form, there exists an equivalent optimization
problem with an objective function in subtractive form, e.g.
U(P ,S,ρ)−q∗UTP (P ,S,ρ) in the considered case, such that
both problem formulations lead to the same optimal resource
allocation policy. Moreover, the optimal resource allocation
policy will enforce the equality in (10) which provides an
indicator for verifying the optimality of the solution. As a
result, we can focus on the equivalent objective function and
design a resource allocation policy for satisfying Theorem 1
in the rest of the paper.

6We assume that the set is non-empty and compact.
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TABLE I
ITERATIVE RESOURCE ALLOCATION ALGORITHM.

Algorithm Iterative Resource Allocation Algorithm [Dinkel-
bach method]
1: Initialization: Lmax = the maximum number of iterations

and Δ = the maximum tolerance
2: Set q = 0 and iteration index j = 0
3: repeat {Iteration Process: Main Loop}
4: For a given q, obtain an intermediate resource allocation

policy {P ′,S ′,ρ′} by solving the problem in (11)
5: if U(P ′,S ′,ρ′)− qUTP (P ′,S ′,ρ′) < Δ then
6: Convergence = true
7: return {P∗,S∗,ρ∗} = {P ′,S ′,ρ′} and q∗ =

U(P′,S′,ρ′)
UTP (P′,S′,ρ′)

8: else
9: Set q = U(P′,S′,ρ′)

UTP (P′,S′,ρ′) and j = j + 1
10: Convergence = false
11: end if
12: until Convergence = true or j = Lmax

E. Iterative Algorithm for Energy Efficiency Maximization

In this section, an iterative algorithm (known as the Dinkel-
bach method7 [22]) is proposed for solving (8) with an
equivalent objective function such that the obtained solution
satisfies the conditions stated in Theorem 1. The proposed
algorithm is summarized in Table I (on the next page) and the
convergence to the optimal energy efficiency is guaranteed if
the inner problem (11) is solved in each iteration.

Proof: Please refer to [7, Appendix B] for a proof of
convergence.

As shown in Table I, we solve the following optimization
problem for a given parameter q in each iteration in the main
loop, i.e., lines 3–12:

max
P,S,ρ

U(P ,S,ρ)− qUTP (P ,S,ρ)
s.t. C1 – C12. (11)

We note that for any value of q generated by Algorithm I
in each iteration, U(P ,S,ρ)− qUTP (P ,S,ρ) ≥ 0 is always
valid; negative energy efficiencies will not occur. Please refer
to [7, Proposition 3] for a proof. In fact, the transformed
objective function, i.e., U(P ,S,ρ) − qUTP (P ,S,ρ), has an
interesting pricing interpretation from the field of economics.
In particular, U(P ,S,ρ) indicates the system profit due to
information transmission while qUTP (P ,S,ρ) represents the
associated cost due to energy consumption. Besides, the terms
QDk

and QIk in UTP (P ,S,ρ) are the corresponding rebate
and discount to the energy cost via energy harvesting, respec-
tively. The optimal value of q represents a scaling factor for
balancing profit and cost.

1) Solution of the Main Loop Problem (11): The trans-
formed problem has an objective function in subtractive form
and is parameterized by variable q. Unfortunately, there are

7We note that the Dinkelbach method is an application of Newton’s method
for root finding, please refer to [15], [23] for details.

still two obstacles in tackling the problem. First, the power
splitting variables for information decoding and energy har-
vesting, i.e., ρIi,k and ρEi,k, are coupled with the power allo-
cation variables in both the objective function and constraint
C1 which complicates the solution. Second, the combinatorial
constraint C7 on the subcarrier allocation variables creates a
disjoint feasible solution set which is a hurdle for solving the
problem via tools from convex optimization. In order to derive
a tractable resource allocation algorithm, we approximate the
transformed objective function in the following. First, we
approximate the weighted system capacity as

U(P ,S,ρ) =

nF∑
i=1

K∑
k=1

αksi,kW log2

(
1 + Pi,kΓi,k

)
≈ Û(P ,S,ρ) (12)

where Û(P ,S,ρ) =

nF∑
i=1

K∑
k=1

αksi,kW log2

(
Pi,kΓi,k

)
(13)

which is a tight approximation for high SINR8, i.e.,
Pi,kΓi,k � 1. On the other hand, we adopt a lower bound on
UTP (P ,S,ρ) in the transformed objective function in (11):

UTP (P ,S,ρ)

≥ ÛTP (P ,S,ρ) = PCT +KPCR +

nF∑
i=1

K∑
k=1

εPi,ksi,k

−
K∑

k=1

nF∑
i=1

( K∑
j=1

Pi,jsi,j

)
lkgk|Hi,k|2ηk −

K∑
k=1

QIk . (14)

where ÛTP (P ,S,ρ) is obtained by setting ρEi,k = 1 in

UTP (P ,S,ρ). Indeed, ÛTP (P ,S,ρ) can be interpreted as the
use of a theoretical receiver which is able to fully recycle
and harvest the energy of the signal used for information
decoding9. As a result, the transformed objective function can
be approximated by

U(P ,S,ρ)− qUTP (P ,S,ρ)
� Û(P ,S,ρ)− qÛTP (P ,S,ρ). (15)

On the other hand, by exploiting constraint C12, we can
rewrite constraint C1 in the following form to remove the
associated non-convexity:

C1:
nF∑
i=1

( K∑
j=1

Pi,jsi,j

)
lkgk|Hi,k|2ηk

+

nF∑
i=1

σ2
Ii,k

ηk ≥ P req
mink

ρE1,k
, ∀k, (16)

where the right hand side of the inequality in (16) is due to
constraint C12: ρE1,k = ρE2,k = . . . = ρEi,k = . . . = ρEnF ,k.

8The high SINR assumption is used to bring the optimization problem
into convex form which makes the problem mathematically tractable. Indeed,
in the proposed problem formulation, a minimum required system data rate
Rmin is set to guarantee a desired system data rate. Furthermore, we focus
on a indoor line of sight communication environment, see Section V. Thus,
it is unlikely that a selected receiver has low SINR.

9Note that ρEi,k = 1 is only applied to the received energy harvested from
the information signal, but not to the portion harvested from the interference
signals.
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Besides, we can further simplify the algorithm design by
replacing C12 with the following equivalent constraint:

C13: ρE1,k = ρEr,k, ∀k, r ∈ {2, . . . , nF }. (17)

Next, we handle the combinatorial constraint in C7 by
time-sharing relaxation [24], [25]. In particular, we relax the
subcarrier selection variable si,k to be a real value between
zero and one instead of a Boolean, i.e., C7: 0 ≤ si,k ≤ 1. As a
result, si,k can be interpreted as a time-sharing factor in allo-
cating subcarrier i to K receivers for delivering information. In
addition, we introduce two new auxiliary variables and define
them as P̃i,k = Pi,ksi,k and ρ̃Ii,k = ρIi,ksi,k. They represent
the actual transmitted power and the power splitting ratio for
information decoding on subcarrier i for receiver k under the
time-sharing condition, respectively. On the other hand, we re-
place Ci,k in C4 and C5 in (11) by C̃i,k = W log2

(
P̃i,k

si,k
Γ̃i,k

)
,

Γ̃i,k = Γi,k|
ρI
i,k=

ρ̃I
i,k

si,k

while Ci,k ≥ C̃i,k . We note that although

Ci,k ≥ C̃i,k generally holds, Ci,k ≈ C̃i,k is asymptotically
tight in the high SINR regime. Since the feasible solution
set of the problem with C̃i,k in C4 and C5 is a subset of the
original problem 10, the solution obtained with the Dinkelbach
method for the approximated objective function can be used
as a suboptimal solution to the original optimization problem
in (8). Nevertheless, it will be shown in the simulation section
that the proposed resource allocation algorithm achieves a
close-to-optimal performance in high SINR. Note that by
considering the transformed optimization problem with the
approximated objective function and relaxed constraint C7 in
each iteration of the Dinkelbach method, the proposed scheme
converges to the optimal solution of the problem with the
approximated objective function introduced in (14).

Remark 2: There is an alternative approach for solving
the optimization problem in (8). Instead of using U(P ,S,ρ)−
qUTP (P ,S,ρ) � Û(P ,S,ρ) − qÛTP (P ,S,ρ) from (15) in
each iteration, we could exploit the fact that

U(P ,S,ρ)
UTP (P ,S,ρ) � Û(P ,S,ρ)

ÛTP (P ,S,ρ) .

Then, we can use a similar approach as in Appendix A to
prove that Û(P,S,ρ)

ÛTP (P,S,ρ)
is jointly quasi-concave with respect

to (P ,S,ρ) under the time-sharing relaxation. As a result, a
unique global optimal solution exist and can be obtained by
using the bisection method [26]. We note that both approaches
achieve the same optimal value.

The problem with transformed objective function in (15) is
jointly concave with respect to (w.r.t.) all optimization vari-
ables (cf. Appendix B). Besides, it can be further verified that
the primal problem satisfies Slater’s constraint qualification.
As a result, strong duality holds and solving the dual problem
is equivalent for solving the primal problem [26]. Motivated

10In general, the constraint relaxation used in C7 may result in a superset
of the feasible solution set. Yet, it will be shown in the next section that the
optimal subcarrier allocation policy with respect to the approximated objective
function takes values of either zero or one on each subcarrier. In other words,
the subcarrier allocation policy is Boolean even though it is allowed to take
any real value between zero and one; i.e., the size of the feasible solution set
does not change with the constraint relaxation in C7.

by this fact, we solve the primal problem by solving its dual
problem in the following.

F. Dual Problem Formulation

In this subsection, the resource allocation policy is derived
via solving the dual problem of (11) with approximated objec-
tive function. For this purpose, we first need the Lagrangian
function of the primal problem. The Lagrangian of (11) is
given by

L(w, λ, γ, β, δ,υ,μ, ζ,P ,S,ρ) (18)

=

nF∑
i=1

K∑
k=1

(αk + γ + υk)si,kC̃i,k−λ
( nF∑

i=1

K∑
k=1

P̃i,k − Pmax

)

−q
(
PCT +KPCR +

K∑
k=1

nF∑
i=1

εP̃i,k

−
K∑

k=1

nF∑
i=1

( K∑
j=1

P̃i,j

)
lkgk|Hi,k|2ηk −

K∑
k=1

QIk

)
− γRmin

−β
(
PPG − PCT +

nF∑
i=1

K∑
k=1

εP̃i,k

)
−

nF∑
i=1

K∑
k=1

δi,k

(
ρ̃Ii,k + ρEi,k − 1

)
−

nF∑
i=1

ζi

( K∑
k=1

si,k − 1
)

−
K∑

k=1

nF∑
i=2

μi,k

(
ρE1,k − ρEi,k

)
−

∑
k∈D

υkRmink

−
K∑

k=1

wk

(P req
mink

ρE1,k
−

nF∑
i=1

( K∑
j=1

P̃i,j

)
lkgk|Hi,k|2ηk−

nF∑
i=1

σ2
Ii,k

ηk

)
,

where C̃i,k = W log2

(
P̃i,k

si,k
Γ̃i,k

)
and Γ̃i,k = Γi,k

∣∣∣
ρI
i,k=

ρ̃I
i,k

si,k

.

w has elements wk ≥ 0, k ∈ {1, . . . ,K}, and is the Lagrange
multiplier vector corresponding to the individual minimum
required power transfer constraint. λ ≥ 0 accounts for the
maximum transmit power allowance Pmax in constraint C2.
β ≥ 0 is the Lagrange multiplier for C3 accounting for the
power usage from the power grid at the transmitter. γ is the
Lagrange multiplier associated with the minimum data rate
requirement of the system in C4. υ denotes the Lagrange mul-
tiplier vector for the minimum individual data rate requirement
of receiver k in C5 and has elements υk ≥ 0, k ∈ {1, . . . ,K}.
We note that υk = 0, ∀k /∈ D, for the receivers requiring
non-delay constrained services. ζ is the Lagrange multiplier
vector accounting for the subcarrier assignment constraint C8
and has elements ζi, i ∈ {1, . . . , nF }. δ is the Lagrange
multiplier vector for the power splitting constraint C11 and
has elements δi,k, i ∈ {1, . . . , nF }, k ∈ {1, . . . ,K}. μ is
the Lagrange multiplier vector for constraint C12 and has
elements μi,k, i ∈ {1, . . . , nF }, k ∈ {1, . . . ,K}. On the
other hand, the boundary constraints C6, C7, C9, and C10
on the optimization variables are captured by the Karush-
Kuhn-Tucker (KKT) conditions when deriving the resource
allocation solution in the next section. Thus, the dual problem
for the primal problem (11) is given by

min
w,λ,γ,β,δ,υ,ζ≥0,μ

max
P,S,ρ

L(w, λ, γ, β, δ,υ,μ, ζ,P ,S,ρ). (19)
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G. Dual Decomposition Solution

In this section, the optimal11 resource allocation policy is
obtained via Lagrange dual decomposition [27]. Specifically,
the dual problem in (19) is decomposed into a hierarchy of
two levels. Level 1, the inner maximization in (19), consists
of nF subproblems with identical structure that can be solved
in parallel. Level 2, the outer minimization in (19), is the
master problem. The dual problem can be solved iteratively.
Specifically, in each iteration, the transmitter solves the nF

subproblems by applying the KKT conditions for a fixed set
of Lagrange multipliers. Then the solutions of the subproblems
are used for updating the Lagrange multiplier master problem
via the gradient method.

Level 1 (Subproblem Solution): Using standard convex
optimization techniques and the KKT conditions, for a given
q, in each iteration of the Dinkelbach method, the power
allocation policy and the power splitting policy on subcarrier
i for receiver k are given by

P̃ ∗
i,k = si,kP

∗
i,k = si,k

[
W (αk + γ + υk)

ln(2)
(
Φi,k

) ]+

, ∀i, k, (20)

Φi,k = qε+ βε+ λ−
K∑

k=1

(q + wk)lkgk|Hi,k|2ηk, (21)

ρE∗
1,k =

[√[ wkP
req
mink

δ1,k − q(σ2
za + σ2

I1,k
)ηk +

∑nF

j=2 μj,k

]+]ρE
U

ρE
L

, (22)

∀k, and

ρE∗
j,k =

[
q(σ2

za + σ2
Ij,k)ηk − δj,k + μj,k

]ρE
U

ρE
L

, (23)

∀k, j ∈ {2, . . . , nF },

ρ̃I∗i,k = si,kρ
I∗
i,k=si,k

[
Ψi,k

2
√
ln(2)(δi,k)(σ2

za + σ2
Ii,k

)

− σ2
zs

2(σ2
za + σ2

Ii,k
)

]ρI
U

ρI
L

,∀i, k, (24)

Ψi,k =
√
4W (αk + γ + υk)(σ2

za + σ2
Ii,k

) + (δi,k) ln(2)σ2
zs

×
√
σ2
zs (25)

and μ1,k = 0. Here, operators
[
x
]+

and
[
x
]c
d

are defined

as
[
x
]+

= max{0, x} and
[
x
]c
d

= c, if x > c,
[
x
]c
d

=

x, if d ≤ x ≤ c,
[
x
]c
d
= d, if d > x, respectively. The power

allocation solution in (20) is known as multilevel water-filling.
In particular, the water-level in allocating power on subcarrier
i for receiver k, i.e., W (αk+γ+υk)

ln(2)Φi,k
, is not only directly pro-

portional to the priority of receiver k via variable αk, but also
depends on the channel gains of the other K − 1 receivers
via the term

∑K
k=1(q+wk)lkgk|Hi,k|2ηk. Besides, Lagrange

multipliers γ, υk, and wk force the transmitter to transmit
with a sufficiently high power to fulfill the system data rate
requirement, Rmin, the individual data rate requirements of

11In this section, an optimality refers to the optimality for the problem
formulation using the time-sharing assumption and the approximated objective
function.

the receivers having delay constrained services, Rmink
, and

the minimum power transfer requirement, P req
mink

, for receiver
k, respectively. Moreover, as can be observed from (20), the
power allocation solution P ∗

i,k is independent of si,k which
facilitates a simple allocation design.

On the other hand, the power splitting ratio for information
decoding, ρI∗i,k, is also in the form of water-filling and the
water-level depends on the priority of the receiver via αk

in (24). Besides, Lagrange multiplier μi,k affects the power
splitting ratio solution for energy harvesting in (22) and (23)
such that ρE1,k will eventually equal ρEj,k, ∀j ∈ {2, . . . , nF },
as enforced by consensus constraint C12. Furthermore, when
σ2
za + σ2

Ii,k
� σ2

zs , the SINR on each subcarrier approaches
Pi,kρ

I∗
i,klkgk|Hi,k|2

ρI∗
i,k(σ

2
za

+σ2
Ii,k

)+σ2
zs

→ Pi,klkgk|Hi,k|2
σ2
za

+σ2
Ii,k

and is independent of

ρI∗i,k. Besides, ÛTP (P ,S,ρ) is a monotonically decreasing
function of ρE∗

i,k . Therefore, ρE∗
i,k → ρEU and ρI∗i,k → ρIL be-

come the optimal power splitting policy for energy efficiency
maximization. Thus, if σ2

za+σ2
Ii,k

� σ2
zs and the lower bound

of the power splitting ratio for information decoding is zero,
i.e., ρIL = 0, then the solution suggests that in this case an
infinitesimally small portion of the received power is used at
the receivers for information decoding in order to achieve the
optimal performance; provided that the data rate constraints
C4 and C5 are satisfied. In other words, most of the received
power at the receivers should be used for energy harvesting.
The above considerations indicate that in the interference
limited regime, a hybrid information and energy harvesting
receiver must achieve a higher energy efficiency than the
traditional pure information receiver. This will be confirmed
by simulation in Section V.

On the other hand, subcarrier i is assigned to receiver k
when the following selection criterion is satisfied:

s∗i,k =

{
1 if k = argmax

a
Mi,a ,

0 otherwise
(26)

where Mi,k (27)

= W
(
αk + γ + υk

)[
log2

(
P ∗
i,klkgk|Hi,k|2

)
+ log2

( ρI∗i,k
(ρI∗i,k)(σ

2
za + σ2

Ii,k
) + σ2

zs

)
− 1

ln(2)
− σ2

zs

ln(2)(ρI∗i,k(σ
2
za + σ2

Ii,k
) + σ2

zs)

]
− ζi

is the marginal benefit provided to the system when subcarrier
i is assigned to serve receiver k. In other words, receiver k is
selected for information transmission on subcarrier i if it can
provide the maximum marginal benefit to the system. Besides,
if receiver k has a high priority or a stringent individual data
rate requirement, it will have high values of αk or υk and
the resource allocator at the transmitter will have a higher
preference to serve receiver k with subcarrier i. On the other
hand, it can be observed from (26) that although constraint
relaxation is used in constraint C7 for facilitating the design
of the resource allocation algorithm, the subcarrier allocation
policy on each subcarrier for the relaxed problem remains
Boolean; time sharing does not occur.

Remark 3: The above observation for the optimal power
splitting policy in the interference limited regime is valid for
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both the problem with the original objective function and the
problem with the approximated objective function. Indeed, if
the case of an interference limited regime is considered, the
use of the approximated objective function is not necessary.
Instead, we can first set ρE∗

i,k → ρEU and ρI∗i,k → ρIL in the
problem formulation. ρE∗

i,k and ρI∗i,k become constants and the
associated non-convexity vanishes. Then, we optimize P and
S by following a similar approach as used in (8)-(27).

Level 2 (Master Problem Solution): The Level 2 master
problem in (19) can be solved by using the gradient method
which leads to the following Lagrange multiplier update
equations:

λ(u + 1)=
[
λ(u)− ξ1(u)×

(
Pmax −

nF∑
i=1

K∑
k=1

P̃i,k

)]+
, (28)

β(u + 1)=
[
β(u)− ξ2(u)×

(
PPG − PC (29)

−
nF∑
i=1

K∑
k=1

εP̃i,k)
]+
,

γ(u+ 1)=
[
γ(u)− ξ3(u)×

( nF∑
i=1

K∑
k=1

si,kC̃i,k

−Rmin

)]+
, (30)

δi,k(u+ 1)=
[
δi,k(u)− ξ4(u)

×
(
1− ρ̃Ii,k − ρEi,k

)]+
, ∀i, k, (31)

μr,k(u+ 1)=
[
μr,k(u)− ξ5(u)×

(
ρEr,k − ρE1,k

)]
, (32)

∀r ∈ {2, . . . , nF }, ∀k,
wk(u+ 1)=

[
wk(u)− ξ6(u)

×
( nF∑

i=1

( K∑
j=1

P̃i,j

)
lkgk|Hi,k|2ηk

+

nF∑
i=1

σ2
Ii,k

ηk − P req
mink

ρE1,k
,
)]+

, ∀k, (33)

υk(u+ 1)=
[
υk(u)− ξ7(u)×

( nF∑
i=1

si,kC̃i,k

−Rmink

)]+
, ∀k ∈ D, (34)

where index u ≥ 0 is the iteration index and ξt(m),
t ∈ {1, . . . , 7}, are positive step sizes. Then, the updated12

Lagrange multipliers in (28)–(34) can be used for updating
the resource allocation policy in (20)–(27) by solving the
nF subproblems in (19). As the primal problem with the
approximated objective function is jointly concave w.r.t. the
optimization variables, it is guaranteed that the primal optimal
solution can be obtained by solving the problems in Level 1
and Level 2 iteratively, provided that the chosen step sizes,
ξt(m), are sufficiently small13. We note that other than the

12It can be observed that updating ζi is not necessary since it does not
affect the result of the subcarrier allocation solution in (26).

13In the literature, different methods such as exact line search and back-
tracking line search are commonly used for optimizing the step sizes [26],
[28]. In this paper, we adopt a backtracking line search approach in optimizing
the step sizes for fast convergence.

adopted gradient method, different iterative algorithms such as
the ellipsoid method can also be used for finding the optimal
Lagrange multipliers due to the convexity of the dual problem
[26].

IV. RESOURCE ALLOCATION DESIGN - DISCRETE SET OF

POWER SPLITTING RATIOS

In practice, due to the high complexity associated with a
high precision power splitting unit, the RF energy harvesting
receivers may only be capable of splitting the received power
into two power streams based on a finite discrete set of power
splitting ratios. In this section, we design a resource allocation
algorithm for such receivers. In particular, we assume that
there are N distinct power splitting ratios for energy harvesting
and information decoding at each receiver. Thus, the power
splitting ratios for energy harvesting and information decoding
on subcarrier i for mobile receiver k can be represented by
the following constraints:

C14: ρEi,k ∈ {ρE1

k , ρE2

k , . . . , ρEn

k , . . . , ρEN

k },
C15: ρIi,k ∈ {ρI1k , ρI2k , . . . , ρInk , . . . , ρINk }. (35)

ρEn

k and ρInk , n ∈ {1, 2, . . . , N}, are the possible power
splitting modes for energy harvesting and information de-
coding adopted in receiver k, respectively. The corresponding
resource allocation algorithm design can be formulated as the
following optimization problem:

max
P,S,ρ

Ueff (P ,S,ρ)
s.t. C1–C8, C11, C12, C14, C15. (36)

Similar to the case of a continuous set of power splitting ratios,
the objective function of the above problem formulation in-
herits the non-convexity of the fractional form of the objective
function. Therefore, by using Theorem 1, we can transform the
objective function from the fractional form into a subtractive
form and solve the problem via the Dinkelbach method. As
shown in Table I, in each iteration of the main loop, i.e., lines
3–12, we solve the following optimization problem for a given
parameter q:

max
P,S,ρ

U(P ,S,ρ)− qUTP (P ,S,ρ)
s.t. C1–C8, C11, C12, C14, C15. (37)

The additional difficulty in solving the above optimization
problem compared to the problem formulation in (8) is the
disjoint/discrete nature of the optimization variables ρEi,k and
ρIi,k, cf. C14 and C15 in (35). In general, an exhaustive
search is required to obtain the global optimal solution and the
search space grows in the order of N2KnF , which may not be
computationally feasible for systems of moderate size. In the
following, we transform (37) into an optimization problem
with tractable solution by exploiting subcarrier time-sharing
and the concept of power splitting mode selection. In particu-
lar, different values of ρInk can be treated as different operating
modes of receiver k with different equivalent SINRs. Then,
we combine the subcarrier selection with the operating mode
selection by augmenting the dimensions of the optimization
variables. To this end, we define the channel capacity between
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the transmitter and receiver k on subcarrier i with channel
bandwidth W by using power splitting mode n as

Cn
i,k = W log2

(
1 + Pn

i,kΓ
n
i,k

)
(38)

Γn
i,k =

ρInk lkgk|Hi,k|2
ρInk (σ2

za + σ2
Ii,k

) + σ2
zs

,

and Pn
i,kΓ

n
i,k is the received SINR on subcarrier i at receiver

k using power splitting mode n for information decoding.
The weighted system capacity is defined as the total average
number of bits successfully delivered to the K receivers via
the N power splitting modes and is given by

U(PN ,SN ) =

nF∑
i=1

K∑
k=1

N∑
n=1

αks
n
i,kC

n
i,k, (39)

where PN = {Pn
i,k ≥ 0, ∀i, k, n} is the power allocation

policy and SN = {sni,k ∈ {0, 1}, ∀i, k, n} is the subcarrier
allocation policy for the case of discrete power splitting ratios.
We note that the subcarrier allocation policy in (39) incor-
porates the power splitting mode selection for information
decoding. On the other hand, the power consumption of the
system can be written as

UTP (PN ,SN ,AN )

= PCT +KPCR +

nF∑
i=1

K∑
k=1

N∑
n=1

εPn
i,ks

n
i,k

−
K∑

k=1

N∑
n=1

Qn
Dk

−
K∑

k=1

N∑
n=1

Qn
Ik

(40)

whereQn
Dk
=

nF∑
i=1

( K∑
j=1

N∑
m=1

Pm
i,js

m
i,j

)
lkgk|Hi,k|2ηkρEn

k ank︸ ︷︷ ︸
Power harvested from information signal
at receiver k with power splitting mode n

(41)

and Qn
Ik=

nF∑
i=1

(σ2
za + σ2

Ii,k )ρ
En

k ankηk︸ ︷︷ ︸
Power harvested from interference and

antenna noise at receiver k with power splitting mode n

. (42)

Here, AN = {ank ∈ {0, 1}, ∀k, n} is the power splitting ratio
selection policy for energy harvesting. In the above problem
formulation, ank is the optimization variable which captures the
selection of power splitting mode ρEn

k for energy harvesting.
Similar to the case of the continuous set of power splitting
ratios, we consider an approximation of the objective function
for facilitating a tractable resource allocation algorithm design
in the following. First, the system capacity between the
transmitter and the K mobile receivers can be approximated
by

U(PN ,SN )
(a)≈ Û(PN ,SN )

=

nF∑
i=1

K∑
k=1

N∑
n=1

αks
n
i,kĈ

n
i,k,

Ĉn
i,k = W log2

(
Pn
i,kΓ

n
i,k

)
(43)

and
(a)≈ in (43) is due to the high SINR assumption. On the

other hand, a lower bound for the total power consumption of
the system is given by

UTP (PN ,SN ,AN )

≥ ÛTP (PN ,SN ,AN )

= PCT +KPCR +
K∑

k=1

nF∑
i=1

N∑
n=1

εPn
i,ks

n
i,k

−
nF∑
i=1

K∑
k=1

( K∑
j=1

N∑
m=1

Pm
i,js

m
i,j

)
lkgk|Hi,k|2ηk

−
K∑

k=1

N∑
n=1

nF∑
i=1

Qn
Ik , (44)

where ÛTP (PN ,SN ,AN ) is obtained by setting ρEn

k ank = 1.
Then, the objective function for the optimization problem for
discrete sets of power splitting factors is given by

U(PN ,SN )− qUTP (PN ,SN ,AN )

� Û(PN ,SN )− qÛTP (PN ,SN ,AN ). (45)

A. Optimization Problem Formulation

With a slight abuse of notation, we reformulate the op-
timization problem for discrete power splitting ratios to be
solved in each iteration as follows:

max
PN ,SN ,AN

Û(PN ,SN )− qÛTP (PN ,SN ,AN )

s.t. C1:
N∑

n=1

Qn
Dk

+Qn
Ik ≥ P req

mink
, ∀k,

C2:
nF∑
i=1

K∑
k=1

N∑
n=1

Pn
i,ks

n
i,k ≤ Pmax,

C3: PC +

nF∑
i=1

K∑
k=1

N∑
n=1

εPn
i,ks

n
i,k ≤ PPG,

C4:
nF∑
i=1

K∑
k=1

N∑
n=1

sni,kĈ
n
i,k ≥ Rmin,

C5:
nF∑
i=1

K∑
k=1

N∑
n=1

sni,kĈ
n
i,k ≥ Rmink

, ∀k ∈ D,

C6: Pn
i,k ≥ 0, ∀i, k, n, C7: sni,k ∈ {0, 1}, ∀i, k, n,

C8:
K∑

k=1

N∑
n=1

sni,k ≤ 1, ∀i, C9: ank ∈ {0, 1}, ∀k, n,

C10:
N∑

n=1

ank = 1, ∀k,

C11: ρInk sni,k +

N∑
m=1

ρEm

k amk ≤ 1, ∀i, k, n,

C12:
N∑

m=1

ρImk smi,k + ρEn

k ank ≤ 1, ∀i, k, n. (46)

Constraints C1–C6 have the same physical meanings as in the
problem formulation in (8). Constraints C7–C12 are imposed
to guarantee that in each receiver only one power splitting
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mode can be selected for information decoding and energy
harvesting. Besides, C11 and C12 indicate that no extra
power gain can be achieved in the power splitting process.
On the other hand, the non-convexity of the above problem
formulation is caused by the coupled optimization variables in
C1 and the combinatorial constraints in C7 and C9. In analogy
to the techniques used for solving the optimization problem in
(11), we solve problem (46) in the following two steps. In the
first step, we relax constraints C7 and C9 such that variables
sni,k and ani,k can assume any value between zero and one, i.e.,
C7: 0 ≤ sni,k ≤ 1, ∀i, k, n and C9: 0 ≤ ani,k ≤ 1, ∀i, k, n. Then
sni,k and ani,k can be interpreted as the time sharing factors for
receiver k in utilizing subcarrier i with power splitting mode n.
We also define a new variable P̃n

i,k = sni,kP
n
i,k for facilitating

the design of the resource allocation algorithm. In fact, P̃n
i,k

represents the actual transmit power of the transmitter for
receiver k in subcarrier i if power splitting mode n is used
under the time sharing condition. In the second step, we
replace constraint C1 in (46) by

C1’:
nF∑
i=1

( K∑
j=1

N∑
m=1

P̃m
i,j

)
lkgk|Hi,k|2ηk

+

nF∑
i=1

(σ2
za + σ2

Ii,k)ηk ≥ ankP
req
mink

ρEn

k

, ∀k, n. (47)

Although C1’ is equivalent to C1 in (46) only if ank takes
a binary value, i.e., ank ∈ {0, 1}, and

∑K
k=1 a

n
k = 1, it will

be shown in the next section that the optimal solution for ank
has a binary form under constraint C1’, despite the adopted
constraint relaxation. Consequently, the optimization problem
with the approximated objective function and the constraint
relaxation is now jointly concave w.r.t. all optimization vari-
ables14. Besides, it satisfies Slater’s constraint qualification.
Therefore, we can apply dual decomposition to solve the
primal problem via solving its dual problem. The Lagrangian
function of the primal problem in (46) is given by

L(w, λ, γ, β, δ,υ,ϕ,κ, ζ,PN ,SN ,AN ) (48)

=

nF∑
i=1

K∑
k=1

N∑
n=1

(αk + γ + υk)s
n
i,kĈ

n
i,k

− q
(
PCT +KPCR +

K∑
k=1

N∑
n=1

nF∑
i=1

εP̃n
i,k

−
K∑

k=1

nF∑
i=1

N∑
n=1

( K∑
j=1

P̃n
i,j

)
lkgk|Hi,k|2ηk −

K∑
k=1

N∑
n=1

Qn
Ik

)

−γRmin −
nF∑
i=1

ζi

( K∑
k=1

N∑
n=1

sni,k − 1
)

−λ
( nF∑

i=1

K∑
k=1

N∑
n=1

P̃n
i,k − Pmax

)

14The concavity of the above optimization problem can be proved by
following a similar approach as in Appendix B for the case of continuous
power splitting ratios.

−
nF∑
i=1

K∑
k=1

N∑
n=1

δni,k

(
ρInk sni,k +

N∑
m=1

ρEm

k amk − 1
)

−
nF∑
i=1

K∑
k=1

N∑
n=1

κn
i,k

( N∑
m=1

ρImk smi,k + ρEn

k ank − 1
)

−
K∑

k=1

N∑
n=1

wn
k

(ankP req
mink

ρEn

k

−
nF∑
i=1

( K∑
j=1

N∑
m=1

P̃m
i,j

)
lkgk|Hi,k|2ηk

−
nF∑
i=1

(σ2
za + σ2

Ii,k)ηk

)
−

∑
k∈D

υkRmink

−
K∑

k=1

ϕk

( N∑
n=1

ank − 1
)
− β

(
PPG − PCT+

nF∑
i=1

K∑
k=1

N∑
n=1

εP̃n
i,k

)
,

where λ, β, and γ are the scalar Lagrange multipliers as-
sociated to constraints C2, C3, and C4 in (46), respectively.
w,υ,ϕ, δ, and κ are the Lagrange multiplier vectors for
constraints C1’, C5, C8, C10, C11, and C12 which have
elements wn

k ≥ 0, n ∈ {1, . . . , N}, k ∈ {1, . . . ,K}, υk ≥ 0,
ζi ≥ 0, i ∈ {1, . . . , nF }, ϕi, δni,k, and κn

i,k respectively. We
note that there is no restriction on the value of ϕi since it
is associated with equality constraint C10. Thus, the dual
problem is given by

min
w,λ,γ,β,δ,υ,ζ,κ≥0,ϕ

(49)

max
PN ,SN ,AN

L(w, λ, γ, β, δ,υ,ϕ,κ, ζ,PN ,SN ,AN ).

B. Dual Decomposition Solution

By using dual decomposition and following a similar ap-
proach as in Section III-G, the resource allocation policy
can be obtained via an iterative procedure. For a given set
of Lagrange multipliers {w, λ, γ, β, δ,υ,ϕ,κ, ζ}, the power
allocation policy, power splitting policy, and subcarrier allo-
cation policy for receiver k using power splitting mode n on
subcarrier i are given by

P̃n∗
i,k = sni,kP

n∗
i,k = si,k

[
W (αk + γ + υk)

ln(2)
(
Φi,k

) ]+

, ∀i, k, (50)

an∗k =

{
1 if n = argmax

b
T b
k , ∀k,

0 otherwise
(51)

T b
k = ρEb

k

(
qηk

nF∑
i=1

(σ2
za + σ2

Ii,k
)−

nF∑
i=1

N∑
m=1

δmi,k −
nF∑
i=1

κb
i,k

)
−wb

kP
req
mink

ρEb

k

− ϕk, (52)

sn∗i,k =

{
1 if n, k = argmax

c,b
M c

i,b , ∀i,
0 otherwise

(53)



NG et al.: WIRELESS INFORMATION AND POWER TRANSFER: ENERGY EFFICIENCY OPTIMIZATION IN OFDMA SYSTEMS 6363

Mn
i,k = W

(
αk + γ + υk

)[
log2

(
Pn∗
i,k lkgk|Hi,k|2

)
+ log2

( ρInk
ρInk (σ2

za + σ2
Ii,k

) + σ2
zs

)
− 1

ln(2)
− σ2

zs

ln(2)(ρIni,k(σ
2
za + σ2

Ii,k
) + σ2

zs)

]
−δni,kρ

In
k −

( N∑
m=1

κm
i,k

)
ρInk − ζi (54)

and Φi,k is defined in (25). The power allocation solution in
(50) has a similar multi-level water filling interpretation as in
(20). The difference between (20) and (50) is that the power
allocation in (50) is performed w.r.t. each power splitting
mode. On the other hand, it can be observed from (51) and
(53) that the optimal values of ank and sni,k are binary numbers,
although time sharing relaxation is used for facilitating the
algorithm design.

Now, since the dual function is differentiable, we can update
the set of Lagrange multipliers for a given set of PN , SN , AN

by using the gradient method. The gradient update equations
are given by

λ(u+ 1)=
[
λ(u)− ξ1(u)×

(
Pmax

−
nF∑
i=1

K∑
k=1

N∑
n=1

P̃n
i,k

)]+
, (55)

β(u+ 1)=
[
β(u)− ξ2(u)×

(
PPG − PC

−
nF∑
i=1

K∑
k=1

N∑
n=1

εP̃n
i,k)

]+
, (56)

γ(u+ 1)=
[
γ(u)− ξ3(u)×

(
Rmin

−
nF∑
i=1

K∑
k=1

N∑
n=1

sni,kĈ
n
i,k

)]+
, (57)

δni,k(u+ 1)=
[
δni,k(u)− ξ4(u)

×
(
1− ρInk sni,k −

N∑
m=1

ρEm

k amk

)]+
, ∀i, k, n,(58)

κn
i,k(u+ 1)=

[
κn
i,k(u)− ξ5(u)

×
(
1−

N∑
m=1

ρImk smi,k − ρEk

k ank

)]+
, ∀i, k, n, (59)

wn
k (u+ 1)=

[
wn

k (u)− ξ6(u) (60)

×
( nF∑

i=1

( K∑
j=1

P̃i,j

)
lkgk|Hi,k|2ηk

+

nF∑
i=1

(σ2
za + σ2

Ii,k
)ηk − aknP

req
mink

ρEn

k

,
)]+

, ∀k, n,

υk(u + 1)=
[
υk(u)− ξ7(u)×

(
Rmink

−
nF∑
i=1

N∑
n=1

sni,kĈ
n
i,k

)]+
, ∀k ∈ D. (61)

Similar to the case of continuous power splitting ratios,
updating ζi and ϕi is not necessary since they will not affect
the power splitting mode selection and subcarrier allocation
in (51) and (53), respectively.

V. RESULTS

In this section, simulation results are presented to demon-
strate the energy efficiency and system capacity of the pro-
posed resource allocation algorithms. We consider an indoor
communication system with K receivers and the correspond-
ing simulation parameters are provided in Table II. We note
that the 470 MHz frequency band will be used by IEEE
802.11 for the next generation of Wi-Fi systems [31]. Besides,
the wavelength of the carrier signal is 0.6 meter which is
smaller than the minimum distance between the transmitter
and receivers. Thus, the far-field assumption of the channel
model in [29] holds. Furthermore, in practice, the value of
circuit power consumption depends on the specific hardware
implementation and the application. On the other hand, we
assume that all receivers have the same priority αk = 1, ∀k,
for illustrating the maximum achievable energy efficiency of
the system. The shadowing of all communication links is set
to gk = 1, ∀k, to account for the line-of-sight communication
setting. Unless specified otherwise, we assume that there is
only one receiver requiring delay constrained service with a
minimum data rate requirement of Rmink

= 10 Mbit/s. In
the sequel, the total number of iterations is defined as the
number of main loop iterations in the Dinkelbach method.
For the case of continuous power splitting ratios, we set
ρEU = ρIU = 1 and ρEL = ρIL = 0. Besides, there are five power
splitting ratios for the resource allocation with the discrete
set of power splitting ratios: ρEi,k ∈ {1, 0.75, 0.5, 0.25, 0}
and ρIi,k ∈ {0, 0.25, 0.5, 0.75, 1}. Moreover, to ensure fast
convergence, the step sizes adopted in (28)–(34) and (55)–
(61) are optimized via backtracking line search, cf. [26, page
464] and [32, page 230]. Note that if the transmitter is unable
to meet the minimum required system data rate Rmin, the
minimum required individual data rate Rmink

, or the minimum
required power transfer P req

mink
, we set the energy efficiency

and the system capacity for that channel realization to zero
to account for the corresponding failure. For the sake of
illustration, the performance curves of the proposed algorithms
for the continuous and discrete sets of power splitting ratios
are labeled as “Proposed algorithm I” and “Proposed algorithm
II” in Figures 2–7. The average energy efficiency of the
system is computed according to (7) and averaged over 100000
independent realizations of multipath fading and path loss
attenuation.

A. Convergence and Optimality of Iterative Algorithm

Figure 2 depicts the average system energy efficiency of the
proposed iterative algorithms for different levels of received
interference versus the number of iterations. Specifically,
we are interested in the energy efficiency and convergence
speed of the proposed algorithms. We plot the upper bound



6364 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 12, NO. 12, DECEMBER 2013

TABLE II
SYSTEM PARAMETERS

Maximum service distance dmax 10 m
Reference distance d0 1 m
Users distribution Uniformly distributed between d0 and dmax

Multipath fading distribution Rician fading with Rician factor 6 dB
Channel path loss model TGn path loss model [29]
Carrier center frequency 470 MHz
Number of subcarriers nF 128
Total bandwidth B and subcarrier bandwidth W 20 MHz and 156 kHz
Thermal noise power and antenna noise power per subcarrier −112 dBm and −115 dBm
Quantization noise (12-bit uniform quantizer) per subcarrier −47 dBm
Minimum system data rate requirement Rmin 50 Mbit/s
Minimum data rate requirement for delay constrained service Rmink

10 Mbit/s
Class A/B power amplifier [30] with a power efficiency of 16% ε = 6.25
Maximum power supply PPG 50 dBm
Minimum required power transfer P req

mink
0 dBm

Energy harvesting efficiency ηk 0.8
Circuit power consumptions: PCT

and PCR
30 dBm and 20 dBm

Effective antenna gain 12 dB
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Fig. 2. Average system energy efficiency (bits-per-Joule) versus number of
iterations with different levels of interference power, σ2

Ii,k
, and Pmax = 30

dBm. There are K = 3 receivers in the system. The dashed solid lines
represent the upper bound of energy efficiency after algorithm convergence.

performance15 of the system after convergence to illustrate the
sub-optimality of the proposed algorithms. The dashed lines
refer to the average energy efficiency upper bound for each
case study. After only 5 iterations, the iterative algorithms
achieve over 95% of the upper bound value for all considered
scenarios. Besides, the convergence speed of the proposed
algorithms is invariant to the interference levels, σ2

Ii,k
, which

is desirable for practical implementation.

In the following case studies, the number of iterations
is set to 5 for illustrating the performance of the proposed
algorithms.

15The upper bound system performance is obtained by directly evaluating
the upper bound objective function via replacing the energy consumption
function UTP (P,S,ρ) in (14) by ̂U(P,S,ρ) for the continuous set of power
splitting ratios. We note that the approximation in (12) is asymptotically tight
for high SINR.

B. Energy Efficiency versus Maximum Allowed Transmit
Power

Figure 3 shows the average system energy efficiency versus
the maximum transmit power allowance, Pmax, for different
received levels of interference, σ2

Ii,k
. We first focus on the case

of a small number of receivers and moderate interference level.
It can be observed that the average system energy efficiency
of the proposed algorithms is a monotonically non-decreasing
function of Pmax. In particular, starting from a small value
of Pmax, the energy efficiency first quickly increases with an
increasing Pmax and then saturates when Pmax > 18 dBm.
This is due to the fact that the two proposed algorithms strike
a balance between the system energy efficiency and the power
consumption of the system. In fact, once the maximum energy
efficiency16 of the system is achieved, a further increase in
the transmit power would result in a degradation in energy
efficiency. As expected, proposed algorithm I outperforms
proposed algorithm II in all cases since the latter algorithm is
designed based on discrete sets of power splitting ratios which
span a smaller feasible solution set compared to algorithm I.
Besides, Figure 3 reveals that although interference signals
can act as a viable energy source to the system, cf. (5) and
(7), strong interference impairs the energy efficiency of the
system; the energy harvesting gain due to strong interference17

is unable to compensate the corresponding capacity loss. For
comparison, Figure 3 also contains the energy efficiency of
two baseline resource allocation schemes. For baseline I, we
maximize the weighted system capacity (bit/s) with respect
to {P ,S,ρ} subject to constraints C1–C12 in (8), instead
of the energy efficiency. Specifically, baseline I focuses on
a system with hybrid energy harvesting receivers which split
the received signal into two power streams for a finite discrete
set of power splitting ratios. On the other hand, baseline II
maximizes the weighted energy efficiency of the system with
respect to {P ,S} for receivers which do not have energy

16The maximum energy efficiency refers to the “maximum” w.r.t. the
corresponding problem formulation.

17Nevertheless, we would like to emphasize that the use of hybrid infor-
mation and energy harvesting receivers provides a better energy efficiency to
the system compared to pure information receivers, as can be observed from
baseline II.
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Fig. 3. Average system energy efficiency (bits-per-Joule) versus maximum transmit power allowance, Pmax, for K = 3 receivers and different levels of
interference power, σ2

Ii,k
.

harvesting capability. Since the receivers of baseline II are
unable to harvest energy, we do not impose constraint C1 for
baseline II since a minimum power transfer to the receivers
is not required. Figure 3 reveals that in the low transmit
power regime and for a small number of receivers, the system
with power splitting receivers achieves a small performance
gain compared to the system without energy harvesting re-
ceivers. This is because in the low transmit power regime,
the received power of the desired signal at the receivers
may not be sufficiently large for simultaneous information
decoding and energy harvesting. As a result, power splitting
occurs for fulfilling constraint C1. On the other hand, the
energy efficiency gain achieved by the proposed algorithm
attains its maximum in the high transmit power allowance
regime. It can be observed that approximately a 5% gain
in energy efficiency can be achieved for K = 3 receivers
and a moderate interference power level. We emphasize that
in the high transmit power allowance regime, the maximum
energy efficiency achieved by the system with hybrid energy
harvesting receivers cannot be attained by the system without
hybrid energy harvesting receivers (baseline II) via increasing
the transmit power.

Now, we focus on the system with a moderate number
of receivers and moderate interference levels in the high
transmit power allowance regime. Figure 4 illustrates the av-
erage system energy efficiency versus the number of receivers
for different interference power levels, σ2

Ii,k
, and different

resource allocation algorithms. The maximum transmit power
allowance is set to Pmax = 25 dBm. In particular, we compare
the proposed algorithm II, i.e., energy efficiency maximization

with discrete power splitting ratio receivers, with baseline
II. It can be observed from Figure 4 that the performance
gain provided by energy harvesting depends on the number of
receivers and the interference power level for a fixed maximum
transmit power allowance Pmax. Indeed, when there is only
one receiver, the performance gain due to energy harvesting
is small since only a small portion of radiated power can
be harvested by the receiver. However, when there are more
receivers in the systems, more receivers participate in the
energy harvesting process and thus a larger amount of energy
can be harvested from the RF signals. As a result, a larger
performance gain in terms of energy efficiency can be achieved
by the proposed algorithm over baseline II when there are
more receivers in the system. Furthermore, it can be seen that
the performance gain achieved by the proposed algorithm over
baseline II increases with the interference power level. The
reason behind this is twofold. First, the increase in interference
power level provides some extra energy to the system for
potential energy harvesting. Second, the strong interference
tends to saturate the SINR on each subcarrier such that it is
independent of ρI∗i,k, i.e.,

Pi,kρ
I∗
i,klkgk|Hi,k|2

ρI∗
i,k(σ

2
za

+σ2
Ii,k

)+σ2
zs

⇒ Pi,klkgk|Hi,k|2
σ2
za

+σ2
Ii,k

for σ2
za+σ2

Ii,k
� σ2

zs . Thus, using more of the received power
for information decoding does not provide a significant gain in
channel capacity. Consequently, more received power is used
for energy harvesting to reduce the total energy consumption
of the system (see also Figure 6), which enhances the system
energy efficiency. On the other hand, we would like to empha-
size that although the energy efficiency gain of algorithm II
compared to baseline II depends on the system settings, energy
harvesting may be necessary in some applications where other
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Fig. 4. Average system energy efficiency (bits-per-Joule) versus number of receivers, K , for Pmax = 25 dBm and different levels of interference power,
σ2
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power sources are not available for the receivers regardless of
how much can be gained in energy efficiency.

C. Average System Capacity versus Maximum Allowed Trans-
mit Power

In Figure 5, we plot the average system capacity versus
the maximum transmit power allowance, Pmax, for different
levels of interference power, σ2

Ii,k
. We compare the two

proposed algorithms with the two aforementioned baseline
schemes. For Pmax < 18 dBm, it can be observed that the
average system capacities of the two proposed algorithms
scale with the maximum transmit power allowance Pmax.
Yet, the system capacity gain due to a larger Pmax begins
to saturate in the high transmit power allowance regime,
i.e., Pmax ≥ 18 dBm. Indeed, the proposed algorithms do
not further increase the transmit power in the RF if the
system capacity gain due to a higher transmit power cannot
neutralize the associated energy consumption increase required
for boosting the transmit power. Baseline II has a similar
behaviour as the proposed algorithms with respect to the
maximum transmit power allowance, since baseline II also
focuses on energy efficiency maximization. On the other
hand, as expected, baseline II achieves a system capacity
gain over the other algorithms in the low transmit power
allowance regime. Indeed, the SINR of each subcarrier is
monotonically increasing with respect to ρIi,k. In other words,
the SINR (capacity) on each subcarrier is maximized when
there is no power splitting, i.e., ρIi,k = 1, ρEi,k = 0, which

is the setting for baseline II. We note that although baseline
I focuses on system capacity maximization, power splitting
occurs for fulfilling constraint C1 which results in a lower
system capacity compared to baseline II in the low transmit
power regime. However, the system capacity of baseline I is
higher than that of the other algorithms in the high transmit
power regime, e.g., Pmax ≥ 18 dBm. This is attributed to the
fact that in order to maximize the system capacity for baseline
I, the transmitters always radiate all the available power. Yet,
the higher system capacity of baseline I comes at the expense
of a low system energy efficiency, cf. Figure 3. In addition,
we observe from Figure 5 that all the considered algorithms
are able to fulfill the system data rate requirement in C4 on
average.

D. Average Harvested Power versus Maximum Allowed
Transmit Power

Figure 6 depicts the average harvested power of the pro-
posed algorithm II versus the maximum allowed transmit
power, Pmax, for different levels of interference power, σ2

Ii,k
.

It can be seen that in the high transmit power regime, the
amount of average harvested power in all considered scenarios
is saturated. This is because for the proposed algorithm II, the
transmitter stops to increase the transmit power for energy
efficiency maximization. Meanwhile, the average interference
power level remains unchanged and no extra energy can be
harvested by the K receivers. On the other hand, a higher
amount of power is harvested by the receivers in the system
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Fig. 5. Average system capacity (bits-per-second) versus maximum transmit power allowance, Pmax, for different power levels of interference, σ2
Ii,k

, and
K = 3 receivers.

when the interference power level increases as the SINR is
independent of ρkIi,k on each subcarrier. Thus, splitting more
received power for energy harvesting improves system energy
efficiency and increases the average harvested power.

E. Average Energy Efficiency and System Capacity versus
Number of Receivers

Figure 7(a) and Figure 7(b) illustrate the average system
capacity and the average system energy efficiency of the
proposed algorithm II versus the number of mobile receivers
for different interference power levels, σ2

Ii,k
, and different

receiver circuit power consumptions, PCR . In Figure 7(b), it
can be observed that the average system capacity increases
with the number of receivers in the system since the proposed
algorithm is able to exploit multiuser diversity. Specifically,
the transmitter has a higher chance of selecting a receiver
with good channel conditions when more receivers are in the
system, which results in a system capacity gain. In addition,
although a higher interference power level impairs the average
system capacity, it does not decrease the performance gain due
to multiuser diversity as can be concluded from the slopes of
the curves. Besides, a higher circuit power consumption in the
receivers does not have a large impact on the average system
capacity.

On the contrary, Figure 7(a) shows that the average sys-
tem energy efficiency does not necessarily monotonically
increase/decrease w.r.t. the number of receivers. In fact, for
a moderate value of receiver circuit power consumption, e.g.
PCR ≥ 15 dBm, for the considered system setting, the energy
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Fig. 6. Average harvested power (dBm) of proposed algorithm II versus the
maximum transmit power allowance, Pmax, for different interference power
levels and K = 3 receivers. The double-sided arrow indicates the power
harvesting gain due to an increasing interference power level.

efficiency of the system first increases and then decreases
with an increasing number of receivers. The enhancement
of energy efficiency is mainly due to the multiuser diversity
gain in the channel capacity when having multiple receivers.
Besides, if more receivers participate in the energy harvesting
process, a larger portion of energy can be harvested from the
RF signals. Nevertheless, an extra circuit energy consumption
is incurred by each additional receiver. Indeed, when the
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.

number of receivers in the system or PCR are large, the
system performance gain due to multiuser diversity is unable
to compensate the total energy cost of the receivers since
KPCR increases linearly w.r.t. the number of receivers. Hence,
the energy efficiency of the system decreases with the number
of receivers. As a matter of fact, the energy efficiency gain due
to the additional receivers depends on the trade-off between
multiuser diversity gain, the amount of harvested energy, and
the associated cost in having multiple receivers in the system.
In the extreme case, when PCR → 0, the energy efficiency will
monotonically increase w.r.t. the number of receivers, provided
that the optimization problems in (8) and (46) are feasible.

VI. CONCLUSIONS

In this paper, the resource allocation algorithm design
for simultaneous wireless information and power transfer in
OFDMA systems was studied. We focused on power splitting
receivers which are able to split the received signals into
two power streams for concurrent information decoding and
energy harvesting. The algorithm design was formulated as a
non-convex optimization problem which took into account a
minimum system data rate requirement, minimum individual
data rate requirements of the receivers, a minimum required
power transfer, and the total system power dissipation. We
first focused on receivers with continuous sets of power
splitting ratios and proposed a resource allocation algorithm.
The derived solution served as a building block for the design
of a suboptimal resource allocation algorithm for receivers
with discrete sets of power splitting ratios. Simulation results
showed the excellent performance of the two proposed sub-
optimal algorithms and also unveiled the trade-off between
energy efficiency, system capacity, and wireless power transfer.
In particular, wireless power transfer enhances the system
energy efficiency by harvesting energy in the radio frequency,
especially in the interference limited regime.

APPENDIX

VII. PROOF OF QUASI-CONCAVITY OF THE OBJECTIVE

FUNCTION WITH RESPECT TO THE POWER ALLOCATION

VARIABLES

For facilitating the following presentation, we first provide
a definition for quasi-concave functions. Consider a function
g(·) with input vector x. g(x) is a strictly quasi-concave
function if and only if its super-level set [26]

Lν = {x ∈ Rn|g(x) ≥ ν}, ν ∈ R, (62)

is concave, where R denotes the set of real numbers. Suppose
g(P ,S,ρ) = U(P,S,ρ)

UTP (P,S,ρ) . Now, we focus on the following set:

U(P ,S,ρ)
UTP (P ,S,ρ) ≥ ν. (63)

When ν < 0, the set is empty since U(P ,S,ρ) > 0 and
UTP (P ,S,ρ) > 0. As a result, Lα is an affine(/concave) set
[26] for ν < 0. Then, for ν > 0, we can rewrite set Lν as

U(P ,S,ρ)
UTP (P ,S,ρ) ≥ ν

⇐⇒ U(P ,S,ρ)− νUTP (P ,S,ρ) ≥ 0. (64)

Since U(P ,S,ρ) > 0 and UTP (P ,S,ρ) > 0 are concave
and affine functions with respect to the power allocation
variables P , respectively, (64) is a concave function and Lν

represents a concave set for ν > 0. Therefore, the objective
function is a strictly quasi-concave function with respect to
the power allocation variables. In other words, the objective
function is either 1) first monotonically non-decreasing and
then monotonically non-increasing or 2) monotonically non-
decreasing with respect to the power allocation variables.

In the following, we show that the objective function is first
monotonically non-decreasing and then monotonically non-
increasing with respect to the power allocation variables. For
facilitating the following analysis, we assume that subcarrier
i is allocated to receiver k, i.e., s∗i,k = 1, while ρE∗

i,k and ρI∗i,k
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are given. Then, we take a partial derivative of the objective
function with respect to Pi,k which yields

∂g(P ,S,ρ)
∂Pi,k

=
Ai,k

Bi,k
(65)

where Ai,k = Γi,k

(
Ωi,kPi,k + PCT +KPCR −

K∑
k=1

QI,k

)
−Ωi,k(1 + Pi,kΓi,k) ln(1 + Pi,kΓi,k),

Bi,k = ln(2)(Pi,kΓi,k + 1)

×
(
Ωi,kPi,k + PCT +KPCR −

K∑
k=1

QI,k

)2

, and

Ωi,k = ε−
K∑

k=1

lkgk|Hi,k|2ρE∗
i,k . (66)

We note that Ωi,k > 0 holds since Pi,k ≥ εPi,k >

Pi,k

∑K
k=1 lkgk|Hi,k|2 where the strict inequality is due to

the second law of thermodynamics from physics. Then, we
have

∂g(P ,S,ρ)
∂Pi,k

∣∣∣
Pi,k→0

= − WΓi,k∑K
k=1 QIk − PCT −KPCR

> 0 (67)

due to PCT + KPCR >
∑K

k=1 QIk . In other words, the
objective function is increasing when Pi,k increases from
zero. On the other hand, when Pi,k is sufficiently large, e.g.,
Pi,k → ∞, the first partial derivative of the objective function
with respect to Pi,k is given by

∂g(P ,S,ρ)
∂Pi,k

∣∣∣
Pi,k→∞

= lim
Pi,k→∞

Ai,k

Bi,k

(a)
= lim

Pi,k→∞
−Ωi,kΓi,k log2(1 + Pi,kΓi,k)

(Γi,k(3Ωi,kPi,k+PCT+KPCR−
∑K

k=1 QIk)+2Ωi,k)

× 1

(Ωi,kPi,k + PCT +KPCR−
∑K

k=1 QIk)

≤ 0, (68)

where (a) is due to the use of L’Hospital’s rule. Thus,
the objective function is monotonic non-increasing for large
increasing Pi,k. By combining (67) and (68), we conclude
that the objective function is a quasi-concave function with
respect to the power allocation variables. Specifically, it is first
monotonically non-decreasing and then monotonically non-
increasing with respect to Pi,k.

A. Proof of Concavity of the Transformed Problem with Ob-
jective Function Approximation

The concavity of the optimization problem with approxi-
mated objective function can be proved by the following few
steps. First, we consider the concavity of function Û(P ,S,ρ)
on a per subcarrier basis w.r.t. the optimization variables
P̃i,k, ρ̃Ii,k, and ρEi,k. For notational simplicity, we define a
vector xi,k = [P̃i,k ρ̃Ii,k ρEi,k] and a function fi,k(xi,k) =

Wαk log2

(
P̃i,kρ̃

I
i,klkgk|Hi,k|2

ρ̃I
i,k(σ

2
za

+σ2
Ii,k

)+σ2
zs

)
which takes vector xi,k as

input. Then, we denote by H(fi,k(xi,k)), and τ1, τ2, and τ3
the Hessian matrix of function fi,k(xi,k) and the eigenvalues

of H(fi,k(xi,k)), respectively. The Hessian matrix of function
fi,k(xi,k) is given by

H(fi,k(xi,k))

=

⎡⎢⎢⎢⎣
−1

(P̃i,k)2 ln(2)
0 0

0
−σ2

za

(
σ2
za+2 ρ̃I

i,k σ2
Ii,k

)

(ρ̃I
i,k

)2 ln(2)
(
σ2
za

+ρ̃I
i,k

σ2
Ii,k

)2 0

0 0 0

⎤⎥⎥⎥⎦(69)

and the corresponding eigenvalues are τ1 = −1
(P̃i,k)2 ln(2)

, τ2 =

−σ2
za

(
σ2
za+2 ρ̃I

i,k σ2
Ii,k

)

(ρ̃I
i,k

)2 ln(2)
(
σ2
za

+ρ̃I
i,k

σ2
Ii,k

)2 , and τ3 = 0. Since τa ≤ 0, a ∈
{1, 2, 3}, H(fi,k(xi,k)) is a negative semi-definite matrix.
In other words, function fi,k(xi,k) is jointly concave w.r.t.
P̃i,k , ρ̃Ii,k, and ρEi,k. Then, we can perform the perspective
transformation on fi,k(xi,k) which is given by ui,k(xi,k) =
si,kfi,k(xi,k/si,k). We note that the perspective transformation
preserves the concavity of the function [26] and ui,k(xi,k)
is jointly concave w.r.t. P̃i,k , ρ̃Ii,k, ρEi,k, and si,k. Subse-

quently, Û(P ,S,ρ) =
∑nF

i=1

∑K
k=1 Wαk ui,k(xi,k) can be

constructed as a non-negative weighted sum of ui,k(xi,k)
which guarantees the concavity of the resulting function.
Besides, ÛTP (P ,S,ρ) is an affine function of the optimiza-
tion variables. Thus, Û(P ,S,ρ) − qÛTP (P ,S,ρ) is jointly
concave w.r.t. the optimization variables. On the other hand,
constraints C1–C11 (with relaxed constraint C7), C14, and
C15 span a convex feasible set. As a result, the transformed
problem with the approximated objective function is a concave
maximization problem.
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