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Abstract—This paper proposes a framework for the artifi-
cial noise assisted secure transmission in multiple-input, mul-
tiple-output, multiple antenna eavesdropper (MIMOME) wiretap
channels in frequency-division duplexed (FDD) systems. We focus
on a practical scenario that only the eavesdroppers’ channel
distribution information (CDI) is available and the imperfect
channel state information (CSI) of the legitimate receiver is ac-
quired through training and analog feedback. By taking explicitly
into account the signaling overhead and training power overhead
incurred by channel estimation and feedback, we define the
achievable effective ergodic secrecy rate (ESR), and investigate
a joint power allocation and training overhead optimization
problem for the maximization of effective ESR. We first derive
a deterministic approximation for the achievable effective ESR
which facilitates the joint optimization. Then, efficient iterative
algorithms are proposed to solve the considered nonconvex op-
timization problem. In particular, in the high-SNR regime, a
block coordinate descent method (BCDM) is proposed to handle
the joint optimization. In the low-SNR regime, we transform
the problem into a sequence of geometric programmings (GPs)
and locate its Karush–Kuhn–Tucker (KKT) solution using the
successive convex approximation (SCA) method. For the general
case of SNR, we maximize the lower bound of the achievable
effective ESR. Simulation results corroborate the theoretical
analysis and illustrate the secrecy performance of the proposed
secure transmission scheme.
Index Terms—Physical layer security, MIMOME wiretap chan-

nels, artificial noise, power allocation, training, feedback, ergodic
secrecy rate.
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I. INTRODUCTION

F OLLOWING the pioneering work in [1], more and
more attention has been dedicated to security issues in

the physical layer from an information-theoretic perspective
[2]–[19]. Recently, the multiple-input multiple-output (MIMO)
processing has shown a great potential for enhancing the
security of wireless transmissions [2]. Assuming the avail-
ability of full channel state information (CSI) of a multiple
antenna eavesdropper, the secrecy capacity of a multiple-input,
multiple-output, multiple antenna eavesdropper (MIMOME)
wiretap channel is investigated in [3], and the optimal transmit
signal for MIMOME wiretap channels is studied in [4]. The
ergodic secrecy capacity of fast fading MIMOME wiretap
channels with only statistical CSI at the transmitter has been
investigated in [5]. However, in practice, eavesdroppers are
usually passive and silent to hide their existences. Thus, the
assumption of perfect eavesdropper CSI is too optimistic. To
improve communication secrecy in practical systems, artificial
noise assisted secure beamforming has been proposed in the
literature when the eavesdroppers CSI is completely unkown
[6], where carefully designed artificial noise is transmitted
simultaneously with the confidential message to degrade the
channel quality of the potential eavesdroppers.
A considerable body of literature has investigated the design

of artificial noise schemes for physical-layer security under var-
ious scenarios [6]–[10]. Assuming only the channel distribution
information (CDI) of the eavesdropper is available, the authors
of [7] have studied the achievable ergodic secrecy rate (ESR) as
well as the power allocation between data transmission and arti-
ficial noise in fast fading multiple-input single-output multiple-
eavesdropper (MISOME) channels. The authors in [8] have pro-
posed a joint design of the transmit power and the rate param-
eters of the wiretap code for secrecy throughput maximization
in slow fading multiple-input single-output single-eavesdropper
(MISOSE) channels. In [9], an optimal generalized artificial
noise scheme has been investigated for ESR maximization in
MISOSE channels. Assuming that the number of transmit an-
tennas is sufficiently large, the authors in [10] have investigated
the asymptotically optimal power allocation for both MISOSE
and MIMOME channels. The idea of artificial noise has also
been generalized to relay systems, and cooperative jamming has
been extensively studied in [11]–[14].
The aforementioned works all assume that the CSI of legit-

imate receivers is known perfectly at the transmitter a prior.
However, in practice, the CSI can only be collected through
training and channel estimation. More importantly, the acquired
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CSI is inevitably imperfect due to estimation errors. Therefore,
it is critical to understand the sensitivity of the achievable
secrecy rate of artificial noise assisted secure transmission
schemes due to CSI imperfection, and to characterize the
achievable secrecy rate under realistic CSI assumptions. Re-
cently, several works have considered the impact of imperfect
CSI of the legitimate receiver due to training and feedback
errors, e.g., [15]–[19]. In [15], the optimal tradeoff between
the energy used for training and data signals is studied for the
MISOSE channel. Under the assumption that the perfect CSI
is available at the legitimate receiver but the transmitter can
obtain only quantized CSI through a feedback channel, the
authors in [16] derive an analytical result of the achievable
ESR for MISOSE channel. Furthermore, ESR and secrecy
throughput are maximized by optimizing the power allocation
between the artificial noise and confidential signal as well as
the wiretap coding parameters in [17] and [18], respectively.
In [19], the quantized legitimate CSI assumption has been
generalized to cooperative jamming systems, and the authors
optimize the feedback bit allocation for ESR maximization.
Acquiring CSI is a challenging and resource-consuming

task in time-varying channels. The accuracy of the CSI ac-
quisition through training depends heavily on the amount
of training/feedback overhead and power consumption. In
block-fading channels with a fixed coherence time, there is a
non-trivial trade-off between CSI acquisition and data trans-
mission: an exceedingly large amount of training/feedback
overhead reduces the effective time spent on the data trans-
mission, whereas less time spent on CSI acquisition results
in a poor CSI quality, which also decreases the achievable
secrecy rate. Therefore, considering the overhead for CSI ac-
quisition, the effective ESR should be adopted as performance
metric1. Similarly, a power consumption trade-off between
training/feedback and secrecy date transmission also exists.
However, a comprehensive investigation to the achievable
effective ESR and the optimal training/feedback overhead
and power consumption for artificial noise assisted secure
transmission is still absent so far.
In this paper, we propose a framework for artificial noise

assisted secure transmission in a frequency-division duplexed
(FDD) MIMOME wiretap channel, where the legitimate CSI at
the transmitter (CSIT) and receiver (CSIR) is obtained via for-
ward training and analog feedback2.We provide a rigorous char-
acterization of the achievable effective ESR by taking both the
overhead and power consumption of training and feedback into
consideration. Compared to the existing literatures [10]–[17],
our contributions can be summarized as follows:

1Effective ESR is the achievable ESR excluding the training and feedback
overhead. The mathematical definition is given by (12). In fact, the effective
ergodic rate has been widely adopted as performance metric in single/multiuser
downlink, interference alignment systems, and wireless power transfer system
without secrecy considerations, e.g., [20]–[24], [27]–[31].

2Analog CSI feedback proposed in [22], [24] is an alternative CSI feedback
scheme instead of the quantized channel feedback. Different from the quantized
channel feedback, digitization and coding can be avoided by using the analog
feedback, and therefore, analog CSI feedback is a fast and low-complexity CSI
feedback scheme. It has been widely adopted in broadcast system [29], interfer-
ence alignment [20], and wireless power transfer system [31].

1) We establish a practical framework for artificial noise
assisted secure transmission in the MIMOME wiretap
channel by taking the CSI acquisition into consideration.
Efficient algorithms are proposed for the joint optimization
of training/feedback overhead and power allocations to
maximize the achievable effective ESR,

2) In [10], [17], only the power allocation problem between
the artificial noise and the information signal was consid-
ered for secrecy rate maximization. In this paper, we inves-
tigate a joint training/feedback overhead and power allo-
cation optimization problem for effective ESR maximiza-
tion. This leads to a comprehensive characterization of the
tradeoff between CSI acquisition and secrecy data trans-
mission.

3) In [10], perfect CSI of the legitimate channel is available
at both the transmitter and receiver. In [15], the channel
estimation error at the legitimate receiver is taken into ac-
count while the feedback channel is assumed to be ideal
and error-free. Alternatively, the authors in [16], [17] as-
sume perfect CSI of the legitimate channel at the receiver,
while the transmitter obtains the quantized CSI through a
feedback channel. In contrast, in this paper, we take into
account both the CSI estimation error at the receiver and
the feedback error at the transmitter, which constitutes a
more practical and accurate model.

The remainder of the paper is organized as follows. In
Section II, the considered system model is presented. The
optimization of the power allocation and training overhead is
investigated in Section III. Numerical results are provided in
Section IV, and conclusions are drawn in Section V.
Notation: and denote the transpose and conju-

gate transpose, respectively. and denote trace and
determinant, respectively. is a diagonal matrix with
vector on its main diagonal. is
the upper incomplete Gamma function([44], (8.35)). is
Euler’s digamma function ([45], (2.14)). denotes a cen-
tral Chi-squared random variable with degrees of freedom.

denotes a Wishart matrix with degrees of
freedom and covariance matrix . The factorial of a non-neg-
ative integer is denoted by . denotes an iden-
tity matrix. denotes a circular symmetric com-
plex Gaussian vector with mean vector and covariance ma-
trix . denotes the Frobenius norm. denotes sta-
tistical expectation, and is the th element of vector .

. means that the series
converges to almost surely.

II. SYSTEM MODEL

We consider a standard MIMOME channel, where a trans-
mitter (Alice), a legitimate receiver (Bob), and a passive eaves-
dropper (Eve) are equipped with , and antennas,
respectively. In this paper, we consider a frequency division
duplex (FDD) system and model all channels as uncorrelated
Rayleigh fading. Let be the unit-variance

transmit symbol vector from Alice. Then, is precoded
by a precoding matrix , which is transmitted
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to Bob via the legitimate MIMO channel .
Eve can eavesdrop the confidential information via a wiretap
channel . Similar to [6]–[8], [10], we assume
that , which is made to guarantee com-
munication security, and the elements in and are mod-
eled as independent and identically distributed (i.i.d.) complex
Gaussian random variables with distribution .
In case that the legitimate channel is perfectly known

at Alice while the instantaneous wiretap channel is com-
pletely unknown, artificial noise assisted transmission scheme
is a promising scheme, where Alice transmits the secrecy signal
using eigen-mode beamforming, and transmits artificial noise
concurrently in the null-space of the signal space of Bob [6]–[8],
[10]. Therefore, the precoding matrix consists of the right-
most singular vectors corresponding to the largest singular
values of , and the artificial noise is in the form of ,
where should satisfy , and

. Here, we assume that Alice transmits
multiple secrecy data streams with equal power3. When perfect

is available at Alice and Bob, the received signals at Bob
and Eve are:

(1)

(2)

respectively, where is the transmit power of the secrecy
signal, is the transmit power of the artificial noise,

, and is the received noise
vector at Bob and Eve, respectively.
In this paper, we consider a practical system, where the im-

perfect at Bob and Alice is estimated via training and feed-
back. Although the eavesdropper has to estimate as well in
practice, we assume that is perfectly known at the eaves-
dropper, which is the worst case for guaranteeing security. To
evaluate the secrecy performance, the CDI of the eavesdropper
is assumed to be available at Alice. This assumption has been
adopted in the literatures for performance analysis and resource
allocation [6]–[19].
In the following, we first characterize the estimation error

at Alice by examining the training and feedback process in
Section II.A. Then, we derive the achievable ESR with the
estimated CSI in Section II.B. In Section II.C, with the channel
estimation and analog feedback model, we characterize the
effective ESR achieved with training and feedback.

A. Training and Analog Feedback Model

The three-phase training/feedback and transmission protocol
adopted in this paper is illustrated in Fig. 1. At the beginning
of a time slot, the imperfect estimate of is acquired at Bob
via the forward channel training. Then, Bob calculates the pre-
coding matrix and artificial noise shaping matrix based
on the imperfect estimate. Subsequently, Bob uses analog linear

3Although the water-filling power allocation can achieves better perfor-
mance, as shown in [10], the performance gains achieved by the water-filling
power allocation becomes negligible with the increasing SNR. For simplifying
the theoretical analysis, equal power allocation is adopted in this paper.

Fig. 1. A three-phase protocol for MIMO secrecy communication.

modulation (analog feedback) to transmit and to Alice
over a noisy feedback channel, which result in imperfect esti-
mations and at Alice. Finally, Alice transmits the com-
bination of the confidential signal and artificial noise using
and to Bob. This form of CSI acquisition, referred to as
“closed-loop” CSI estimation [29], is relevant for FDD systems,
where the forward and feedback channels are different. As an
alternative, in time-division duplexing (TDD) systems, CSI can
be obtained by reverse training from Bob [31]. In this paper, we
focus on FDD systems, since FDD has dominated deployment
in practice [29].
Remark 1: Analog CSI feedback was first proposed in [22],

[24]. In contrast to the quantized channel feedback [19], digiti-
zation and coding can be avoided by using the analog feedback,
and therefore, and can be feedback very rapidly. Fur-
thermore, if the feedback channel is an additive white Gaussian
noise (AWGN) channel, and the CSI of the forward channel is
perfectly known at the receiver, it has been shown in [22] that
analog CSI feedback is optimal in that it achieves the minimum
mean-squared error distortion. The studies on the application of
analog CSI feedback in practical systems can be found in [22],
[29], [31]. For example, in [22], an analog feedback framework
for CDMA has been proposed, and in [29], an analog feedback
framework for the MIMO fading broadcast channel has been
proposed. Recently, the analog CSI feedback in the wireless
power transfer systems has been studied in [31].
1) Forward Channel Training: In the first training phase,

Alice sends an orthogonal pilot sequence matrix ,
i.e., , over a training period of duration [27]. To
obtain a reliable estimate of , the number of measurements
should be no less than the number of unknowns, i.e., .
Bob observes

(3)

where is the noise at Bob during forward
channel training period with i.i.d. elements obeying the dis-
tribution , and is the SNR. Based on , Bob
calculates the minimum mean square error (MMSE) estimate
of the forward channel as

(4)
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Considering the properties of the MMSE estimate [24], we
know that has i.i.d. entries obeying , and
the corresponding estimation error has i.i.d. entries obeying

, where and .
Based on the imperfect estimate , Bob calculates the pre-

coding matrix and artificial noise matrix . In particular,
consists of the rightmost singular vectors corresponding

to the largest singular values of , and satisfies
. After obtaining and , Bob feeds back both

and to Alice via analog feedback.
2) Analog Feedback: Instead of idealizing the feedback

channel as a fixed-rate and error-free bit pipe, we explicitly
consider the feedback from Bob to Alice over an additive white
Gaussian noise (AWGN) channel, and the extension to the
fading feedback channel is given in Appendix A4. For nota-
tional conciseness, we define . As described in
[24], we “spread” by post-multiplying by a prearranged

unitary spreading matrix where (We
require to obtain a reliable estimate). The feedback
matrix transmitted by Bob can be modeled as
[20], [24]

(5)

where is the SNR during the analog feedback. We assume
that the least squares (LS) estimator is adopted at Alice for es-
timating [26]. Based on the analog feedback in (5), the LS
estimate of at Alice is obtained as

(6)

where is the noise at Alice during the analog feedback.
The corresponding LS channel estimation error matrix

has i.i.d. entries obeying , where
. We now have , and the estimates and

4In this paper, to simplify the analysis, just as in [22], [23], [29], [30], [31], we
consider a simplified setting where the feedback channel is an AWGN channel.
The non-fading feedback channel can be regarded as an approximation of the
feedback channel when the number of antennas equipped at Alice is large, since
the channel becomes deterministic with a large number of antennas, due to the
channel hardening. In Appendix A, we have shown that the fading feedback
channel can be incorporated in our considered model. But the model obtained
is too complicated, which does not lead to a tractable problem.

at Alice are given by , and ,
where and are the corresponding estimation error ma-
trix, which have i.i.d. entries obeying . In practice,

and should be large enough such that for getting
sufficiently accurate estimates and . Therefore, in the fol-
lowing, we approximate and as unitary matrices to get a
mathematical tractable result. Simulation results in Fig. 4 vali-
date the adopted approximation.

B. Artificial Noise Assisted Secure Transmission Scheme
Using the estimates and , Alice transmits the combina-

tion of confidential signal and artificial noise to Bob. The re-
ceived signal vector at Bob is given by (7) at the bottom of
the page. Due to CSI imperfection, the artificial noise cannot
be eliminated completely at Bob, which deteriorates the per-
formance of achievable secrecy rate. Furthermore, imperfect
knowledge of at Bob implies that signal misdetection may
occur which reduces the effective received signal-to-interfer-
ence-and-noise-ratio (SINR).
At Eve, the received signal vector is given by

(8)

From [27], ([28], Lemma 1), [29], we know that the exact
capacity expression under imperfect CSIR is still unavailable.
Since only is available at Bob from the forward channel
training, the exact capacity of Bob is difficult to get from (7). To
obtain a tractable problem, we resort to deriving a lower bound
of Bob’s capacity. Firstly, is independent of due to
the property of MMSE estimator. Secondly, is independent
of , since reflects the distortion due to noise. Thus both
the estimate error terms and the artificial noise leakage terms in
(7) are uncorrelated with the signal term. Then, exploiting the
widely adopted result in [27], ([28], Lemma 1), a tight lower
bound5 of Bob’s capacity can be obtained by considering the
worst case scenario, where

5The lower bound has been shown to be tight in [27], [28].

(7)
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are taken as uncorrelated Gaussian additive noise with the vari-
ance . Hence, a capacity lower bound

for Bob can be calculated as

(9)

where is the normalized channel estimate and

each entry of is i.i.d. complex Gaussian with distribution
. Define , which can be

regarded as the effective average SINR at Bob.
Considering the worst case of secure communication where

the perfect CSI, i.e., both and , are available at
the eavesdropper, the instantaneous capacity of Eve can be cal-
culated from (8), which is given by

(10)

In [6], [10], [19], it was shown that by using Gaussian inputs and
stochastic encoders, the achievable ESR can be calculated
as

(11)

C. Effective ESR
In this paper, we adopt a block fading channel model to per-

form the training and feedback optimization, where the chan-
nels in the considered model remain constant for a coherence
time of , but vary independently from block to block. The co-
herence time can be calculated as , where is the
block fading channels’ effective Doppler spread [20]. In such a
channel, both the channel estimation and payload data transmis-
sion should be finished within , otherwise, the estimated CSI
would be outdated. From the training and feedback model, only

amount of time is spent on the data transmission.
For such a signaling overhead model, the achievable effective
ESR, can be calculated by

(12)

Obviously, increasing the CSI acquisition overheads and power
consumptions, i.e., and , would improve the quality
of the estimated CSI, but reduces the time and power for the se-
crecy transmission. On the contrary, less CSI acquisition over-
head allows more time and power for the secrecy information
transmission, but the poor quality of the estimated CSI would
increase the noise variances and and thus reduces .
As a result, there is a non-trivial trade-off in the resource al-
location between the channel estimation and the data transmis-
sion for maximizing the achievable effective ESR. Besides, the
power allocation between the artificial noise and the secrecy

signal plays an important role in the system performance and
should also be addressed.
In the following, we optimize , and

jointly for maximizing the effective ESR.

III. OVERHEAD OPTIMIZATION AND POWER ALLOCATION IN
MIMOME CHANNELS

Before proceeding, for convenience, we denote
for , and

. denotes the total time for CSI training and feedback.
Then, the effective ESR maximization can be formulated as

(13a)

(13b)

(13c)

where denotes the maximal transmit power during the co-
herence time . Note that , and characterize both
the time overhead and power consumption for training and feed-
back, and show the power allocation between confiden-
tial signal and artificial noise.
To solve problem (13), we should derive the analytical ex-

pression of . Although the analytical expression of can
be derived by using ([32], Theorem 1), ([33], Theorem 1), the
obtained result is too cumbersome and does not facilitate the
algorithm design for optimizing the overhead and power allo-
cation. As an alternative, we resort to a deterministic approxi-
mation of the achievable by considering .
The main result is summarized in following theorem based on
the random matrix theory.
Theorem 1: With ratios , and
, we have

(14)

where is given by (15),

(15)
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Fig. 2. Comparison between the simulations and the deterministic approxima-
tion in (15) and the high-SNR approximation in (19) with

.

(16)

(17)

and is the unique positive solution satisfying

(18)

Proof: The proof is given in Appendix B.
Remark 2: We should highlight that satisfying (18) is

unique, since it can be proved that satisfies the following
properties of the standard interference function, i.e., a) Posi-
tivity ; b) Monotonicity. If , then

; c) Scalability. For all . There-
fore, we can conclude that is the standard interference
function in [35], and satisfying (18) is unique according to
([35], Theorem 1).
As shown in ([34], Table I), the asymptotic expression of

for large and yields an extremely accurate approxima-
tion even if the number of antennas is small. The accuracy of the
adopted approximation is validated by the simulation results in
Fig. 2. We can find from Fig. 2 that even though the adopted

are small, e.g., , and
still accurately approximates . Thus with the determin-

istic approximation in (15), the objective function in (13) can be
approximated by .
Note that is a function of the powers , and the CSI

estimation errors , which is determined by ,
and . Therefore, is very complicated and nonconvex. In
general, a brute force optimization approach may be required
and the computational complexity is very high. In the following

subsections, we first investigate the solution structures in the
high- and low-SNR regimes, respectively, and provide efficient
iterative algorithms for maximizing . Finally, we will dis-
cuss the case of general SNR, and maximize the lower bound of

.

A. The High-SNR Regime
The high-SNR approximation of is summarized in the

following lemma.
Lemma 1: In the high-SNR regime, can be approximated

by

(19)

where and are given by (20)
and (21).

(20)

(21)

is the solution of (18), and

(22)

Proof: The proof is given in Appendix C.
In Fig. 2, we validate the deterministic approximation in

(15) and the high-SNR approximation in (19). From Fig. 2,
we can find that is very accurate at moderate to high ,
which is the operating regions for most high speed wireless
communication systems. Therefore, in the following, we ap-
proximate by and optimize for maximizing
the achievable effective ESR.
Although compared with has been much simplified,

the optimization problem obtained is still intractable due to the
interaction between the optimization variables and the implicit
parameter , which is coupled through a complicated fixed-
point equality constraint (18). For obtaining a tractable problem,
we first rewrite in an equivalent form via removing the
fixed-point equality constraints. Then, we propose a block co-
ordinate descent method (BCDM) ([36], Section 2.7) for han-
dling the joint optimization problem. For brevity, we assume
that in the following, and the obtained analytical results
can be directly generalized to the case .
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For notational simplicity, we define

(23)

and then we have the following theorem.
Theorem 2: can be expressed as

(24)

Proof: The proof is given in Appendix D.
With Theorem 2, stacking all the optimization variables into

a vector , the joint optimization
problem (13) in the high-SNR regime can be reformulated as

(25)

We can see that using Theorem 2, the fixed-point equation
constraint on has been eliminated, and we obtain an equivalent
problem (25), which is still nonconvex. In the following, we will
show that a stationary local optimum
and can be obtained by BCDM.
Firstly, we show that is a concave function of by

the following theorem.
Theorem 3: is a concave function of .
Proof: can be rewritten as

(26)

where
, and .

The first derivative of with respect to is

(27)

It is not hard to see that the first term is irrelative to , and
the second and the third terms are decreasing functions of .
Therefore, we can conclude that and is a
concave function of .
Therefore, at each iteration in BCDM, for a fixed , the op-

timal for maximizing is the solution of
which can be located by a bisection search. Then, we will show
that with a given , the optimal for maximizing can
be located by the following procedures. Introducing the fol-
lowing variables

, and , and
defining , the objective
of the problem (25) can be reformulated as given by
(28),

(28)

where denotes the collection of those constant terms indepen-
dent of .
Since is a convex function of

[47], is a concave function of .
Then, given , considering the following problem

(29a)

(29b)
(29c)

(29d)

in case that the constraint (29c) is active, the optimal solution
of the problem (29) is also the optimal solution of the problem
(25). In fact, constraint (29c) should be active, otherwise,
and can increase further to increase the objective function
of the problem (29), which would lead to a contradiction. With
a fixed , the problem (29) is a convex optimization problem,
whose optimum can be located by the standard interior-point
algorithm. Accordingly, the optimal can be obtained.
The proposed BCDM algorithm is summarized in Algorithm

1.

Algorithm 1: Proposed BCDM Algorithm for Solving the
problem (25)

1. Initialize , and accuracy
2. while ,
3. Solving the convex optimization problem (29), and the

optimal can be obtained as

, and ,
4. Using the bisection search, the optimal can be

calculated by solving the following equation

(30)

5. end while.
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Fig. 3. The convergence rate of Algorithm 1with dBm and .

For the convergence of the algorithm, we have the following
corollary.
Corollary 1: The limiting solution generated by Algorithm 1

is a stationary point of the joint optimization problem (25).
Proof: It can be verified that the objective function

is continuously differentiable, and the feasible set is closed,
nonempty, and convex. Moreover, since is bounded,
by Bolzano-Weierstrass theorem, we know that and
must have limit points. Therefore, invoking ([37], Corollary 2),
we conclude that every limit point is a stationary
point of the joint optimization problem (25).
The convergence rate of Algorithm 1 is shown in Fig. 3. We

can find that Algorithm 1 converges to a stationary point within
5 iterations for and the convergence rates are almost
the same for different , and . Therefore, simulation
results show that Algorithm 1 is an efficient optimization algo-
rithm for handling the nonconvex problem (25).

B. The Low-SNR Regime

In this subsection, we design , and
jointly to maximize in the low-SNR regime. In this case,
we can use the first-order expansion of the mutual information
around to get an approximation of the achievable ESR.
Using ([38], (40)), we have

(31)

(32)

where denotes the higher order infinitesimal terms with
respect to . Neglecting the higher order infinitesimal terms, the

approximation of the achievable ESR in the low-SNR regime,
i.e., , is given by

(33)

We immediately have the following corollary.
Corollary 2: In the low-SNR regime, for

, the positive ESR can be
achieved and the optimal , i.e., no artificial noise is
transmitted. For , the achievable
ESR is zero.

Proof: When is a de-
creasing function of . The corollary can be obtained from (33)
directly.
With , we optimize the remainder system parameters

jointly for maximizing in the low-SNR regime in the fol-
lowing. From (33), the effective ESR can be approximated by

and the optimization problem can be formulated as
follows

(34)

Introducing the slack variables and and using (26), we
formulate the following problem:

(35a)

(35b)

(35c)

(35d)
(35e)

(35f)

In case that constraints (35b), (35c), and (35e) are all active, the
optimal solution of the problem (35) is also the optimal solution
of the problem (34). We use the contradiction method to show
that constraints (35b), (35c), and (35e) should be active. Sup-
pose that (35b), (35c), and (35e) are not all active at the optimal
solution , then we can construct
a feasible point
for such that constraints (35b),
(35c), and (35e) are active, which is still feasible to the
problem (35). It can be seen that the contructed solution

can achieve a higher
objective value than that offered by the optimal point, which
leads to a contradiction. Therefore, we can conclude that
constraints (35b), (35c), and (35e) are active at the optimal
solution, and the problem (35) is equivalent to the problem
(34).
The problem (35) is a nonconvex geometric program due to

constraint (35f) which is a ratio of posynomials ([41], Section
IV). Although the optimal solution of the problem (35) is diffi-
cult to get, a successive convex approximation method (SCA)
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can be used to transforms it into a sequence of geometric pro-
grams to locate its KKT solution [41]. To this end, we condense
the denominator posynomial of (35f) into a monomial using
([41], Lemma 1) at each iteration. In particular, with the ob-
tained at the th iteration, we condense the denomi-
nator posynomial of constraint (35f) into a monomial as

(36)

where

As indicated in [41], SCA converges very fast and the solu-
tion obtained by SCA is very close to the global optimum. The
proposed SCA algorithm is summarized in Algorithm 2.

Algorithm 2: Proposed SCA for Solving the Problem (35)

1) Initialize feasible ,
2) Condense the denominator posynomial of the constraint

(35f) into a monomial by (36),
3) Solve the resulting GP,

(37)

(38)

(35b)-(35e) (39)

4) Go to step 2 with the obtained solution.
5) Terminate the loop if the improvement of objective

function is less than , where is the error tolerance for
exit condition.

C. General SNR Case

For the case of general SNR, the joint design problem is more
complicated. For handling this problem, we resort to optimize
the lower bound of the objective function. Specially, we first
derive a simple lower bound of in (11), i.e., and design

and jointly for maximizing the lower
bound of the effective ESR, i.e., . The lower bound
is given by the following theorem.
Theorem 4: A lower bound of in (11) is given by

(40)

where

(41)

Ξ

(42)

Ξ (43)

.
Proof: The proof is given in Appendix E.

Optimizing the lower bound of the objective function of
problem (13) can be formulated as the following problem

(44)

Compared (44) with (25), we find that they have the same
structure. Therefore, problem (44) can be solved with a similar
BCDM as solving problem (25). Firstly, the following proposi-
tion shows that is a concave function of .
Proposition 1: is a concave function of , and

the optimal satisfies the equation

(45)

where , and are defined in (26).
Proof: The proof is similar as the proof of Theorem 3,

which is omitted for brevity.
From (43), we find that although the formulas of for

and are different, has
the same optimization structure for both cases. Therefore, we
consider the case and the result obtained can
be directly generalized to the case . Introducing
the following variables

, and
, the objective of the problem (44) can be reformulated as
given by (46),

(46)

where denotes the collection of those constant terms do not in-
volve . Then, with a given , the optimal can be obtained
by solving the following convex problem via the interior-point
algorithm.

(47)
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Fig. 4. Optimized versus the velocity of Bob in the system, , for
, and .

Then just as Algorithm 1, the stationary solution of the
problem (44) can be located by the BCDM Algorithm which
optimizes and alternatively. The de-
tails are omitted for brevity.

IV. SIMULATION RESULTS
In this section, considering typical wireless system parame-

ters, where a wavelength of m (corresponding to a car-
rier frequency of 2 GHz), a coherence bandwidth of
kHz, a normalized Doppler given by with Bob’s
velocity and , simulation results are provided to verify
the performance of our proposed secure transmission scheme.
In Section II.A, we approximate as an unitary matrix for

facilitating the theoretical analysis, and we validate the approx-
imation in Fig. 4. Specially, we plot the variance of the estima-
tion error matrix, i.e., , versus . From the simulation results
in Fig. 4, we can find that the optimized is very small, which
can be ignored. In particular, when dBm and
km/hr, the optimized .
Fig. 5 shows the achieved by the considered system

for various vehicular-levels of mobilities, . Furthermore, for
showing the performance gains brought by the proposed op-
timization approach, we plot the achievable with

. From the sim-
ulation results in Fig. 5, we can find that with the increasing
, the achievable effective ESR with imperfect CSI decreases,
due to the more severe estimation errors and shorter training
overhead. Furthermore, a substantial performance gain can be
achieved by the proposed algorithm over the baseline scheme
with , which shows
the efficiency of our proposed joint optimization strategy.
Fig. 6 shows the achievable versus the Bob’s velocity,
. With the increasing , the coherence time decreases, and

decreases. However, by optimizing the power allocation
and training overhead jointly, the performance degradation is

Fig. 5. Achievable effective ESR versus the power budget at Alice for
, and different velocities of nodes.

Fig. 6. Achievable effective ESR versus the Bob’s velocity at Alice for
, and different velocities of nodes.

very small. For example, when dBm and increases
from 80 km/hr to 160 km/hr, the secrecy performance degrada-
tion is only 0.53 Bits/s/Hz, which also validates the robustness
of our proposed secure transmissions scheme.
Fig. 7 shows the optimized signaling overhead fraction

versus . From the simulation results in Fig. 7, we
can find that with the increasing , the signaling overhead
fraction is increasing, since with the increasing , the dimen-
sionality of the forward channel increases and the signaling
overhead should be increased for obtaining a satisfactory esti-
mation. Furthermore, the signaling overhead increases with the
increasing . This is due to the fact that when increases, the
coherence time decreases and for protecting the system from
the performance degradation due to the CSI error, more sig-
naling overhead should be spent on the training and feedback,
which leads to an increasing signaling overhead fraction.
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Fig. 7. Signaling overhead fraction versus for dBm,
and .

Fig. 8. Signaling overhead fraction versus for dBm,
and .

Fig. 8 shows the optimized signaling overhead fraction
versus . Just as the simulation results in Fig. 7, the

signaling overhead increases with the increasing . However,
although the increasing overhead improves the CSI estimate
quality, it reduces the time duration for payload data. There-
fore, it can be observed that there is a diminishing return in
signaling overhead fraction as increases. This observation
again shows the trade-off between the channel estimation and
data transmission. Furthermore, the simulation results show
that different and do not affect the signaling overhead
fraction and the decreasing would increase the signaling
overhead fraction.

V. CONCLUSION

In this paper, we proposed a practical framework for the
artificial noise assisted secure transmission scheme in MI-
MOME channels, where the imperfect CSIs at Alice and
Bob are obtained through training and analog feedback. We
derive a simple closed-form analytical expression of ESR to
quantify the dependence between signaling overhead/training
power and the achievable effective ESR. Efficient iterative
algorithms are proposed for optimizing the power allocation
between data transmission and artificial noise, and signaling
overhead/training power jointly to maximize the achievable
effective ESR. In addition, we proved that in the low-SNR
regime, exploiting artificial noise for guaranteeing secure
communication is not necessary and derived a condition for
achieving the positive ESR. Simulation results corroborate
the theoretical analysis results and demonstrate the achievable
performance of our proposed joint optimization method.

APPENDIX A
EXTENSION TO THE FEEDBACK CHANNEL WITH FADING

Assuming that Bob sends and back to Alice via a
feedback channel , whose elements are i.i.d.

complex Gaussian with distribution . Here, we as-
sume that only the imperfect estimation of , i.e.,
is obtained at Alice with MMSE estimator, which has i.i.d.

, and the corresponding estimation error is
, where . and

are training time and power spent on the estimation of .With
the gathered observations, Alice calculates an estimate of and

with the LS estimator. The corresponding estimation error
can be calculated with similar procedures, whose entries have
zero mean and variance .
Then, the joint power allocation and training overhead op-
timization problem for such case can be built by setting

.

APPENDIX B
PROOF OF THEOREM 1

In the following, we resort to asymptotic capacity analysis
results in [34] to derive the deterministic approximations of

and , respectively.
With ([34], (8)), the deterministic approximation of

can be derived as follows

(48)

where is defined in (16).
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can be rewritten as (49).

(49)

Since and have i.i.d. entries, and and
are both unitary matrices, the matrix and

matrix both have i.i.d. en-
tries. By exploiting the asymptotic capacity analytical results in
([34], Section IV), the deterministic approximation of the min-
uend in (49) is given as (50),

(50)

where is the solution to (18).
From ([34], (8)), the deterministic approximation of the sub-

trahend in (49) is given as follows

(51)

Substituting (48), (50), and (51) into (11) and the result fol-
lows immediately.

APPENDIX C
PROOF OF LEMMA 1

Since , by applying ([34], (15)), we have the following
high SNR approximation

(52)

On the other hand, is given in (49). By utilizing the
result from ([34], (15)), in the high-SNR regime, the subtrahend
in (49) can be approximated by which is defined in (22).
Also, the minuend in (49) is derived in (50). Then combining
the results in (50), (52), and (22), the proof is completed.

APPENDIX D
PROOF OF THEOREM 2

The partial derivative of with respect to can be
written as

(53)

and we let satisfy

(54)

Defining
, we can find

that is a monotonically increasing with respect to
. Then, we have

(55)

Therefore, we have

(56)

(56) indicates that is the optimal solution for maximizing
. Fortunately, from (54), we can find that sat-

isfies the fixed point (18), i.e., . Furthermore,
satisfying the fixed point (18) is unique, as shown by Remark 1.
Therefore, we have .

APPENDIX E
PROOF OF THEOREM 4

From (11) we can expressed as (57).

(57)

In the following, we apply the Minkowshi’s inequality [46] to
arrive at a lower bound of as follows

(58)

Since is convex in for , applying the
Jensen’s inequality, step can be obtained.
Besides , according to ([45],

(2.12)), we have and
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is defined in (40). When , with a similar
procedures as (58), we have

(59)

However, when .
Since [46], when

, with a similar procedures as (58), we have

(60)

The third term in (57) can be approximated by the deterministic
approximation in (50), and according to Theorem 2, it can be
written as (42). Then, combining (58), (59), and (60), the lower
bound of in Theorem 4 can be obtained.
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