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Abstract

The measurement of frequency is a fundamental and significant topic for the power sys-

tem. In this report, a novel method for single power system is proposed to track the

frequency of a real single-phase sinusoid with white Gaussian noise. This technique com-

bines the Extended Kalman Filter with an interpolation algorithm created by Aboutanios

and Mulgrew (the A&M algorithm). Two existing techniques are simulated in the report.

The proposed method is simulated to emphasise the advantages comparing with the ex-

isting methods. All algorithms are carried out with both constant frequency and step

change frequency.
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Chapter 1

Introduction

1.1 Context

As the development of power system, signal processing has become a significant evaluation

tool to allow engineers to design and operate the smart grid. Signal processing is applied

in a lot of applications and has become an essential class of tools for analysis of the power

system [1]. In the power system, the trend of the frequency indicates the dynamic balance

between the power generation and load. Therefore, frequency is an important quantity in

the power system. When the frequency of the grid varies, the speed of the motors which

connected to that grid will change as well. Either a higher or lower frequency may result

in damage to the machine. So it is necessary to maintain the power system frequency

stable.

To protect and control the power system, many applications are applied. Frequency is

used directly or indirectly in some of those applications. For example [2], the frequency

is used in power system stabilizers (PSS) as the control target to reduce the system os-

cillations. The frequency relays are designed to be used for protecting the generators and

turbines against the under or over frequency. The remedial action schemes (RAS) are

relying on the system frequency to detect abnormal system conditions, and automatically

make corrective actions to prevent large area black out. Obviously, frequency is one of the

most significant parameters in power system and in order to en- sure the power system
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working in a safe and stable condition, the frequency variation needs to be strictly limited.

Thus, it is important for the electric power company to monitor how frequency changes

dynamically over time. For this purpose, the strategy of frequency tracking is involved.

Figure 1.1: Frequency Deviation Following a Contingency Event

Since the waveform of each phase of the signal in the smart grid is presented as a single-

phase sinusoid, to develop a method for frequency tracking is an important and classical

research issue in digital signal processing. The National Electricity Market (NEM) is the

largest electricity wholesale market in Australia, it supplies around 80% electricity con-

sumption of Australia [3]. Figure 1.1 shows an example of control of frequency in NEM. In

this figure, there is a contingency event of a sharp drop at time T1 and the power system

frequency falls out of the normal range at time T2. In this case, an adjustment and con-

trol should be involved to stop the falling and restore the frequency into the normal range.

The above series of actions is based on the tracking of the system frequency. Because of the

significance of frequency for power system, the frequency is expected to be tracked in an
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accurate manner. In [4], it stated three conditions of a frequency tracking strategy should

achieve: 1) fast speed of convergence; 2) robustness to noise; 3) accuracy of frequency

estimation. And in order to support the fast frequency tracking, the complexity of the

computation of the tracking technique should be reduced to minimum [5].

1.2 Problem Statement

In the smart grid under the ideal situation, there exists a stable status, which the total

generation equals to the total consumption plus losses. In this state, the system frequency

is maintained to the nominal value. However, in reality all signals are corrupted by noise

during practical usage. Therefore the tracking strategy need to be robustness to noise. In

order to achieve fast tracking, the tracking method must have a low computation cost.

1.3 Report Outline

The report includes six chapters. In Chapter 1, it gives a brief introduction on the

background and the importance of frequency. Chapter 2 shows the signal model and

objectives of this thesis work. In Chapter 3, it reviews other researchers’ work. Then,

Chapter 4 explains the proposed algorithm in details. Chapter 5 demonstrates all the

simulation results and analysis. At last, Chapter 6 concludes the whole report and presents

some future plans.
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Chapter 2

Background

2.1 Signal Model

In the single power system, the electric power is distributed and delivered in the form of

alternating current (AC). In Australia, the single-phase voltage is often described as a 230

volt AC with frequency of 50 Hz sinusoidal waveform. And usually, there is additive noise

accompanying the signal. Therefore, the single-phase signal model can be represented as:

x(t) = Acos(2πft) + v(t) (2.1)

where y(t) is the signal, A is the amplitude, f is the true frequency and v(t) is the noise.

The signal will be sampled to be discrete-time signal with the sampling frequency fs. The

sampled discrete-time signal can be shown as:

x[n] = Acos(2π
f

fs
n) + v[n] (2.2)

In equation (2.2), we assume the sampling frequency is large, which also means the sam-

pling period is very short and the frequency does not change during a sampling period.

The noise term v[n] is white Gaussian noise noise with zero mean and variance σ2. The

variance is determined by the signal-to-noise ratio (SNR). SNR in dB is obtained by:
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SNRdB = 10log10(SNR) (2.3)

Apply the definition of SNR

SNRdB = 10log10(
Psignal
Pnoise

)

SNRdB = 10log10(
A2

σ2
)

(2.4)

According to equation (2.4), the variance of noise can be determined by:

σ2 = A210−
SNRdB

10 (2.5)

Figure 2.1 presents a single-phase power system signal with white Gaussian noise.

Figure 2.1: System Signal with Noise
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2.2 Objective

The ultimate aim of the thesis is to develop a novel method of frequency tracking for single-

phase system signal. First, a review on the existing tracking strategies will be presented.

Then, the thesis will implement, evaluate and compare some existing methods. Finally,

propose and implement a new method for frequency tracking. Also, a comparison of all

methods will be shown at last.
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Chapter 3

Literature Review - Existing

Techniques

The frequency tracking techniques have been developed and studied for a very long time.

Many frequency estimation methods have been proposed by researchers. In this chapter,

three techniques for frequency tracking will be introduced and explained. The three

techniques are modified zero-crossing method, modified EKF method and the combination

method of window function and the A&M algorithm.

3.1 Modified Zero-Crossing

Zero-crossing method is the most common and popular strategy to measure the fre-

quency. [2] specified the principle of zero-crossing technique: zero-crossing points of the

signal waveform will be detected, and the number of samples between each two zero-

crossing points will be counted, therefore, the period of the waveform can be calculated

from the number of samples and sampling frequency. Zero-crossing is a simple and widely

used method and easy to implement, it also has the advantage of insensitivity to the

variation of the amplitude. However, the traditional zero-crossing method suffered from

the inaccuracy of detecting zero-crossing points due to the sensitivity to noise, presence

of harmonics and DC component.
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In [6], a modified zero-crossing method combined zero-crossing with data smoothing tech-

nique by using least squares technique is introduced. For this method, environmental

noise are considered in the signal model, so that the modified zero-crossing technique can

be used in the power system in the presence of noise. The steps of the algorithm are

presented below.

The signal model used for this method is like shown in equation (2.1). And the sampled

signal is presented in equation (2.2).

First, a measurement window, X[n], is defined. It presents a set of M consecutive samples:

X[n] =
[
x[n+ 1] x[n+ 2] ... x[n+M ]

]T
(3.1)

The measurement will be restarted whenever the counter counts that there are half of

the samples are positive (or negative). We assume M is an even integer. In order to

smooth data, the set of sampled signal need to be fitted into an l− th degree polynomial

pl : R→ R:

pl(t) = a0 + a1t+ a2t
2 + ...alt

l =
l∑

j=0

ajt
j (3.2)

The coefficients can be calculated by using the least square technique:

K · a = X[n] (3.3)

a = (KTK)−1KTX[n] (3.4)

The equation (3.3) is quite possible to use in real-time because it does not involve the

inversion of KTK.The performance will be better if the degree of the polynomial is small,

such as second or third order. The less the degree of the polynomial, the more stable of

the system. Next, we need to calculate the roots of pl(t):

pl(t̂j) = a0 + a1t̂j + ...+ alt̂
l
j = 0 (3.5)
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As the measurement window moving along the waveform, the values of t̂j will correspond

to the approximate zero-crossing points of the signal. And the difference between every

two odd or even subscripted solutions will represent periods of the signal. The frequency

can be obtained by finding the inverse of the period.

f̂j =
1

t̂j − t̂j−2
(3.6)

The noise in the signal can be suppressed effectively. The speed of the algorithm is

reasonably fast since it is possible to calculate the frequency every half cycle. The author

also applied simulation for this method. The simulation results show that the modified

zero-crossing method has good performance under steady state. And under the transient

condition, it can track frequency with satisfied results. However, there is a potential

problem of the method, it is sensitive to the switching transients in the waveform. This

problem can cause corruption to its performance for about 30 cycles after the transient.

14



3.2 Modified Extended Kalman Filter

Kalman filter is basically an optimal recursive data processing algorithm [7]. The Kalman

filter technique can provide quality measurement results for the frequency estimation. It

has the property of scalability which can be applied in various situations. In [8], a novel

modified method in the design of the Extended Kalman Filter (EKF) with noise distortion

is introduced.

This modified EKF is proposed due to decreasing the convergence time and increasing

the accuracy of the tracker. The modification is made according to the noise variance

technique [9]. The noise variance can be adjusted based on the tracking performance of

the EKF. When the EKF performs in a satisfactory manner, the noise variance will be

set to zero. Otherwise, it will be set to a larger number. This modification has the ability

to adapt the tracking system based on the its performance. This method can provide a

better frequency estimation than the normal EKF. And the modified EKF is more suitable

to be applied to real-time applications.

3.2.1 Signal Model

As mentioned in Chapter 2, the signal model is set as equation (2.1). In the EKF, this

signal can also be described with state space model. An measurement signal zt at time t

can be indicated as a sum of xt and white Gaussian noise vt:

zt = xt + vt (3.7)

where xt = Acos(2πft) and vt = v(t). The measurement noise vt is the white Gaussian

noise with variance σv
2.

Figure 3.1 illustrates the block diagram of the modified EKF, where Q(t) is the process

noise covariance.
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Figure 3.1: Block Diagram of the Modified EKF

3.2.2 Operation Principle

In the EKF, the measurement and state changing models can be presented as differential

equations. The disadvantage of EKF is it requires a lot of computation cost. EKF can be

applied for estimating a unknown parameter of a system with corrupted measurements

and known stochastic model. Also, it can determine the state vector and stochastic model

of the future measurement of the system. Equation (3.8) describes the state model in the

system model of EKF and equation (3.9) describes the measurement model.

xt = Axt−1 +But + wt−1 (3.8)

zt = Hxt + vt (3.9)

In the system model, xt is the state vector updating at time t which symbolized the signal

to be estimated in the EKF. For this method, the control value ut is assumed to be zero

in the system. The wt−1 and vt are the process noise and measurement noise respectively.

Noise vectors are in Gaussian distribution and statistically independent. To obtain the

process noise covariance Q and measurement noise covariance R, we can substitute the

process and measurement noise in to the following equations (equation (3.10) and equation

(3.11)):

Qt = E{wtwtT} (3.10)

Rt = E{vtvtT} (3.11)
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In the EKF, there are prediction and correction equations which are presented as:

x̂t = KtZt + (1−Kt)x̂t−1 (3.12)

Equation (3.12) demonstrates the relationship between the estimated value updating at

time t and the estimated value at the previous step. In the equation, Kt is the Kalman

gain and Zt is the measurement value. Equation (3.12) is aim to compute the estimation

value of each step time by applying time updated Kalman gain (Kt). In order to achieve

that purpose, there are two different types of equations have developed in EKF. The

first type is illustrated in equation (3.13) and equation (3.14), which are the prediction

(estimation) equations:

x̂−t = Ax̂t−1 (3.13)

Pt
− = APt−1A

T +Q (3.14)

The second type is shown in equation (3.15) to equation (3.17), which are called correction

(observation) equations:

Kt = Pt
−HT (HPt

−HT +R)−1 (3.15)

x̂t = x̂−t +Kt(zt −Hx̂−t ) (3.16)

Pt = (1−KtH)Pt
− (3.17)

In the equation, the Pt means the error covariance matrix. The estimation values are the

priori estimations (x̂−t and Pt
−) before the correction, which are determined by applying

the prediction equations. The updated posterior estimation values, which are calculated

by substituting priori estimation values in correction equations are x̂t and Pt. Then, the

priori estimations are recalculated by applying the updated posterior estimation values

that are produced in the earlier step. This update procedure carries on in an iterative way.

As mentioned before, in the modified EKF, the process noise covariance (Q) can be

adjusted by the tracking performance. For this method, Q can be presented in the form

showing below:
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Qt =

σ2
w1 0

0 σ2
w2

 (3.18)

where σ2
w1 and σ2

w2 are Gaussian random variables with zero mean. The system signal

magnitude and frequency are chosen as state variables. Equation (3.19) presents the

statevariable of the system:

x̂t =

at
ft

 (3.19)

where a and f are amplitude and frequency respectively.

To adjust the process covariance matrixQt adaptively according the tracking performance,

an algorithm called lock detection is introduced in [9]. If the tracking performance is

satisfactory, σ2
w1 and σ2

w2 will be set to zero. If the tracking performance is unsatisfactory,

the values of σ2
w1 and σ2

w2 will be determined by the modification algorithm. For this

method, the error equation at time t can show the tracking performance of the EKF.

Equation (3.20) displays the error function:

et = (zt −Hx̂−t ) (3.20)

The tracking performance entirely relies on the error equation. In this method, the

average of recent errors are used for comparison. If the average value is smaller than

γ times
√
Rt, where Rt is the measurement noise covariance, it is satisfactory for the

tracking performance. γ is a constant value with a pre-defined threshold value range

(1.0 ≤ γ ≤ 3.0). On the contrary, if the performance is unsatisfactory, the covariance

matrix will be set by modification system as shown in equation(3.21):

σ2
w1 = σ2

w2 =
ft

2

12
(3.21)
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The Kalman gain will increase as the increasing of σ2
w1 and σ2

w2. The lock detection algo-

rithm is modifying the EKF by locking and unlocking Kalman gain. The lock detection

technique is outlined below:

σ2
w1 = σ2

w2 = 0 as
1

M

M∑
m=1

em ≥ γ
√
Rt

σ2
w1 = σ2

w2 =
fk

2

12
as

1

M

M∑
m=1

em < γ
√
Rt

(3.22)

The convergence time is decreased and the accuracy is increased by applying the lock

detection algorithm. Therefore, the tracking performance of the EKF is improved.
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3.3 The Combination of Window Function and the

A&M Algorithm

3.3.1 The A&M Algorithm

The Aboutanios and Mulgrew algorithm (the A&M) is a real single sinusoid frequency

estimator, which is based on the interpolation on Fourier coefficients [10]. The A&M

algorithm can give estimated frequency, amplitude and phase of a group of data of sine

wave. A summary of the A&M algorithm is presented in Table 3.1 [10].

Input A real sine wave x(n), n = 0, 1, ..., N − 1

Calculate X(k) = FFT (x) and Y (k) = |X(k)|2

Calculate m̂ = argmax
k

Y (k), if m̂ ≥ N
2

, m̂ = N − m̂

Set δ̂ = 0 and Â = 0

Loop For i from 1 to Q do

(1) X̃± =
N−1∑
n=0

x(n)e−j
2π
N

(m̂+δ̂±0.5)n

(2)
ˆ̆
S± = Â∗ 1+e−j4πδ̂

1−e−j
2π
N

(2m̂+2δ̂±0.5)n
, and Ŝ = X̃± − ˆ̆

S

(3) δ̂ = δ̂ + 1
2
<{ Ŝ++Ŝ−

Ŝ+−Ŝ−
}

(4) Â = 1
N

(
N−1∑
n=0

x(n)e−j
2π
N

(m̂+δ̂)n − Â∗ 1+e−j4πδ̂

1−e−j
4π
N

(m̂+δ̂n
)

Calculate f̂ = m̂+δ̂
N

, â = 2|Â| and φ̂ = 6 Â

Table 3.1: The A&M Algorithm
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3.3.2 Window Function

In digital signal processing, the window function is a closed mathematical interval with the

outside of the interval remains to zero. In normal implementations, the window functions

are represented as smooth, symmetric, non-negative and bell curved [11]. The window

can also be rectangular or triangle.

Rectangular Window

The rectangular window is a simple window that sets the outside values to zero and inside

N values not changing. It makes the waveform appear as suddenly turns on and off:

w(n) = 1 (3.23)

Figure 3.2 shows the time domain and frequency domain of the rectangular window.

Figure 3.2: Rectangular Window
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Hamming Window

The Hamming window function has a bell-curve shape. The window appears as a wide

peak and low side lobes as shown in Figure 3.3. The Hamming window approaches zero

but does not reach zero at the ends. Therefore, there still has a little discontinuity

remaining in the signal. Due to that characteristic, the Hamming window is suitable for

minimising the nearest side lobe and it will result a higher accuracy for the frequency of

the original signal. The form of Hamming window is demonstrated in equation (3.24)

w(n) = α− βcos( 2πn

N − 1
), where α = 0.54, β = 1− α = 0.46 (3.24)

Figure 3.3: Hamming Window
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3.3.3 Operation Principle

This technique is an expansion from the A&M algorithm, it combines the window function

with the A&M algorithm. Figure 3.4 illustrates how the window function is applied on

the signal data.

Figure 3.4: Diagram of Window Shifting

A window of size N is created to contain the data, where N is an integer number of

samples. Suppose the size of the input data signal is M , where M is also an integer.

Then let the window of size N times the input signal, the window now contains the first

N samples (from the 1st sample to Nth sample) of the input data. The window with N

samples of the input data can be put into the A&M algorithm. The estimator will output

the estimated frequency, amplitude and phase of the input data. For this thesis, we only

focus on the frequency of the system, so we only need the estimated frequency from the

estimator of the A&M. After applying the A&M algorithm to that window, the window

will shift to right by one sample on the input signal. Then the window will contain from

the 2nd sample to (N + 1)th sample of the signal. After that, the A&M will be applied

to the window. This process will continue until the window reaches the end of the input

signal data.

The last N points of the input data are from the (M − N + 1)th sample to the Mth

sample. Therefore, for an input signal data of size M samples, there will be (M −N + 1)

estimated frequency values.
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Chapter 4

Proposed Algorithm

From the literature review, the EKF method and the combination method of window

function and the A&M algorithm are known. The EKF is known as a high accuracy tech-

nique for frequency tracking. However, the EKF method applies the filter on a sample

per sample basis. If the signal is sampled at a frequency much larger than the original

frequency fs >> f , say 5000 Hz, then this will have quite a lot computation cost. In

order to keep the accuracy of the EKF while at the same time to reduce the computation

load, one way is to combine the A&M algorithm with the EKF.

The proposed method is to combine the estimator of the A&M algorithm with the mod-

ified EKF. The signal model is same as previous, which is shown in equations (2.1) and

(2.2). The block diagram of the proposed method is presented in Figure (4.1)
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Figure 4.1: Block Diagram of the Proposed Method

Imaging the frequency changes at a much slower rate than the sampling time Ts = 1
fs

.

More specifically, let the sampling frequency of the EKF at a rate much slower than the

original sampling frequency fs. And fs has a common factor of N, where N is an integer

of number of samples. Next, we can break the signal into blocks of size N which is the

3rd step in the block diagram. And the lth block can be written as:

y[l] = [x[lN ] x[lN + 1] ... x[(l + 1)N − 1]]T (4.1)
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For each block, the A&M algorithm is applied to estimate the frequency f̂l and amplitude

Âl of block l (The 4th and 5th steps in Figure (4.1)). Then, we can write a down-sampled

version of the original signal at a new sampling rate fs
N

with the estimated frequency and

amplitude (The 6th step in Figure (4.1)). The down-sampled version signal is shown in

equation (4.2):

x̂1[l] = Âlcos(2πlN
fl
fs

) (4.2)

Finally, the modified EKF can be applied to the down sampled signal at a lower rate of

fs
N

, which is the 7th step in Figure (4.1). The whole process will be repeated until the last

block of the signal. The summary of the proposed method is shown in Table 4.1.

Input A real single-phase sinusoid x(t)

Set Sampling frequency fs

Get Sampled signal x[n], n = 0, 1, ...,M − 1

Set The size of the block N

Do Break x[n] into M
N

blocks of size N

Get lth block: y[l] = [x[lN ] x[lN + 1] ... x[(l + 1)N − 1]]T

Loop For l from 1 to M
N

do

[f̂l Âl] = the A&M(y[l])

x̂[l] = Âlcos(2πlN
fl
fs

)

f̂ = EKF (x̂[l])

Finally Estimated frequency = f̂

Table 4.1: The Proposed Algorithm
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Chapter 5

Implementation and Evaluation

In this chapter, the simulation results of the modified EKF, the combination of window

function and the A&M algorithm and the proposed method will be presented. The track-

ing performance of those results will also be analysed and compared. Each method is

simulated under two conditions: 1. Steady state of 50 Hz and 2. Step change 50Hz

to 51 Hz.

The modified zero-crossing method is a classical method used for frequency tracking, the

advantage of the method is simple. However, the accuracy of the zero-crossing method is

questionable, especially under the noise conditions. Therefore, the modified zero-crossing

method is not implemented.
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5.1 Extended Kalman Filter

The simulations are carried out for single-phase power system signal with white Gaussian

noise. The simulations are conducted by using Matlab programming. The sampling

frequency (fs) used in the modified EKF is 1 kHz. The white noise in the system signal

is with SNR 57 dB, which means the variance of the white Gaussian noise is about 0.1

which is a large variance. Then, we can see the performance of the modified EKF under

the condition with bad noise distortion.

5.1.1 Steady State

Figure 5.1: Modified EKF Tracking 50 Hz
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For steady state, the signal frequency is maintain at 50 Hz. This modified EKF method

is applied on the corrupted signal as shown in Figure 2.1. The simulation result is shown

as in Figure 5.1. From the picture, the convergence time is approximate 50 ms and the

maximum frequency deviation from 50 Hz is about 0.14 Hz. This method has a short

convergence time and high accuracy. However, it also requires a lot of computations which

considers to be time consuming and can cause a time delay during tracking.

5.1.2 Step Change on Frequency

Figure 5.2: Tracking Step Change 50 to 51 Hz
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Figure 5.2 shows the tracking result of the modified EKF with step change on frequency.

In this case, the frequency is suddenly increased from 50 Hz to 51 Hz.There are large over

shoots when the frequency is increased. The convergence time is still about 50 ms. After

the tracking is converged, it keeps tracking in an accurate manner.

5.1.3 Summary

The advantages of the modified EKF are highly accurate and having short convergence

time. However, the computation is complicated and the computation cost is high.
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5.2 Combination of Window Function and the A&M

As mentioned before, the simulations are carried out for single-phase power system signal

with white Gaussian noise (equation(2.1)) by using Matlab programming. In order to

maintain consistency and to compare the simulation results with simulation results of

other methods, the parameters used in the simulation are same as the one used in the

modified EKF. The sampling frequency (fs) used for this method is 1 kHz and the white

noise in the signal is with SNR 57 dB. The size of the window N is 50.

5.2.1 Steady State

Figure 5.3: Simulation Result of the Combination of Rectangular Window and the A&M
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The simulations are conducted with the frequency of 50 Hz in the signal Model. Figure

5.3 shows the simulation result of the combination of the rectangular window and the

A&M algorithm. From the result, we can see that the tracking trace oscillates strongly

around 50 Hz. The maximum deviation from 50 Hz is about 1.5 Hz.

Figure 5.4: Simulation Result of the Combination of Hamming Window and the A&M

In Figure 5.4, the green line illustrates the simulation results of the combination of Ham-

ming window and the A&M. The maximum deviation from 50 Hz is around 3 Hz, which

is a very large error. From Figure 5.4, comparing the tracking performance of Hamming

window with the one with rectangular window, the one with Hamming window is much

worse than the one with rectangular window.
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Bandpass Filter

In order to improve the tracking performance of this technique, a narrow bandpass filter is

developed. A bandpass filter is filter that allows the signal between two frequency values

to pass. The narrow bandpass filter is used after the input data getting into the window,

before the A&M algorithm applies to the window of data. The spectral plot of the narrow

bandpass filter is shown in Figure 5.5. The parameters of the narrow bandpass filter is

provided in Table 5.1.

Figure 5.5: Bandpass Filter

Name of Variable Value

Centre Frequency 50 Hz

Cutoff Frequency 1 49.8 Hz

Cutoff Frequency 2 50.2 Hz

Bandwidth 0.4 Hz

Quality Factor 125

Table 5.1: Parameters of the Bandpass Filter
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The simulation result with adding the bandpass filter is demonstrated in Figure 5.6. The

red line illustrates the tracking trace of the combination method of rectangular window

and the A&M algorithm. The blue line denotes the tracking performance by applying a

narrow bandpass filter to the original algorithm. From Figure 5.6, we can see that there

are some improvements with the bandpass filter, although they are inconspicuous.

Figure 5.6: Simulation Results

5.2.2 Step Change on Frequency

The frequency in the signal is suddenly changed from 50 Hz to 51 Hz. Figure 5.7 illustrates

the tracking performance of the method with the rectangular window and the bandpass

filter. From the plot, there are very large overshoot when frequency changes. For the red

line, the overshoot is about 15 Hz, for the blue line is around 10 Hz. The representation
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of red and blue lines are indicated in the figure. From the tracking results, we can see

that there is some improvement with adding the bandpass filter.

Figure 5.7: Step Change 50 Hz to 51 Hz

5.2.3 Summary

It is an exploration of applying the estimator of the A&M algorithm on frequency tracking.

From the simulation results, we can see that this method does not have satisfactory

tracking ability. The accuracy is not high.
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5.3 Proposed Method

Similarly, the simulations are carried out for single-phase power system signal with white

Gaussian noise (equation(2.1)) by using Matlab programming. In order to keep consis-

tency, the sampling frequency (fs) used for this method is 1 kHz and the white noise in

the signal is with SNR 57 dB. The size of the block N is 50.

5.3.1 Steady State

Figure 5.8: Simulation Result of Proposed Algorithm

The simulations are conducted with the constant frequency of 50 Hz in the signal Model.

Figure 5.8 illustrates the tracking performance of the proposed method. The tracking trace

oscillates around 50 Hz and the maximum deviation from 50 Hz is about 0.2 Hz . The

accuracy is improved a lot compare to the combination method of window function and the

A&M, but still worse than the EKF. However, the computation cost is highly decreased

compare to the EKF. This is a trade off between the accuracy and the computation cost.
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5.3.2 Step Change on Frequency

Figure 5.9: Step Change 50 Hz to 51 Hz

Figure 5.9 presents the tracking performance of the proposed method with step change

on frequency. From the graph, there is no overshoot when the frequency is suddenly

increased. This is good since the overshoot is usually not desirable in tracking process. It

also performs satisfied accuracy during tracking, the maximum deviation from the original

frequency is about 0.5 Hz.

5.3.3 Summary

The proposed method has satisfactory accuracy and no overshoots. It also requires low

computation cost. The proposed method has good tracking ability.
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5.4 Analysis of Computational Cost

An analysis of the computation cost of the modified EKF and the proposed method will

be presented here. In order to compare the computation costs of the two techniques,

parameters used in the algorithms must be set equally. The total sample time interval is

chose as 1 second, and the sampling frequency is set as 1 kHz.

For the EKF, with 1 kHz sampling frequency, it runs 1000 times in 1 second. In the EKF,

it consumes a large amount of computational resources, which is O(k2.4 + n2) [12].

For the proposed method, the EKF is applied on a down-sampled rate of fs
N

, where N is

the size of each block. So, with fs = 1 kHz and N = 50, the EKF is sampled at a rate of

20 Hz. Therefore the EKF runs 20 times in 1 second. There are iterations for the A&M

algorithm for each block in the signal. The numbers of iteration was set to 4 during the

simulation. There are 20 blocks with fs = 1kHz and N = 50, so the A&M algorithm

runs 4 × 20 = 80 times in 1 second. Since the A&M algorithm is based on FFT, the

computational complexity of the A&M is O(Nlog2N) [10].

A comparison of the computational complexity of two methods is demonstrated in Table

5.2. Since the proposed method has much less numbers of runs and the A&M algorithm

(O(Nlog2N)) is less complex than the EKF (O(k2.4 +n2)), the proposed method requires

much less computational cost than the EKF.

Method Computational Complexity

The Modified EKF 1000 runs of EKF

The Proposed Method 20 runs of EKF and 80 runs of the A&M

Table 5.2: Comparison of Computational Complexity
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5.5 Summary

The simulations results and the analysis of computational cost of the three tracking meth-

ods are presented. It is known that the modified EKF technique has short convergence

time and excellent accuracy, however it consumes a lot of computational resources during

running. The combination method of the window function and the A&M has worst ac-

curacy among the three algorithm. It is not suitable for tracking. At last, the proposed

method has very low computational cost comparing to the modified EKF technique. Al-

though the accuracy is a little worse than the modified EKF, it requires much less compu-

tations. It is a trade off between the accuracy and computational cost. Another advantage

of the proposed method is there is no overshoot during tracking.
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Chapter 6

Conclusion

6.1 Conclusion

This report describes the importance of frequency in the power system and provides the

necessity of frequency tracking in the smart grid. The author implements and evaluates

two existing frequency tracking methods. And based on the implementations and litera-

ture review, a new technique of a combination of the modified EKF and the interpolation

algorithm created by Aboutanios and Mulgrew (the A&M) is proposed. The proposed

method can be applied on a real single-phase sinusoid with white Gaussian noise, which

is suitable for fast tracking in power system. The existing technique of the modified EKF

has outstanding accuracy during tracking, however, the high computational cost of this

algorithm will reduce the efficiency of the filter. The combination method of the window

function and the A&M demonstrates a poor tracking performance. But it provides great

help and foundation for the proposed method. The proposed algorithm has low com-

putational cost and satisfactory accuracy. Also. there is no overshoot during tracking.

Therefore, the proposed method is a good tracker and is suitable for real-time application.
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6.2 Future Work

1. Because of the lack of time, it is unfortunate that the Root-Mean-Square Error analysis

has not been finished. Thus, the first future plan is to finish the RMSE caculations for

the algorithms.

2. Although the accuracy of the proposed method is satisfactory, there is still space for

improvement. So the second plan is to improve the accuracy of the proposed technique.

3. In the power system, the distortion is not only noises, there are also harmonic distor-

tions. The ability of a tracking technique working in the presence of harmonics is also

important. Third plan is to implement the proposed algorithm under noise and harmonics

environment.
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