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Abstract

The frequency of a three-phase power system serves as a fundamental parameter used to assess

power quality and system health, and must be closely monitored and controlled to be within its

specified operating limits. Power system protection and control applications, such as frequency

relays for load shedding, load-frequency controllers, require accurate and fast estimation of

the frequency, and hence has become a major field of research in recent years. Most digital

algorithms developed thus far, have acceptable accuracy. However, the complexities involved in

acquiring direct estimates from the phase voltages are significant, as none of the single phases

can necessarily characterize the entire system and its properties.

This paper proposes a novel technique, that utilizes the powerful Clarke’s (or αβ-) trans-

formation to encompass the three-phase information within a single complex exponential. A

frequency-domain estimator, that takes advantage of the highly efficient fast Fourier transform

(FFT) algorithm, is then used to obtain estimates of the true system frequency at a high degree

of precision.
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List of Abbreviations

AC Alternating Current

AWGN Additive White Gaussia Noise

ZC Zero-Crossing

MLE Maximum Likelihood Estimate

CRLB Cramer Rao Lower Bound

DFT Discrete Fourier Transform
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SNR Signal-to-Noise Ratio

WLS Weighted Least Square
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Chapter 1

Introduction

The power frequency is a measure of the number of oscillations of AC power in an electrical

power grid, transmitted from the generation plant to the end user. In most parts of the world,

it is rated at 50Hz, while 60Hz is also a typical value for regions such as the Americas, and

parts of Asia.

1.1 Standardization of Power Frequency

The standardization of frequency in geographic areas has facilitated the interconnections of

generators in a grid.

Figure 1.1: AC Frequency and Voltage by region [1]

Standard Power Frequency in Australia

The nominal AC frequency used in Australia is rated at 50Hz.
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The frequency operating standards for both the mainland regions and the Tasmania region

require that, during periods when there are no contingency events and no load events, the

frequency be maintained within the range 49.85 to 50.15 Hz for 99% of the time, with larger

deviations permitted within the range 49.75 to 50.25 Hz for no more than 1% of the time[5].

For an island within the mainland regions or an island within the Tasmania power system,

the frequency operating standards require that, during periods when there are no contingency

events and no load events, the frequencies be maintained within the ranges 49.5 to 50.5 Hz and

49.0 and 51.0 Hz respectively[5].

1.2 Power Quality and Frequency

Synchronization of AC voltage frequency and phase ensures reliable functioning of electrical

power systems and the mitigation of performance losses and reduced system lifespan.

The term power quality is used to objectify the electric power that drives a load and the

load’s ability to function properly. Without proper monitoring and subsequent conditioning(if

required) of power, an electrical device(or load) is bound for malfunctioning, premature failure

or even start-up.

While tracking power quality, the measurement of the variation of frequency is a major area

of concern.

1.3 Causes and Effects of Power Frequency Fluctuation

There are several distinguished events that may lead to a fluctuation in system frequency, some

of which has been listed below:

• Generation and load imbalance: Most common in smart grids, due to the system’s recur-

ring switching between the main grid and microgrids, during which parts of the system

completely switches the main grid off (islanding).

• Single- and dual-phase faults: The occurrence of faults in one or two phases and sudden

drops in voltage for a short period of time (also known as voltage sags)[6] will result in

incorrect frequency estimates and henceforth, cause an alarm to spread throughout the

system. In the subsequent sections of this report, we will learn how the frequency of

a three-phase power system is derived from the relationship between each of the phase

voltages.

• Duality of load-supply: Again, most common in smart grids where dynamic loads and

dual load-generator devices, such as plug-in electric vehicles(PEVs), which can give back

energy to the grid in case of an emergency, are deployed. Drifting of reactive power
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which results from frequent switching, causes oscillations of power levels and harmonics

in frequency.

• Introduction of harmonics: This problem mainly arises due to the non-linear V-I char-

acteristics of certain loads (power supplies, semiconductor rectifiers, motors, electric arc

furnaces)which give rise to harmonics, which may be non-integer multiples of system

frequency. This leads to resonance in the system leading to significant rise in currents

and overheating of transformers [7]. The operation of shunt capacitors for reactive power

compensation also propagates strong transients and harmonics that eventually leads to

equipment damage.

• Stability issues: In the event of faults or short circuits, power system instability becomes

an issue and in order to solve the consequent problems, accurate frequency estimation is

required to facilitate actions such as load(or generator) shedding.

Figure 1.2: Power Frequency Fluctuation in some of the world’s largest power grids [2]
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1.4 Frequency Estimation for Power Systems

The estimation of a power system’s operating frequency is one of the most important areas

of research, as it provides a reflection on the dynamic energy balance between generation and

consumption. Frequency deviation must, therefore, be carefully monitored and controlled in

order to kept within certain operating bounds.

In power systems, the core purpose of frequency estimation is for designing schemes and/or

further equipment to provide protection against loss of synchronism, under-frequency relaying,

and facilitate power system stabilization following transient events [8]. In order to enhance

fault identification and subsequent troubleshooting in a power system, there is a demand for

a unified frequency estimation platform in three-phase power systems, exhibiting the following

characteristics [9]:

• demonstrate resilience towards noise and harmonics in the system, including the ones

that are not integer multiples of the system frequency;

• real-time adaptive, fast converging and asymptotically unbiased;

• real-time performance must be as close to theoretical limits as possible with minimum

variance;

• capable of catering towards both balanced and unbalanced conditions.

Figure 1.3: Three-phase waveforms

1.5 Generic Signal Model in a Three Phase Power Sys-

tem

For the purpose of this thesis, it is safe to assume that the three-phase power system operates

under balanced conditions. The three-phase voltage signals can then be modelled in discrete

time form as:
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va(k) = Va(k) cos(ωk∆T + φ) + εa(k)

vb(k) = Vb(k) cos(ωk∆T + φ− 2π

3
) + εb(k)

vc(k) = Vc(k) cos(ωk∆T + φ+
2π

3
) + εc(k)

(1.1)

where Va(k), Vb(k),Vc(k) are the maximum values for the voltages in each phase at time

instant k, ∆T is the sampling interval, φ is the phase of the fundamental component, ω=2πf

is the angular frequency of the voltage signal, f is the system frequency, and εa(k), εb(k), εc(k)

make up the noise components in each phase at the same time instant k. These latter terms

are generally taken as Additive White Gaussian Noise (AWGN), having a variance of σ2/2 [3].

Research on frequency estimation of power systems has been conducted for a long period

of time, and as indicated before, is a key area of interest. Several different methods have

been proposed thus far, along with in-depth coverage of their modelling techniques, results and

performance attributes.

1.6 Problem Definition

Estimation of a three-phase AC power system’s operating frequency provides a reflection on

power quality and system health. The difficulty in acquiring such an estimate from each indi-

vidual phase voltages(as well as line-to-line voltages) under noise, and harmonic distortion is

substantial. There exists a need to acquire frequency estimates from all three phases simulta-

neously.

1.7 Thesis Objectives

• Understand the importance of power system frequency and its effects on system health

and operation;

• Conduct an extensive background research on frequency estimation techniques designed

specifically for implementation in three-phase power systems;

• Explore various frequency estimation algorithms and address the ”trade-off”-s involved

when proposing a viable solution that would meet basic requirements;

• Comprehend the computational difficulties in acquiring real-time estimates and simplify

the estimation process for balanced three-phase systems;

• Acquire results from the proposed algorithm and forge methods for further refinement;
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• Expose the proposed solution to a variety of contingency events and assess the subsequent

performance; and,

• Lay the foundation for future work to be conducted in this particular field of research

1.8 Report Format

This paper, has been organized in the following manner:

• Chapter 2 (Background): is dedicated to provide analysis of existing frequency estimation

algorithms

• Chapter 3 (Methodology): proposes a new technique in estimating the frequency of three-

phase power systems and contains a step-by-step implementation plan of the design

• Chapter 4 (Results): contains results obtained from simulation, and addresses a few design

constraints that must be catered to for optimized performance

• Chapter 5 (Conclusion): provides an overall review of this paper, in addition to stating

the goals for future research and work.
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Chapter 2

Background

2.1 Estimation Algorithms for Sinusoids

2.1.1 Method based on the Zero-crossing Technique

The zero-crossing (ZC) estimator operates by detecting zero crossings in the real and imaginary

components of a complex exponential and storing the estimated time and phase of these zero

crossing points to a coordinate set S as,

S = {(t1, φ1) . . . (tL, φL)} (2.1)

where L is the number of detected zero crossings. The ZC estimate is the obtained by performing

linear regression on the coordinate set S. In order to improve the accuracy of the detection of

zero-crossings and reduce computational complexities, the use of a sequential implementation

model on a sample-by-sample basis is more preferred [10].

This method employs the use of tracking variables, A-E which are initially set to 0, and

based on the appearance of a zero-crossing coordinate, (ti, φi) are updated as follows:

A = A+ t2i

B = B + 1

C = C + ti

D = D − tiφi
E = E − φi

(2.2)

At any time, the zero-crossing phase and frequency estimates, φ̂ZC and ω̂ZC , can be obtained

18



directly from the tracking variables as,

φ̂ZC = intercept = −EA− CD
BA− C2

(2.3)

ω̂ZC = slope = −C
A
φ̂ZC −

D

A
(2.4)

As refinements to such a highly adaptive technique to be utilized for frequency estimation,

the use of local linear regression, and pre-filtered observations have been suggested.

The details of such methods are, however, deemed as rather less useful in order to estimate for

three-phase power signals.

Other variations of the ZC estimator, such as the one described in literature [11] have been

implemented to estimate the frequency of electrical grids by reducing factors such as noise and

other impulsive disturbances via the design and use of an adaptive multi-stage digital filter.

2.1.2 Methods based on the Maximum Likelihood Estimate

The signal model for use in this technique is given by,

x[k] = s[k] + w[k] = Ae(−η+j2πf)k + w[k], for k = 0....N − 1 (2.5)

where A is the complex amplitude, f is the signal frequency and η is the decay factor. For

the purpose of this estimator, f is normalized to the sampling rate such that f ∈ [−0.5, 0.5] is

ensured. The w[k] terms represent AWGN with characteristics as stated previously in section

1.5.

As proven in [12], the MLE of the frequency is given by the maximiser of the periodogram,

f̂ML = arg max
λ

I(λ) (2.6)

where the periodogram is defined as I(λ) = |X(λ)|2 for,

X(λ) =
N−1∑
k=0

x[k]e−j2πkλ (2.7)

where N is the number of observed samples.

Given a block of N samples, the MLE of the frequency is the value that maximises the

probability of actually obtaining these N samples when the measurements are performed.

The MLE is consistent under Gaussian Noise conditions due to its unbiased nature and

achieves the lowest variance than any possible estimator[3].
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The Cramer Rao Lower Bound

The Cramer Rao Lower Bound (CRLB) provides a benchmark to assess the performance of an

estimator, setting a lower bound on the estimation variance. For any frequency estimator, the

estimation variance σ2
f must satisfy the inequality σ2

f ≥ σ̃2
f , [12] where,

σ̃2
f =

6f 2
s

(2π)2ρN(N2 − 1)
. (2.8)

Optimal Estimation Variance

In the event when noise terms may happen to be greater than the signal component, an outlier

emerges, with a probability of occurrence, qn.

In the event of an outlier emergence, any of the bins corresponding to f ∈ [−0.5, 0.5], are

equally likely to be chosen, and the resulting variance is due to the uniform distribution along

the estimation interval, giving it a value of 1/12.

The optimal estimation variance is given by combining the CRLB and the probability of

occurence of the outlier, qN to denote the lower bound on the performance. If the maximum

bin is correctly chosen, then the error of estimation is completely confined within the main lobe

and the variance is lower bounded by the CLRB, with a probability of 1− qN .

In the event of an outlier emergence, any of the bins corresponding to f ∈ [−0.5, 0.5], are

equally likely to be chosen, and the resulting variance is due to the uniform distribution along

the estimation interval, giving it a value of 1/12.

Combining the CRLB, qN (as formulated in [12]) and the above stated conditions, the total

mean squared error now becomes,

σ2
TOT = qN

1

12
+ (1− qN)

6

(2π)2ρN(N2 − 1)
(2.9)

Note: Any good estimator presumably needs to have a threshold as near as possible to that

of the MLE and an estimation variance above it that is as close as possible to the CRLB.

2.1.3 Zero-Padded DFT

A regularly sampled grid utilizing the DFT can be defined as,

X[n] =
N−1∑
k=0

x[k]e
−j2πk

n

N , for k = 0....N − 1 (2.10)

With an aim to mitigate the resolution problems of the MBS(resolution limited to 1/N),

the density of samples on the frequency axis is increased by padding the data with zeroes to

some length L ≥ N . This procedure leads to a more accurate location of the frequency much

closer to the true maximum.
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This is known as the zero-padded or ZP(L) estimator with an improved resolution of 1/L .

The signal frequency can then be measured as,

f =
m+ δ

L
(2.11)

where m = [Lf ] is rounded to the nearest integer,and −0.5 ≤ δ ≥ 0.5 is the frequency residual.

Here, m serves the purpose of the bin index and δ represents the estimation error, uniformly

distributed over [−0.5, 0.5]. The estimation variance is then,

σ̂2
f =

1

12L2
(2.12)

Figure 2.1: Plot of the performance of the zero-padding estimator as a function of signal to
noise ratio [3]

As seen in Fig. 2.1, the ZP(L) algorithm has the worst threshold and the estimates have a

much poorer CRLB for any viable SNR above the threshold even for L = 1024.

The performance can be improved with increasing L but has the downside of adding to

computational cost, especially in real-time scenarios.

2.1.4 Interpolation of DFT coefficients

The previously highlighted problem with using the ZP(L) algorithm can be overcome by using

interpolation to locate the the true maximum of I(λ) and produce a finer estimate. Such a

method has been extensively investigated in [12], [13], [14] and [15].
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Two new coefficients, Xp ≡ X[m+ p], on the edges of the maximum bin, for p = ±0.5 and

m ≡ the index of the coarse estimate, evolve to interpolate the location of the maximum. For

|δ| ≤ 0.5, the use of the approximation, e
j2π

δ

N ≈ 1 + j2π
δ

N
, results in a fine estimate of the

residual frequency, δ̂ given as,

δ̂ ≈ h(δ) =
1

2

X0.5 +X−0.5
X0.5 −X−0.5

(2.13)

It is worth noting that the above approximate relationship is permitted by the fact that
2πδ

N
� 1, and since δ is real valued, on the real part of the interpolation function h(δ) is taken

into consideration. The mentioned approximations required to formulate equation 2.13 produce

a negligible bias as it is lower than the CRLB except in very large SNRs.

At very large SNRs, the finer estimate can be given as,

δ̂ =
N

2π
6 ẑ (2.14)

where,

ẑ =
1

cos(
π

N
)− 2jh(δ) sin(

π

N
)

(2.15)

It is worth understanding that, in the last iteration of this two-step strategy, the estimation

variance converges to its minimum value as δ = 0.

Figure 2.2: Performance of the iterative algorithm as a function of signal-to-noise ratio [3]

From Fig. 2.2 the elimination of the estimation floor (due to the estimation bias) between

the first and second iterations is observed.
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2.2 Conventional Three-Phase Frequency Estimation Tech-

niques

2.2.1 Frequency Estimation of Three-Phase Power Systems based

on the Weighted-Least-Square Algorithm and Adaptive FIR

Filtering

The weighted-least-square(WLS) algorithm for frequency estimation has been effortlessly ex-

tended for use in three-phase power systems [16]. The following technique is considered to

be robust as the estimated frequency is evaluated using the information contained within the

three-phase voltage signals.

The measured three-phase signal model used here is as follows:

va,i = Va cos(ω1i∆t+ ϕa) + ξa,i

vb,i = Vb cos(ω1i∆t+ ϕb) + ξb,i

vc,i = Vc cos(ω1i∆t+ ϕc) + ξc,i

(2.16)

where, va,i, vb,i, vc,i are the sampled signal values in phases a, b and c;

Va, Vb, Vc are the signal amplitudes in each phase;

ϕa, ϕb, ϕc are the phases of signals in each phase;

ξa,i, ξb,i, ξc,i are the noise terms in each phase;

ω1 is the system frequency;

i∆t is the discrete time instant.

2.2.1.1 Prefiltering of signals

FIR digital filters are used to process the input phase voltage signals and eliminate and/or

minimize the effects of noise whilst being unaffected by the presence of undesirable harmonics

[4]. The most fundamental requirement to be met while designing such filters is that the filter

must have nulls at the harmonic frequencies that are ”expected” to be present in the signal. In

iterative frequency estimation techniques such as the one to follow in the next subsection, the

filters are required to adapt to each iteration as their gains are frequency-dependant.

As discussed in [17] and [18], the filter coefficients are calculated in closed forms, and a

complete filter is realized as a cascade of the second-order sections, with each section eliminating

one of the harmonics. The complete cascade eventually filters out the dc component and all

the harmonic frequencies except for the fundamental one. The section that eliminates the dc

component, has unity gain at the fundamental angular frequency, and has a Z-domain transfer

function [17] as follows:

H01(z) =
1− z−2

|1− z−21 |
(2.17)
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Figure 2.3: Block Diagram of the estimation scheme

where z = exp(jω∆t), z1 = exp(jω1∆t), and |1− z−21 | = 2 sin(ω1∆t).

The section that rejects the harmonic ωi, also has a unity gain at the fundamental angular

frequency, and its transfer function is given by [19]:

H1i(z) =
1− 2 cos(ωi∆t)z

−1 + z−2

|1− 2 cos(ωi∆t)z−1 + z−2|
(2.18)

The complete filter’s transfer function can now be given by[4]:

H1(z) = H01(z)
M∏
i=2

H1i(z) (2.19)

where, M denotes the maximum integer part of fs/(2f1).

2.2.1.2 Estimation of Frequency

Three consecutive samples of the prefiltered signal in phase a are connected by the equation

[16]:
va,i + va,i−2

2
= va,i−1 cos(ω1i∆t) (2.20)

or

ya,i = za,ix (2.21)
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Figure 2.4: Frequency responses of the first harmonic filter for different fundamental frequencies
and a sampling frequency of fs = 800 Sa/s (used for picture clarity) [4].

where,

ya,i =
va,i + va,i−2

2
,

za,i = va,i−1

x = cos(ω1i∆t)

(2.22)

The above equations, similarly also hold true for phases b and c. A system of linear equations

is then formed, by substituting i = 1,2,...,k (k > 2):

yk = zkxk (2.23)

A ”forgetting factor”, 0 < W < 1, is introduced in the the yk matrix in order to reduce the

significance of older data and enhance that of newer samples. The value of W plays a rather

prominent role in the estimator performance, as the closer it is to 1, the more accurate the

estimator would become, however with a lower convergence rate, and vice versa.

The solution to 2.23 at any instant k, as per the least-error-square method is given by,

xk = (zT
k zk)−1zT

k yk (2.24)

As shown in literature [4], the solution xk can be calculated using the following formula:

xk =

k∑
i=0

{W 2(k−i)[za,iya,i + zb,iyb,i + zc,iyc,i]}

k∑
i=0

{W 2(k−i)[z2a,i + z2b,i + z2c,i]

(2.25)

Evaluation of xk from equation 2.25 can now lead to the calculation of system frequency,
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which is given by:

fk = arccos(xk)/(2π∆t) (2.26)

As highlighted before, there must be a compromise between accuracy and convergence in

order to assign a value to W 2 during this estimation procedure.

Figure 2.5: Estimations for f = 50 Hz for t < 0 s and f = 48 Hz for t > 0 s, with the presence
of harmonics and (a) without noise and (b) with SNR = 60 dB. [4]

2.2.2 Method Based on the Discrete Fourier Transform

The definition of frequency, as the angular velocity of the rotating voltage phasor [20], acts as

the base for such a technique which involves the calculation of the phasor of the fundamental

voltage waveform from N samples and using the DFT.

If the sampling interval equals one cycle of the basic waveform, the phasor at the time

tk = kT is given in [21] as,

Gk =
2

N

N−1∑
n=0

vk+n−N+1e
−jωTn (2.27)

where, T is the sampling interval, ω is the fundamental frequency and vk+n−N+1 represents the

sampled values of a voltage.

Upon execution, Gk is updated at every sampled value, with each new value obtained after

the sampling interval taken into calculation while the oldest one is neglected. The instantaneous

frequency can be calculated from two consecutive phasors

ω =
arg[Gk+1]− arg[Gk]

T
(2.28)
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where,

arg[Gk] = tan−1
Im[Gk]

Re[Gk]
(2.29)

2.2.2.1 Filtering

A voltage waveform, taken from a voltage transformer, is required to be filtered using algorithms

based on the DFT. The filter algorithm is given as,

gk =
2

N

N−1∑
n=0

vk+n−N+1 cos(nωT ) (2.30)

It is worth noting that this only requires the time function of the fundamental component of

the voltage to be equal to the real part of the phasor [20].

In order to improve the filter properties, especially addressing frequency changes, the appli-

cation of a smoothing window is proposed, and as such, investigations were conducted on two

very common window functions:

• Hamming Window, which is given by:

wH = 0.54− 0.46 cos
2πn

N − 1
(2.31)

• Blackman Window given as:

wB = 0.42− 0.5 cos
2πn

N − 1
+ 0.08 cos

4πn

N − 1
(2.32)

Figure 2.6: Amplitude Response of the Hamming and Blackman windows with N = 20
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The core aim of the pre-filtering is to improve the accuracy of the frequency determination.

2.2.2.2 Algorithm Based on Prony’s Estimation Method

Samples of the fundamental component of a voltage waveform are extracted at the output of

the filter, and an algorithm based on Prony’s estimation method is proposed for the evaluation

of the system frequency. Prony’s estimation method, works under the assumption that given a

series of samples, g1, g2,.....,gM , a single sinusoid can be used to approximate a filtered voltage

waveform,

ym = A cos(mωT + ψ) (2.33)

for m = 1, 2, . . .M , where M is the total number of samples taken into the approximation.

Equation 2.33 can be rewritten in complex exponential form as,

ym = bzm1 + b∗z∗m1 (2.34)

where,

z1 = ejωT (2.35)

b =
A

2
ejψ (2.36)

The objective here is to find the values of b and z1 so that the error,

δm = gm − ym (2.37)

is minimized. The principal idea of the Prony’s estimation method is to transform this non-

linear problem into a linear fitting problem by minimizing the error E defined as,

E =
M−1∑
m=p

(εm)2 (2.38)

where p is the number of exponents and εm is given by,

εm =

p∑
k=0

akδk+m−1 (2.39)

The parameters, ak are initially unknown and are related to the frequency of the sinusoid.

Equation 2.34 is the solution to some linear constant co-efficient difference equation and in

order to find the form of the difference equation, the polynomial F (z) is defined for p = 2,

F (z) = a0(z − z1)(z − z∗1) = 0 (2.40)
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It is evident that z1 and z∗1 are the roots of the polynomial. Using equation 2.34, we can derive,

2∑
k=0

akyk+m−1 = a0ym−1 + a1ym + a2ym+1 = 0. (2.41)

From equations (2.37) and (2.39) it follows that,

εm =
2∑

k=0

ak(gk+m−1 − yk+m−1) = a0gm−1 + a1gm + a2gm+1. (2.42)

If z1 is a root of the polynomial F (z) with unit modulus, then z−11 is also a root, and the

coefficients ak are symmetric about a1, i.e., a0 = a2. For convenience, a1 = 1 is chosen that for

a0 = a2, resulting in,

εm = gm + a0(gm−1 + gm+1). (2.43)

The minimization of E with respect to the unknown a0 is achieved if,

∂E

∂a0
=

M−1∑
m=2

2[gm + a0(gm−1 + gm+1)](gm−1 + gm+1) = 0. (2.44)

Solving this for a0, polynomial F (z) can be expressed as,

z2 +
1

a0
z + 1 = 0. (2.45)

whereby, the roots are,

z1,2 = − 1

2a0
± j

√
1− 1

4a20
. (2.46)

From the definition of the roots, being,

z1,2 = e±jωT = cos(ωT )± j sin(ωT ) (2.47)

the angular frequency can then be given by,

ω =
1

T
cos−1

{ M−1∑
m=2

(gm−1 + gm+1)
2

2
M−1∑
m=2

gm(gm−1 + gm+1)

}
(2.48)

This algorithm was vigorously put under test on a computer by Lobos and Rezmer and

according to literature [21], a very high level of accuracy was achieved utilizing the Blackman

window as the pre-filter for heavily distorted voltage waveforms.
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Chapter 3

Methodology

The methods covered in the preceding sections have all been verified to provide accurate es-

timates of the frequency of the sinusoid(s), and the methods incorporated in their respective

algorithms have been analysed to help better understand their behaviour.

In order to acquire frequency estimates for three-phase power systems that issues results

with pin-point accuracy at a commendable processing speed, a new and innovative technique

is now presented, whose design can be represented in the follwoing block diagram.

Figure 3.1: Block Diagram of the proposed solution

3.1 Transformation of a Three-Phase Signal

The three-phase signals are required to be transformed in order to facilitate the operation of

frequency estimators on all three phases simultaneously. This is achieved via the αβ -transform

or, the Clarke’s Transformation, developed by Edith Clarke [22]- one of the most popular and

effective transformation techniques used worldwide.
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This method, when invoked, essentially transforms the three-phase voltage variables into the

zero-sequence (or DC), direct(α) and quadrature(β)-axis components, whilst preserving their

amplitudes and other relevant information required for further analysis. This transformation

is mostly employed when applying linear predictive modelling of three-phase voltages.

Equation 1.1 can then be put in the following matrix form:


v0(k)

vα(k)

vβ(k)

 =
2

3



1

2

1

2

1

2

1 cos(
2π

3
) cos(−2π

3
)

0 sin(
2π

3
) sin(−2π

3
)

×

va(k)

vb(k)

vc(k)

 (3.1)

v0αβ =


v0(k)

vα(k)

vβ(k)

 =
2

3



1

2

1

2

1

2

1 −1

2
−1

2

0

√
3

2
−
√

3

2

×

va(k)

vb(k)

vc(k)

 = Cvabc (3.2)

where C is the Clarke’s transformation matrix.

Under sinusoidal and balanced conditions, it is clear that all of the components in (1.1)

have the same amplitude,

Va = Vb = Vc = V (3.3)

Considering φ = 0 and substituting (1.1) in (3.1), the following can be deduced,
v0(k)

vα(k)

vβ(k)

 =


0

V cos(ωk∆T )

V cos(ωk∆T +
π

2
)

 (3.4)

Proceeding further on from here, and under the conditions stated in (3.3) and (3.4), it is

denounced that vα(k) and vβ(k) are the orthogonal coordinates of a point whose variation in

position proportional to the system frequency(to be estimated) and is, thereby, represented by

[23]

v(k) = vα(k) + jvβ(k) (3.5)

where j =
√
−1. This representation of a signal is preferred as there is limited loss in information

and also acts as the preferred signal in adaptive frequency estimation techniques.

Note: Refer to Appendix A for unbalanced conditions

Simplified Transformation

Under balanced conditions, the dc-component, i.e., v0(k) will equal zero and hence can be

overlooked while attempting to form the complex exponential.
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vαβ = Cαβ × vabc (3.6)

or,

(
vα(k)

vβ(k)

)
=

(
αa αb αc

βa βb βc

)
×


va(k)

vb(k)

vc(k)

 =
2

3

1 −1

2
−1

2

0

√
3

2
−
√

3

2

×

va(k)

vb(k)

vc(k)

 (3.7)

The resulting orthogonal components vα(k) and vβ(k) are defined in terms of the phase

voltages as follows:

vα(k) =
2

3

(
va(k)− vb(k) + vc(k)

2

)
(3.8)

vβ(k) =
1√
3

(
vb(k)− vc(k)

)
(3.9)

3.2 Frequency Estimation Algorithm

Although a copious body of literature has been published in recent years on frequency estimators

having exceptional performance, the method to be proposed for this particular thesis invokes

the use of an iterative algorithm by interpolation on Fourier coefficients of a discrete time

complex exponential as reviewed in section 2.1.4.

The estimator consists of a coarse search (using standard MBS), followed by a fine search

algorithm for the component frequency of the exponential. It is meant to be implemented

iteratively and, as proven in its supporting literatures-[3], [13]- converges to the true signal

frequency of a complex sinusoid with a minimum estimation variance whilst satisfying the

CRLB requirements.

3.3 Verification of the Estimation Algorithm on an Ar-

bitrary Complex Signal

Firstly, in order to get an impression of the iterative estimation algorithm’s core performance

attributes, a simple complex sinusoid having the following form was put under test:

x[k] = s[k] + w[k] = Ae
(j2π

f

fs
)k

+ w[k] (3.10)

where, without loss of generality, the signal amplitude, A was set to unity, and the true signal

frequency, f is normalized to the sampling rate, fs = 1, such that f ∈ [−0.5, 0.5]. As previously

defined , w[k] terms represent AWGN.
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Figure 3.2: Plot of the ratio of the variance of the estimator to the asymptotic CRLB as a
function of δ, which is the frequency offset from the bin center. Simulation curves for one and
two iterations are shown.

Figure 3.3: Plot of the standard deviation of the frequency estimation error as a function of
the SNR. The CRB curve is also shown

The number of samples N used to test out the estimator was 128, although it remains to

be seen how that would change in our overall method proposed in the previous chapter. Figure

3.2 shows the simulation results based on the ratio of the variance (of each iteration of the

estimator) of the estimates to the CRLB. It does indicate that the true system frequency can
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be reliably estimated from the centre of the maximum bin.

Figure 3.3 demonstrates the noise performance and unbiased nature of our chosen estimation

algorithm as a function of the SNR, in that the two iterations converge to the theoretical CRLB

curve, once the threshold effect (originating from the coarse estimation stage) subsides.

3.4 Implementation Plan

The following steps must be taken in order to realize the overall system design :

1. Construct sinusoidal waveforms corresponding to each phase of the three-phase voltage

signals, adhering to the signal model as given by equation 1.1

2. Set sampling frequency, fs

3. Obtain N samples of the three-phase voltages to visualize vabc(k)

4. Initialize the Clarke’s transform matrix C

5. Perform the transformation to yield vα(k) and vβ(k)

6. Form the complex exponential, such that v[k] = vα(k) + jvβ(k), for k = 0...N − 1

7. Let X = FFT(v),

and Y [n] = |X[n]|2, for n = 0 . . . N − 1

8. Locate the maximum bin:

m = arg maxY [n]

9. Set δ̂ = 0

10. Perform 1st iteration of Estimator Algorithm:

Xp =
N−1∑
k=0

x[k]e
−j2πk

m+ p

N , for p = ±0.5

δ̂ =
1

2
Re{X0.5 +X−0.5

X0.5 −X−0.5
}

11. Perform 2nd iteration of Estimator Algorithm:

Xp =
N−1∑
k=0

x[k]e
−j2πk

m+ p+ δ̂

N , for p = ±0.5

δ̂ = δ̂ +
1

2
Re{X0.5 +X−0.5

X0.5 −X−0.5
}

12. Acquire final frequency estimate:

f =
m+ δ̂

L
fs.
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Chapter 4

Simulation Results

This chapter investigates the project being put under test in the MATLAB environment, with

each section also containing the assessment of the stated results.

4.1 Verification of Clarke’s Transformation

The implementation of the Clarke’s Transformation is quite straightforward in MATLAB to

yield the complex exponential s.

Figure 4.1: Plot of the complex exponential s formed using the α and β components of output
of the Clarke’s Transformation

4.2 The Noiseless Case

In the case where we assume that no noise is present in the system, the implementation of our

iterative estimator is deemed redundant as the system frequency will always converge to its

true value at the center of the maximum bin in its frequency domain representation.
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Figure 4.2: Plot of the ratio of the mean squared error of the estimator to the asymptotic CRLB
as a function of δ, which is the frequency offset from the maximum bin center. Simulation curves
for one and two iterations are shown.

The conclusion that can be drawn from the given plot is that, during the first iteration only,

the mean squared error varies as we move away from the absolute center of the maximum bin

in the frequency domain. The second iteration is shown to be redundant in this case, to further

supplement our initial claim made at the start of this section.

4.3 Addition of Noise

Before revealing the performance of our estimation algorithm on the complex sinusoid(derived

from the Clarke’s Transformation output components), with added noise, it is only reasonable

to revisit some basic principles to denote noise power.

The noise terms, w[k] in our signal, x[k] have zero mean and independent variance equivalent

to σ2/2 .Noise power, σ2, is derived from the expression of the SNR, ρ, which is given by,

ρ =
A2

σ2
(4.1)

where A represents the amplitude of our signal, s[k] at any sampling instant, k. Rearranging

the above equation yields,

σ2 =
A2

ρ
(4.2)

For simulation purposes, the extent of noise is varied by altering the required SNR, ρ, while

holding A to unity.
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4.3.1 Performance of Estimator as a Function of δ

We now investigate and analyse the performance of our estimator under various noise conditions.

Sinusoid Under Heavy Noise

The number of samples taken is initially set to 128. We shall look at how the performance of

the estimator implemented on a ’noisy’ signal would vary with respect to the number of samples

that are collected for analysis.

Figure 4.3: Plot of the ratio of the mean of acquired estimates to the asymptotic CRLB as a
function of δ, which is the frequency offset from the maximum bin center. Simulation curves
for one and two iterations are shown for N = 128

Figure 4.4: Plot of the ratio of the standard deviation of acquired estimates to the asymptotic
CRLB as a function of δ, which is the frequency offset from the maximum bin center. Simulation
curves for one and two iterations are shown for N = 128
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The above plots demonstrate how the mean of the acquired frequency estimates approach

the CRLB (meaning the ratio of the mean of estimates to the CRLB approaches zero) in

addition to the standard deviation of the estimates converging to the asymptotic CRLB in the

region closest to the peak of the maximum bin. It can be seen that the difference between the

first iteration of the estimator and the CRLB ’floor’ is eliminated once the second iteration is

completed.

The number of samples is reduced then to 32 (a power of 2), hoping to increase the speed

of convergence of the algorithm, and thereby reducing computational load.

Figure 4.5: Plot of the ratio of the mean of acquired estimates to the asymptotic CRLB as a
function of δ, which is the frequency offset from the maximum bin center. Simulation curves
for one and two iterations are shown for N = 32

Figure 4.6: Plot of the ratio of the standard deviation of acquired estimates to the asymptotic
CRLB as a function of δ, which is the frequency offset from the maximum bin center. Simulation
curves for one and two iterations are shown for N = 32
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The difference in using two different values for the number of samples taken, is now clearly

visible. Although the speed of evaluation has been enhanced, and hence, computational load

has been decreased gravely, it is noticeable that reducing the number of samples, increases the

adverse effects of the noise variance as we intend to move away from the center of the maximum

bin that is most likely to entail the component frequency.

Now, let us increase N to 256 (another power of 2), at the expense of computational speed

to further assess the accuracy of our estimates.

Figure 4.7: Plot of the ratio of the mean of acquired estimates to the asymptotic CRLB as a
function of δ, which is the frequency offset from the maximum bin center. Simulation curves
for one and two iterations are shown for N = 256

Figure 4.8: Plot of the ratio of the standard deviation of acquired estimates to the asymptotic
CRLB as a function of δ, which is the frequency offset from the maximum bin center. Simulation
curves for one and two iterations are shown for N = 256
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The results, as seen now are much finer, with the second iteration of the estimator algorithm

maintaining the CRLB requirement. One may assume that increasing N improves the accuracy

of the estimation, at the expense of computational speed, but is not as desirable in real-time

scenarios.

4.3.2 Performance of Estimator as a Function of SNR

We would now like to assess the quality of our frequency estimator based on its performances

at varying SNRs and N .

Figure 4.9: Performance of the estimator of the frequency as a function of the signal to noise
ratio with N=64

Figure 4.10: Performance of the estimator of the frequency as a function of the signal to noise
ratio with N=128
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Figure 4.11: Performance of the estimator of the frequency as a function of the signal to noise
ratio with N=512

To summarise the results, the performance floor between the first and the CRLB is elimi-

nated by the second iteration at lower values for the SNR, with increasing N .

Although there is less variance in using larger number of samples, and with the resolution of

our algorithm limited to 1/N , independent of the SNR, we can notice a significant gap between

the asymptotic CRLB and the two iterations of the estimator algorithm at very large SNRs.

4.4 Motivation for Optimization

In terms of power grids, where the SNR is assumed to be relatively high, using more samples

than what is required for optimized performance is deemed unnecessary due to the estimator

being biased at large SNRs, as shown in Fig.4.11.

One might argue that with the advent of modern technology, the computational load is not

really a major area of concern. However, if we look at the complexity of modern electrical grids,

and the imminent introduction of Smart Grids, where frequency and phase analysis will play

a crucial role in assessing and controlling power quality, it would be beneficial to have a fast

converging frequency estimation scheme at several points across the grid.

The use of small sensors, or micro-controllers to conduct analysis on the grid, embedding

a frequency estimation program would at first require the concerned developers or engineers

to understand the trade-off’s relative to accuracy and computational load. The noise present,

while making measurements, need close attention in order to evaluate frequency estimates with

minimum variance at high speeds. The dichotomous search algorithm as presented in this

paper, would suffice in real-time scenarios, if a perfect balance between sampling parameters,

and ease of computation is established.
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4.5 Response to Small Independent Frequency Changes

Ideally in conventional power networks, the operational frequency across each phase is held

constant for obvious reasons.

Testing the sensitivity of a power system’s overall operating frequency to a small variation

of individual phase frequency, could be a testing scenario for our algorithm to see whether or

not the formulation of the complex exponential is possible, and inspect the variation of overall

system frequency due to these small independent changes.

Under balanced conditions and assuming all phases operate at f Hz, the α component of

the output of the Clarke’s Transformation differs from the β component by
π

2
, which simplifies

the formulation of the complex exponential.

The introduction of a small change in frequency across any phase at any point in time,

would in plain words, mean that the corresponding phase sinusoid would be propagating at a

faster rate than the ones associated with the other phases. It would be interesting to see how

our estimation algorithm would behave, in light of such phenomena, given that the purpose

of utilizing the Clarke’s Transform is to encode all possible frequency information within the

complex sinusoid.

For testing and verification purposes, we introduce a small frequency change, ∆f , across

one phase of the system, while letting the remaining two phases operating at the set system

frequency.

4.5.1 Response to Small Frequency Change in Phase ’a’

The frequency variation associated with phase ’a’ of our system is denoted as, ∆fa, such that

fa = f ±∆fa and its application to our sample of voltage signals would yield,

va(k) = Va(k) cos(2πfak∆T + φ) (4.3)

vb(k) = Vb(k) cos(2πfk∆T + φ− 2π

3
) (4.4)

vc(k) = Vc(k) cos(2πfk∆T + φ+
2π

3
) (4.5)

in which f is the fundamental frequency, φ = 0 and the voltage amplitudes in each phase

is set to unity.

vαβ(k) =
2

3

1 −1

2
−1

2

0

√
3

2
−
√

3

2

×


cos(2πfak∆T )

cos(2πfk∆T − 2π

3
)

cos(2πfk∆T +
2π

3
)

 (4.6)
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This is now expanded and simplified to give us our α and β components.

vα(k) =
2

3

[
cos(2πkfa∆T )− 1

2

(
cos(2πkf∆T − 2π

3
) + cos(2πkf∆T +

2π

3
)

)]
(4.7)

or,

vα(k) =
2 cos(2πkfa∆T ) + cos(2πkf∆T )

3
(4.8)

The evaluation of vβ(k) is as follows:

vβ(k) =
2

3
×
√

3

2

[
cos(2πfk∆T − 2π

3
)− cos(2πfk∆T +

2π

3
)

]
(4.9)

or,

vβ(k) = sin(2πkf∆T ) (4.10)

Variation in phase ’a’ frequency

fa fb fc

Overall System
Frequency Estimate

49 50 50 49.81
49.1 50 50 49.83
49.2 50 50 49.85
49.3 50 50 49.87
49.4 50 50 49.89
49.5 50 50 49.91
49.6 50 50 49.93
49.7 50 50 49.95
49.8 50 50 49.96
49.9 50 50 49.98
50.1 50 50 50.02
50.2 50 50 50.04
50.3 50 50 50.05
50.4 50 50 50.07
50.5 50 50 50.09
50.6 50 50 50.1
50.7 50 50 50.12
50.8 50 50 50.14
50.9 50 50 50.15
51 50 50 50.17

Table 4.1: Overall System Frequency Estimates with Respect to Independent Frequency Vari-
ation in Phase ’a’

4.5.2 Response to Small Frequency Change in Phase ’b’

Similar to the methods used to construct expressions for vα(k) and vβ(k) in case of a frequency

deviation in phase ’a’, we now form expressions for the vα(k) and vβ(k) terms in case of a small
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frequency change in phase ’b’.

vα(k) =
2

3

[
cos(2πkf∆T )− 1

2

(
cos(2πfbk∆T − 2π

3
) + cos(2πfk∆T +

2π

3
)

)]
(4.11)

or,

vα(k) =
2

3

[
cos(2πkf∆T )−

(
cos(πfbk∆T + πkf∆T ) cos(πfbk∆T − πkf∆T − 2π

3
)

)]
(4.12)

The expression of vβ(k) is then given by,

vβ(k) = − 2√
3

[
sin(πfbk∆T + πkf∆T ) sin(πfbk∆T − πkf∆T )− 2π

3
)

]
(4.13)

Variation in phase ’b’ frequency

fa fb fc

Overall System
Frequency Estimate

50 49 50 49.86
50 49.1 50 49.87
50 49.2 50 49.88
50 49.3 50 49.9
50 49.4 50 49.91
50 49.5 50 49.93
50 49.6 50 49.94
50 49.7 50 49.95
50 49.8 50 49.97
50 49.9 50 49.98
50 50.1 50 50.02
50 50.2 50 50.03
50 50.3 50 50.05
50 50.4 50 50.06
50 50.5 50 50.08
50 50.6 50 50.1
50 50.7 50 50.11
50 50.8 50 50.13
50 50.9 50 50.15
50 51 50 50.16

Table 4.2: Overall System Frequency Estimates with Respect to Independent Frequency Vari-
ation in Phase ’b’
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4.5.3 Response to Small Frequency Change in Phase ’c’

The expressions for the vα(k) and vβ(k) terms in this particular scenario is given by:

vα(k) =
2

3

[
cos(2πkf∆T )−

(
cos(πfk∆T + πkfc∆T ) cos(πfk∆T − πkfc∆T −

2π

3
)

)]
(4.14)

vβ(k) = − 2√
3

[
sin(πfk∆T + πkfc∆T ) sin(πfk∆T − πkfc∆T )− 2π

3
)

]
(4.15)

Variation in phase ’c’ frequency

fa fb fc

Overall System
Frequency Estimate

50 50 49 49.34
50 50 49.1 49.4
50 50 49.2 49.47
50 50 49.3 49.53
50 50 49.4 49.6
50 50 49.5 49.67
50 50 49.6 49.73
50 50 49.7 49.8
50 50 49.8 49.87
50 50 49.9 49.93
50 50 50 50
50 50 50.1 50.07
50 50 50.2 50.13
50 50 50.3 50.2
50 50 50.4 50.27
50 50 50.5 50.33
50 50 50.6 50.4
50 50 50.7 50.47
50 50 50.8 50.53
50 50 50.9 50.6
50 50 51 50.67

Table 4.3: Overall System Frequency Estimates with Respect to Independent Frequency Vari-
ation in Phase ’c’
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Chapter 5

Conclusion

The need for a frequency estimation algorithm for three-phase power systems has been ac-

knowledged. An extensive research has been conducted on various methodologies developed

by researchers in the past and their supporting literature has been reviewed to understand

the basic concepts and requirements for an accurate and fast converging estimator of power

frequency.

Upon reviewing some common techniques in tracking power system frequency, a strong

motivation has been developed to propose and subsequently implement a new method to be

used in real-time scenarios. The Clarke’s transformation is a powerful tool that has been

proven to significantly reduce the complexities involved in analysing the frequency contained

within three-phase power signals, by resolving the three phase voltages into a single complex

exponential which has a more physically meaningful and robust representation for single phase

estimator algorithms to be carried out.

As a result, a few novel single phase estimators designed for complex sinusoids have also

been investigated and their supporting literature have been heavily analysed. This paper is

dedicated to promote a novel technique of three-phase frequency estimation that is reliable in

terms of accuracy and speed of convergence. In contrast to the current methodologies, some

of which have been reviewed in this paper, our estimator demonstrates great resilience while

heavily reducing the speed of computation while catering towards the presence of noise and its

effects. A few key design constraints have also been addressed in order to establish a level field

between computational speed(or load) and accuracy of results, and its safe to say our estimator,

in addition to being unbiased, meets all the basic requirements.

5.1 Future Work

• First and foremost, as seen throughout the paper, arbitrary signals have been used to

assess the estimation algorithm’s performance, and it is only realistic to extend its opera-

tion onto three-phase voltage signals sampled, in real-time, from real ”points” across the

power network.
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• Introduction of voltage or current harmonics across numerous points on the network,

due to a variety of reasons, needs closer attention, and our frequency estimator could be

deployed to analyse overall network health under these circumstances.

• The frequency estimates derived via our methodology can be used to estimate the phase

at different points on the grid, where it varies continuously due to the application of the

various types of loads. Hence, power quality control and protection mechanisms can be

easily implemented drawing on from our estimator’s operational characteristics.

• In this paper, we have assumed balanced, sinusoidal conditions. Ideally, we would want

to assume the unbalanced voltage and current conditions, and make necessary changes to

our solution in order to provide more robustness towards various types of scenarios.

• Smart Grids, being labelled as the future of electricity grids, would require frequency

and/or subsequent phase estimation across numerous points on the network, for network

diagnostic and assessment purposes. This would require the use of highly efficient sensors

to ensure constant monitoring of our power parameters. It would be interesting to see if

our estimation scheme would be implementable on a micro-controller level, and address all

the major design constraints and ”fine-tune” the procedures for fast, reliable and efficient

frequency tracking.
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Appendix A

Circularity of Complex Exponential

under Unbalanced Three-Phase

Conditions

For a three-phase system, the complex valued v(k) = vα(k) + jvβk comprises the standard part

(left-hand term) and the conjugate part (right hand term). That is,

v(k) = A(k)ej(2πf+φ) +B(k)e−j(2πf+φ) (A.1)

where,

A(k) =

√
6(va(k) + vb(k) + vc(k))

6
(A.2)

B(k) =

√
6(2va(k)− vb(k)− vc(k))

12
− j
√

2(vb(k)− vc(k))

4
(A.3)

Figure A.1: Non-circularity of complex exponential under unbalanced conditions
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The complex sinusoid, v(k) has the form as shown in Figure A.1 due to B(k) 6= 0 under

unbalanced conditions.
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