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Abstract

As the growing demand for higher signal band- width, it is required to increase the sam-

pling frequency to reach the demand of Nyquist sampling theorem. However, due to

the limitations, such as the sensor manufacturing, the size of chips and the price, sig-

nal processing algorithms has been applied to get high resolution images from several

low-resolution (LR) images. The purpose is to realize the high-resolution images recon-

struction with a higher quality vision effect from one or a lot of low resolution images,

which are shot from the same scenery. This article has introduced the origin and concept

of super resolution. Some classical algorithms are presented with their characters, includ-

ing the merits and the problems and the comparison will be given.Coprime sampling is

a very attractive way in the processing of super resolution images, as its low noise ratio.

the purpose of this method is to obtain the high resolution images from some aliased low

resolution images. Those low resolution images are under-sampled by coprime factor M

and N. The coprime sampling algorithm is able to separate the high frequency components

from the aliasing. It shows that coprime sampling has good detection performance and

also reduce the complicity of algorithm and sampling rate. The expected super resolution

methods can reconstruct high- frequency components which is otherwise unavailable in

the single low resolution image. The effectiveness of this technique will be verified with

other methods by comparing the simulation results.



Abbreviations

CSA Co-prime Sensor Array

DOA Direction of Arrival

FIR Finite Impulse Response

MAP Maximum A Posteriori Method

ML Maximum Likelihood

PSNR Peak Signal-to-Noise Ratio

MUSIC Multiple Signal Classification

NEDI New Edge-Directed Interpolation

SCSR Super-Resolution Sparse Representation

SNR Signal-to-Noise Ratio

SR Super Resolution

ULA Uniform Linear Array

POCS Projection onto Convex Sets Approach
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Chapter 1

Introduction

1.1 Super-resolution Images

Super-resolution images are a typical of technique to apply the algorithms in processing

one or several images to get the HR image. High resolution means high density of pixels,

which is able to provide more detail, and those details play an important role in many

areas. The most direct method to compute a high resolution image is using the sensors

of high resolution images.

High resolution images or video are often required for the after image processing as well

as its analysis. There are two main areas for the high resolution application: improved

graphical information for human interpretation and help to represent automatic machine

awareness. High resolution images refer to more details existed in the images. The detail

will increase along with the improve of resolution. The resolution of the image can be

categorized on many different ways, such as the pixel resolutions, temporal resolutions,

spectral resolutions, radiometric resolutions and spatial resolution. In most cases, we are

mainly concerned with spatial resolution.

The super resolution resolution of the image is first limited within the sensor of the

image or the device. There are typically two type of sensors. One is the charge-coupled de-

vice (CCD). And another one is the complementary Metal Oxide Semiconductor (CMOS)

active pixel sensor. These kind of sensors are located in the two-dimensional array that is

typically organized two-dimensional signals. The equivalent number of sensors elements
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per unit area of the sensor unit and the size is determined so as to capture the spatial res-

olution of the first image. High density of the sensor, the possible high spatial resolution

of the imaging system. Aliasing in the lower spatial sampling frequency, under-detector

imaging system generates a low-resolution image bulk film. A direct method to increase

the spatial resolution of the whole image system is changing the density of the sensors and

reduce the size of the sensors. Along with the decrease of the size of sensors, the amount

of light incident on the respective sensors will cause a so-called shot noise reduction. In

addition, the increase in hardware cost density sensor or pixel density of the image cor-

responding to the sensor is increased. Thus, the size of the sensors play a significant role

in increaseing the spatial resolution.

For many digital images applications, the high resolution images or video is often

desirable for the after image processing and data analysis. Improved graphical information

help to express the human interpretation and automatic machine recognition graphic

information. The need for high-resolution images come from two main areas of application.

Details of the resolution of the image included in the image detail will be described will

be increased with the increase of the detailed resolution. Pixel resolution, time resolution,

the spectral resolution of radiation resolution and spatial resolution: the resolution of the

digital image can be classified in various ways. If this is primarily related to the spatial

resolution.

The image sensor, limiting the spatial resolution of the image view (high frequency

band) is also due to (sensor point spread function (PSF) associated with) the lens cloudy,

lens aberration effcts diractions the aperture, the optical blur due to the limited movement

in the optical. Very high constituting the imaging chip and an optical component that

captures an image of the resolution is very high, most of it is not practical in actual

application, for example, widely used in monitoring cameras, and that the built-in camera

on a mobile phone. In addition to the cost of resolution surveillance camera hardware

speed it is limited to storage. In other scenarios, such as satellite imagery to use a di cult

resolution sensors by physical constraints. Another way to solve this problem is to use

signal processing to create a process to accept the recorded image degradation to replace

the hardware cost calculation cost OAE image. This technique is particularly referred to
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as a reconstruction super resolution (SR).

The super-resolution (SR) is to produce an image of high resolution (HR) image from

multiple observed lower resolution (LR)[1], a technique for increasing the performance

degradation due to the image processing of the low-resolution camera and a high-frequency

component removed. SR is the basic concept of the non-included in the plurality of

low resolution frames to produce a high resolution image - to combine the redundant

information.

Closely related to the SR techniques are one of an image interpolation method which

is applied to increase the pixels of the image. Since there are no more additional infor-

mation supplied, the quality of the image with interpolation is extremely limited nature

of problem raised unjust, it is not possible to recover the frequency components of loss.

However, the scheduling settings may be observed multiple low-resolution reconstruction

problem is more limited. Non-redundant information contained in these images LR are

generally introduced by the sub-pixel shift between them. May result in uncontrolled

motion between the imaging system and field because the pixel shift may, for example,

due to the movement or control operation of an object, such as satellite imaging system

orbiting the earth at a predetermined speed.

However, as the limitation of manufacturing technique and cost, it is unrealistic in

many situation and large scale production. Many area are benefit from this, if it is able

to apply super-resolution algorithm to compute the HR image . Those approach is the

most attractive research area, which refers to super resolution (SR) or high resolution

image reconstruction or sometimes called resolution enhancement in [1]. Specifically, to

the Social security or terrorism, it is difficult to find the potential threat in the low reso-

lution images or videos. As a result, it is desired to capture the abnormal activities from

high resolution technology. Traditional compression has some limitations, if the super-

resolution is introduced, the size of image can be reduced before compression, and then

recover the image, which means the compression ratio has been improved. In addition,It

is pretty helpful for a doctor to make a correct diagnosis if the HR image algorithm can

introduced to medical care. It will be easier to detect an object from many similar objects

if it is able to get a HR satellite images. Meanwhile, if an HR image is introduced, the
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performance of pattern recognition in computer vision can be improved.

Fig. 1.1 Standard clinical magnetic resonance imaging (MRI)

Currently, some researches to the super-resolution image can be classified to 3 class:

based on interpolation, reconstruction and learning[2], which will be discussed later.

1.2 Coprime sampling

The signal is sampled from two samplers with the sub-Nyquist sampling rates M and N

are coprime integers[3]. In practical application of signal detection, it is required to obtain

the a higher sampling frequency, which also has increased the amount of data and bring

some problems in the real systems. The coprime sampling, to some extent, is able to solve

those problems. Coprime sampling, ensuring the low noise ratio, reduce the requirement

of sampling frequency.

Spectral density estimation is to detect the frequency domain in the data. It should

be mention in here that if the sampling rate satisfy the Nyquist theorem, the spectral of a

signal thus is able to be determined uniquely. However, along with its requirement of high

sampling frequency and signal bandwidth, it needs amount of sensors or measurement

devices to reach this demand. The coprime sampling is very attractive between many

techniques that are available to those kind sampling methods [3]. Coprime sampling was

firstly proposed to distinguish the deterministic sinusoids in noise [4]. After that, the

relevent robust versions were pointed out [3] due to the existance of noise in processing.

The problem is that this algorithm requires a lot of samplers to distinguish the different

frequency signals.
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Fig. 1.2 Example of coprime sampling
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Chapter 2

Techniques for super-resolution

Based on literatures surveyed, there are several SR algorithms. Those methods are mainly

focus on the particular domain, spatial/frequency, and its purpose to solve specific prob-

lems.

2.1 Interpolation-Based Super Resolution

Multi-frame super-resolution technology is the most visually method. Firstly, the infor-

mation of the relative motion among frames is estimated to get the pixel value in the

nonlinear space. Then, based on nonlinear interpolation, the value of HR grid will be get.

Finally, the technology of image recovery is applied to deblur and reduce the noise. Rajan

and Chaudhuri point out the method of general interpolation by 3 steps: decomposition,

interpolation and fusion. TAOHJ[2] raised the bilinear interpolation in wavelet domain.

The advantage of those methods is the fast and easy to compute. It is able to satisfy

the requirement of real-time. However, owing to the introduction of extra high frequency

information, it is hard to get the effect of sharpness.

2.1.1 NEDI New Edge Directed Interpolation

If we consider that without loss of generality, we assumed the image size Xi,j a low

resolution image of H W coming from the size of2H ∗ 2W , i.e. Y2i,2j = Xi,j. We use

the following basic idea of presenting the new interpolation algorithm: interpolating the
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interconnection lattice Y2i+1,2j+1 which is compute from the lattice Y2i,2j = Xi,j.

Here are the closest includes your neighbor interpolation along a diagonal direction.

It is assumed that the Gaussian process can modeled the natural inage source.Based on

the classical theory (Wiener filter), it is given by the optimal MMSE linear interpolation

coefficient

where R = [Rkl], (0 < k, l < 3) andr = [rk], (0 < k < 3) is the partial covariance at the

high resolution.

We propose to evaluate a high-resolution coponents from the counterpart of the low-

resolution qualitative model, which characterize the relationship between the covariance

resolution. After that, we will begin from the step edge in the ideal model for the case

of one-dimensional signal(1-D) [18]. The sampling interval of the high resolution to the

low local fixed Gaussian is assumed to 2d and d respectively. As a result, the relationship

among the normalized covariance sampling interval can then be estimated by the followed

equation , R(x) = e−x
2/2σ2

.

It shows that the covariance of high-resolution can be supposed to the covariance of

low-resolution with the quadratic-root function R(d) = R(2d)0.25. along with the sampling

distance d goes to 0, R(d) can be then described by R(2d) for the computation efficiency.

Regard to a 2-D signal, images in particularly, one signficant factor to the successful

alignment is to obtain high-resolution covariance knowledge. Geometrical rule of the

edge means the pharmaceutical smoothly with the edge sharpness and pharmaceutical

direction over with predefined edge orientation[18]. The direction-related properties of

the edge can affect the visual quality of the area around the edges directly. It needs

to metioned in here that the local covariance structure contains enough information to

estimate the local covariance structure. However, there are some problems. Instead,

we estimate the covariance of high resolution from low resolution relative accoding to

10



the estimated ultimate proposal ”geometric duality.” Due to limitations of the explicit

approach, we do not want to estimate the direction of the local covariance.

Fig. 2.1 Interpolating from Y2i,2j to Y2i+1,2j+1

Geometrical duality can be described as the correspondence among the different res-

olutions.

The followed figure describles the geometric duality among the high-resolution covari-

ance Rk1,rk and the low resolution covariance estimation of Rk1, rk when we interpolate

the interlacing lattice Y2i+1,2j+1 from Y2i,2j. The geometrical duality is to estimate the

local covariance for 2-D signals in the local covariance without the need of the edge ori-

entation. Similar geometric duality can also be observed in the followed figure, when the

interpolatation is the interlacing lattice Yi,j (i+j = odd number) from the lattice Y i, j

(i+j = even number). In fact, both figures are same to the scaling factor of 21/2 and the

rotation factor of π/4.

When the estimating a high-resolution and low-resolution covariance covariance re-

sponse relationships it can directly connect with the existing covariance and covariance

estimation method based adaptation measures.

The low-resolution covariance Rkl,rk can then be caculated from the local piexels of

low resolution images by applying method
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where y = [y1...yk...yM2 ]T is the signal vector, which contains MxM pixels within the

local pixels. Meanwhile, C is the 4xM2 signal matrix[18]. Its kth column vectors can be

represented by the four nearest neighbours of yk considering the diagonal direction. Then

we can get

Covariance based adaptive edge-oriented nature is to adjust the interpolation coeffi-

cient and match the random orientation. The more detailed justification real estate in

the same direction. However Co. scale can affect (you can usually find in the texture pat-

tern, for example, tightly packed edges), preservation of the true direction of the edge of

the sampling frequency of the working class down because of aliasing and edge model[18].
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Fig. 2.2 Geometric duality for the interpolation of Yi,j(odd numbers) from Yi,j (even

numbers)

However, the main drawback of covariance based adaptive interpolation is the com-

putational complexity. If the window size is changed to M=8, the computation requires

around 1300 multiplications for each pixel. When we compared with the linear interpola-

tion to be applied when an adaptive interpolation for every pixel based on the covariance,

the overall complexity is increased about twice. To reduce the computational complexity,

The followed method is introduced. The adaptive interpolation based on the covariance

only is applied to the edge pixels (pixels near the edge); For more edge pixels (pixels of the

soft zone), we still use a simple linear interpolation. This hybrid system is based on the

observation of the pixels are often adapted based on the covariance advantage consists of

the small portion of the total image edge pixel edge. Pixels (e.g., four close neighbors from

the estimated local distribution) measuring the activity if the preset threshold value Th

or more is declared as edge pixels. Owing to the calculation of the activity measurement

is usually negligible compared to that of the covariance estimation, it is possible to obtain

a small portion of the image containing the complex dramatic decrease edge pixels.

2.2 Reconstruction-Based Super Resolution

This is the most common methods. It is assumed that the image only has some suitable

transformation, shift and noise disturbance. There are generally two parts to reconstruct

the image: registration and reconstruction. The general methods are application of max-

imum a posteriori(MAP), iterative back projectim(IBP)[1] and Projection onto Convex

Sets Approach(POCS)[2]. Only required some partial priori hypothesis, the effect of blur

and aliasing, to some extent, will be reduced.

2.2.1 Non-uniform Interpolation Approach

Ur and Gross [2] searched a non-uniform interpolation of an ensemble of spatially shifted

LR images by realising the generalized multi-channel sampling theorem of Papoulis and
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Brown. This algorithm is the most visual method for SR image reconstruction. It consists

of three steps (as illustrated in followed figure):

1.Registration. It is to estimate the relative motion, if the motion information are

unknown.

2. Interpolation. To improve the resolution of the images. Non-uniform interpolation

has been applied.

3. De-blurring process. This step is depending on the observation model and previous

process.

Fig. 2.3 Registration Interpolation based reconstruction

It is proposed a scheme to acquire an improvement resolution image by using the

Landweber algorithm from a certain number of images taken with multi-sensors [1]. The

block matching method has been employed for determining the relative shifts. However,

if the cameras possess the same aperture, there are still some limitations both in its

arrangement and configuration.

This difficulty can be solve by multiple cameras with no more than one apertures [1].

The advantages of the non-uniform interpolation method is that it takes lower computa-

tional load and able to realize the real-time process. The problem, however, in this method

is that the degradation models are limited. It is only practical and realizable when the

blur and the noise are similar for the low resolution images. In addition, the optimality

of whole reconstruction technique is not guaranteed, beacuse the step of restoration does

not consider the errors for the interpolation.
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2.2.2 Projection onto Convex Sets Approach (POCS)

POCS algorithm has the good ability to contain spatial prior information, and the ability

to integrate the prior information into the reconstruction process. The basic idea is that

certain features of the high-resolution images, such as data reliability, energy boundedness

and smoothness, is refer to the different convex set of constraints. By using those alter-

nating the role of these projection of the intersection of convex set, it is able to compute

the solution to meet all of the constraints convex sets, and realize the high resolution

image reconstruction.

Iteration can be taken to compute the initial estimation of x0, which is the estimated

projection of convex sets projection operators Pi, it is able to obtain the desired high-

resolution image. The initial estimate x0 is usually used in interpolation method of

constructing a high resolution image, use the constraint set correction x0 observation

sequence until the iteration termination condition is satisfied. By the high-resolution

image reconstruction algorithm POCS can be written as

Due to add a variety of convenient ability to maintain a strict priori constraint infor-

mation, POCS algorithm has been widely applied in practice. However, the result of the

reconstruction algorithm depends on the initial estimate, and the convergence of iterative

algorithm is slow. In addition, its stability needs to be improved.

Fig. 2.4 Comparison between interpolation and POCS (left: Original Image, Middle:

Bilinear interpolation, Right: POCS algorithm)
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2.2.3 Statistical method

Statistical method is also known reconstruction method based on probability. Reconstruc-

tion algorithm based on probability can be divided into maximum a posteriori method

(MAP) and maximum likelihood estimation method (ML). The meaning of maximum a

posteriori probability method is the promise of a known sequence of low-resolution images,

so that to maximize the posterior probability of a high resolution image. The maximum

likelihood probability method can be considered as a special case in any prior model of

the maximum a posteriori probability algorithm. The maximum a posteriori method is

currently researched widely.

Maximum a posteriori reconstruction algorithm is the low-resolution image reconstruc-

tion by the following equation in the observation model to obtain a high resolution original

image. It means to get the maximum value of the posterior probability of the original

image resolution.

Take the Bayes’ theorem in here,

As the right side of this equation is irrelative to the denominator, so that we can get

Thus, the posterior probability of high-resolution image equivalent to the multiplica-

tion of prior probability and the conditional probability of the low-resolution images. It is

notice in here, that Pr(y|x) is the conditional probability of a low resolution image in the

high resolution image which is known. Pr (x) is the prior probability of a high-resolution

images, Pr (y) is the posterior probability of a low-resolution image, which is generally

considered independent of the solution process. Conditional probability usually use the

Gaussian model or Markov model, and prior probability can choose a variety of different

models according to different needs, It shown be mention in here that the models generally
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should be chosen to maintain the ability to function with convex edges, such as TV model,

BTV model. The Fig shows the comparison of MAP and the bilinear interpolation.

Fig. 2.5 Comparison between interpolation and MAP (left: Original Image, Middle:

Bilinear interpolation, Right: MAP algorithm)

2.3 Learning-Based Super Resolution

It is based in the image set to calculate the field relationship among the patch of sampling

set and the patch of image set. Then, the Optimal weight constraint is constructed, and

using the previous process or assumption to get the closest sampling value. When the

low resolution cannot provide enough information to reach the demand of high resolution,

learning-based methods can obtain more high layer information. Thus, those methods

have the huge advantages. It is able to reach the desired results in the super-resolution

image applications. It provides some new ideas to reconstruct the high frequency infor-

mation in the case of large sampling rate.

Chang [1] firstly indicated the neighbor embedding method. It is assumed that the

high resolution and the corresponding low resolution images have the same geometry

structure. The neighbor embedding method does not require a large number of sampling,

and not sensitive to noise.

It also pointed out the hallucination face, which only focus on human face. As the

introduce of the pre-assumption, this method has largely improved the quality of image.

However, for the more general human face, including the impact of emotion, age and race,

this algorithm can only get the 4 times amplifying effect.
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2.3.1 ScSR Spare Coding super-resolution

For the given single low-resolution input, and a set of pairs (high- and low-resolution) of

training patches sampled from similar images, it is desired to reconstruct a high-resolution

version of the input. The advantage of this method is more widely applicable than re-

constructive (many image) approaches. However, the difficulty of this method is that the

single-image super-resolution is an extremely ill-posed problem[20].

High-resolution patches have a sparse linear representation with respect to an over

complete dictionary of patches randomly sampled from similar images.

where output high-resolution patch and high-resolution dictionary .

We do not directly observe the high resolution patch , but rather (features of) its

low-resolution version. The low-resolution patch in Dl sparse representation will be used

to recover the corresponding high-resolution patch from Dh[16].

where L is the down sampling and blurring operator. The input low-resolution patch

satisfies

Formally, we seek the sparsest solution:

We can find a sparse representation of the Dl. The Dh generates a high-resolution

high-definition output patch base patches corresponding x be combined in accordance

with a coefficient. Sparsest problem of finding the expression of y may be formulated as

follows:
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where F is the (linear) the feature extraction operator. The primary role of F is to provide

a perceived sense constraints on how closely the coefficient Y approximation[21]. A desired

coefficient sufficiently sparse as shown, they suggest that efficient instead be recovered by

minimum norm:

Lagrange multipliers offer an equivalent formulation

The Lagrangian multiplier provides an equivalent formula for the lambda equilibrium

solution of the sparsity and approximation of the fidelity of y. Here, F concatenates

first and second image partial derivatives, computed from a bicubic interpolation of the

low-resolution input. Emphasizes the part of the signal that is most relevant for human

perception and for predicting the high-resolution output.

Transforms usual l fidelity criterion into a more perceptually meaningful Mahalanobis

distance. Sparsity in fixed bases (wavelet), or learned bases (K-SVD, alternating mini-

mization) has been applied extensively to image compression, denoising, inpainting, and

more recently to classification and categorization. For super-resolution, sparse represen-

tation in simple bases of randomly sampled patches already performs competitively.The

input is training dictionaries Dh and Dl, a low-resolution image Y[20].

For each 3x3 patch of Y, taken staring from upper left corner with 1 pixel overlap in

each direction, and then compute the mean pixel value m of patch y. after that, we can

solve the optimization problems with the estimated D and y by:

The high-resolution patch can be generated with x = DhA∗, and put the patch x+m

into a high-resolution image Xo. Using gradient descent, we can find the closest image to

X0 which satisfies the reconstruction constraint

The Super-resolution image X* is achieved.
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2.4 Challenge issues for super-resolution

Other algorithm in the SR caculation to improve their performance are focused on the

color SR algorithm and the compression algorithm currently. Super-resolution recon-

struction technology has already become a hot topic in image processing as its significant

meaning in practice. However, there are still many problems need to be solved.

2.4.1 Image Registration

Image registration is an important process based on the multi-frame image reconstruction.

The aim is to obtain the sequence of low-resolution image registration information in

mutual displacement between the images to realize the further reconstruction. Due to the

existence of different sub-pixel displacement between the low-resolution image sequences,

it is these sub-pixel level displacement provides complementary information. Therefore,

registration accuracy of the results directly affects the reconstruction results. The higher

the accuracy of the displacement information can be better anti-aliasing, the effect of

image reconstruction to get better. Super-resolution reconstruction of image registration

methods should be considered prior knowledge and a variety of unrelated movement during

imaging equipment and image capture scenes movement. In addition, consideration should

be given image registration process into the super-resolution rate in the reconstruction

process, that is, as the reconstruction process changes.

2.4.2 Computation Efficiency

Super-resolution image reconstruction technique applied in practice play an important

role. It is necessary to consider each algorithms complexity and speed. The most common

case is that the effects of reconstruction algorithms and the speed and complexity of

conflicting are always restricted. simple algorithm with the fast speed and easily to

implement high-resolution image reconstruction algorithm to get the visual effect is often

not ideal, but the visual effect is good algorithm but also time-consuming.

As mentioned earlier, the interpolation-based approach and adaptive filtering approach

can reach the demand of real-time implementation. However, those easier algorithms are
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always unable to reach the vision demand, and better vision algorithm would require a

long time. As a consequence, it is desired to optimize those algorithms or create new

algorithms to improve the efficiency and speed.

2.4.3 Suitable In For Different Situation Algorithms

The super resolution algorithms have been applied in many areas, such as the public area,

medical care, or satellite. The different algorithms can only satisfy different requirements,

such as real-time, reliability, and accuracy. As a result, SR technology should develop an

optimal reconstruction algorithm to satisfy the multiple situations.
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Chapter 3

Image Superresolution From

Coprime Sampling

3.1 Theory Properties For Coprime Sampling

The coprime sampling process xc(t) with two sub-Nyquist samplers,whose sampleing spac-

ing are MT and NT, respectively. M and N are coprime integers and M < N . 1/T Hz is

the Nyquist rate for a bandlimited process, i.e. 1/T = 2fmax, fmax being the maximum

frequency. Then, the two sampled signals can be expressed as

Sampling structure are shown below.

Fig. 3.1 Structure of coprime sampling
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x(Mn1) and x(Nn2) is from the first and the second sampler. ifwe set the difference

between those two samplers

It is described in [6], that due to the corporality of M and N, k can reach to any

integers among the range of 0 ≤ k ≤ MN − 1, if n1 and n2 in the ranges 0 < n1 < 2N1

and 0 < n2 < M1. There will be some missing legs in the region of −MN + 1 < k <

0. However, the missed legs is able to obtained from the conjugation of the positive

symmetric counterparts. As a result, the entries R(k) can be obtained, for k = -MN+1,

,MN-1. Considering that, the equation of k = Mn1 − Nn2 can be rewritten as k =

M(n1 +Nl)−N(n2 +Ml) for any integer l.

The autocorrelation plays a significant role in the analysis of signals and systems. The

autocorrelation function of a random signal illustrates the corresponding dependence of

the sample’s values at a time and the sample’s values at another time. As a consequence,

the estimation of full-rank Toeplitz correlation matrix can be described as

where, Rest is illustrated as

It should be noticed in here that

and L is the amount of average time domain blocks, l is a non-negative integer.

For coprime sampling, the total samples collected from these two sampler are M+N

in the period of 2MT seconds, but the average sampling rate can be estimated as
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From this coprime sampling equation, we can get that the sampling rate of coprime

sampling is much smaller than the conventional Nyquist sampling rate of 1/T. The sam-

pling rate of this two samplers is fs/M and fs/N respectively, but this algorithm is able

to estimate up to MN frequency in the spectrum domain, with the frequency resolution

up to fs/(MN).

If we set N1 and N2 as the larger numbers, the average sampling rate fs can be smaller.

As a consequence, we can make this conclusion that with N1 and N2 becoming larger, the

density of power spectrum goes narrower. In another words, the spectrum can be used

more efficiently.

3.1.1 Generalized coprime sampling

As it describe befor, the coprime sampling structure can be used to estimate the low

Nyquist sampling rates. Therefore, the detectable frequencies will increase if the value of

M and N increases. However, along with the increase of M and N the latency time(which

is around MNLT) will also increases. Meanwhile, for the constant data, there will be less

samples as well. As a result, the performace of spectrum estimation maybe inaccuracy,

or even incorrect.

A generalized coprime sampling technique is concerned by P. P. Vaidyanathan[6] with

O(M + pN) samples to estimate O(pMN) virtual samples. The resolution becomes better

along with the increases of p. The latency time, meanwhile, slightly increases with p, this

difference becomes negligible along with the increase of L.

Considering this, an integer factor p is employed to achieve more lags that convential

coprime sampling. In generalized coprime sampling methods, we use pN samples rather

than just 2N samples to estimate the correlation matrix. For the second sampler, it still

use M sampes. In this situation, the computable lags can be written as following set,

It is clear that for any different integer p, we are able to compute a different length of
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set K. The Fig5 shown the valid lags for different value of p (2-4 in the figures).

Fig. 3.2 The set K with different values of p (Top:p=2, Middle:p=3, Bottom:p=4; M =

4, N = 3 and 1: Valid lags, 0: Missed lags)

So that, the set K can compute all the intergers in the region of [0, (p− 1)MN +N + 1].

For this concern, the auto-correlation matrix Rest can be rewritten as ,

where 0 < n1 < pN − 1and 0 < n2 < M − 1.

In the case of p = 2, it becomes the conventional coprime sampling which has been

discussed before. We can get in here, that the conventional coprime sampling case can be

treated as a specific case in this general copriem sampling. Thus, we can summarize the

generalized coprime sampling as below:

i. The maximum sampling rate used in sub-Nyquist sampler is the larger value of

fs/M and fs/N .

ii. The maximum estimated frequency in the spectrum is (p− 1)MN +N − 1.

iii. The frequency resolution can be estimated reach to fs/[(p−1)MN ]. The resolution

is improved by a factor of p-1.
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Consequently, if the value of L is large enough, increasing the value of p can reach a

good performance in spectrum estimation rather than increasing the value of M and N,

which is mentioned before in conventional coprime sampling.

Fig. 3.3 Estimated spectrum for different values of p. (left:p=2, middle:p=5,

right:p=20)

3.1.2 Music algorithm

Multiple Signal Classification(MUSIC) algorithm is first presented by R.O.Schmidt in

1979. The idea of this algorithm is to do the eigendecomposition in the covariance matrix

of a signal or array . The sub-space of the corresponding signals components and the

noise sub-space of signal component phase is computed. The MUSIC algorithm is able to

estimate the DOA with smaller SNR(Signal-to-Noise Ratio),

The idea of MUSIC is to do the spectrum estimation for a signal or an correlation

matrix in the eigenspace. In this algorithm, it have a previous assumption that there

are p complex components and this signal contains the Gussian white noise. Thus, for

a MxM correlation matrix Rx, the eigendecomposition has be used. If the eigenvalues

are arranged in the descend order, the first p corresponding eigenvectors compose the

signal sub-space. The reminding M-p eigenvectors, which is only the noise, span in the

orthogonal space. [MARK] It should be mentioned in here is that the MUSIC algorithm

can be equal to Pisarenko harmonic decomposition if M=p+1.

The frequency estimation of this algorithm can be written as

where vi are the noise eigenvectors and

26



Fig. 3.4 Comparision of FFT and MUSIC algorithm (top: DFT, bottom: MUSIC)

This figure illustrates the spectrum of DFT and MUSIC algorithm. We can see clearly

from this figure that the location with the largest peak provide the frequency estimation of

the signal coponents. In addition, zeros are not presented in here, due to the assupmption

that many components would be added together. Thus, the location of peak has be

searched and estimated by computation. In the presence of noise, MUSIC provides a

better algorithm in the process of picking peaks compared with DFT spectrum, bacuase

MUSIC algorithm has ignore the noise during its process. However, it requires a previous

knowledge that thenumber of components already known in advance.

Fot the MUSIC algorithm, the higher frequency components can be estimated higher

than one sample. That is because it estimation function as shown above is able to process

any frequency components, which is one form of superresolution. The main problem

of MUSIC algorithm is that the number of frequency components should be known in

advance, which means it is unable to applied to most general cases.
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3.1.3 Co-prime sensor arrays (CSAs)

Co-prime sensor arrays (CSAs) refer to a two linear subarrays which is down-sampled by

coprime factors. This non-uniform array requires less sensor compared with the uniform

sensor arrays(USA) of the same aperture. However, the peak side lobe in the CSA is far

higher that the peak side lobe in the USA. The appearance of side lobe in such techniques

often are undesirable in array beam pattern. It is proposed to produce the non-uniform

array by combining those two ULAs. It requires fewer sensor than ULA within the same

aperture.

The conventional beam-forming is performed seperately in each subarray. The total

beam pattern can be obtained by multiplying the two beam patterns. Its resolution,

meanwhile, can reach the same dimension of a fully sampled ULA with MN elements. In

the meantime, the grating lobes will not appear in the same locations, when M and N

are coprime. As a result, the production of beam pattern does not have grating lobes, as

the followed figure shown. The samples from MN decrease to (M+N-1), which means a

significant saving the complicity, and computation demand.

The beam-patterns of those two conventional beam-formed subarrays are described as

the following equations

where, u = cos(θ).
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Fig. 3.5 The beam pattern of ULA(blue), M elements subarray(cyan), N elements

subarray(green), and the combined M+N elements CSA

Both subarrays beam patterns (cyan and green dash line) are start from the bradside (u

= cos(π/2) = 0). In spite of the same resolution that the multiplication of those two

beam pattern achived, the peak lobe of CSA beam pattern is higher than the ULA with

MN elements. It is proposed by Vaidyanathan and Pal [10] that extending each subarray

is able to reduce the high side lobes of CSA. The width of grating lobe in the subarray

beam patterns can also be reduced. As a result, the overlap between two grating lobes

can be alleviated.

3.2 Image Reconstruction

The implementation of this algorithm is first down sampled a high resolution image to

two LR images with the coprime down sampling rate M and N respectively. To keep the

high resolution information, aliasing is kept in here, as illustrated in followed figure. The

purpose is to recovery the original images. In another words, it is try to separate the high

frequency components from the aliasing area.
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Fig. 3.6 The appearance of aliasing when the signal is down-sampled.

The followed figure shows an example with 12 x12 image blocks. After Dn=3
I=2 break

down, a down sampled 6 x6 image is get with third phase ui, which is represented as the

black blocks in the middle. And second image is break down by Dm=1
J=2 , and a 4 x4 image

um is illustrated with gray blocks.

The un,j is then get from un which is down sampled by Dj=4
J=3. And um,i will be get

from um which is down sampled by Di=3
I=3. It is clear that un,j is same with um,i . If I

and J are coprime integer (I 6= uJ ), for any down sampling rate I, J and any phase n,m,

there have and only have one common sub-frame phase, which is satiated un,j = um,i, as

shown in the following equation

This sampling method is called diversity sampling algorithm.
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Fig. 3.7 The illustration of sampling rate diversity

Let us now define an image x[k] of size N. In here, we only deal with one dimension

images, as it perform the same work for two dimensional images with extension. It is

assume that the image is bandlimited to the interval (-pi , pi). As a sequence, we can get

the DFT of the image, which can be written as:

Meanwhile, the inverse DFT can be express as:

We suppose that we have two down sampled images x1[k] and x2[k], which have the size

of N1 and N2 respectively. Moreover, we assume that both images do not lose generality,

and N ¡ N1 ¡ N2. Therefore, two DFTs are given by:
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As the two images N1 and N2 is down-sampled from N, so that N = N*N1 = MN2,

where N and M are coprime integer. In another words, the sequence of x1[k] and x2[k]

are the subsequence of x[k]. Thus, x1[k] = x[Nk], and x2[k] = x[Mk]. Therefore, with the

combination, we can get

Since the inner sum is 0 for n not equal to rNi + l, and the image is bandlimited, the

equation then can be written as

Then, we can estimate the frequency components for each blocks. Here is the example

with sampling rate N=2 and M = 3 as below.
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Fig. 3.8 Frequency domain with down sampling rate is 2

Xn1 = a + f;

Xn2 = b + e;

Xn3 = c + d.

Fig. 3.9 Frequency domain with down sampling rate is 3
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Xm1 = a + d + e;

Xm2 = b + c + f;

For the real image, the high frequency components are usually in a small number.

Therefore, the highest frequency block f is assumed to be zero. We can estimate other

blocks with the iteration from e=0.

a = Xn1;

d = Xm1 - Xn1;

c = Xn3 - d;

b = Xm2 - c;

e = Xn2 - b.

After the estimation of each frequency component block, we can reconstruct the image

by taking the inverse DFT.

3.3 Enhancement Using Adaptive Steering Kernel Re-

gression

According to the imaging model, the initial high-resolution image contains noise and

blur, thus it requires to use the image enhancement algorithms to get the final high

resolution image U[19]. The image restoration method based on Adaptive Steering Kernel

Regression considers spatial distance and grey-scale distance, which is a local nonlinear

combination of data and has good properties in image restoration process. An improved

image restoration algorithm based on control kernel regression is used to adaptively adjust

the weights through anisotropic distance. For any point in the image pi = [xi, yi], the

Adaptive Steering Kernel can be written as

where l is the neighbourhood pixel in the control window Wl of π and Cl is the local

covariance matrix of the image. Cl determines the extension, rotation and scaling of the

34



kernel.The covariance matrix Cl is used to determine whether the pixel is a smooth or an

edge-point and adaptive adjust the control kernel.

It is performed by a basic point of the improvement in the method always a linear com-

bination a local polynomial regression to estimate core independent of the local data[19].

Therefore, the analysis elegant, but also a relatively easy way, and the combined attrac-

tive asymptotic properties, still a problem because of the inherent limitations of linear

local action on the data. As well as the data adaptive kernel regression method, the po-

sition of the sample to the emission characteristics of these samples as well as the density

denpends. Accordingly, the effective size and shape of kernel regression to the local image

characteristics, such as configuration, such edge. This attribute is shown in the following

figure:

Fig. 3.10 The illustration of the effects of the steering matrix and the component on

the size and shape of the regression kernel

where the classical and adaptive kernel shapes are compared in the presence of edges.

The data fit kernel regression is constructed as an optimization problem.

where the data-adapted kernel K(adapt) function now depends on the spatial sample

locations XiS and density, as well as the radiometric values yi of the data[19].
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On the previous parametric framework, and further proposed a method to filter the

next shot idea. In particular, measuring the function of the local slope estimates between

adjacent values suggests the effectiveness of the operation and observed to measure each

weight is used to estimate[19]. If the pixel is located near the edge, for example, then the

pixel of the boundary have a much stronger impact on the same side of the filtrate. It

uses some kind of insight into the mind of the initial image estimate the slope gradient

regression method estimates the initial two-step approach is proposed classics secondary

core that is being carried out. Next, this estimate is used to determine the dominant

direction of the image gradient regions.

A second stage filter, this orientation information is used instead in the direction of

extending ”manipulation” local core results contour adaptively oval edge structure to

impart distribution. These nuclei together to remove noise is performed more strongly to

strong local conservation results through them rather than the edge of the details of the

final output. In other words, the core adapted data takes the form

where Hi are now the data-dependent full matrices which we call steering matrices. We

define them as

where Cs are (symmetric) covariance matrices accoding to differences in the local gray-

values. Along the local edge, the choose of Cis will effectively impact the kernel functions,

as shown in the following figure.
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Fig. 3.11 The kernel expands in the uniformly sampled data set. (A) The core in the

classical method depends on the sample density. (B) The kernel of the data fit is

elongated relative to the edge.

It should be noted that even if we choose large to have a strong denoising effect.

Otherwise, undesirable blurring effects would be modulated at the edges by appropri-

ately chosen. For example, by using such a steering matrix, once the Gaussian kernel is

determined, the steering kernel then can be writtten as

The local edge structure is then associated with a gradient covariance ie equivalently,

a local dominant orientation, where the original estimation of the covariance matrix can

be organized as follows:

where Zx1() and Zx2() are the first derivatives along x1 and x2 directions and Wi is a

local analysis window around the position of interest.

The direction of the dominant region of the gradient is related to the eigenvectors

of the estimated matrix to the next. The Z1() and Z2() is Y i pixel value gradient that

depends on. Because it depends on the selection of the localized gradient kernel, therefore,

the proposed data is equipped with a ”corresponding” kernel of a method of forming a

local ”non-linear” coupling of the data.

This method is simple, but has a good immunity to noise, estimation of the resulting

covariance often may be the rank deficiency or unstable state, care must be taken when

hajiyi obtain the reciprocal of the estimated treatment directly. At this time, it can be

obtained by using the estimated covariance stable diagonal loading or normalization. We

efficient multi estimating the local orientation satisfying the requirements of this problem,

we propose a technical scale[19]. Through knowledge of the above, in this paper, we use

a parameterized how to design a matrix adjustment. For convenience in the form of a
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covariance matrix, we have three components (equivalent eigenvalue decomposition), and

then decomposed into:

where U is the rotation matrix, A is stretched matrix. Covariance matrix is now given by

the respective scaling, rotation, and height parameters of three parameters, , and .

This figure shows how these parameters affect the expansion of the kernel. First, it

is extended by a circular core matrix kidney child, given the long and the small axis of

the Sigma half. Second, slender kernel matrix Utheta is rotated[20]. Finally, it is scaled

by scaling the kernel parameter . Scaling, rotation and height parameters are defined as

follows. The dominant gradient direction of a local area is a specific vector corresponding

to a specific value other than 0 is the smallest of the local gradient matrix arranged in

the following forms:

where cleavage specificity value of UiSiVi gastrointestinal tract, a 2 2 diagonal matrix

that represents the energy in the dominant direction of the Si. Then, the second column

of the 2x2 orthogonal matrix Vi, v2 = [v1, v2]
T , defines the dominant orientation angle

theta

That is specifically corresponding to the minimum non-zero singular values of the

gastrointestinal tract vector shows the dominant direction of the local gradient field.

Elongation may be selected corresponding to the energy of the parameter sigma dominant

gradient direction
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where sigma is a regularization parameter for the kernel elongation. The scaling parameter

gamma is defined by

where sigma is the parameter for the kernel elongation, which describes the effect of the

noise, and the ratio of degeneration.

Fig. 3.12 Block of repeating steering kernel regression. (A) Initialization. (B) Iteration
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Chapter 4

Experimental Results

4.1 1D Signal Recovery

A multiple frequency sinusoidal signal is taken as the example, with the frequency is [150,

190, 220, 250,330].

Fig. 4.1 Frequency domain estimation (blue: original signal; red estimated signal)
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Fig. 4.2 Restructed 1D Signal (Blue: original signal; Red: resorted signal )

Fig. 4.3 Restored signal (Blue: original signal; Red: resorted signal )

4.2 2D Image with coprime sampling

The image with coprime sampling rate N =2 and M =3 has be evaluated in here. The

orignal image X is 256x256 pixels image. It will down sampled with 2 and 3, and then

reconstruct it, which is shown in the followed figures.
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Fig. 4.4 Down sampling rate with 2(left) and 3 (right)

Fig. 4.5 Super resolution by the method of Coprime sampling

This figure shows the reconstructed result of method NEDI (New Edge-Directed In-

terpolation) from the 128x128 pixels image, from the 128x128 pixels image, which is down

sampled from 256x256 pixels image.
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Fig. 4.6 Super resolution by the method of NEDI

This figure shows the reconstructed result of method ScSR (Super-Resolution Via

Sparse Representation) from the 128x128 pixels image, which is down sampled from

256x256 pixels image.
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Fig. 4.7 Super resolution by the method of ScSR

4.3 The Comparison of Each Pixel

To find more detail difference between those methods, the comparisons of each pixel are

made, which is shown in the followed figures. the illumination of each pixel refers to

the difference between the original image. With the comparison of those three figures,

the coprime sampling has a better feature to detect the high frequency components, as

the pixel value in the high frequency parts are lower that other two methods. However,

some undesired noise is introduced, especially for the low frequency parts. Therefore, the

algorithm should be improved and optimized. Meanwhile, the after process is also could

be used to improve the reconstructed quality.

Fig. 4.8 The comparision of the method of coprime sampling with orignal image
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Fig. 4.9 The comparision of the method of NEDI with orignal image

Fig. 4.10 The comparision of the method of SCSR with orignal image

45



4.4 The Comparison of Time and PSNR

In order to compare the reconstructed results of each algorithm objectively, we choose

reconstruction time and peak signal to noise ratio to carry out the quantitative evaluation

of reconstruction.The reconstruction time reflects the overall computational efficiency of

the algorithm, and the PSNR value reflects the similarity of the gray information between

the reconstructed image and the HR image. The larger the PSNR value, the more similar

the reconstructed image and the HR image are in structure and gray information.

The comparison results are listed in the followed table. The results of the table show

that Bicubic interpolation has the shortest reconstruction time but the worst effect. The

sparse learning method is more effective than the Bicubic interpolation method, because

the sparse learning method takes the training time of the sample into consideration, and

its reconstruction time is obviously larger than other methods. For the coprime sampling

method developed in this paper, the PSNR index of the algorithm is obviously improved,

and the computing efficiency is also improved obviously.

Table. 1. Comparison for each method based on running time(s) and PSNR(dB).
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Chapter 5

Conclusion

This paper presented the methods of super resolution and evaluate coprime sampling

reconstruction method. Experimental results are demonstrated to make the comparison.

Meanwhile, the after-process method is also developed to evaluate the effect of blurring

and noising. With the compare of results, it shows that the coprime sampling method

can reach a desired performance in the computation speed and PSNR, when compare

those index with SCSR (Super-Resolution Sparse Representation) and NEDI(New Edge-

Directed Interpolation).The coprime sampling array can greatly detect the high frequency

information and the ability of immunise from the noise.

5.1 Future Work

Although this method reached a desired result and has a good performance compared with

others, additional enhancement should be developed to get a better result to increase the

computation speed or the PSNR. Meanwhile, the noise still has a big impact on the

recovered high resolution image. Therefore, additional after process is desired.
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