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Abstract

In smart grid, system frequency typically operates around its nominal values of standard

range (49.85 Hz to 50.15 Hz). When there is deviation, the system load and generation

become imbalanced resulting in critical operation conditions. Therefore, to maintain and

regulate fast and accurate frequency estimation is the utmost importance as it provides

reliable measurements of system parameters. The ultimate objective of this thesis is to

design a fast and accurate frequency estimation for three-phase power systems under

unbalanced conditions (variations of voltage amplitudes). The combined complex signal

from Clarke’s Transform results in partial loss of information and under-performance

in unbalanced conditions. In order to increase robustness for frequency estimation in

unbalance, the proposed approach improves the AR2 model by evaluating it on each of the

three phases. The amplitude weighted factor is designed to average the phase frequencies

, and thus, it eliminates the effects of noise from the signal. Simulation results show that

the Amplitude Weighted Average (AW) approach successfully outperforms compared to

the existing methods and Bias-Compensated Recursive Least Square (BCRLS) with the

AW method performs the most optimally in unbalanced conditions.



Abbreviations

AR Model Auto-Regressive Model

AW Amplitude Weighted Average

BCRLS Bias-Compensated Recursive Least Square

CRB Cramer-Rao Bound

EKF Extended Kalman Filter

LMS Least-Mean-Square

PPL Phase-Locked-Loop

RLS Recursive Least Square

RMSE Root-Mean-Square Error

RTLS Recursive Total Least Square

SNR Signal-to-Noise Ratio

SNRW Signal-to-Noise Ratio Weighted Average
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Chapter 1

Introduction

The Introduction illustrates the setting of frequency estimation and why it is an impor-

tant aspect of three-phase systems to ensure the optimal outcomes. There is a brief intro-

duction of the thesis problem statement and how it is resolved with the proposed solution.

1.1 Background

Smart grids are the most common hubs for signal processes and communication tech-

niques to be quantified which involve collecting information on consumer behaviours and

acting in accordance to the data. With its automated manner, it allows for enhanced

approaches to efficiency, reliability, sustainability and consumption of energy. Smart grid

is produced at a high three-phase AC voltage since it is a highly complex and fast system.

A three-phase system is optimal to operate in this environment and regulates electrical

power generation, transmission and distribution[1-3]. In smart grid, system frequency

typically operates around its nominal values of standardized range (49.85 Hz to 50.15

Hz)[4]. If there is deviation in frequency, the system load and generation will become

imbalanced, resulting in critical operation conditions, e.g. meltdown of the grid[5].

6



To maintain and regulate an accurate frequency estimation, is the utmost important in

smart grids as it provides reliable measurements of system parameters such as; voltages,

currents and active and reactive powers. In addition, frequency estimation prevents loss of

synchronism for under-frequency relaying and stability in power systems. The frequency

transients rapidly in the distribution network and thus, it is very difficult to track quickly

and with accuracy[6-7]. Engineers, researchers and power station operators are primary

affiliates in relation to the operation of fast and accurate frequency estimations.

There have been a variety of algorithms developed for the sole purpose of increasing the ef-

fectiveness of frequency estimation in three-phase power systems. Several techniques have

been utilized to estimate power system frequency in accordance with Zero-Crossing tech-

nique[8], Phase-Locked Loop (PLL)[9-10], Least-Mean-Square (LMS)[12] and Extended

Kalman Filter (EKF)[12]. However, they have been found to be lacklustre in their esti-

mating ability. One reason is that these algorithms rely upon a single phase measurement

and hence unreliable in three-phase systems. As a result, Clarke’s Transform can be ap-

plied to map three-phase information into a single-phase complex signal[13]. Additionally,

another reason is that they are mostly built on first-order autoregressive (AR1) models.

AR1 models operate best in balanced three-phase systems (i.e. equal valued voltage mag-

nitudes). However, in the case of severe unbalance (e.g. voltage amplitudes of two phases

plummet to zero), AR1 based frequency estimators have reduced accuracy. Due to the in-

competence of AR1 model, the improved version is the second-order autoregressive (AR2)

model which the estimator built on it will be insensitive to the balanced state[14-15].

The existing method[15] utilizes recursive LS (RLS) based AR2 model and has been im-

plemented to eliminate the effects of output noise of AR2 model. However, noise is also

observed in the input of AR2 model which makes the LS-based estimation biased. In

order to achieve unbiased estimation from the noisy AR2 model, a bias-compensated RLS

(BCRLS) algorithm and recursive TLS (RTLS) algorithm are applied. BCRLS is used

to gauge the bias and made redundant in biased RLS estimate, while RTLS observes

the system parameter’s estimation that matches the input to the output with smallest

disturbances in the signal.
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1.2 Problem Statement

1. Clarke’s Transform is able to characterize the voltages of three-phase and produce a

complex αβ signal which can perform well in nominal operating condition (balanced

state). However, in unbalanced conditions (unbalance in voltage amplitudes), the

complex signal will result in non-unique solutions and affected by severe oscillatory

errors. Although it can be improved by using widely-linear models, to model three-

phase systems, it lacks the dimensionality and consequently results in partial loss

of information and poor performance especially under unbalanced conditions.[11,16]

To increase the robustness of estimation in unbalanced state, the proposed approach

presented in the thesis is the single-phase based AR2 model with BCRLS and RTLS.

This method allows the measurement of instantaneous frequency for each phase,

hence it is more robust in measuring the frequency when the amplitudes of phase

voltages sags to zero.

2. According to Problem Statement 1, the frequency estimation in unbalanced state

is improved. However, the measurement of single phase noises from each phase will

be increased when combining the estimated phase frequencies. In order to eliminate

effects of the noise, the amplitude and SNR weight factors are applied in averaging

the phase frequencies.

In this thesis, the effectiveness of the proposed algorithms examined in frequency estima-

tion under both balanced and unbalanced conditions. In addition, the bias and variance

is estimated by using Root-Mean-Square Error (RMSE) and also the tracking ability

is validated in simulated experiments. From the simulations, the proposed algorithms

in comparison to the Clarke’s Transform approach perform with better accuracy during

voltage sags.
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1.3 Thesis Outline

This thesis is structured as follows. In Chapter 2, the theories and previous developments

in relation to frequency estimation for three-phase systems are presented in detail. Chap-

ter 3 includes the thesis aims in steps for improving the accuracy of estimation. Chapter

4 explains the implementation of the existed algorithms – Clarke’s Transform based AR2

frequency estimations, in order to be used as comparison in subsequent sections. Chapter

5 reveals the proposed algorithms for a single-phase based AR2 model with frequency

estimators and provides approaches to average the estimated phase frequencies. Chapter

6 evaluates the results and the discussion of the variations in phase-voltage amplitudes

(unbalance), performance in bias simulation and tracking ability. Chapter 7 provides

concluding statements.
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Chapter 2

Theories and Literature Reviews

The background reviews are illustrated and evaluated in this chapter. The purpose of it

is to establish the foundations of frequency estimation and how previous develops culmi-

nates to the proposed.

2.1 Signal Model

Since the input signal is an AC three-phase system, the instantaneous voltages of each

phase at time instant n are represented by

va(n) = Va(n) cos(2πfτn+ θ) +Na(n);

vb(n) = Vb(n) cos(2πfτn+ θ − 2π

3
) +Nb(n);

vc(n) = Vc(n) cos(2πfτn+ θ +
2π

3
) +Nc(n). (2.1)

where Va(n), Vb(n), and Vc(n) indicate the amplitudes of the three-phase voltages at time

instant n, f is the system frequency, τ = 1/fs is the sampling interval with fs indicating

the sampling frequency and θ is an initial phase angle.
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Na(n), Nb(n) and Nc(n) indicate the additive White Gaussian Noises of each phase. We

assume these noises are zero-mean i.i.d. with variance σ2
a, σ

2
b and σ2

c .

Thus, the noise signals can be expressed as

Na(n) = σa × rand.noise;

Nb(n) = σb × rand.noise;

Nc(n) = σc × rand.noise. (2.2)

2.2 Two Ways of Frequency Estimation

Research has found that there are two ways of estimating for frequency in three-phase

systems. Firstly, to estimate frequency from a combined signal as demonstrated in Figure

2.1 or secondly, to estimate each phase frequency and combine them to achieve a final

estimated frequency as shown in Figure 2.2.

Figure 2.1: Frequency Estimation from a Combined Signal

Figure 2.2: Frequency Estimation based on Each Phase
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To estimate the frequency as a whole, the use of the combination technique will yield three

phase voltages into a complex signal. After combination, frequency estimators for single-

phase can be implemented on the complex signal. However, accuracy of the estimation

for combined signal could lose some information from the original signals.

An alternative to combination is to estimate the frequencies separately for each phase

voltage in three-phase systems and combine the estimated phase frequencies to a final

frequency. This will prevent loss of information in the signals. However, this method of

frequency estimation is not commonly explored in past literatures. The reason for this is

because previous research mainly focused on improvement of accuracy on the combined

signal.
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2.3 Signal Combination Methods

As mention in the above section (Section 2.2), the combination methods are commonly

applied for frequency estimation in three-phase systems. Clarke’s Transform is the most

widely used in previous research and the new approach is Quaternion.

2.3.1 Clarke’s Transform

With the premise that none of the single phases can accurately model the entire three-

phase system and its elements. In order for accurate frequency estimation to occur, a

robust estimator needs to be implemented. The use of Clarke’s transformation in esti-

mation of three phase systems reinforces the single-phase methods with more robustness

by computing using information provided by the phase voltages. It produces a complex-

valued signal (αβ signal) and it encompasses the information of all three phases.

vα(n)
vβ(n)

+

nα(n)
nβ(n)

 =

√
2

3

1 −1
2
−1

2

0
√
3
2
−
√
3
2




va(n)

vb(n)

vc(n)

+


na(n)

nb(n)

nc(n)


 (2.3)

To model three-phase systems, the two-dimensional αβ signal lacks the dimensionality

which will cause a partial loss of information and negative consequences for the execution,

especially under unbalanced operations.[16]
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2.3.2 Quaternion

Quaternion is an associative, non-commutative, division algebra and is a relatively new

method of creating a new framework for evaluating 3 and 4 dimensional signals. A

Quaternion variable q includes a real part and a three-dimensional imaginary part or

pure quaternion.

q(n) = <(q(n)) + =(q(n))

= qr(n) + iqi(n) + jqj(n) + kqk(n) (2.4)

where qr, qi, qj, qk ∈ R

For real time frequency estimation, quaternion method is used extensively. The multi-

faceted essence of quaternion can fully define a three-phase power system. The application

of quaternion is to develop a unified framework for combining and modelling the voltage

measurement on all three phases of the system. The voltages from three phases can form

together and generate a pure Quaternion signal:

q(n) = iva(n) + jvb(n) + kvc(n) (2.5)

All components in the equation have the same frequency, hence systematic geometry

requires an ellipse to be tracked by q(n) in the subspace of the three-dimensional imaginary

subspace. The voltage of both balanced and unbalanced states in three-phase systems are

represented in Figure 2.3. The blue ellipse represents the voltage for balanced system and

the red ellipse is for an unbalanced system.[16-17]

Figure 2.3: Geometric version of system voltage for Quaternion in three-phase system

under balanced and unbalanced conditions [16]
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2.4 AR Model

AutoRegressive (AR) models are the go-to methods when it comes to estimating system

frequency without needing to worry about noise in signals. AutoRegressive first-order

(AR1) and second-order (AR2) are such linear predictive models. AR1 model is more ap-

plicable in balanced three-phase systems – when phase voltage amplitudes are equal. The

model characterizes two successive noiseless signal samples in a balanced system through

a single complex parameter which the magnitude is equivalent to ’unity’ and the phase

angle is given by the system angular frequency ω aggregated by the sampling interval τ .

Through the method of widely-linear AR1, frequency estimation is possible to establish

in unbalanced. However, this complex-valued technique is still unable to deal with highly

unbalanced conditions (e.g. two phases decline to zero) as this lies with the approximate

nature of the model[15].

Alternatively, AR2 characterizes three consecutive noiseless signal samples through a real-

valued parameter h. The parameter is equivalent to the cosine of the multiples of system

angular frequency ω and sampling interval τ . Subsequently, system frequency is evaluated

by establishing the AR2 parameter h from the noisy information of the signal and being

unaffected by the phase voltage amplitudes or the initial phase angle. AR2 frequency

estimation will not be influenced by the balance conditions of three-phase power system

since the parameter h only relies on system frequency f and sampling interval τ .

2.5 Frequency Estimators

According to recent literatures, the relatively common and efficient estimators are Ex-

tended Kalman Filter (EKF) and Recursive Least Square (RLS) and they are explored in

this section in relation to frequency estimation.

15



2.5.1 Recursive Least Square Algorithm

Figure 2.4: LMS Technique [11]

Least Mean Square (LMS) is an adaptive filter where

the filter values are adjusted through the reducing the

squared of the error signal to optimal values. LMS is

used widely in digital signal processing due to its sim-

ple structure, efficiency and robustness computation.

However, it has been found to contain the inherent

drawbacks of having slow convergence speed and also,

it requires to reprocess every time.[11,18] (Figure 2.4)

The improved version of LMS is Recursive Least Square (RLS). The algorithm recursively

observes the coefficients of reducing the weighted linear LMS cost function of the input

signals. In comparison to LMS, RLS algorithm consists of fast convergence rate and is

robust and performs well in online estimation. However, its rapid convergence rate comes

with high complex computation.[19] The RLS approach is also applicable in minimizing

the effects of output noise from a linear model (e.g AR2 model).

An exponentially-weighted LS estimate is obtained by

w(n) = argmin
w
‖y(n)− wx(n)‖2 (2.6)

where w(n) is a parameter which contains frequency information. x(n) and y(n) represent

the exponentially-weighted input and output.

The optimization problem of (eqn 2.6) has the recursive solution – RLS estimate:[15]

w(n) =
p(n)

r(n)
(2.7)

where p(n) defines the exponentially-weighted time-averaged covariance of the signal input

and output:

p(n) = x(n)Hy(n) (2.8)
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and r(n) defines the exponentially-weighted time-averaged variance of the signal input:

r(n) = x(n)Hx(n) (2.9)

p(n) and r(n) are recursively updated, thus w(n) is a recursive estimate.

2.5.2 Extended Kalman Filter

To understand Extended Kalman Filter (EKF), the basics of Kalman filter will need to be

explained first. Figure 2.5 illustrates the Kalman filter. Kalman Filter is a set of recursive

equation which update the information in a state space model. The algorithm operates

in two stages; in the prediction stage, estimates for the current state variables and the

uncertainties are provided by the Kalman Filter. Afterwards, the result of the following

measurement is produced, and updated by applying a weighted average. Higher certainty

measurements are demonstrated by more weighting for the estimates.

Figure 2.5: Kalman Filter

Kalman filter was governed by non-linear functions, whereas the more advanced version

are optimized for linear filters. The Extended Kalman filter is the non-linear version of

the Kalman filter, it provides linearity about the current mean and covariance. It is used

mainly in three-phase nonlinear systems and works by linearizing the predictions and

measurements about their mean.[12,20]
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2.6 Estimation Variance

This section outlines Root-Mean-Square error (RMSE) and Cramer-Rao Bound (CRB)

in relation to validating the estimators.

2.6.1 Root-Mean-Square-Error

Root-Mean-Square Error (RMSE) evaluates the disparity between the expected value and

the measured value. It is used for variance estimation after running the algorithms many

times against signal-to-noise ratio (SNR). In this thesis, SNR is in the range of 0 to 60 dB.

The experiment will run on 5 dB intervals and each interval will run for 2000 times. The

number of runs is validated by; there are too many runs then there will be operational

error or too little will lead to inaccuracy of RMSE. The expectations are evaluated with

the total average over a substantial number of independent trials.

RMSE is defined as below:

RMSE = lim
n→∞

√
E[(f̂(n)− f(n))2] (2.10)
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2.6.2 Cramer-Rao Bound

Cramer-Rao Bound (CRB) is the lower limit on the variance which used to compare with

the performance of the estimator. The estimator is good if the variance execution is close

to the CRB. In this thesis, CRB is used to compare with the RMSE values to determine

the validation of the estimators.

By specifying η = [φ, ω, a]T , a signal can be represented as[21]

v = x(η) + ε = B(ω, φ)a+ ε (2.11)

The CRB matrix is given by

CRB(η) =
( 3

2σ2
R
[∂xH(η)

∂η

∂x(η)

∂ηT

])−1
≤ RMSE(η) (2.12)
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Chapter 3

Aims

The ultimate objective for this thesis is to design and produce a refined frequency estima-

tion algorithm that is fast and accurate for a three-phase power systems under unbalanced

conditions – variations of phase voltage amplitudes. Within the objective, there are the

step aims for comparing existing method with the proposed and implementation in a pro-

gressive manner.

3.1 Step Aims

1. Implementation of existing algorithms of Clarke’s Transform based AR2 model with

BCRLS and RTLS estimators.

2. To derive the representation for single-phase based AR2 model.

3. Design optimal weighted average methods in order to obtain an accurate final esti-

mated frequency.

4. To simulate the proposed algorithms under unbalanced conditions based on ampli-

tudes of phase voltage and compare with existing algorithms. To demonstrate the

proposed outperforms the existing methods.
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Chapter 4

Existing Algorithms

The Clarke’s Transform based AR2 model for three-phase systems is observed with noise

from both input and output. The recursive least-squares (RLS) is able to eliminate the

noise for the output. By applying bias compensated RLS (BCRLS), the estimate bias

can be evaluated with a priori knowledge of noise variance σ2 and subtracted from the

RLS estimate. RTLS, Recursive Least-Squares, is another approach to eliminate the noise

from the input and output of the AR2 model by implementing the inverse power method.

[15] (Figure 4.1)

Figure 4.1: Clarke’s Transform based AR2 Model with BCRLS/RTLS Estimation
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4.1 Clarke’s Transform based AR2 Model

According to Section 2.3.1, Clarke’s transform is applied to obtain the noisy αβ signal:

v(n) = v0(n) +N(n) (4.1)

where v0(n) indicates the noiseless αβ signal,

v0(n) = vα(n) + jvβ(n)

= (A+ jB) cos(2πfτn+ θ) + (B + jC) sin(2πfτn+ θ). (4.2)

where

A =

√
2

3
Va +

1

2
√

6
(Vb + Vc);

B = − 1

2
√

2
(Vb − Vc);

C =
1

2

√
3

2
(Vb + Vc).

and N(n) is the additive complex noise with the noise variance of σ2 which can be ex-

pressed as:

N(n) = σ × rand.noise

= Nα(n) + jNβ(n)

=

√
2

3
(Na(n)− Nb(n)

2
− Nc(n)

2
) +

j√
2

(Nb(n)−Nc(n))

Since the noise is assumed to be zero mean i.i.d, the noise variance σ can be calculated as

σ = E[|N(n)|2]

= E[
2

3
(Na(n)− Nb(n)

2
− Nc(n)

2
)2 +

1

2
(Nb(n)−Nc(n))2]

=
2

3
(σ2

a +
σ2
b

4
+
σ2
c

4
) +

1

2
(σ2

b + σ2
c )

=
2

3
(σ2

a + σ2
b + σ2

c )
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Hence, the variance for each phase can be obtained as

=⇒ σ2
a = σ2

b = σ2
c =

σ2

2
(4.3)

The noiseless complex signal can be expressed as an AR2 linear predictive model:

1

2
(v(n− 2) + v(n)) = hv(n− 1) (4.4)

where

h = cos(2πfτ) (4.5)

Due to noisy AR2 model, in order for achieving an accurate parameter h, a linear

estimation technique ought to be applied. The system frequency f̂(n) can be estimated

by evaluating the estimate of h at time instant n, ĥ(n):

f̂(n) =
1

2πτ
cos−1(ĥ(n)) (4.6)
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4.2 Recursive Least Squares Frequency Estimators

As discussed in Section 2.5.1, Recursive Least Square (RLS) algorithm is implemented in

order to removing the output noise of the noisy AR2 model. It still produces a biased

estimate due to the effect of input noise from the signal. As a result, there are two linear

estimators based on RLS algorithm – BCRLS and RTLS, which are able to eliminate the

estimation bias.

4.2.1 Bias-Compensated Recursive Least Squares

Based on the AR2 Model (Eqn 4.4), an exponentially-weighted LS estimate of ĥ(n) is

obtained by:

w(n) = argmin
w
‖y(n)− wx(n)‖2 (4.7)

where

x(n) =
√
λv(n− 1)

y(n) =

√
λ

2
(v(n− 2) + v(n))

x(n) and y(n) represent the exponentially-weighted input and output and λ

(0� λ < 1) is the forgetting factor.

The exponentially-weighted time-averaged variance of the input r(n) is evaluated as:

r(n) = xH(n)x(n)

= λr(n− 1) + |v(n− 1)|2 (4.8)

The exponentially-weighted time-averaged covariance of the input and output p(n) is

evaluated as:

p(n) = xH(n)y(n)

= λp(n− 1) +
1

2
v∗(n− 1)(v(n− 2) + v(n)) (4.9)
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Therefore, the RLS estimate solution is:

w(n) =
p(n)

r(n)

Bias-compensated RLS estimate (BCRLS) is derived by deducting estimated bias in LS

b from the RLS estimation w(n) with the need of the prior knowledge value of the noise

variance σ2:

ŵ(n) = w(n)− b

=
p(n)

r(n)
+

σ2

(1− λ)r(n)
ŵ(n− 1) (4.10)

Table 4.1: Frequency Estimation – BCRLS Algorithm

Initialization:

r(0) = r(1) = 0

p(0) = p(1) = 0

ω̂(0) = ω̂(1) = 0

for n = 2, 3 . . .

r(n) = λr(n− 1) + |v(n− 1)|2

p(n) = λp(n− 1) + 1
2
v∗(n− 1)(v(n− 2) + v(n))

ω̂(n) = p(n)
r(n)

+ σ2

(1−λ)r(n) ω̂(n− 1)

f̂(n) = 1
2πτ

cos−1(ω̂(n))
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4.2.2 Recursive Total Least Squares

RTLS is the combination of RLS and TLS. This algorithm consists of both qualities of

fast convergence and good accuracy.

TLS estimate ω(n) (LS estimate of ĥ(n)) matches the input x(n) to the output y(n) with

the least disturbances ε(n) and δ(n). It is expressed as

(x(n) + ε(n))w(n) = y(n) + δ(n)

By applying the singular value decomposition of the augment z(n) and the weighted data

matrix [x(n), y(n)]T , the TLS can be obtained as:

w(n) = − z1(n)

γz2(n)
(4.11)

z(n) = [z1(n), z2(n)]T indicates the right singular vector relating to the lowest singular

value of [x(n), y(n)]T , where T is the weight matrix of the differences in the noise variance

at the input versus output.

z(n) can be written as its equation of an eigenvector:

Ψ(n) = T

xH(n)

yH(n)

 [x(n), y(n)]T

=

 r(n)
√

2p(n)
√

2p∗(n) 2s(n)


where p(n) and r(n) are provided by (Eqn 4.8) and (Eqn 4.9) respectively. s(n) represents

the exponentially-weighted time-averaged variance of the output and is evaluated as

s(n) = yH(n)y(n)

= λs(n− 1) +
1

4
|v(n− 2) + v(n)|2 (4.12)
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The eigen-decomposition of Ψ(n) provides z(n). In each time instant, z(n) is updated by

performing the inverse power method with a single iteration – observing an eigenvector by

knowing an approximation to its eigenvalue. As the eigenvector belongs to the smallest

eigenvalue, the approximation to the eigenvalue is given by zero. Hence, the recursion for

z(n) through the inverse power method – Recursive TLS (RTLS) is evaluated as:

z(n) = Ψ(n)−1z(n− 1) (4.13)

By multiplying both sides with Ψ(n)/(
√

2z2(n− 1)z2(n)):

Ψ(n)

 w(n)

−1/
√

2

 =
z2(n− 1)

z2(n)

w(n− 1)

−1/
√

2



=⇒ w(n) =
p(n) + 2s(n)w(n− 1)

r(n) + 2p∗(n)w(n− 1)
(4.14)

Table 4.2: Frequency Estimation – RTLS Algorithm

Initialization

r(0) = r(1) = 0

s(0) = s(1) = 0

p(0) = p(1) = 0

w(0) = w(1) = 0

for n = 2, 3, . . .

r(n) = λr(n− 1) + |v(n− 1)|2

p(n) = λp(n− 1) + 1
(
2)v∗(n− 1)(v(n− 2) + v(n))

s(n) = λs(n− 1) + 1
4
|v(n− 2) + v(n)|2

w(n) = p(n)+2s(n)w(n−1)
r(n)+2p∗(n)w(n−1)

f̂(n) = 1
2πτ

cos−1(w(n))

27



4.3 Simulated Results

In the following simulation performance, BCRLS and RTLS estimations on a Clarke’s

Transform based AR2 model are compared. In this three-phase power system, f = 50Hz,

τ = 2ms, fs = 500Hz, voltage amplitudes of three phases at balanced condition Va(n) =

Vb(n) = Vc(n) = 230V , θ = 0, σ2 = 0.01, thus, σ2
a = σ2

b = σ2
c = σ2/2 and λ = 0.999.

The phase voltages experience progressive drops during the simulation to reach severe

unbalanced conditions as shown in Figure 4.2. During the initial 0.25 seconds, the system

is balanced. The voltage amplitude of Phase C reduces to half at 0.25 seconds. At 0.5

seconds, voltage of Phase A drops to 0 (one phase voltage = 0). This is when serious

unbalance occurs. At 0.75 seconds, voltage of Phase B declines to 0 (voltages of two

phases = 0).

Figure 4.2: Several voltage sags occur in a three-phase system

28



Figure 4.3 shows the performance of αβ signal based AR2 model with the algorithms

of BCRLS and RTLS which undergoes the voltage sags. In Table 4.3, the estimated

frequencies at different conditions are listed.

Figure 4.3: Frequency Estimation - αβ signal based AR2 with BCRLS/RTLS

Time (sec) 0.15 0.25 0.5 0.75

(Balanced) (1ph→ 50%) (1ph→0) (2phs→0)

BCRLS(Hz) 50 50 50.15 50.21

RTLS(Hz) 50 49.99 50.05 50.07

Table 4.3: Estimated Frequencies at different voltage sags
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4.4 Discussion and Summary

According to the simulation results, both algorithms – BCRLS and RTLS converge fast

and stable with accuracy under balanced condition. When the system is suffering from

severe unbalancedness, BCRLS and RTLS are able to estimate the frequency in a stable

manner. It can be observed that RTLS is more efficacious under highly unbalanced cases.

However, the accuracy of frequency estimations still need improvement in order to reach

the level close to the real frequency (50 Hz), especially under unbalance.
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Chapter 5

Proposed Algorithm

The measurements with the complex signal from Clarke’s Transform perform exceptionally

in balanced three-phase systems. However, this complex signal can be considered as an

element that causes the inaccuracy of the frequency estimation during unbalanced, since it

lacks the dimensionality for a three-phase system and results in partial loss of information.

In order to increase the robustness of estimation techniques under unbalance, the proposed

approach in Figure 5.1 improves the AR2 model by evaluating it on each of the three

phases. This allows the estimate of the instantaneous frequency for each phase. To

combine the estimated phase frequencies, we need to design a suitable averaging method

that can eliminate noise effects when a three-phase system experiences voltage sags.

Figure 5.1: Applying AR2 with BCRLS/RTLS on each phase signal and Average
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5.1 Single-Phase based AR2 Frequency Estimation

AR2 model is able to be built on one arbitrary noiseless phase of a three-phase system.

The computations are shown below.

For phase A at time instant n, n+ 1 and n− 1:

va(n) = Va(n) cos(2πfτn+ θ)

va(n+ 1) = Va(n) cos(2πfτn+ θ + 2πfτ)

= Va(n) cos(2πfτn+ θ) cos(2πfτ)− Va(n) sin(2πfτn+ θ) sin(2πfτ)

va(n− 1) = Va(n) cos(2πfτn+ θ − 2πfτ)

= Va(n) cos(2πfτn+ θ) cos(2πfτ) + Va(n) sin(2πfτn+ θ) sin(2πfτ)

By summing above va(n+ 1) with va(n− 1):

va(n+ 1) + va(n− 1) = 2Va(n) cos(2πfτn+ θ) cos(2πfτ)

= 2 cos(2πfτ)va(n); (5.1)

Similarly, phase B and phase C can be calculated as

vb(n+ 1) + vb(n− 1) = 2 cos(2πfτ)vb(n); (5.2)

vc(n+ 1) + vc(n− 1) = 2 cos(2πfτ)vc(n). (5.3)

Rearrange the AR2 models (Eqn 5.1),(Eqn 5.2) and (Eqn 5.3), we can obtain:

1

2
(va(n− 2) + va(n)) = hva(n− 1);

1

2
(vb(n− 2) + vb(n)) = hvb(n− 1);

1

2
(vc(n− 2) + vc(n)) = hvc(n− 1). (5.4)

where

h = cos(2πfτ)
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Therefore, similar to (Eqn 4.6), the phase frequencies can be estimated separately via a

linear estimation technique (Section 4.2: BCRLS/RTLS),

f̂a(n) =
1

2πτ
cos−1(ĥa(n));

f̂b(n) =
1

2πτ
cos−1(ĥb(n));

f̂c(n) =
1

2πτ
cos−1(ĥc(n)). (5.5)

5.2 Average of Estimated Frequencies

An averaging tool is needed to obtain the final estimated frequency for the three-phase

system since none of the single phase can represent the entire system.

In order to achieve an accurate measurement, the following three cases of averaging are

designed.

5.2.1 Mean

This is a simple approach of averaging the estimated frequencies by their mean:

f̂(n) =
∑
x=a,b,c

f̂x(n)

3
(5.6)

where f̂(n), the final estimated frequency is obtained by dividing the sum of the three

estimated phase frequency f̂a(n), f̂b(n) and f̂c(n) by the total number of 3.

However, this method will enlarge the effects of noise variance from each of the three

phases under unbalanced conditions. Therefore, this averaging approach may not be an

improvement on the accuracy for the frequency estimation.
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5.2.2 Apply Amplitude Weight Factor (AW Method)

To reduce the effects of signal noise during voltage sags, the amplitude weight factor is

designed when averaging the estimated frequencies. It is an efficient way of averaging

frequencies by placing more weight on the main operating phases.

There are three steps to reach the final estimated instantaneous frequency for the system:

Step 1. Amplitudes Estimation:

According to [22], by rearranging the signal model, the signal in vector notation can be

expressed as

v(n) = a(n)Z(f̂(n)) +N(n) (5.7)

where a(n) is the amplitude vector, Z(f̂(n)) is cos(2πfτn+ θ+φ) and N(n) is the signal

noise.

By solving the LS problem in (Eqn 5.7), the amplitude vector â(n) can be estimated as

â(n) = argmin
a
‖v(n)− Z(f̂(n))a(n)‖

= [ZH(f̂(n))Z(f̂(n))]−1ZH(f̂(n))v(n) (5.8)

Therefore, the estimated amplitudes of three phases âa(n), âb(n) and âc(n) can be ex-

pressed as:

âa(n) = [ZH
a (f̂a(n))Z(f̂a(n))]−1ZH

a (f̂a(n))va(n);

âb(n) = [ZH
b (f̂b(n))Z(f̂b(n))]−1ZH

b (f̂b(n))vb(n);

âc(n) = [ZH
c (f̂c(n))Z(f̂c(n))]−1ZH

c (f̂c(n))vc(n). (5.9)
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Step 2. Amplitude Weight Factors Wa(n), Wb(n), Wc(n):

Compare the estimated amplitudes âa(n), âb(n) and âc(n), the largest amplitude will have

the weight value of 1 and weight factors for the other two will be âx(n)/âlargest(n)

For instance, if âa(1) is the largest among the three estimated amplitudes,

weight factor of Phase A: Wa(1) = 1

weight factor of Phase B: Wb(1) =
âb(1)

âa(1)

weight factor of Phase C: Wc(1) =
âc(1)

âa(1)

Step 3. Frequencies Average with the Amplitude Weighted Factors:

The averaged frequency f̂(n) at each time instant n by using the amplitude weight factors

can be obtained as:

f̂(n) =
Wa(n)f̂a(n) +Wb(n)f̂b(n) +Wc(n)f̂c(n)

Wa(n) +Wb(n) +Wc(n)
(5.10)

35



5.2.3 Apply SNR Weight Factor (SNRW Method)

SNR Weighted Averaging (SNRW) is a similar method to Amplitude Weighted Averaging

(AW) (Section 5.2.2). There are four steps to approach the final estimated frequency:

Step 1. Noiseless Signals:

va0(n) = âa(n)Z(f̂a(n));

vb0(n) = âb(n)Z(f̂b(n));

vc0(n) = âc(n)Z(f̂c(n)). (5.11)

va0(n), vb0(n) and vc0(n) are the pure signals, where â(n) is the estimated amplitude and

Z(f̂(n)) = cos(2πfτn+ θ + φ).

Step 2. Noise Estimation:

Subtracting (Eqn.5.11) from the noisy signals (input signals), we can obtain the estimated

noise signals n̂(n):

n̂a(n) = va(n)− va0(n);

n̂b(n) = vb(n)− vb0(n);

n̂c(n) = vc(n)− vc0(n). (5.12)

Step 3. SNR Estimation:

Since SNR = 10 log10(Amplitude
2/Noise2), the estimated SNR for each phase can be

expressed as,

SNRa(n) = 10× log10(
â2a(n)

n̂2
a(n)

);

SNRb(n) = 10× log10(
â2b(n)

n̂2
b(n)

);

SNRc(n) = 10× log10(
â2c(n)

n̂2
c(n)

). (5.13)
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Step 4. Frequencies average with SNR Weight Factors Wsnra(n), Wsnrb(n), Wsnrc(n)

Similarly in Section 5.2.2, by comparing the estimated SNR: SNRa(n), SNRb(n) and

SNRc(n), the largest SNR will have the weight value of 1 and weight values for the other

two will be SNRx(n)/SNRlargest(n)

Therefore,the averaged frequency by applying the SNR weight factors can be evaluated

as:

f̂(n) =
Wsnra(n)f̂a(n) +Wsnrb(n)f̂b(n) +Wsnrc(n)f̂c(n)

Wsnra(n) +Wsnrb(n) +Wsnrc(n)
(5.14)

37



Chapter 6

Evaluation

In this chapter, the performance of frequency estimation is presented to discuss Single

phased based AR2 model frequency estimation with Amplitude Weighted Averaging

(AW) method and SNR Weighted Averaging (SNRW) method compare with the existing

estimation methods by using BCRLS and RTLS. In addition, the simulation of estima-

tors tracking abilities in several cases and variance estimation are used to examine and

validate the proposed averaging methods. The weighted averaging methods are found to

perform better in unbalanced conditions compared to the existing methods – Clarke’s

transform AR2 model with BCRLS and RTLS. Overall performance, it is found AW

method performs outstanding estimation in frequency.
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6.1 Simulated Results

6.1.1 Performance of Voltage Sags

In this simulation, the set-up is based on Section 4.3 as shown in Table 6.1, so that the

results can be compared under the same environment. The simulation code can be found

in Appendix A.

f τ fs θ λ σ2 σ2
x Vx(n) (balanced)

50Hz 2ms 500Hz 0 0.999 0.01 0.005 230V

Table 6.1: Simulation Set-up (x = a, b, c)

The amplitudes of the system phase voltages drop every 0.25 seconds during the per-

formance and the system progressively reach severe unbalanced conditions as shown below:

Figure 6.1: Voltage Sags

Balanced state:

Voltage amplitudes Va(n) = Vb(n) = Vc(n)

= 230V from 0 to 0.25 seconds.

Unbalanced state:

start after 0.25 seconds

Phase C: Voltage amplitude drops to half

Vc(n) = 115V at 0.25 seconds

Phase A: Voltage amplitude drops to zero

Va(n) = 0V at 0.5 seconds

Phase B: Voltage amplitude drops to zero

Vb(n) = 0V at 0.75 seconds
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Figure 6.2 shows the performance of Single phase AR2 frequency estimations (BCRL-

S/RTLS) with amplitude weighted averaging (AW) method. Table 6.2 lists the estimated

frequencies at different balance states.

Figure 6.2: Frequency Estimation - AW for single phase AR2 with BCRLS/RTLS

Time (sec) 0.15 0.25 0.5 0.75

(Balanced) (1ph→ 50%) (1ph→0) (2phs→0)

BCRLS (Hz) 50 50 50 49.99

RTLS (Hz) 50 49.99 49.99 49.97

Table 6.2: AW Method – Estimated Frequencies at different voltage sags
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Figure 6.3 shows the performance of Single phase AR2 frequency estimations (BCRL-

S/RTLS) with SNRW method. Table 6.3 lists the estimated frequencies at different

voltage sags.

Figure 6.3: Frequency Estimation - SNRW for single phase AR2 with BCRLS/RTLS

Time (sec) 0.15 0.25 0.5 0.75

(Balanced) (1ph→ 50%) (1ph→0) (2phs→0)

BCRLS (Hz) 50 49.99 49.99 49.99

RTLS (Hz) 50 49.99 49.98 49.97

Table 6.3: SNRW Method – Estimated Frequencies at different voltage sags
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Figure 6.4 and Table 6.4 show the performance for the algorithms of BCRLS and RTLS

implement on the complex signal, single phase AR2 with Mean, AW and SNRW methods.

Figure 6.4: Frequency Estimation - All the simulations with BCRLS/RTLS
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Time (sec) 0.15 0.25 0.5 0.75

(Balanced) (1ph→ 50%) (1ph→0) (2phs→0)

αβ signal - BCRLS (Hz) 50 50 50.15 50.21

αβ signal - RTLS (Hz) 50 49.99 50.05 50.07

Mean - BCRLS (Hz) 50 49.99 50.16 50.23

Mean - RTLS (Hz) 50 49.99 50.04 50.05

AW - BCRLS (Hz) 50 50 50 49.99

AW - RTLS (Hz) 50 49.99 49.99 49.97

SNRW - BCRLS (Hz) 50 49.99 49.99 49.99

SNRW - RTLS (Hz) 50 49.99 49.98 49.97

Table 6.4: All the cases – Estimated Frequencies at different voltage sags

In all simulations, the estimated frequencies have been found to converge rapidly. In bal-

anced condition, all estimators provide consistent and accurate estimation. This proves

that Clarke’s Transforms is able to perform well in balance. For unbalanced scenarios,

the estimators are also found to operate with good stability. Through applying the Mean

methods, the performance of algorithms improves minimally in RTLS while becoming

more inaccurate in BCRLS due to the effects of noise variances. The AW and SNR meth-

ods are almost unaffected by the balance state of the system since it clearly outperforms

αβ signal based estimators and Mean method. RTLS is found to outperform BCRLS in

the first four cases of Table 6.4. However, for the weighted averaging methods – last 4

cases, BCRLS is more accurate in frequency estimation than RTLS. As a result, BCRLS

with the weighted average is more effective in eliminating the noise effect. In weighted av-

eraging methods, AW is more accurate and stable than SNRW. Even though the estimated

frequencies are similar in value, in the figures shown above, SNRW fluctuates during the

frequency estimation since it is very sensitive to detect the signal noise. SNRW method

is not considered as the best improvement of frequency estimation in this simulation en-

vironment of the same noise variance in each phase. Therefore, the best estimation is

to apply AW-BCRLS, since it produces the most stable and accurate simulated result of

frequency estimation.
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6.1.2 Tracking ability

The proposed weighted averaging estimations are examined under various conditions of

frequency – Square Wave, Slant line and Sine Wave to test the tracking ability compared

to other methods.

Square Wave

In Figure 6.5, the estimated and tracked frequency is plotted by applying different al-

gorithms when a balanced system experiences a square wave with the period T = 4.5

seconds in the system frequency at 1 second. The peak of the square wave is 1 Hz and

the maximum change rate is 2 Hz/s.

Figure 6.5: Frequency Tracking - a square wave occurs in frequency of a balanced system
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Figure 6.5 illustrates RTLS has a greater tracking ability than BCRLS. AW method has

good tracking ability in square wave consistent with other methods. However, SNRW

has the most unsteady tracking ability as it is shown to fluctuate along the estimated

frequencies from other methods.

Slant Line

In Figure 6.6, the estimated and tracked frequency is plotted with different algorithms

when a balanced system experiences a constant decline in the system frequency from 51

Hz to 49 Hz during the performance. The slope of the tracking line is k = −2.

Figure 6.6: Frequency Tracking - a constant reduce in frequency of a balanced system

According to Figure 6.6, the estimators have good tracking performance from 0 second

to 0.5 second. Afterwards, the tracking ability loses accuracy but still manageable.
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Sine Wave

In Figure 6.7, the estimated and tracked frequency is plotted by applying different

approaches when a balanced system experiences a sinusoidal oscillation with a period

T = 0.335 seconds in the system frequency at 0.33 seconds. The peak of the square wave

is 1 Hz and the maximum change rate is 2 Hz/s.

Figure 6.7: Frequency Tracking - a sinusoidal oscillation occurs in frequency of a balanced

system

From Figure 6.7, all estimators have satisfactory tracking performance in the sinusoidal

oscillation. Additionally, RTLS generally performs better than BCRLS.
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6.1.3 Variance Performance

To validate the estimations, the simulated results of variance estimate with different

algorithms is shown in Figure 6.7. In the simulation, system frequency is set at f = 50

Hz, the sampling frequency is fs = 3000 Hz, which indicates the sample per cycle to

be N = 60. The amplitudes of phase voltages are set as 230V and initial phase angle

is θ = 0 (balanced system). To reach the accurate estimate, 2000 runs are averaged

for each point. The results are evaluated as the Root-Mean-Square Error (RMSE =

limn→∞

√
E[(f̂(n)− f(n))2]). In Figure 6.7, it shows the RMSE of different algorithms

corresponding to the signal-to-ratio (SNR = 10 log10(A
2/σ2)). SNR is in the range of 0

to 60 dB and the experiment runs on 5 dB intervals. The values of RMSE are compared

with CRB in order to prove the estimation efficiency.

Figure 6.8: Variance estimation - RMSE of the algorithms as a function of the SNR versus

CRB. fs = 3000 Hz and average of 2000 independent trails
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The proposed weighted averaging methods provide the more accurate variance es-

timation while RTLS with weighted factor is considered as the best performing

algorithm for overall performance. It is able to successfully remove the estimation bias

and estimate very close to CRB. The Estimators become more accurate as SNR increases.

6.2 Discussion

According to the simulated results displayed in the previous sections, the outcomes of the

proposed will be defined below:

• All simulated results are found to converge rapidly.

• All the estimators perform well under balanced condition

• In Unbalanced States:

– The Mean method has no improvement on the performance

– The proposed weighted averaging methods (AW and SNRW) outperform the

existing method, especially under severe unbalanced conditions.

– SNRW estimated frequency fluctuates during unbalanced conditions since it is

susceptible to sense the noise from the phase signals. Hence, it is not effective

in this condition of same phase variance in the system.

– BCRLS combined with AW averaging had the best performance since it is more

efficient with eliminating the effects of signal noise.

• The proposed has good tracking ability even when there are varying changes occur-

ring with the system frequency. However, SNRW averaging under-performs when

the system frequency is suffered from a square wave.

• The proposed successfully removes the estimation bias during the variance estima-

tion.

Subsequently, the proposed AW method is found to have better and more accurate esti-

mation when a three-phase system suffers from voltage sags.
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Chapter 7

Conclusion

In this thesis, the proposed method aims to design and develop a robust and accurate

frequency estimation method to account for unbalanced conditions of voltage sags. In

order to experiment the extent of the estimator, a number of methods were simulated.

The AR2 model was found to be more efficient operating under unbalance. As a result,

Single-phase AR2 model was proposed since it is able to include all the information from

the signal. With the application of Amplitude Weighted Average (WA), the effects from

the signal noise is reduced because the method allows the estimation to be implement

on the main operating phases. The proposed AW method increases the accuracy in

estimating frequency for three-phase power systems and outperforms other methods in

severe voltage sags. It is also assessed by its tracking performance and validated by the

variance estimation.

49



7.1 Future Work

From this thesis, the estimators can be developed more in-depth by including a general

average method that deals with all the unbalanced conditions; e.g. phase shifts. In

addition, it will be expected to implement the approaches in real.
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Appendix A. Simulation Code

This Appendix provides the main code with the explanation for implementing frequency

estimation with different methods under the progressive voltage sags (Section 6.1.1) in a

three-phase system.

1 % Modifying ”Frequency es t ima t ion o f three−phase power systems”

2 % Author : Tsai−Yen Shih z3451029

3 % Last modi f ied date : 26 Oct 2016

4

5 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

6 % Set up

7 f c = 50 ; %frequency @ 50Hz

8 Fs = 500 ; % # of samples

9 dt = 1/Fs ; % Time increment per sample

10 StopTime = 1 ;

11 t = ( 0 : dt : StopTime−dt ) ;

12 L1 = length ( t ) ;

13 lambda = 0 . 9 9 9 ; % f o r g e t t i n g f a c t o r

14 sigma = 0 . 0 1 ; % var iance

15

16 % noise o f zero mean i . i . d f o r each phase

17 no i s e = sqrt ( sigma /2)∗randn(L1 , 3 ) ;

18

19

20

21

22

23
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24 % Progre s s i v e Vol tage Sags

25 for n = 1 : length ( t ) % time increment

26

27 % Signa l Model :

28 % 3 phases are ba lanced be f o r e 0.25 s

29 % Phase C: 50% drops @ 0.25 s

30 i f n < 125

31 Vc(n) = 230∗cos (2∗pi∗ f c ∗dt∗n + 2∗pi/3)+ no i s e (n , 3 ) ;

32 else

33 Vc(n) = 230/2∗cos (2∗pi∗ f c ∗dt∗n + 2∗pi/3)+ no i s e (n , 3 ) ;

34 end

35

36 % Phase A: drops to 0 @ 0.5 s

37 i f n < 250

38 Va(n) = 230∗cos (2∗pi∗ f c ∗dt∗n)+no i s e (n , 1 ) ;

39 else

40 Va(n) = 0∗cos (2∗pi∗ f c ∗dt∗n)+no i s e (n , 1 ) ;

41 end

42

43 % Phase B: drops to 0 @ 0.75 s

44 i f n < 375

45 Vb(n) = 230∗cos (2∗pi∗ f c ∗dt∗n − 2∗pi/3)+ no i s e (n , 2 ) ;

46 else

47 Vb(n) = 0∗cos (2∗pi∗ f c ∗dt∗n − 2∗pi/3)+ no i s e (n , 2 ) ;

48 end

49

50 % Clarke ’ s Transform : alpha−be ta s i g n a l

51 Valpha (n)= sqrt (2/3)∗ (Va(n)− 1/2∗Vb(n) − 1/2∗Vc(n ) ) ;

52 Vbeta (n) = sqrt (2/3)∗ ( sqrt (3)/2∗Vb(n) − sqrt (3)/2∗Vc(n ) ) ;

53 V = complex (Valpha , Vbeta ) ;

54

55 % For Weighted Averaging :

56 % de f i n e va l u e s o f Z

57 Za(n) = cos (2∗pi∗ f c ∗dt∗n ) ;

58 Zb(n) = cos (2∗pi∗ f c ∗dt∗n − 2∗pi /3 ) ;

59 Zc (n) = cos (2∗pi∗ f c ∗dt∗n + 2∗pi /3 ) ;
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60 % Amplitude Est imation :

61 Amp a(n) = (1/(Za(n)∗ conj (Za (n ) ) ) ) ∗ conj (Za (n ) ) ∗ Va(n ) ;

62 Amp b(n) = (1/(Zb(n)∗ conj (Zb(n ) ) ) ) ∗ conj (Zb(n ) ) ∗ Vb(n ) ;

63 Amp c(n) = (1/( Zc (n)∗ conj ( Zc (n ) ) ) ) ∗ conj ( Zc (n ) ) ∗ Vc(n ) ;

64

65 % No i s e l e s s S i gna l

66 s i g a (n) = Amp a(n ) . ∗ ( Za (n ) ) ;

67 s i gb (n) = Amp b(n ) . ∗ ( Zb(n ) ) ;

68 s i g c (n) = Amp c(n ) . ∗ ( Zc (n ) ) ;

69

70 % SNR Est imation : 10∗ l og10 (Aˆ2/nˆ2)

71 SNRa(n) = 10∗ log10 ( (Amp a(n ) ) . ˆ 2 / (Va(n)− s i g a (n ) ) . ˆ 2 ) ;

72 i f (SNRa(n) <= 0) | | (Amp a(n) <= 1)

73 SNRa(n) = 0 ;

74 else

75 SNRa(n) = SNRa(n ) ;

76 end

77

78 SNRb(n) = 10∗ log10 ( (Amp b(n ) ) . ˆ 2 / (Vb(n)− s i gb (n ) ) . ˆ 2 ) ;

79 i f SNRb(n) <= 0 | | (Amp b(n) <= 1)

80 SNRb(n) = 0 ;

81 else

82 SNRb(n) = SNRb(n ) ;

83 end

84

85 SNRc(n) = 10∗ log10 ( (Amp c(n ) ) . ˆ 2 / (Vc(n)− s i g c (n ) ) . ˆ 2 ) ;

86 i f (SNRc(n) <= 0) | | (Amp c(n) <= 1)

87 SNRc(n) = 0 ;

88 else

89 SNRc(n) = SNRc(n ) ;

90 end

91 end

92

93

94

95
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96 %=================================================

97 % Frequency Est imation :

98 % BCRLS & RTLS Algori thms :

99 for i = 3 : length ( t )

100

101 % sample f requency @ 50Hz

102 Fc ( i ) = 50 ;

103

104 % BCRLS:

105 % Alpha−Beta S i gna l :

106 r ( i ) = lambda∗ r ( i −1) + abs (V( i −1))ˆ2;

107 p( i ) = lambda∗p( i −1) + conj (V( i −1))∗(V( i−2)+V( i ) ) / 2 ;

108 w BCRLS( i ) = (p( i )/ r ( i ) ) + ( sigma )/ ( ( 1 − lambda )∗ r ( i ) )∗w BCRLS( i −1);

109 f BCRLS( i ) = 1/(2∗pi∗dt )∗acos ( real (w BCRLS( i ) ) ) ;

110

111 % Sing l e Phase : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

112 % Phase A

113 ra ( i ) = lambda∗ ra ( i −1) + (Va( i −1))ˆ2;

114 pa ( i ) = lambda∗pa ( i −1) + (Va( i −1))∗(Va( i−2)+Va( i ) ) / 2 ;

115 wa BCRLS( i ) = (pa ( i )/ ra ( i ) ) + ( sigma )/ ( ( 1 − lambda )∗ ra ( i ) )∗wa BCRLS( i −1);

116 fa BCRLS( i ) = 1/(2∗pi∗dt )∗acos ( real (wa BCRLS( i ) ) ) ;

117

118 % Phase B

119 rb ( i ) = lambda∗ rb ( i −1) + (Vb( i −1))ˆ2;

120 pb( i ) = lambda∗pb( i −1) + (Vb( i −1))∗(Vb( i−2)+Vb( i ) ) / 2 ;

121 wb BCRLS( i ) = (pb( i )/ rb ( i ) ) + ( sigma )/ ( ( 1 − lambda )∗ rb ( i ) )∗wb BCRLS( i −1);

122 fb BCRLS( i ) = 1/(2∗pi∗dt )∗acos ( real (wb BCRLS( i ) ) ) ;

123

124 % Phase C

125 rc ( i ) = lambda∗ rc ( i −1) + (Vc( i −1))ˆ2;

126 pc ( i ) = lambda∗pc ( i −1) + (Vc( i −1))∗(Vc( i−2)+Vc( i ) ) / 2 ;

127 wc BCRLS( i ) = ( pc ( i )/ rc ( i ) ) + ( sigma )/ ( ( 1 − lambda )∗ rc ( i ) )∗wc BCRLS( i −1);

128 fc BCRLS( i ) = 1/(2∗pi∗dt )∗acos ( real (wc BCRLS( i ) ) ) ;

129

130 % Mean of 3 s i n g l e phase s i g n a l s . . . . . . . . . . . . . . . .

131 favg BCRLS( i ) = (1/3) ∗ ( fa BCRLS( i ) + fb BCRLS( i ) + fc BCRLS( i ) ) ;
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132 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

133 % RTLS

134 % Alpha−Beta S i g a l :

135 s ( i ) = lambda∗ s ( i −1) + (abs (V( i−2)+V( i ) ) ˆ 2 ) / 4 ;

136 w RTLS( i ) = (p( i ) + 2∗ s ( i )∗w RTLS( i −1))/( r ( i ) + 2∗conj (p( i ) )∗w RTLS( i −1)) ;

137 f RTLS( i ) = 1/(2∗pi∗dt )∗acos ( real (w RTLS( i ) ) ) ;

138

139 % Sing l e Phase : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

140 % Phase A

141 sa ( i ) = lambda∗ sa ( i −1) + (Va( i−2)+Va( i ) ) ˆ 2/4 ;

142 wa RTLS( i ) = (pa ( i ) + 2∗ sa ( i )∗wa RTLS( i −1))/( ra ( i ) + 2∗pa ( i )∗wa RTLS( i −1)) ;

143 fa RTLS ( i ) = 1/(2∗pi∗dt )∗acos ( real (wa RTLS( i ) ) ) ;

144

145 % Phase B

146 sb ( i ) = lambda∗ sb ( i −1) + (Vb( i−2)+Vb( i ) ) ˆ 2/4 ;

147 wb RTLS( i ) = (pb( i ) + 2∗ sb ( i )∗wb RTLS( i −1))/( rb ( i ) + 2∗(pb( i ) )∗wb RTLS( i −1)) ;

148 fb RTLS( i ) = 1/(2∗pi∗dt )∗acos ( real (wb RTLS( i ) ) ) ;

149

150 % Phase C

151 sc ( i ) = lambda∗ sc ( i −1) + (Vc( i−2)+Vc( i ) ) ˆ 2/4 ;

152 wc RTLS( i ) = ( pc ( i ) + 2∗ sc ( i )∗wc RTLS( i −1))/( rc ( i ) + 2∗( pc ( i ) )∗wc RTLS( i −1)) ;

153 fc RTLS ( i ) = 1/(2∗pi∗dt )∗acos ( real (wc RTLS( i ) ) ) ;

154

155 % Mean of 3 s i n g l e phase S i gna l s . . . . . . . . . . . . . . . .

156 favg RTLS ( i ) = (1/3) ∗ ( fa RTLS ( i ) + fb RTLS( i ) + fc RTLS ( i ) ) ;

157

158

159

160

161

162

163

164

165

166

167
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168 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

169 % Amplitude Weighted Averaging (AW) :

170 % Compare es t imated ampl i tudes and as s i gn the va l u e s f o r the we igh t f a c t o r s

171 % Phase A i s l a r g e s t :

172 i f (Amp a( i ) >= Amp b( i ) ) && (Amp a( i ) >= Amp c( i ) )

173 wamp a( i ) = 1 ;

174 wamp b( i ) = Amp b( i )/Amp a( i ) ;

175 wamp c( i ) = Amp c( i )/Amp a( i ) ;

176

177 % Phase B i s l a r g e s t :

178 e l s e i f (Amp b( i ) >= Amp a( i ) ) && (Amp b( i ) >= Amp c( i ) )

179 wamp a( i ) = Amp a( i )/Amp b( i ) ;

180 wamp b( i ) = 1 ;

181 wamp c( i ) = Amp c( i )/Amp b( i ) ;

182

183 % Phase C i s l a r g e s t :

184 e l s e i f (Amp c( i ) >= Amp a( i ) ) && (Amp c( i ) >= Amp b( i ) )

185 wamp a( i ) = Amp a( i )/Amp c( i ) ;

186 wamp b( i ) = Amp b( i )/Amp c( i ) ;

187 wamp c( i ) = 1 ;

188 end

189

190 % Average by app l y ing the Amplitude we igh t f a c t o r s :

191 fw BCRLS( i ) = (1/(wamp a( i )+wamp b( i )+wamp c( i ) ) )

192 ∗ (wamp a( i )∗ fa BCRLS( i ) + wamp b( i )∗ fb BCRLS( i ) + wamp c( i )∗ fc BCRLS( i ) ) ;

193 fw RTLS( i ) = (1/(wamp a( i ) + wamp b( i )+wamp c( i ) ) )

194 ∗ (wamp a( i )∗ fa RTLS ( i ) + wamp b( i )∗ fb RTLS ( i ) + wamp c( i )∗ fc RTLS ( i ) ) ;

195

196

197

198

199

200

201

202

203
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204 %++++++++++++++++++++++++++++++++++++++++++++++++++++

205 % SNR Weighted Averaging (SNRW)

206 % Compare es t imated SNR and as s i gn the va l u e s f o r the we igh t f a c t o r s

207 % Phase A i s l a r g e s t :

208 i f (SNRa( i ) >= SNRb( i ) ) && (SNRa( i ) >= SNRc( i ) )

209 wSNRa( i ) = 1 ;

210 wSNRb( i ) = SNRb( i )/SNRa( i ) ;

211 wSNRc( i ) = SNRc( i )/SNRa( i ) ;

212

213 % Phase B i s l a r g e s t :

214 e l s e i f (SNRb( i ) >= SNRa( i ) ) && (SNRb( i ) >= SNRc( i ) )

215 wSNRa( i ) = SNRa( i )/SNRb( i ) ;

216 wSNRb( i ) = 1 ;

217 wSNRc( i ) = SNRc( i )/SNRb( i ) ;

218

219 % Phase C i s l a r g e s t :

220 e l s e i f (SNRc( i ) >= SNRa( i ) ) && (SNRc( i ) >= SNRb( i ) )

221 wSNRa( i ) = SNRa( i )/SNRc( i ) ;

222 wSNRb( i ) = SNRb( i )/SNRc( i ) ;

223 wSNRc( i ) = 1 ;

224 end

225

226 % Average by app l y ing the SNR weigh t f a c t o r s :

227 fwSNR BCRLS( i ) = (1/(wSNRa( i ) + wSNRb( i ) + wSNRc( i ) ) )

228 ∗ (wSNRa( i )∗ fa BCRLS( i ) + wSNRb( i )∗ fb BCRLS( i ) + wSNRc( i )∗ fc BCRLS( i ) ) ;

229 fwSNR RTLS( i ) = (1/(wSNRa( i ) + wSNRb( i ) + wSNRc( i ) ) )

230 ∗ (wSNRa( i )∗ fa RTLS ( i ) + wSNRb( i )∗ fb RTLS ( i ) + wSNRc( i )∗ fc RTLS ( i ) ) ;

231 end
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