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Abstract— The estimation of the frequency of a complex expo-
nential is a problem that is relevant to a large number of fields. In
this paper we propose and analyze two new frequency estimators
that interpolate on the Fourier coefficients of the received
signal samples. The estimators are shown to achieve identical
asymptotic performances. They are asymptotically unbiased and
normally distributed with a variance that is only 1.0147 times
the asymptotic Cramer-Rao bound (ACRB) uniformly over the
frequency estimation range.

Index Terms— Digital signal processing, frequency estimation,
parameter estimation.

I. INTRODUCTION

IN this paper, we consider the estimation of the frequency
of a complex exponential, s, given by

s(k) = Aej[2πk
f
fs

+θ] + w(k), k = 0, 1..N − 1 (1)

where A is the signal amplitude, f the signal frequency and
θ the initial phase. N samples are used and the sampling
frequency is fs. The noise terms, w(k), are assumed to be zero
mean, complex additive white Gaussian noise with variance
σ2. The signal to noise ratio is given by ρ = A2

σ2 . We set,
without loss of generality, A = 1 and fs = 1. Although the
noise is assumed to be white Gaussian, the derivation of the
asymptotic properties of the estimators holds under weaker,
more general conditions. These relaxed conditions are stated in
[1] for the case of real valued noise. However, their extension
to the complex case is straightforward and is not explicitly
carried out here. The results obtained in this paper are easily
extended to the more general case by replacing σ2 with the
power spectral density of the noise at the frequency of interest.

The frequency estimation problem outlined above is relevant
to a wide range of areas such as radar, sonar and communi-
cations, and has consequently received significant attention in
the literature [2] and [3]. It is well known that the maximum
likelihood (ML) estimator of the frequency is given by the
argument of the periodogram maximizer, [4]. That is,

f̂ML=arg max
λ

{Y (λ)} (2a)

where

Y (λ)=

∣

∣

∣

∣

∣

N−1
∑

k=0

s(k)e−j2πλ

∣

∣

∣

∣

∣
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The Cramer-Rao bound (CRB) of the frequency estimates is
given by, [4],

σ2
f =

6f2
s

(2π)2ρN(N2 − 1)
. (3)

For N � 1, the asymptotic CRB (ACRB) becomes

σ2
f ≈ 6f2

s

(2π)2ρN3
.

The numerical maximization of equation (2) is not a com-
putationally simple task and may suffer from convergence
and resolution problems, [1]. Therefore, it is common to
estimate the frequency of a sinusoid by a two step process
comprising a coarse estimator followed by a fine search, [4]–
[10]. The coarse estimation stage is usually implemented using
the maximum bin search (MBS) as a coarse approximation of
the periodogram maximizer, [11]. This consists of calculating
the N -point FFT of the sampled signal and then locating the
index of the bin with the highest magnitude.

Various fine frequency estimators have been proposed in the
literature. Zakharov and Tozer, [7], present a simple algorithm
that consists of an iterative binary search for the true signal
frequency. However, they found it necessary to pad the data
with zeros to a length of 1.5N in order to approach the CRB.
Furthermore, the required number of iterations depends on
the resolution as well as the operating signal to noise ratio
and can be quite large. Quinn, in [1], [5] and [6], proposes a
number of estimators that interpolate the true signal frequency
using the two discrete Fourier transform (DFT) coefficients
either side of the maximum bin. These algorithms, however,
have a frequency dependent performance that is worst for a
signal frequency coinciding with a bin center. This results
in a degradation in performance when they are implemented
iteratively, [10], chapter 5.

In this paper we present two new frequency estimators
that belong to a family of interpolators amenable to iterative
implementation, [10], chapter 6. The first algorithm, denoted
Alg1, employs an error functional independently suggested in
[10], pp. 129, and [12]. It uses two complex DFT coefficients
calculated midway between the standard DFT coefficients. The
second algorithm, Alg2, was suggested in [10], pp. 137, and
works on the magnitudes of the DFT coefficients. We analyze
the new algorithms and show that they have an asymptotic
variance that is only 1.0147 times the ACRB. The theoretical
results are then verified by simulation.

The paper is organized as follows: In section II we present
the details of the frequency estimators including the moti-
vation behind them. In section III we proceed to analyze
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TABLE I

ITERATIVE FREQUENCY ESTIMATION BY INTERPOLATION ON FOURIER

COEFFICIENTS ALGORITHM

Let S = FFT (s) and Y (n) = |S(n)|2, n = 0 . . . N − 1
Find m̂ = arg max

n
{Y (n)}

Set δ̂0 = 0

Loop: for each i from 1 to Q do

Xp =

N−1
∑

k=0

s(k)e−j2πk
m̂+δ̂i−1+p

N , p = ±0.5

δ̂i = δ̂i−1 + h(δ̂i−1)
where

h(δ̂i−1) =
1

2
Re

{

X0.5 + X
−0.5

X0.5 − X
−0.5

}

, for Alg1

or

h(δ̂i−1) =
1

2

|X0.5| − |X
−0.5|

|X0.5| + |X
−0.5|

, for Alg2

Finally f̂ =
m̂ + δ̂Q

L
fs

the algorithms and derive their asymptotic performances. The
convergence properties are also discussed. Section IV shows
the simulation results while section V gives the concluding
remarks.

II. THE ITERATIVE FREQUENCY ESTIMATOR

The algorithms are summarized in table I. The coarse search
returns the index, m̂N , of the bin with the largest magnitude.
Two DFT coefficients at the bin edges are then calculated and
used to interpolate the true frequency. The motivation behind
each algorithm is easily seen by examining the noiseless case.

Assuming that m̂N is the index of the true maximum, i.e.
m̂N = mN , the frequency of the signal can be written as

f =
m̂N + δN

N
fs (4)

where δN is a residual in the interval [−0.5, 0.5]. The subscript
N indicates the dependence of the various parameters on N .
In the rest of the paper, unless the dependence on N needs to
be emphasized, we drop the subscript for the sake of simplicity
of the notation. The goal of the estimator, then, is to obtain
an estimate of δ, say δ̂. Consider the DFT coefficients,

Xp =
N−1
∑

k=0

s(k)e−j2πk
m̂+p

N , p = ±0.5. (5)

Substituting the expression of the sinusoidal signal into (5)
and carrying out the necessary manipulations we obtain

Xp = ejθ 1 + ej2πδ

1 − ej2π
δ−p
N

+Wp, (6)

where the terms Wp are the Fourier coefficients of the noise.
Now for (δ − p) � N , equation (6) becomes

Xp = b
δ

δ − p
+Wp (7)

with b given by

b = −Nejθ 1 + ej2πδ

j2πδ
.

At this point we ignore the noise terms and proceed to examine
the interpolation function of the proposed algorithms. Denote
the ratio in the expression of h(δ) in Alg1 by β. Substituting
the expressions for Xp into β and simplifying yields,

β =
b δ

δ−0.5
+ b δ

δ+0.5

b δ
δ−0.5

− b δ
δ+0.5

= 2δ.

Hence, δ̂ = β/2 can be used as an estimator for the residual
frequency δ. However, as we will see in section III-A, it is
necessary to take the real value of β in order to obtain a real
valued estimate of δ. In a similar way, the motivation behind
Alg2 is established as follows; the magnitude of Xp is

|Xp| = |bδ|
∣

∣

∣

∣

1

δ − p

∣

∣

∣

∣

.

Since |δ| ≤ 0.5, the error mapping for Alg2 becomes

1

2

|bδ| 1

0.5−δ
− |bδ| 1

0.5+δ

|bδ| δ
0.5−δ

+ |bδ| δ
0.5+δ

= δ.

Again, we find that δ̂ = h(δ) can be used as an estimator
for δ. Note that the bias resulting from the approximation used
in going from (6) to (7) is of order N−2. In the following
section, we examine the noise performance of the estimators.
We show that they are asymptotically unbiased and normally
distributed.

III. THEORETICAL ANALYSIS

A. Asymptotic Performance

The motivation behind each estimator was established in
the previous section by examining the noiseless case. We
will, now, include the noise terms and derive the asymptotic
properties of the estimates. We adopt an analysis strategy
similar to that used in [1] and show that both algorithms are
asymptotically unbiased and normally distributed.

In the case that the noise is assumed Gaussian, the Fourier
coefficients of the noise terms are independent zero mean
Gaussian with variance Nσ2. However, it was shown in [13]
and [14] that, given the relaxed assumptions mentioned in
the introduction, the noise Fourier coefficients converge in
distribution and

lim sup
N→∞

sup
λ

|W (λ)|2
N lnN

≤ 1, almost surely.

Thus, the terms Wp are O
(

√

N ln(N)
)

(for the order nota-
tion refer to [15], pp. 421-428).

Now, we have that as N → ∞, |m̂N − mN | ≤ 1 almost
surely (a.s.), [1]. In fact, we can show that for |δ| < 0.5,
P{m̂N = mN} → 1 as N → ∞. If δ = 0.5, P{m̂N = m} =
P{m̂N = m + 1} = 0.5 almost surely and either bin is an
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acceptable choice. The same argument applies for δ = −0.5.
Thus, as N → ∞,

δN = m̂N − Nf

fs

∈ [−0.5, 0.5] a.s.

Turning our attention to Alg1 and substituting the expres-
sion for Xp, shown in equation (7), into β yields, after some
simplifications,

β =
2δ + δ2

−0.25
bδ

(W0.5 +W−0.5)

1 + δ2
−0.25
bδ

(W0.5 −W−0.5)
. (8)

Since Wp are O
(

√

N ln(N)
)

whereas b is O(N), the
term involving δ in the denominator of (8) is of order
O

(

N−
1
2

√

ln(N)
)

. Hence, for large N

β=

[

2δ +
δ2 − 0.25

bδ
(W0.5 +W−0.5)

]

×
[

1 − δ2 − 0.25

bδ
(W0.5 −W−0.5) +O

(

N−1 lnN
)

]

.

(9)

Expanding and simplifying, yields

β = 2δ

+
δ2 − 0.25

δ
Re

{

(1 − 2δ)W0.5 + (1 + 2δ)W−0.5

b

}

+j
δ2 − 0.25

δ
Im

{

(1 − 2δ)W0.5 + (1 + 2δ)W−0.5

b

}

+O
(

N−1 lnN
)

(10)

where Re{•} and Im{•} are respectively the real and imag-
inary parts of •. We clearly see that the real part of β is a
noisy estimate of δ. This clarifies the use of the real part of
β as an estimator for δ. Thus we set δ̂ = 1

2
Re{β}. In fact,

taking the real part asymptotically improves the estimation
variance by 3dB. Equation (10) implies that the distribution
of δ̂ asymptotically follows that of the noise coefficients Wp.
Hence, δ̂ is asymptotically unbiased and normally distributed.
The asymptotic variance of the estimator is given by

var[δ̂] =
1

4

(

δ2 − 0.25
)2

|b|2δ2
{

(1 − 2δ)2var[Re {W0.5}]

+(1 + 2δ)2var[Re {W−0.5}]
}

=
1

4

σ2

N

π2
(

δ2 − 0.25
)2 (

4δ2 + 1
)

cos2(πδ)
, (11)

where the second equality follows from the fact that,
under the Gaussianity assumption, var[Re {W0.5}] =
var[Re {W−0.5}] = Nσ2/2, and

|b|2 = N2 cos2(πδ)

(πδ)2
(12)

The performance of Alg2 can be obtained in a similar
fashion. Let Yp = |Xp|. Thus,

Yp =

∣

∣

∣

∣

b
δ

δ − p

∣

∣

∣

∣

∣

∣

∣

∣

1 +
δ − p

bδ
Wp

∣

∣

∣

∣

. (13)

The second factor in the above expression can be expanded as
follows
∣

∣

∣

∣

1 +
δ − p

bδ
Wp

∣

∣

∣

∣

=

√

1 +
(δ − p)2

|b|2δ2 |Wp|2 − 2
δ − p

δ
Re

{

Wp

b

}

(14)

Upon examination of the two terms under the square root, we
find that their relative orders change as |δ| → 0.5. This leads
us to divide the interval [−0.5, 0.5] into two regions, ∆1 and
∆2, defined for some a > 0 and ν > 0, as shown

∆1 =
{

δ; |δ| ≤ 0.5 − aN−ν
}

(15)

and
∆2 =

{

δ; 0.5 − aN−ν ≤ |δ| ≤ 0.5
}

. (16)

For δ ∈ ∆1, Re {Wp/b} is of order O(N−
1
2

√
lnN), whereas

|Wp/b|2 is O(N−1 lnN). Therefore, ignoring the lower order
term involving |Wp|2 and using the fact that for x � 1,√

1 + x = 1 + x/2 +O(x2), we obtain

Yp =

∣

∣

∣

∣

b
δ

δ − p

∣

∣

∣

∣

[

1 − δ − p

δ
Re

{

Wp

b

}]

+ o(1). (17)

Substituting Yp into the error mapping for Alg2 and carrying
out the analysis in a similar way as was done for Alg1, we
find that

δ̂=δ +
1

2

δ2 − 0.25

δ

[

(2δ − 1)Re

{

W0.5

b

}

+(2δ + 1)Re

{

W−0.5

b

}]

. (18)

This result is similar to the estimator expression of Alg1
obtained by taking half the real part of (10). In fact for
δ ∈ ∆1 the performances of the two algorithms are statistically
equivalent since b is a complex constant and does not affect
the statistics of the noise coefficients Wp. Now, turning our
attention to region ∆2, we find that the estimator is biased.
We consider here the case where δ → 0.5, the other case
is similar. As δ → 0.5, the orders of the terms in the
expression of Y0.5 are preserved. However, looking at Y−0.5

we find that there is a value of δ close to 0.5 after which the
term in |W−0.5|2 starts to dominate that in Re{W−0.5}. The
estimator then becomes biased since E

[

|W−0.5|2
]

6= 0. We
take this value of δ to be the boundary between regions ∆1

and ∆2. Let ζ = 0.5 − δ. Now the term involving |W−0.5|2
is of order O(ζ−2N−1 lnN), whereas that in Re{W−0.5}
is O(ζ−1N−

1
2

√
lnN). As a definition, we take a quantity

Q2 to dominate another quantity Q1 if Q1/Q2 = o(1). A
function that satisfies this requirement is φ = 1/

√
lnN .

Note that this choice of φ is arbitrary and any other function
that is o(1) could have been used. Using this definition, we
find that the term in |W−0.5|2 dominates that in Re{W−0.5}
when ζ = N−

1
2 . Thus, the boundary between ∆1 and ∆2 is

given by 0.5 − N−
1
2 . The resulting bias of the estimator for

δ ∈ ∆2 is O(lnN). On the other hand, the width of region
∆2 is o(N−

1
2 ). As ∆2 vanishes faster than the growth rate

of the bias, the asymptotic result of region ∆1 holds and the
algorithm is asymptotically unbiased with a performance that
is identical to that of Alg1.
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Finally, we have the following theorem:
Theorem 1: Let δ̂N be given by the error functionals of

Alg1 or Alg2 (with δN ∈ ∆1 for Alg2) and let f̂N be defined
as

f̂N =
m̂N + δ̂N

N
fs

then σ−1

(

f̂ − f
)

is asymptotically standard normal with σ

given by

σ2 =
f2

s

4N3ρ

π2
(

δ2 − 0.25
)2 (

4δ2 + 1
)

cos2(πδ)
.

A useful indicator of the algorithm performance is the ratio
of its asymptotic variance to the ACRB. This is,

R =
π4

6

(

δ2 − 0.25
)2 (

4δ2 + 1
)

cos2(πδ)
. (19)

The error functionals are then seen to have identical perfor-
mances. The ratio of the variance of the estimates, for SNRs
above the threshold, is dependent on δ, but independent of the
SNR. Furthermore, it has a minimum of 1.0147 for δ = 0.

B. Iterative Implementation

In the previous section, we showed that the performance of
the interpolation functions of both estimators depend on the
true signal frequency. The iterative procedure of table I reduces
this frequency dependence and improves the performance of
the algorithm. The estimate of the residual obtained at each
iteration is removed from the signal and the estimator re-
applied to the compensated data. In this section we show that
the estimators are well behaved and the procedure converges
in two iterations. This allows for a computationally efficient
algorithm with a performance that is only marginally above
the CRB.

We will only consider the iterative estimator constructed
using Alg1. A similar argument can be constructed for Alg2,
[10], pp. 194-199. Let the true value of the residual be denoted
by δ0. Now h(δ) can be written as

h(δ) =
sin

(

2π
N

(δ0 − δ)
)

2 sin
(

π
N

)

[

1 +O
(

N−
1
2

√
lnN

)]

. (20)

Expanding h(δ) into a Taylor series about δ0 gives

h(δ) = (δ − δ0)h
′(δ0)

[

1 +O(N−
1
2

√
lnN)

]

(21)

where

h′(δ0) =− π

N sin
(

π
N

)

[

1 +O
(

N−
1
2

√
lnN

)]

=−1 +O
(

N−
1
2

√
lnN

)

. (22)

The estimation function ψ(δ) = δ + h(δ) becomes

ψ(δ) = δ0 + (δ − δ0)O(N−
1
2

√
lnN). (23)

Now for any δ1, δ2 ∈ [−0.5, 0.5], we have

|ψ(δ1) − ψ(δ2)| =|δ1 − δ2|O(N−
1
2

√
lnN)

≤α|δ1 − δ2|

with α < 1. Thus, the iterative procedure constitutes a
contractive mapping on [-0.5,0.5]. Also, it has a unique fixed
point at δ0. That is, ψ(δ0) = δ0. Consequently, the fixed
point theorem, [16], pp. 133, ensures that the algorithm of
table I converges to the fixed point. The residual input to the
algorithm at the ith iteration is δ0 − δ̂i−1. Let the variance
expression of the estimator, shown in equation (11), be denoted
by g(δ). The variance of the estimate, δ̂i, at the ith iteration
is given by g(δ0 − δ̂i−1). Thus, the limiting variance of the
estimator is

var[δ̂∞] = lim
i→∞

g(δ0 − δ̂i−1)

=g(0), (24)

where the last result follows from the fact that limi→∞ δ̂i =
δ0 and g(δ) is continuous on [−0.5, 0.5]. Now we turn our
attention to the stopping criteria. The CRB for δ, which is
O(N−

1
2 ), forms a lower bound on the estimation variance

and no further gain is achievable once the residual frequency
is of order lower than it. Therefore, it is reasonable to stop
the estimator once the residual is o(N−

1
2 ). Let this iteration

number be Q. Starting with an initial estimate, δ̂0 = 0, and
using equation (23), the estimate after the first iteration, δ̂1 is
given by,

δ̂1 = δ0

[

1 +O(N−
1
2

√
lnN)

]

and the residual is δ̂1 − δ0 = O(N−
1
2

√
lnN). This is still of

order higher than the CRB. Looking at the estimate after the
second iteration, we have

δ̂2 = δ0
[

1 +O(N−1 lnN)
]

(25)

and the residual is δ̂2 − δ0 = O(N−1 lnN), which is now
o(N−

1
2 ). Thus, only two iterations are needed for the residual

to become of lower order than the CRB. We say that the
algorithm has converged after two iterations. These results are
summarized by the following theorem.

Theorem 2: The iterative procedure defined using Alg1 or
Alg2, as shown in table I, converges with the following
properties

• The fixed point of convergence is the true offset, δ0
• The procedure takes 2 iterations for the residual error to

become o(N−
1
2 )

and
• The limiting ratio of the variance of the estimator to the

asymptotic CRB is π4/96 or 1.0147 uniformly over the
interval [-0.5,0.5].

At this stage, we note that, as mentioned in the introduction,
the results derived in this paper are valid under the more
general and relaxed noise assumptions stated by Quinn in [1].

IV. SIMULATION RESULTS

The algorithms presented above were implemented and
simulated. The number of samples used in the simulation was
N = 1024. Fig. 1 displays the theoretical and simulation
results on the ratio of the variance of the estimates to the
ACRB versus δ for one and two iterations. The signal to
noise ratio for this simulation was set to 0dB. We see that for
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Fig. 2. Plot of the standard deviation of the frequency estimation error for
Alg1 and Alg2 as a function of the signal to noise ratio. The Cramer Rao
Bound curve is also shown. 10000 runs at each signal to noise ratio were
averaged.

Q = 1, the simulation and theoretical results agree closely.
For Alg2, the boundary between regions ∆1 and ∆2 is clearly
visible. The plot also shows that after the second iteration,
the performance of both algorithms is uniform over the entire
interval. The ratio of the variance of both estimators is, as
expected, very close to the theoretical value of 1.0147. Fig.
2 presents the simulation results of the noise performance of
both algorithms as a function of the signal to noise ratio. The
CRB curve is shown for the purpose of comparison. Both
algorithms exhibit almost identical performances that are on
the CRB curve. The threshold effect that is characteristic of
the ML estimator and which results from the coarse estimation
stage, is visible.

V. CONCLUSION

In this paper we have proposed and analyzed two new esti-
mators for the frequency of a complex exponential in additive
noise. The estimators consist of a coarse search followed by a
fine search algorithm. The coarse search is implemented using
the standard Maximum Bin Search. Two new fine search algo-
rithms have been proposed and their asymptotic performances
derived. The estimator were implemented iteratively and the
resulting procedure shown to converge to the true signal
frequency. The estimation variance of the iterative algorithm
was also shown to converge asymptotically to its minimum
value. This results in an improvement in the performances of
the estimators when implemented iteratively. The number of
iterations required for convergence was found to be 2 for both
algorithms. Hence the iterative estimator has a computational
load of the same order as the FFT. Finally, the theoretical
results were verified by simulations.
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