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Estimation of the Frequency and Decay Factor of a

Decaying Exponential in Noise
Elias Aboutanios, MIEEE

Abstract— In this paper we examine the estimation of the
parameters of a decaying complex exponential in noise. The
strategy adopted consists of a computationally simple two stage
scheme where an interpolation stage refines the coarse estimate
obtained from an initial maximum bin search. The interpolators
of Quinn, and of Aboutanios and Mulgrew, developed for
undamped exponentials, are extended to the damped case. In
the process we show that Quinn’s estimator can be viewed
as a linearised version of Bertocco’s algorithm. Theoretical
analysis demonstrates that the resulting estimators exhibit similar
behaviour to the undamped case, leading us to propose two
alternative hybrid implemenations that yield a significant im-
provement in the estimation performance. Unlike the undamped
case, however, we discover that a finite number of samples exists
for which the estimation performance is best and which we
determine in terms of the damping factor. This enables us to
adjust the actual number of samples should it deviate significantly
from the optimum. Extensive simulation results are presented to
support the theoretical findings.

Index Terms— NMR spectroscopy, parameter estimation, DFT
interpolation, damped exponential.

I. I

METABOLOMICS is an important method for charac-

terising fundamental biological processes such as gene

expression, disease, drug effects, and toxicity, [1], [2], [3].

Nuclear magnetic resonance (NMR) spectorscopy is a promis-

ing technique in Metabolomics for detecting and identifying

metabolites, [1], [4]. The free induced decay (FID) signal

obtained in NMR spectroscopy is modelled as a sum of

decaying exponentials in noise. Thus, the estimation of the

parameters of the decaying exponentials is a fundamental step

in the processing of NMR spectroscopy signals. This problem

is also of prime improtance in many applications such as radar,

sonar, speech and biomedical signal processing.

The processing of NMR data, and the estimation of the

parameters of damped exponentials in particular, have received

some attention in the literature. For a review see [4], and

more recently [5] and the references therein. Additionally

[6] compiles a relevant and extensive list of references on

the wider spectral line analysis problem. Common techniques

employed in the NMR context either rely on a long fast

Fourier transform (FFT) of the data followed by peak picking,

or construct a data matrix from the available data samples
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which they then process to obtain the required estimates,

e.g. [7], [8]. Thus, they incur a significant computational

effort. Bertocco, on the other hand, examined this estimation

problem and proposed a computationally simple algorithm

that relies on a two stage strategy, [9]. In the first stage, a

coarse estimate of the frequency is obtained by locating the

peak of the FFT of the data sample. An interpolation stage

then serves to refine this initial estimate. Helped by the fine

stage, Bertocco’s algorithm can obtain accurate estimates with

a shorter data record than the usual peak picking approach.

However, it requires the use of the highly non-linear arc-

tangent and logarithm functions, which can be undesirable in

certain time-critical applications. Like Bertocco, Umesh and

Tufts, presented a method that employs a Newton search for

the fine estimation stage, [10]. Their algorithm breaks the two-

dimensional search for the frequency and damping factor into

two one-dimensional searches. The Newton search, however,

has been shown to perform poorly and be prone to numerical

problems, [11].

The two-stage estimation strategy has also been used ex-

tensively as a solution to the frequency estimation of an

undamped complex exponential, [12], [13], [14], [15]. Quinn,

[16], proposed a fine interpolation stage that is similar to that

of Bertocco as both employ the maximum FFT bin and the two

bins either side of it. Unlike Bertocco’s algorithm, however,

Quinn’s interpolator avoids the arc-tangent and logarithmic

functions. More recently, Aboutanios and Mulgrew, proposed

an iterative interpolation technique that outperform Quinn’s

algorithm and approaches the Cramer-Rao Bound (CRB), [17].

In this paper, we will focus on simple, fast, and efficient

algorithms for the estimation of the parameters of a single

complex exponential in noise. In particular, we aim to extend

the Quinn, and Aboutanios and Mulgrew (A&M) interpolators

to the damped exponential case. In the process, we expose the

relationship between Bertocco’s and Quinn’s algorithms.

Consider the following signal model,

x[k] = s[k] + w[k], k = 0 . . .N − 1, (1)

where the signal of interest s[n] is an exponential of the form

s[k] = Ae(−η+ j2π f )k. (2)

Here A is the complex signal amplitude and η the decay factor.

The frequency f is normalised by the sampling frequency, i.e.

f ∈ [−0.5, 0.5]. The noise terms, w[k], are zero mean, complex

additive white Gaussian with variance σ2, giving a nominal

signal to noise ratio (SNR) ρ0 =
|A|2
σ2 . Our goal is to obtain

computationally simple, yet robust, estimates of f and η from

a block of N samples. The CRBs for the frequency, σ2
f
, and
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damping factor, σ2
η, were derived in [18] and are given by

σ2
η = 4π2σ2

f

=
(1 − e−2η)3(1 − e−2Nη)

2ρ0

[−N2e−2Nη(1 − e−2η)2 + e−2η(1 − e−2Nη)2
] . (3)

The paper is organised as follows: In section II we con-

sider the noiseless case and derive the various interpolation

functions. These algorithms are then analysed in section III

where we derive approximate expressions for their estimation

variances. Next we examine their iterative implementation

in section IV. In section V we evaluate the performance of

the algorithms using simulations and discuss their behaviour.

Finally, section VI summarises the main conclusions.

II. I A

The discrete time Fourier transform (DTFT) of s[k] is

X(λ) =

∞
∑

k=−∞
s[k]e− j2πkλ (4)

= A
1 − e−Nη+ j2πN( f−λ)

1 − e−η+ j2π( f−λ)
.

The magnitude, |X(λ)|, exhibits a maximum at λ = f given by

max
λ
|X(λ)| = |A|1 − e−Nη

1 − e−η
. (5)

Therefore, as in the undamped case, the maximisation of

the magnitude spectrum can be used as an estimator of the

frequency of the damped sinusoid. However, this maximisation

is a computationally expensive and numerically difficult task,

which leads us to consider the two stage estimation procedure

that relies on the N-point discrete Fourier transform (DFT)

of the signal, [9], [10], and which can take advantage of the

efficient FFT algorithm. The N-point DFT of the signal is

X[n] = A
1 − e−Nη+ j2π(N f−n)

1 − e−η+ j 2π
N

(N f−n)
.

The maximum of |X[n]| now occurs at the index m =
[

N f
]

,

where [•] indicates the rounding of • to the nearest integer.

Now we express the true signal frequency as f = m+δ
N

where

δ ∈ [−0.5, 0.5] and put α = Nη. The DFT coefficient of the

signal at n = m + p, henceforth denoted by Xp, becomes

Xp = bp

α − j2πδ

N
(

1 − ze
− j2πp

N

) , (6)

where we have put z = e
−α+ j2πδ

N and defined bp as

bp = NA
1 − e−α+ j2π(δ−p)

α − j2πδ
. (7)

Generally, the bulk of the signal’s energy is concentrated in

just a few DFT coefficients around the maximum bin. Thus,

most interpolation algorithms only consider a small number

of coefficients around m. The algorithms presented here, focus

on the DFT coefficients corresponding to p = 0,±0.5, and ±1.

Note that whereas integer p corresponds to DFT bins obtained

by the application of the FFT algorithm, a non-integer value

necessitates the direct calculaton of the DFT coefficient from

the expression in Eq. (4). With this formulation, the estimation

of the frequency and damping factor of the signal reduces to

the estimation of α and the frequency residual δ. Denoting

these estimates by α̂ and δ̂, then η̂ and f̂ are calculated as η̂ =
α̂
N

and f̂ = m+δ̂
N

. In what follows we present two interpolation

approaches for obtaining these estimates.

A. The Estimators of Bertocco and Quinn

Starting from the DFT expressions, Bertocco proposed an

interpolation algorithm that employs the maximum and the

two coefficients around it, [9]. Using this same strategy, Quinn

presented an estimator of the frequency of an undamped

exponential, [16]. As these two algorithms use the same set

of DFT coefficients, we treat them together here. We start

by reviewing Bertocco’s algorithm. We then extend Quinn’s

estimator to the damped case. This is done in a manner that

exposes the relationship between the two approaches.

Let us define the ratio

νp =
Xp

X0

, for p = ±1. (8)

Noting that b−1 = b1 = b where

b = NA
1 − e−α+ j2πδ

α − j2πδ
, (9)

we substitute the expressions for Xp and X0 giving

νp =
1 − z

1 − ze− j2π
p

N

. (10)

Solving for z yields

z =
1 − νp

1 − νpe− j2π
p

N

. (11)

Therefore, Bertocco suggested that an estimate of z, denoted

as ẑp, can be obtained for each value of p. Estimates of the

frequency offset and decay factor are then given by

η̂p =
α̂p

N
= − ln |ẑp| and δ̂p =

N

2π
∠ ẑp. (12)

At this point a decision has to be made as to which of the two

sets of estimates to select. The logical choice is to keep the

estimates with the higher SNR. To this end, Bertocco uses the

magnitudes |X−1| and |X1|, setting p = sgn (|X1| − |X−1|) where

sgn(•) signifies the sign of •.
The extension of Quinn’s algorithm to the damped case can

be done in several ways. Here, we use Bertocco’s algorithm

as our starting point. This shows that Quinn’s algorithm can

be viewed as an approximated form of Bertocco’s estimator

that avoids the arc-tangent and logarithm functions.

Assuming that
∣

∣

∣

−α+ j2πδ

N

∣

∣

∣ ≪ 1, and
∣

∣

∣

2πp

N

∣

∣

∣ ≪ 1, we write z−1
p ≈

1 +
α− j2πδ

N
and e j2π

p

N ≈ 1 − j2π
p

N
. Taking the inverse of both

sides of Eq. (11) and using these approximations yields

1 +
α − j2πδ

N
≈

1 − νp

(

1 − j2π
p

N

)

1 − νp

.

Simplifying the above expression gives

α − j2πδ ≈ j2πp
νp

1 − νp

.
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Equivalently, we can write

δ + j
α

2π
≈ hp , p

νp

νp − 1
. (13)

Therefore, the real and imaginary parts of hp can be used as

estimators of δ and α respectively. Finally, the estimates of η

and δ are found to be

η̂p =
α̂p

N
=

2π

N
I(hp), and δ̂p = R(hp), (14)

where R(•) and I(•) are the real and imaginary parts of (•).
This final expression is in effect the same as Quinn’s estimator.

But here, both the real and imaginary parts of νp are required

in order to estimate the frequency and damping factor.

As with Bertocco’s algorithm, the estimates with the higher

SNR are to be selected. Quinn, however, showed that a

decision relying on the comparison of the magnitudes of the

DFT coeffcients suffers from extremely poor performance as

δ → 0, [11]. Therefore, he proposed setting p = 1 if δ̂−1 ≥ 0

and δ̂1 ≥ 0, otherwise p = −1. In what follows, we adopt

this decision rule for both Bertocco’s and Quinn’s algorithms

which we group and denote jointly as the (B&Q) algorithm.

B. The A&M Estimator

Quinn’s algorithm was analysed in the undamped case and

shown to have a frequency dependent performance, [16]. In

[17] it was shown that an iterative implementation of Quinn’s

algorithm results in a degradation in performance due to

the interpolation function having its largest variance at the

fixed point of the iteration. The A&M estimator, proposed

in [17], remedies this handicap and achieves a uniformly

lower variance when implemented iteratively. Unlike the B&Q

approach, it uses the DFT bins corresponding to p = ±0.5 and

exhibits its best performance at the fixed point. We now adapt

the A&M algorithm to the damped exponential case.

Using Eq. (6), we can write for p = ±0.5

Xp = c
α − j2πδ

N
(

1 − ze
− j2πp

N

) , (15)

where we have set

c = b−0.5 = b0.5 = NA
1 + e−α+ j2πδ

α − j2πδ
. (16)

Therefore, the interpolation function of the A&M algorithm

in the damped case becomes

h =
1

2

X0.5 + X−0.5

X0.5 − X−0.5

=
j

2

1 − z cos( π
N

)

z sin( π
N

)
. (17)

Solving for z yields

z =
1

cos( π
N

) − 2 jh sin( π
N

)
.

Employing this as an estimator for z, estimates of η and δ can

be obtained using (12).

As was done with the B&Q algorithm, a computationally

simpler version of the above estimator is now derived. Lin-

earising the DFT expression in Eq. (15) gives

Xp = c
α − j2πδ

α − j2π(δ − p)
. (18)

Substituting into the interpolation function of Eq. (17), it is

straightforward to show that

h ≈ δ + j
α

2π
. (19)

Finally, the estimates of δ and η are given by

η̂ =
α̂

N
=

2π

N
I(h), and δ̂ = R(h). (20)

III. A

The asymptotic performances of the Quinn and A&M

estimators have been established in [16], [17] for undamped

exponentials. In this section, we present theoretical results for

the proposed algorithms in the damped case. Including the

noise terms into the expression of Xp in (6) yields

X̃p = bp

α − j2πδ

N
(

1 − e
−α+ j2π(δ−p)

N

) +Wp,

where Wp are the DFT coefficients of the noise. In the rest of

the paper, the noise affected quantities will be denoted by an

over∼.

The asymptotic analysis in the undamped case relies on

the result that, under some general noise assumptions, Wp ∼
O(
√

N ln N) but bp ∼ O(N), [16], [17]. The damped case,

on the other hand, is fundametally different. Although the

coefficients Wp maintain the same behaviour, those of the

signal do not, for bp → A/ (1 − e−η) as N → ∞. In fact,

whereas the least squares solution has been shown in [19] to

be consistent in the undamped case, no consistent estimation

method can be devised for the damped case [20] unless certain

strong assumptions are made, [21]. Therefore, no asymptotic

analysis is possible here, and we focus on the small sample

performance. Assuming a sufficiently high effective SNR,

which we define in the following subsection, we make use

of the fact that Wp/bp ≪ 1 and proceed to derive approximate

expressions for the estimation variances.

A. Nominal vs Effective SNR

The estimation performance of the algorithms presented

here is a function of the overall or effective SNR of the data

record, ρe f f , rather than the nominal SNR, ρ0. Thus, it is

instructive to examine the behaviour of ρe f f as a function of

the number of samples as it helps elucidate the analysis and

evaluation of the algorithms. To this end, we define ρe f f as

the SNR at the true signal frequency, or equivalently the SNR

at the true maximum of the periodogram. Putting p = δ in Eq.

(6), the maximum of the periodogram, Y , is given by

Y = A
1 − e−Nη

1 − e−η
+Wδ.
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Fig. 1. Ratio of the effective to nominal SNRs, ρe f f /ρ0, as a function of
the number of samples N.

Recalling that the power of the noise coefficient Wδ is Nσ2,

ρe f f can be expressed in terms of the nominal SNR, ρ0, as

ρe f f = ρ0

(

1 − e−Nη
)2

N (1 − e−η)2
. (21)

It is easily shown in the undamped case that ρe f f = Nρ0 .

In the damped case, however, the sample SNR is a decreasing

function of the sample number as the signal power decays.

Thus, in contrast to the undamped case, ρe f f initially increases

as we add more signal, then peaks and starts decreasing as the

samples added become dominated by the noise. This is clearly

demonstrated in Fig. 1, which shows the ratio ρe f f /ρ0. Notice

that this ratio initially increases as e−Nη decreases faster than N

grows, reaches a maximum then decreases as e−Nη asymptotes.

Notice that for η = 10−3, ρe f f is still at its maximm point about

25dB higher than ρ0.

B. Bertocco’s and Quinn’s Estimators

As Bertocco’s estimator was shown to be approximated by

the linearised Quinn algorithm, we use the latter as the starting

point of our analysis. Substituting Eq. (21) into Eq. (8), and

using the assumption Wp/b ≪ 1, yields

ν̃p =

α− j2πδ

α− j2π(δ−p)
+

Wp

b

1 + W0

b

≈
(

νp +
Wp

b

)

(

1 − W0

b

)

≈ νp +
Wp

b
− νp

W0

b
. (22)

Let ξp = ν̃p − νp and ǫp = h̃p − hp. Then

ǫp = p
ν̃p

ν̃p − 1
− hp

= p
νp + ξp

νp + ξp − 1
− hp. (23)

Putting νp =
hp

hp−p
into ǫp and simplifying gives

ǫp = −p
ξp(hp − p)2

1 + pξp(hp − p)

≈ −pξp(hp − p)2, (24)

where the last line follows because the assumptions made

above imply that pξp(hp − p) ≪ 1. Using (22), we substitute

the expression for ξp into that of ǫp and simplify to give

ǫp ≈ − p

b

(

(hp − p)Wp − hpW0

)

(hp − p). (25)

Recall that hp = δ + j α
2π

. Then, the errors in the estimates of

η = α/N and δ, denoted by µ and γ respectively, are given by

µp =
2π

N
I(ǫp), and γp = R(ǫp). (26)

Finally, the variances of η̂ and δ̂, derived in appendix I, become

Var[γp] =
N2

4π2
Var[µp]

≈ α2
+ 4π2δ2

16π4Nρ0

[

1 + e−2α − 2e−α cos(2πδ)
]ζp, (27)

where

ζp = α
4
+ 8π4(|δ| − 1)2(2δ2 − 2|δ| + 1) + 2π2α2(4δ2 − 6|δ| + 3).

C. A&M Estimator

We now turn to the analysis of the A&M estimator. The

DFT coefficients of Eq. (21) for p = ±0.5 are

Xp = c
α − j2πδ

α − j2π(δ − p)
+Wp. (28)

In order to simplify the notation, set X+ = X0.5 and X− = X−0.5.

The interpolation function of the A&M estimator becomes

h̃ =
1

2

X+ + X−
X+ − X−

=
1

2

c
α− j2π(δ−0.5)

+W+ +
c

α− j2π(δ+0.5)
+W−

c
α− j2π(δ−0.5)

+W+ − c
α− j2π(δ+0.5)

−W−

=
α − j2πδ + λ

2c
(W+ +W−)

− j2π + λ
c

(W+ −W−)
, (29)

where

λ = α2 − 4π2(δ2 − 0.25) − j4παδ. (30)

Using the assumption that the terms
∣

∣

∣Wp/c
∣

∣

∣ ≪ 1, we obtain

h̃ =
1

− j2π

α − j2πδ + λ
2c

(W+ +W−)

1 + j λ
2πc

(W+ −W−)

≈ j

2π

[

α − j2πδ +
λ

2c
(W+ +W−)

]

×
[

1 − j
λ

2πc
(W+ −W−)

]

≈ h + j
λ

4πc
[(1 − 2h)W+ + (1 + 2h)W−] .

Putting ǫ = h̃ − h, and noting that h = δ + j α
2π

, then µ and γ,

which are respectively the errors in η and δ, are given by

µ =
2π

N
I(ǫ), and γ = R(ǫ). (31)

Finally, the variances of µ and γ, derived in appendix II, are

Var[γ] =
N2

4π2
Var[µ]

≈ 1

16π4Nρ0

[

1 + e−2α + 2e−α cos(2πδ)
]ζ, (32)
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where

ζ = α6
+ 3π2α4(4δ2

+ 1) + π4α2
{

48δ4
+ 8δ2

+ 3
}

+16π6(δ2 − 0.25)2(4δ2
+ 1).

The variance expressions have a maximum at δ = ±0.5

and minimum at δ = 0. Thus notwithstanding the presence

of the damping factor, we expect an iterative implementation

of the algorithm to give an improvement in the estimation

performance.

IV. I I

The iterative versions of the Quinn and A&M algorithms

were shown to converge in the undamped case to the fixed

point of the iteration, producing a degradation in the perfor-

mance of the former and an improvement for the latter, [17].

A close inspection of the variance expressions derived here

reveals that the proposed algorithms display similar behaviour

to the undamped case and leads us to consider implementing

them iteratively.

Let the estimate of δ at the ith iteration be denoted by δ̂i and

set the initial estimate δ̂0 = 0. The iterations are constructed

as follows: The residual δ̂i−1 is first removed from the signal

and the estimator used to give a new estimate δ̂i = δ̂i−1 +

R
(

h(δ̂i−1)
)

= ψ(δ̂i−1) where h is the interpolation function. If

the procedure is run for Q iterations, then the final estimates

become δ̂Q = ψ(δ̂Q−1) and η̂ = (2π/N)I
(

h(δ̂Q−1)
)

. This

construction is virtually identical to the undamped case, with

the only difference occuring at the final iteration where the

damping factor is estimated alongside the frequency residual.

At this point we include some statements on the perfor-

mance of the iterative procedure. Given that no asymptotic

analysis is possible, we focus on the case of finite N. The per-

formances of the algorithms, derived in the previous section,

imply that the first iteration gives an estimate that is quite close

to the true residual. This leaves a remainder to be estimated in

the second iteration that is approximately Gaussian with mean

0 and a variance v ≪ 0.5, meaning that it this residual error

is concentrated in a small interval around 0. Consequently,

the resulting mean estimation variance will be approximately

equal to its value at δ = 0, or more accurately in the immediate

vicinity of 0, leading to a significant improvement in the

performance of the A&M algorithm and a deterioration in that

of the B&Q algorithm.

Now since it is the role of the interpolation function of the

first iteration to put the remaining residual close to 0, while the

final estimation variance is primarily dependent on the value

of the variance due to the subsequent iterations, we propose

a hybrid two-iteration implementation that uses Quinn’s inter-

polation function in the first iteration and the A&M estimator

in the second. This would result in a computational saving

in the first iteration as Quinn’s algorithm does not require the

calculation of any additional DFT coefficients to those already

obtained for the coarse search.

V. R  D

The fundamental differences between the estimators pre-

sented here and their analogues in the undamped case stem

from the presence of α, which encapsulates the combined

roles of the damping factor and number of samples, and

has implications for the performance. In particular, we will

examine the estimation bias and variance, and comment on

the selection of the number of samples N.

A. Estimation Bias and Variance

The interpolation functions are biased in the presence of the

noise as they are non-linear in the noise coefficients. This is

in contrast to the undamped case where the estimators were

shown to be asymptotically unbiased. The analysis presented

here relies on a high effective SNR condition that ensures

Wp/b ≪ 1 and permits the approximate expressions to be

derived. The behaviour of the effective SNR, see Fig. 1, sug-

gests that the estimation performance should have the reverse

behaviour, with the bias and variance decreasing, reaching a

minimum and then increasing. In fact as N becomes large

enough, the effective SNR becomes ρY ≈ ρ0/N, indicating that

the performance will then deteriorate. It is important, however,

to note that the peak in the effective SNR does not necessarily

coincide with the lowest estimation bias and variance due to

the complicated dependence of these on N.

Although the expected trend in the bias is evident in Figs.

2 and 3, it is important to observe that the biases are much

smaller than the CRB. As there are no noticeable differences

between the exact and linearised estimators we only show the

results of the latter here and in the rest of the manuscript. Ad-

ditionally, both the A&M and hybrid iterative implementations

were run for two iterations and are shown.

The estimation variance is shown in Figs. 4 and 5. Included

are the CRB and theoretical performance curves. Both non-

iterative (B&Q and A&M) algorithms exhibit the same mean

behaviour and are thus represented by the same theoretical

mean variance curve. Their differences only emerge when we

study them in terms of the residual δ. Note, however, that these

differences are significant as they lead to the different iterative

behaviour. The theoretical curve obtained by setting δ = 0

in Eq. (32) gives the performance of the iterative algorithms

as discussed in section IV and is shown. Now looking at the

figures, we see that the performance curves of the interpo-

lators exhibit excellent agreement with the theoretical result.

Furthermore, they initially follow the CRB curve down before

departing from it, hitting a minimum and then increasing.

Also note the improvement of both iterative implementations

as they get much closer to the CRB. Finally, the simulations

show slightly worse performance of the B&Q algorithm due to

the decision step. This impacts the performance of the hybrid

algorithm as will become clear later on.

B. Selection of the Number of Samples

The performance results of the previous section clearly

show the existence of a value of N for which the estimation

variance is minimum. In fact, as we can see from the variance

expressions, the dependence of the variance on N and η is

summarised by the parameter α. Therefore, we proceed to

determine α that gives the minimum variance. This then allows

the optimal N to be obtained from η. In the case that no prior
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Fig. 2. Plot of the absolute value of the bias in the damping factor as a
function of the number of samples N. 10000 Monte Carlo runs were used.

1000 2000 3000 4000 5000 6000 7000 8000
−160

−150

−140

−130

−120

−110

−100

−90

−80

−70

−60

Plot of the absolute value of the bias in the frequency 
as a function of the number of samples for η=10

−3
 and ρ

0
=0dB              

Number of Samples

A
b
s
o
lu

te
 B

ia
s
 i
n
 f
 (

d
B

)

 

 

CRB
B&Q
A&M
A&M − 2 Iterations
Hybrid − 2 Iterations

Fig. 3. Plot of the absolute value of the bias in the frequency estimates as
a function of the number of samples N. 10000 Monte Carlo runs were used.

knowledge on η is available, the initial estimate can be used

to adjust the number of samples to improve the performance.

As the non-iterative B&Q and A&M algorithms exhibit

the same mean performance as a function of N, we only

consider the A&M expression shown in Eq. (32). Assuming δ

is uniformly distributed over the interval [−0.5, 0.5], the mean

variance as a function of α is proportional to the function

q(α) =

∫ 0.5

−0.5

ζ

α3
[

1 + e−2α + 2e−α cos(2πδ)
]dδ, (33)

where ζ is as defined in Eq. (32). The minimum is now

found by differentiating q(α) and equating to 0. Solving this

numerically, we find that α ≈ 3. Thus, for η = 10−3, the

lowest variance occurs for N ≈ 3000 samples, agreeing with

the results of the previous section. Now we turn to the iterative

algorithms. Let g(δ) denote the variance expression of the non-

iterative A&M algorithm, given in Eq. (32). Then, as it was

shown in section IV, the variance of the iterative algorithms

converges towards the minimum g(0). Therefore, the optimum

value of α for the iterative implemenations is found by setting

the derivative of g(0) to 0, which gives α ≈ 2.826. These

two values are quite similar and the performance curve near

the optimum is quite flat. In any case, usually a number of

samples that is a power of 2 (or some other radix) is used

in order to take advantage of efficient implementations of the

FFT algorithm. However, being able to determine the optimal

0 1000 2000 3000 4000 5000 6000 7000 8000
−85

−80

−75

−70

−65

−60

−55

−50

−45

−40

Plot of the variance of the estimates of the damping factor, η, 
as a function of the number of samples for η=10

−3
 and ρ

0
=0dB

Number of Samples

V
a

ri
a

n
ce

 o
f η

 (
d

B
)

 

 

CRB

Theory − Mean Variance

Theory − A&M, δ=0

B&Q

A&M

A&M − 2 Iterations

Hybrid − 2 Iterations
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N allows us to adjust the number of samples should it be

substantially different from the optimum. This certainly can be

applied to the iterative implementaton in the second iteration.

C. Estimation Performance Versus the Residual δ and Signal

to Noise Ratio

In this section we study the performance of the algorithms

as a function of the residual, δ, and nominal SNR, ρ0. Figs. 6

and 7 give the ratio of the estimation variance to the CRB. In

the simulation, we set N = 1024 and the SNR ρ0 = 0dB. The

figures clearly demonstrate the close agreement between the

theory and simulation curves. As expected, the B&Q algorithm

has its worst performance at δ = 0 whereas the A&M estimator

exhibits a mininum there. The sensitivity of the decision

rule to the noise around δ = 0 results in a slight deviation

from the theoretical curve of the B&Q and hybrid algorithms.

Additionally, the results of the iterative implementations are

uniform as a function of the frequency.

The evaluation of the estimators in terms of the SNR is

presented in Figs. 8 and 9. The superior performances of the

A&M and iterative algorithms are evident. Again visible is the

close agreement between the simulation and theoretical results.

Note that the B&Q estimator is the worst performing of the

algorithms examined in this paper. Also note the breakdown

threshold of the algorithms is identical for both the η and f
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Fig. 7. Ratio of the variance of the frequency estimates to the CRB as a
function of the frequency residual δ. 10000 Monte Carlo runs were used.

estimators as it stems from the failure of the coarse stage.

Finally we point out that although η = 10−3 was used in

the simulations, the performance trends seen here hold for

larger damping factors. However it is important to realise that

as η increases, the optimum number of samples decreases

according to the result of section V-B. For instance for η = 0.1,

e.g. [10], the optimum number of samples reduces to N ≈ 28.

At this reduced N, the errors in the linearised expressions

(due to the linearisation step) may become significant and one

may need to employ to exact interpolation expressions for the

non-iterative implementations. The iterative implemenations,

on the other hand, alleviate this problem as they converge to

the vicinity of δ = 0 where the approximation errors are small,

thus allowing the approximate interpolation expressions to be

used for smaller values of N.

VI. C

Two computationally simple yet robust algorithms for the

estimation of the frequency and decay factor of a damped

sinusoid in noise are presented and analysed in this work. We

extended Quinn’s estimator to the damped case and showed

that it can be viewed as a linearised version of Bertocco’s

algorithm. We also derived the interpolation function of the

Aboutanios and Mulgrew estimator for this problem. Theo-

retical analysis of these estimators showed that they exhibit
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similar behaviour to the undamped case and lead us to consider

the iterative implementation of the A&M algorithm. Conse-

quently, we presented two alternative iterative implementations

and showed that they produce a significant improvement

in the estimation performance. Additionally, in a significant

departure from the undamped scenario, the existence of a

finite optimal number of samples was proven and its value was

obtained as a function of the damping factor. The theoretical

performance results were confirmed by simulations.

A I

D   A V E  

B&Q E

Recall from Eq. (25) that

ǫp ≈ − p

b

(

(hp − p)Wp − hpW0

)

(hp − p)

= − p

b
Up(hp − p). (34)

Now put Wp = WpR + jWpI . Since hp = δ + j α
2π

, we have that

Up = UpR + jUpI

=

[

(δ − p) + j
α

2π

]

(

WpR + jWpI

)

−
(

δ + j
α

2π

)

(W0R + jW0I) (35)
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Next, the real and imaginary parts of Up become

UpR = (δ − p)WpR −
α

2π
WpI − δW0R +

α

2π
W0I

and

UpI =
α

2π
WpR + (δ − p)WpI −

α

2π
W0R − δW0I .

Now substituting into ǫp and simplifying yields

ǫp ≈ − p

|b|2
(bR − jbI)

(

QpR + jQpI

)

,

where

QpR = βp1WpR − βp2WpI − βp3W0R + βp4W0I

and

QpI = βp2WpR + βp1WpI − βp4W0R − βp3W0I ,

and

βp1 = (δ − p)2 − α2

4π2
,

βp2 =
α

π
(δ − p),

βp3 = δ(δ − p) − α2

4π2
, and

βp4 =
α

2π
(2δ − p).

Writing b = bR + jbI , the expressions for µp and γp become

µp ≈ −2π

N

p

|b|2
(

bRQpI − bI QpR

)

and

γp ≈ − p

|b|2
(

bRQpR + bI QpI

)

.

Recall that the real and imaginary parts of the noise coeffi-

cients are i.i.d. with zero mean and variance Nσ2/2. Then,

the variances of µp and γp can be shown to be approximately

Var[γp] =
N2

4π2
Var[µp] ≈ Nσ2

2|b|2
(

β2
p1 + β

2
p2 + β

2
p3 + β

2
p4

)

.

Replacing |b|2 and βp1 - βp4 by their expressions and noting

that pδ = |δ| the variance reduces to the form in Eq. (27).

A II

D   A V E  

A&M E

Equation (31) implies that the error term ǫ is given by

ǫ ≈ j
λ

4πc
[(1 − 2h)W+ + (1 + 2h)W−]

= j
c∗

4π|c|2 λU,

where U = (1 − 2h)W+ + (1 + 2h)W− and λ is given by Eq.

(30). Let W± = W±R + jW±I and λ = λR + jλI , then the real

and imaginary parts of U can be shown to be

UR = (1 − 2δ)W+R +
α

π
W+I + (1 + 2δ)W−R −

α

π
W−I

and

UI = −α
π

W+R + (1 − 2δ)W+I +
α

π
W−R + (1 + 2δ)W−I .

Expanding ǫ we obtain

ǫ ≈ 1

4π|c|2
(cI + jcR) (QR + jQI) ,

with QR and QI being defined as

QR = β1W+R − β2W+I + β3W−R + β4W−I

and

QI = β2W+R + β1W+I − β4W−R + β3W−I ,

and

β1 = α2(1 − 6δ) − 4π2(1 − 2δ)(δ2 − 0.25),

β2 = 4πα(3δ2 − δ − 0.25) − α
3

π
,

β3 = α2(1 + 6δ) − 4π2(1 + 2δ)(δ2 − 0.25), and

β4 = 4πα(3δ2
+ δ − 0.25) − α

3

π
.

Thus µ and γ become

µ =
2π

N
I(ǫ) ≈ 1

2N|c|2
(cRQR + cI QI)

and

γ = R(ǫ) ≈ 1

4π|c|2
(cI QR − cRQI) .

The variances of µ and γ are then found to be

Var[γ] =
N2

4π2
Var[µ] ≈ Nσ2

32π2|c|2
(

β2
1 + β

2
2 + β

2
3 + β

2
4

)

.

Finally, substituting |c|2 and the expressions for β1 - β4 and

simplifying yields the expression shown in Eq. (32).

R
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