
1

Efficient Iterative Estimation of the Parameters of a
Damped Complex Exponential in Noise

Elias Aboutanios, Senior Member, IEEE and Shanglin Ye, Student Member, IEEE

Abstract—The estimation of the frequency and decay factor
of a single decaying exponential in noise is a problem of
prime importance. A popular estimation scheme uses the com-
putationally efficient implementation of the Fourier transform,
the FFT, to obtain a coarse estimate which is then improved
by a fine estimation stage. Such estimators, however, show a
performance that degrades and departs from the Cramer Rao
Lower Bound (CRLB) as the number of samples increases. In this
paper, we propose an iterative, exponentially windowed algorithm
that overcomes this problem. We derive the new estimator’s
theoretical performance and study its behaviour under different
decay rates of the window. We show that the estimator has
excellent performance that tracks the CRLB with increasing
sample number and signal to noise ratio if the window decay
rate is appropriately set.

Index Terms—NMR spectroscopy, parameter estimation, DFT
interpolation, damped exponential.

I. Introduction

DECAYING exponentials appear in many physical pro-
cesses and the estimation of their parameters is an

important research topic, [1], [2], [3]. In this work we focus
on the estimation of the frequency and decay factor of a single
damped exponential in additive white noise. We are interested
in robust, efficient, yet computationally simple estimators. The
signal model we are concerned with is

x[k] = s[k] + w[k], k = 0 . . .N − 1, (1)

where the signal of interest s[n] is an exponential of the form

s[k] = Ae(−η+ j2π f )k = Azk. (2)

Here η is the decay factor, and the frequency f is normalised
by the sampling frequency, i.e. f ∈ [−0.5, 0.5]. The complex
amplitude A = |A|e jφ, φ being the initial phase, is treated as
a nuisance parameter. The noise terms, w[k], are zero mean,
complex additive white Gaussian with variance σ2, giving a
nominal signal to noise ratio (SNR) ρ0 =

|A|2

σ2 , [1]. Our aim
is to obtain estimates of f and η from a block of N samples.
The Cramer Rao Lower Bounds (CRLBs) for the frequency,
σ2

f , and decay factor, σ2
η, are given by, [4]

σ2
η = 4π2σ2

f

=
(1 − |z|2)3(1 − |z|2N)

2ρ0
[
−N2|z|2N(1 − |z|2)2 + |z|2(1 − |z|2N)2] . (3)
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Many approaches exist for obtaining these estimates and a
recent review of these techniques is presented in [3]. Sums of
multiple exponentials are usually treated using high resolution
techniques, [5], [6], [7], [8]. Although these methods can be
reasonably accurate, especially when the number of sinusoids
is known, they are computationally expensive and inefficient
when applied to a single exponential. This makes them at
the very least unattractive, and at worst impractical when
the number of samples and/or components is large. It is
therefore no surprise that Discrete Fourier Transform (DFT)
based estimators are best suited to this problem in the case
of a large number of samples due to their robustness and
computational efficiency, [3].

The maximiser of the DFT has been shown to give the max-
imum likelihood estimate of the frequency of an undamped
complex exponential in additive Gaussian noise, [9], [10]. The
maximisation of the DFT, however, is a computationally in-
tensive step that is usually approximated by the sampled DFT
that is calculated using the highly computationally efficient fast
Fourier transform (FFT), [9]. Since the FFT-based estimate is
coarse (of order N) with respect to the CRLB (which is of
order N−3/2), an interpolation step is necessary in order to
refine the resulting estimate, [10], [11]. Although no efficient
estimator exists for the damped case, [12], this approach has
also proven itself to be effective for the estimation of the
frequency and decay factor of a damped exponential, [1],
[13], [14]. A distinguishing aspect of the method proposed
in [1], which we refer to as the A&M estimator, is that it can
be implemented iteratively, which permits it to achieve the
minimum variance for the methods belonging to its class.

One fundamental problem afflicting these methods in the
damped case is that their performance can significantly depart
from the CRLB as N increases. Whereas the CRLB flattens out
as a function of N, the performance of the practical estimators
can even exhibit an increase in variance due to the degradation
of the effective signal to noise ratio, [1], [3]. In fact, it was
found in [1] that an optimum number of samples exists that
gives the best estimation variance. In this paper we study a
new windowing strategy that allows the performance of the
algorithms to track the CRLB as it does in the undamped case,
[15]. We derive its theoretical performance and assert the fact
that the decay factor of the exponential window should be
properly chosen in order to obtain the optimal performance.

The rest of the paper is organised as follows: In Section
II we present the windowed estimation algorithm and discuss
its implementation. In Section III we analyse and evaluate the
theoretical performance of the estimator. In Section IV we
propose a practical strategy for iteratively implementing the
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estimator. Simulation results in section V show the effective-
ness of the new technique. Finally, some conclusions are drawn
in section VI.

II. ExponentiallyWindowed Estimator

The DFT represents a signal as a weighted sum of un-
damped sinusoids and is therefore not well suited for damped
signals, [7]. As the decay factor increases, the main lobe
is increasingly broadened. Thus, the authors of [16] suggest
improving the representation of the DFT in the case of a
damped exponential by pre-multiplying the signal with Gaus-
sian window of the form νG[k] = eγ0k−γ1k2

, such that γ0, γ1 ≥ 0.
They also note that the best resolution is obtained when γ0 is
equal to the decay factor of the component of interest, but
give no indication as to the choice of γ1. In fact, they point
out that since the decay factor is unknown a-priori, manual
tuning of the parameters γ0 and γ1 is required to obtain the
best resolution.

Whereas multiplying the signal with an exponentially rising
window improves the sharpness of the DFT representation of
a noiseless damped exponential (as it removes the decay), it
also amplifies the noise at the tail end of the signal resulting
in significant degradation in the effective SNR. Even without
the application of a rising window, the effective SNR has been
shown in [1] to decrease as the number of samples increases
beyond a certain value. This behaviour is reflected in the
estimation performance of the interpolation algorithms as they
initially track the CRLB but then depart from it as N gets
larger, [1]. This is the result of the signal nearly vanishing
for large N leaving only noise. This led us to consider in
[15] applying a decaying window to the signal that reduces
the contribution of those samples with low SNR. A natural
choice is an exponential window of the form ν[k] = e−γk, such
that γ ≥ 0. Our goal is to establish whether this approach
improves the performance and to determine the optimal value
for the window decay factor γ is.

Throughout the paper we denote by •̂ the estimate of the
parameter •. We start by the derivation of the estimators
assuming the exponential window. The DFT coefficients of
the damped sinusoid are

X[n] =
1
N

N−1∑
k=0

s[k]ν[k]e− j2π kn
N

=
1
N

N−1∑
k=0

Ae(−η+ j2π f )ke−γke− j2π kn
N

=
1
N

N−1∑
k=0

Ae(−(η+γ)+ j2π f )ke− j2π kn
N

=
1
N

N−1∑
k=0

sγ[k]e− j2π kn
N .

Thus the DFT of the windowed signal can be viewed as the
DFT of a new damped exponential sγ[k] with a decay factor η+

γ. Thus, provided that the estimators of [1] remain statistically
well-behaved, they can be used to obtain the parameters of
sγ[k]. We briefly review the A&M estimator here and then
proceed in the next section to establish its statistical properties.

Let α = N(η + γ) and f = m+δ
N , where m is the periodogram

maximum and δ ∈ [−0.5, 0.5]. For high enough SNR (see [1]),
the coarse estimation stage of the algorithm returns m. Putting
zγ = e

−α+ j2πδ
N , we can obtain ẑγ from

ẑγ =
1

cos
(
π
N

)
− 2 jh sin

(
π
N

) , (4)

where the interpolation function is given by

h =
1
2

X0.5 + X−0.5

X0.5 − X−0.5
, (5)

and Xp ≡ X[m + p]. Since it is simpler to obtain ẑ−1
γ = e

α− j2πδ
N ,

the estimates η̂ and δ̂ expressed in terms of ẑ−1
γ become, [1],

η̂ =
α̂

N
− γ = − ln

(
ẑγ

)
− γ, and δ̂ = −

N
2π
∠ẑγ. (6)

It is worth noting that the above expressions contain highly
non-linear functions which may be undesirable in certain
implementations. A number of computational simplifications,
leading to different biases, are possible (see [1]).

III. Theoretical Analysis

In this section, we present theoretical analysis of the win-
dowed estimator. The DFT coefficient Xp (p = ±0.5), with the
noise terms included, can be expressed as

Xp = cγ
1

N
(
1 − e

−α+ j2π(δ−p)
N

) + Wp

= cγ
1

N
(
1 − zγe− j 2πp

N

) + Wp (7)

where
cγ = A

(
1 + e−α+ j2πδ

)
. (8)

The terms Wp are the DFT coefficients of the noise

Wp =
1
N

N−1∑
k=0

w[k]ν[k]e− j2π kn
N

=
1
N

N−1∑
k=0

w[k]e(−γ− j2π n
N )k.

No asymptotic theory can be obtained in the damped case,
so we proceed to examine the small sample performance and
derive an approximate expression for the estimation variance
under the assumption of a sufficiently high effective SNR, [1].

A. Statistical Properties of the Noise Coefficients

Let us first examine the effect of the window on the
variances of the noise coefficients. As these are no longer
uncorrelated, we derive their mean, variance and covariance.
Starting with the mean, we have that

E
[
Wp

]
=

1
N

E

N−1∑
k=0

w[k]e(−γ− j2π m+p
N )k


=

1
N

N−1∑
k=0

E [w[k]] e(−γ− j2π m+p
N )k

= 0. (9)
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The variance, on the other hand, is given by

σ2
w = E

[
|Wp|

2
]

= E

 1
N

N−1∑
k=0

w[k]e(−γ− j2π m+p
N )k


1
N

N−1∑
l=0

w[l]e(−γ− j2π m+p
N )l


∗

=
1

N2

N−1∑
k=0

N−1∑
l=0

E
[
w[k]w∗[l]

]
e−(k+l)γ− j2π m+p

N (k−l)

=
1

N2

N−1∑
k=0

N−1∑
l=0

σ2δkle−(k+l)γ− j2π( m+p
N )(k−l)

=
σ2

N2

N−1∑
k=0

e−2kγ

=
σ2

N2

1 − e−2Nγ

1 − e−2γ . (10)

Proceeding with similar mathematical argument, the covari-
ance of the coefficients Wp and Wp−1 is

χw = E
[
WpW∗p−1

]
=

(
E

[
W∗pWp−1

])∗
= E

 1
N

N−1∑
k=0

w[k]e(−γ− j2π m+p
N )k


1
N

N−1∑
l=0

w[l]e
(
−γ− j2π m+p−1

N

)
l


∗

=
σ2

N2

N−1∑
k=0

e(−2γ− j 2π
N )k

=
σ2

N2

1 − e−2Nγ

1 − e−2γ− j 2π
N

. (11)

Now that we have the statistical moments of the noise, we can
obtain the estimation variance of the windowed estimator.

B. Theoretical Variance

For notational simplicity, we put X± = X±0.5. The interpo-
lation function, with the noise terms included, becomes

h̃ =
1
2

X+ + X−
X+ − X−

=
1
2

cγ
N
(
1−zγe− j πN

) + W+ +
cγ

N
(
1−zγe j πN

) + W−
cγ

N
(
1−zγe− j πN

) + W+ −
cγ

N
(
1−zγe j πN

) −W−

=
1 − zγ cos

(
π
N

)
+

Nλγ
2c (W+ + W−)

− j2zγ sin
(
π
N

) [
1 + j Nλγ

2czγ sin( π
N ) (W+ −W−)

] , (12)

where

λγ =
(
1 − zγe− j πN

) (
1 − zγe j πN

)
. (13)

Now recall from Eq. (4) that we can express h in terms of zγ
as

h =
1 − zγ cos

(
π
N

)
−2 jzγ sin

(
π
N

) . (14)

Therefore, the expression for h̃ becomes

h̃ =

h + j Nλγ
4cγzγ sin( π

N ) (W+ + W−)

1 + j Nλγ
2cγzγ sin( π

N ) (W+ −W−)
. (15)

Under the assumption of sufficiently high SNR, see [1], we
have that

∣∣∣Wp/A
∣∣∣ � 1. Thus

h̃ ≈

h + j
Nλγ

4cγzγ sin
(
π
N

) (W+ + W−)


×

1 − j
Nλγ

2cγzγ sin
(
π
N

) (W+ −W−)

 .
Expanding the above expression and ignoring the lower order
terms (that is the terms of order

∣∣∣Wp/A
∣∣∣2), we arrive after the

necessary manipulations at

h̃ ≈ h + j
Nλγ

4cγzγ sin
(
π
N

) [(1 − 2h) W+ + (1 + 2h) W−] . (16)

The error in the estimation of h that is due to the noise, ε =

h̃ − h is then given by

ε ≈ j
Nλγ

4cγzγ sin
(
π
N

) [(1 − 2h) W+ + (1 + 2h) W−]

= j
Nλγ

4cγzγ sin
(
π
N

)U, (17)

where U = (1 − 2h)W+ + (1 + 2h)W−. The quantities λγ and
cγ are given by Eq. (13) and Eq. (8) respectively. In order to
arrive at the errors in η and δ, namely µ and θ respectively, it
is simpler to carry out the analysis using ẑ−1

γ . Let the error in
ẑ−1
γ be denoted by ζ. Then we have that

ζ = −2 jε sin
(
π

N

)
. (18)

Now if we expand ln
(
ẑ−1
γ

)
as Taylor series around ln

(
z−1
γ

)
we

have

ln
(
ẑ−1
γ

)
= η̂ + γ − j

2π
N
δ̂

= ln
(
z−1
γ

)
+ zγζ + O

[
(zγζ)2

]
≈ η + γ − j

2π
N
δ + zγζ. (19)

This leads to

µ − j
2π
N
θ ≈ zγζ

= −2 jzγε sin
(
π

N

)
≈

Nλγ
2cγ

U. (20)

Equating the real and imaginary parts yields

µ ≈
N
2
R

(
λγ

cγ
U

)
and θ ≈ −

N2

4π
I

(
λγ

cγ
U

)
. (21)
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Now it is clear that µ and θ are zero-mean. Their variances
are calculated as follows; consider µ first

µ ≈
N
2
R

(
λγ

cγ
U

)
=

N
2|cγ|2

R
(
c∗γλγU

)
=

N
4|cγ|2

(
c∗γλγU + cγλ∗γU∗

)
. (22)

Then the variance of µ becomes

Varγ[µ] ≈
N2

16|cγ|4
E

[∣∣∣c∗γλγU + cγλ∗γU∗
∣∣∣2] . (23)

Carrying out the required manipulations, and noting that
E

[
U2

]
= E

[
(U∗)2

]
= 0, we arrive at

Varγ[µ] ≈
N2|λγ|

2

8|cγ|2
E

[
|U |2

]
.

Looking at the various terms in the above expression we have

E
[
|U |2

]
= |1 − 2h|2 E

[
|W+|

2
]

+ |1 + 2h|2 E
[
|W−|2

]
+ (1 − 2h)( 1 + 2h)∗E

[
W+W∗−

]
+ (1 − 2h)∗( 1 + 2h)E

[
W∗+W−

]
=

(
|1 − 2h|2 + |1 + 2h|2

)
σ2

w

+2R {(1 − 2h)( 1 + 2h)∗χw} , (24)

where σ2
w and χw are given in Eqs. (10) and (11). Furthermore,

we have that

|1 − 2h|2 =

∣∣∣1 − zγe− j πN
∣∣∣2

|zγ|2 sin2
(
π
N

) ,
|1 + 2h|2 =

∣∣∣1 − zγe j πN
∣∣∣2

|zγ|2 sin2
(
π
N

) , and

(1 − 2h) (1 + 2h)∗ = −

(
1 − zγe− j πN

) (
1 − z∗γe− j πN

)
|zγ|2 sin2

(
π
N

) .

Substituting these expressions into that of E
[
|U |2

]
and simpli-

fying yields

E
[
|U |2

]
= 2

σ2

N2

(
1 − e−2Nγ

)
|zγ|2 sin2

(
π
N

)β, (25)

where β is shown in Eq. (26). Using the expressions for cγ
and λγ leads to the variance being

Varγ[µ] ≈
σ2

4|A|2

(
1 − e−2Nγ

)
|zγ|2 sin2

(
π
N

)
∣∣∣∣1 − 2zγ cos

(
π
N

)
+ z2

γ

∣∣∣∣2
|1 + zN

γ |
2

β

=

(
1 − e−2Nγ

)
4ρ0|zγ|2 sin2

(
π
N

)
∣∣∣∣∣∣∣∣
1 − 2zγ cos

(
π
N

)
+ z2

γ

1 + zN
γ

∣∣∣∣∣∣∣∣
2

β.(27)

The variance of θ is easily obtained from that of µ using the
fact that Varγ[θ] = N2

4π2 Varγ[µ]. Finally, the variances of f̂ and
η̂ are given by:

Varγ[ f̂ ] =
1

N2 Varγ[θ]; Varγ[η̂] = Varγ[µ]. (28)
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Fig. 1. Plot of the ratios of the theoretical variance of η to the CRLB versus
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Fig. 2. Plot of rmin versus τ and the line-fitting curve (ρ0 = 40dB).

C. Performance Discussion

Now we turn to the discussion of the estimation perfor-
mance. To this end we put r = γ/η. We first examine the
variance as a function of δ. Fig. 1 shows the ratio of Varγ[η̂]
to the CRLB under different values of r for η = 0.02, N = 512
and ρ0 = 40dB. We see that, although different values of r
lead to different performance curves, these curves still share
the same characteristic as the A&M estimator, with the ratio
always exhibiting a maximum at δ = ±0.5 and a minimum at
δ = 0.

Next we examine the optimal value of r that gives the
best estimation performance. The fact that the estimation
performance depends on the effective SNR suggests that it is a
function of the product τ = Nη, rather than η or N individually.
This is confirmed in Figs. 2 and 3. Fig. 2 shows the value
of r, rmin, that gives the minimum estimation variance versus
τ whereas Fig. 3 gives the ratio of the estimation variance
to the CRLB. The nominal SNR ρ0 was set to 40dB, and
curves for four different values of η are given. It is clear that
regardless of the value of η, the same curve is always observed
in both graphs. Therefore, we write rmin = f (τ) and seek to
determine the function f (τ). Analytically this is obtained by
differentiating the variance expressions in (28) and setting the
result equal to 0. However, this is a tedious and unnecessary
exercise on very complicated expressions. Alternatively, we
derive the function through line fitting.

Before proceeding with a determination of f (τ), we give
some more insight into the behaviour of the estimator. Fig. 2
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β =
1 − 2R

(
zγ

)
cos

(
π
N

)
+ |zγ|2

1 − e−2γ −
1 − |zγ|2e−2γ − 2

(
1 − e−2γ

)
R

(
zγ

)
cos

(
π
N

)
+

(
|zγ|2 − e−2γ

)
cos

(
2π
N

)
1 + e−4γ − 2e−2γ cos

(
2π
N

) (26)
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Fig. 3. Plot of the ratios of the minimum variance of η to the CRLB versus
τ and the approximation curve after line-fitting of rmin (ρ0 = 40dB).

shows that rmin is a monotonically increasing function of τ that
tends towards 1 for large τ. It is interesting to observe that as τ
decreases, which in this case means a decrease in the number
of samples, rmin decreases towards 0.4 instead of remaining
at 1. This behaviour results from the interplay between the
effective SNR and the cross-correlation of the DFT coefficients
of the noise. Recall that the cross-correlation was derived in
Eq. (11). The effective SNR, on the other hand, is given by
the ratio of the true maximum of the periodogram to the noise
power, [1]. It is obtained by setting p = δ in (7) and combining
it with (10),

ρeff(r) =
|Xδ|

2

σ2
w

= ρ0

(
1 − e−(1+r)τ

)2

1 − e−2rτ ·
1 − e−2rη(

1 − e−(1+r)η)2 . (29)

The plots of the effective SNR and magnitude of χw are shown
in Figs. 4 and 5 respectively. In these plots, the damping
factor η was set to 10−3. Now an increasing cross-correlation
results in a degraded estimation performance. On the other
hand, increasing ρeff leads to an improvement in the variance.
Therefore, we see that for small τ, the SNR is essentially flat
at the start, whereas |χw| is increasing (due to the action of the
decaying window). Therefore, the optimal performance occurs
for smaller r, and rmin. As τ increases, however, the cross-
correlation is seen to peak and then decrease (as the window
flattens out and more independent noise samples are added.)
Therefore, the performance for large τ is largely determined
by ρeff, which always peaks at r = 1. As a result we see that
for small τ a value of r smaller than 1 gives the best variance.
This value increases towards 1 as τ increases.

Now using regression on Fig. 2, we obtain

f (τ) ≈
{

0.02τ2 + 0.02τ + 0.39 0 < τ ≤ 3
1 − 1.08e−0.41τ − 0.07e−0.08τ τ > 3. (30)

The approximation curve is included in Fig. 2 as the dash line
and the resulting approximate ratio of minimum variance of
η to the CRLB is also shown in Fig. 3. We can clearly see
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that after approximation of rmin, the theoretical variance fits
closely the curves obtained through simulations.

IV. Iterative Implementation
In the previous section we showed that the theoretical

variances of the windowed estimator are extremely close to
the CRLB if the decay factor of the window is properly
chosen based on τ (that is on N and η). However, η has
to be determined during the estimation process. We achieve
this through an iterative implementation of the windowed
estimator.

The iterative process is summarised in Table I. The original
A&M estimator is applied in the first iteration. Then for
all consecutive iterations, the previous residual estimates are
removed from the maximum bin and the windowed estimator
is applied after updating γ using the previous estimate of η.
Based on the statistical analysis of the estimator, and using
the convergence criteria discussed in [1] and [11], we stop the
estimation process after two iterations.

V. Simulation Results
In this section, we present simulation results of the win-

dowed estimator. In all cases, we implement both the exact



6

TABLE I
The IterativeWindowed Estimator

1. Calculate X[n] = FFT (x);
2. Find m̂ = arg max

n
|X[n]|2;

3. Initialise δ̂0 = 0, η̂0 = 0, and γ = 0;
4. For i from 1 to Q, do:

(1) Calculate X±0.5 =

N−1∑
k=0

x[k]e
−γk− j2π

(
m̂+δ̂i−1±0.5

N k
)

(2) Find ẑγ using (4) and δ̂i = δ̂i−1 +
N
2π
∠ẑγ, η̂i = − ln

(
ẑγ

)
− γ

(3) Calculate τ = Nη̂i and find r using (30)
(4) Update γ = rη̂i;

5. Finally f̂ =
m̂ + δ̂Q

N
, η̂ = η̂Q.
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Fig. 6. Plot of the variance of the estimates of the frequency as a function
of the number of samples N (η = 0.02, ρ0 = 40dB). 10,000 Monte Carlo runs
were used.

version given in (6) and the linearised estimator given in [1],

η̂ ≈
2π
N
I(h) − γ, and δ̂ = R(h). (31)

For the sake of comparison, we also include the performance
of the exact version of the original A&M estimator, the CRLB
as well as the theoretical variances obtained for δ = 0 and r set
according to Eq. (30). In each Monte Carlo run, the frequency
is selected randomly.

Figs. 6 and 7 give the estimation variances of frequency and
decay factor versus the number of samples N. It is evident
that both the exact and linearised versions of the windowed
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Fig. 7. Plot of the variance of the estimates of the decay factor as a function
of the number of samples N (η = 0.02, ρ0 = 40dB). 10,000 Monte Carlo runs
were used.
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Fig. 8. Plot of the mean square error of the estimates of the frequency as a
function of nominal SNR ρ0 (η = 0.02, N = 512). 10,000 Monte Carlo runs
were used.

0 5 10 15 20 25 30 35 40 45 50
−100

−90

−80

−70

−60

−50

−40

−30

SNR (dB)

M
e
a
n
 S

q
u
a
re

 E
rr

o
r 

(d
B

)

 

 

CRLB

Theory (δ = 0)

A&M Estimator (Exact, Q = 2)

Windowed Estimator (Approx., Q = 2)

Windowed Estimator (Approx., Q = 3)

Windowed Estimator (Exact, Q = 2)

Fig. 9. Plot of the mean square error of the estimates of the decay factor
as a function of nominal SNR ρ0 (η = 0.02, N = 512). 10,000 Monte Carlo
runs were used.

estimator outperform the original A&M algorithm. Whereas
the original algorithm diverges wildly from the CRLB, the
windowed estimators track it closely. Now comparing the
exact and linearised versions, we see that the latter sacrifices
performance for added computational simplicity. Thus its
performance after 2 iterations exhibits a slight deviation from
the theoretical curve for large N. This deviation can be reduced
by running the linearised estimator for 3 iterations, but as we
will see, this does not eliminate the bias in the estimates of
the decay factor.
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Fig. 10. Plot of the mean square error of the estimates of the frequency as a
function of nominal SNR ρ0 (η = 0.02, N = 2048). 10,000 Monte Carlo runs
were used.
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Fig. 11. Plot of the mean square error of the estimates of the decay factor
as a function of nominal SNR ρ0 (η = 0.02, N = 2048). 10,000 Monte Carlo
runs were used.

The performance of the estimator as a function of SNR is
shown in Figs. 8-11. The first two figures are obtained with
N = 512, whereas the last two figures are for N = 2048. The
same decay factor η = 0.02 is used throughout. In all four
cases, it can be seen that the exact version of the estimator
eliminates the problem of the original algorithm and exhibits a
performance that sits on the CRLB. As a comparison, we note
from Figs. 6 and 7 that the loss in performance of the original
A&M algorithm with respect to the CRLB is about 8dB for
N = 512, and about 25dB for N = 2048. Finally, although
the linearised version shows significantly improved frequency
estimation, the estimates of the damping factor exhibit a large
bias that is clearly visible at high SNR.

VI. Conclusions
In this work we presented and analysed a novel algorithm

for the estimation of the frequency and decay factor of
a damped complex exponential in noise. In particular, we
considered the A&M estimator, developed by Aboutanios
and Mulgrew, and addressed the problem of performance
degradation as the number of samples used in the estimation
increases. To this end, we introduced a windowing strategy
into the algorithm and showed that the best window is a
decaying exponential. We presented theoretical analysis of the
performance of the new algorithm and showed that it can track
the CRLB if the window decay factor is appropriately chosen.
Further, we determined the optimal value of the window decay
factor and showed that it should be chosen based on the
product of the number of samples and the signal damping
decay. This strategy then requires knowledge of the signal
decay factor, which is not available a priori and is to be

estimated. Therefore, we addressed this issue by adopting an
iterative implementation of the algorithm to find the appro-
priate window decay factor. Finally, we presented extensive
simulation results that confirmed the theoretical results and
demonstrated the significant improvement in the estimation
performance.
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