
1
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Moeness G. Amin∗, Xiangrong Wang∗†,Yimin D. Zhang‡, Fauzia Ahmad∗, and Elias Aboutanios†

Abstract—This paper establishes the role of sparse arrays
and sparse sampling in anti-jam Global Navigation Satellite
Systems (GNSS). We show that both jammer direction of
arrival estimation methods and mitigation techniques benefit
from the design flexibility of sparse arrays and their extended
virtual apertures or coarrays. Taking advantage of information
redundancy, significant reduction in hardware and computational
cost materializes when selecting a subset of array antennas
without sacrificing jammer nulling or localization capabilities.
In addition to the spatial array sparsity, anti-jam can utilize
sparsity of jammers in the spatio-temporal frequency domains.
By virtue of their finite number, jammers in the field of view
are sparse in the azimuth and elevation directions. For the class
of frequency modulated jammers, sparsity is also exhibited in
the joint time-frequency signal representation. These spatial and
signal characteristics have called for the development of sparsity-
aware anti-jam techniques for the accurate estimation of jammer
space-time-frequency signature, enabling its effective sensing and
excision. Both theory and simulation examples demonstrate the
utility of coarrays, sparse reconstructions, and antenna selection
techniques for anti-jam GNSS.

Index Terms—GNSS, Anti-jam, sparse arrays, DOA estima-
tion, interference mitigation.

I. INTRODUCTION

Array processing has added significant anti-jam capabili-

ties to Global Navigation Satellite System (GNSS) receivers.

The spatial degrees of freedom (DOFs) have enabled both

jammer position estimation and effective mitigation [1]–[6].

The former builds on receiving replicas of the jammer at

the receiver antennas with phase difference that is a function

of the jammer angle of arrival. The latter predicates on

the application of spatial filtering to place nulls along the

jammer directions. Combining spatial and temporal informa-

tion, space-time adaptive processing (STAP) provides joint

spatio-temporal processing to suppress multipath as well as

narrowband and wideband interferers [7]–[10]. Polarimetric

arrays utilize spatial and polarization diversities for effective

suppression of jammers assuming different polarizations and

angular directions [11]. Antenna arrays have also been used

to improve nonstationary jammer waveform estimation and

synthesis through spatial averaging and by adopting the spatial

time-frequency distribution (TFD) framework [12], [13].
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The de-facto array configuration in numerous applications

of array processing is the uniform linear array (ULA). In ad-

dition to ULAs, many GNSS receivers implement Controlled

Radiation Pattern Antenna (CRPA) arrays [14]. ULA and

CRPA arrays have, respectively, uniform distance and uniform

angular spacing between neighboring antennas. Breaking these

patterns by placing antennas deterministically or randomly

along a continuous spatial variable or on possible grid po-

sitions establishes sparse arrays. These arrays have many

advantages, including reduced redundancy, larger physical and

virtual apertures, and avoidance of grating lobes [15]–[17].

Direction of arrival (DOA) estimation of jammer sources

as well as GNSS satellites depends on the second-order

statistics, namely, the spatial correlation matrix. The received

signal correlation can be computed at all lags comprising the

difference coarray, which is the set of pairwise differences of

the array element positions. Accordingly, sparse arrays can

be designed such that these differences span a larger set of

autocorrelation lags than those of respective uniform arrays

with the same number of antennas [16], [18]. This property

equips GNSS receivers with the ability to estimate DOAs of

many jammers in excess of the number of receiver antennas.

Jammer signals may have sparse representation in a certain

single-variable or joint-variable domain. For instance, sinu-

soidal jammers are sparse in the frequency domain, whereas

chirp jammers are sparse in the joint time-frequency (TF)

domain. Exploiting signal sparsity through nonlinear recon-

struction techniques improves jammer waveform estimation,

leading to proper jammer excision [19], [20].

In this paper, we discuss the applications of sparse ar-

ray design and sparse signal processing for jammer signal

suppression and DOA estimation. We review recent results

aimed at improving the performance of linear and planar

arrays. It is important to note, however, that these results are

easily extendable to other array structures and configurations.

Although the concepts discussed here have been developed

in the GNSS context, they are more widely applicable in

other areas of array signal processing. We begin by reviewing,

in Section II, recent developments in antenna selection tech-

niques that maximize the beamforming signal-to-interference-

plus-noise (SINR) ratio. In Section III, we address the same

problem but from the DOA estimation perspective and using

the Cramér-Rao bound (CRB) as a minimization criterion. In

both Sections II and III, we include analysis developed in

references [21]–[24] and also show two examples involving

linear and planer sub-arrays. Section IV presents the coarray

concept using both single and multiple CRPA receivers. It

delineates the corresponding virtual aperture associated with
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Fig. 1. Antenna array based GNSS receiver using an antenna selection
strategy. The selected antennas are shown in green.

an already designed fixed array, where antenna selection

strategies may be of limited use. We show enhanced jammer

sensing using the additional DOFs and jammer spatial sparsity

in the field of view. Following sensing, Section V focuses on

the application of the coarray framework to jammer mitigation.

Considering the fact that a large class of jammer waveforms

are characterized by their instantaneous frequencies and thus

exhibit sparsity in the TF domain, Section VI demonstrates

effective jammer signal reconstruction and suppression under

compressed observations stemming from random or missing

sampling. The methods we describe in the paper have been

extended to spatio-temporal processing. For example, in [25],

an antenna selection approach is developed for space-time

adaptive processing (STAP) in radar for clutter suppression.

Similarly, in [26] and more recently [27] the time-frequency

techniques have been extended to spatio-temporal processing

for anti-jammer receivers. Finally, conclusions are drawn in

Section VII.

II. RECONFIGURABLE SPARSE ARRAYS THROUGH

ANTENNA SELECTION

The array aperture size plays a fundamental role in array-

based GNSS receiver performance. An increase in the aperture

of a uniformly spaced array usually requires an increase in the

number of antenna elements, resulting in higher hardware cost

and computational complexity. Although antenna elements are

becoming smaller and cheaper, the high cost of the front-end

can make larger arrays very expensive [28].

Uniformly spaced arrays can exhibit significant redundancy.

A non-uniform array with fewer elements can, at a fraction of

the cost and complexity, provide nearly the same performance

as a uniform array with the same aperture [15]. For illustration,

we consider a GNSS receiver with a 4 × 4 planar array

as shown in Fig. 1. Fig. 2 shows the effective carrier-to-

noise ratio versus the computational cost for subarray sizes

ranging from two antennas to the full array. The blue curve

represents a scenario where the interference is close to the
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Fig. 2. Trade-off curve between the performance and the cost. The markers
show the array sizes, starting with the full 16 antenna array to the right and
decreasing by one at each successive point.

signal of interest and the green curve corresponds to the case

where they are well separated. It is clear that an appropriately

chosen subarray of 12 out of the 16 antennas can give almost

the same performance as the full array for only 43% of the

computation and 75% of the hardware costs. A subarray of

eight antennas results in savings of 87.5% in computation

and 50% in hardware for a moderate loss in performance.

Therefore, optimal array thinning strategies can be useful for

reducing the system cost and complexity while preserving

performance.

The array configuration has usually been assumed to be

fixed a priori and used for adaptive beamforming and filtering

techniques [2]–[4]. Recent work, however, proposed a receiver

architecture, shown in Fig. 1, that casts the array structure as

an additional DOF in system design [29]. Antenna selection

strategies, where a K-antenna subarray is chosen from the

N -antenna full array, were developed to obtain the optimum

subarray for any scenario [30]. Experimental results using a

circular array GNSS receiver were presented in [15] to verify

the effectiveness of the reconfigurable array architecture in

GNSS receivers.

A. The Spatial Correlation Coefficient

The Spectral Separation Coefficient (SSC), originally pro-

posed in [31], was extended in [21], [22] to array receivers by

combining it with the Spatial Correlation Coefficient (SCC).

The SCC expresses the effect of the array configuration on

the receiver performance. This effect was examined in [23]

for a single interference and extended in [24] to multiple

interference sources. The SCC was then employed in the

design of optimal arrays that maximize the separation between

the signal and interference [15], [24].

Consider an N -antenna array and let px = [x1, · · · , xN ]T

and py = [y1, · · · , yN ]T be the x and y coordinate vectors

of the array elements, respectively, where (·)T denotes matrix

transpose. Assume L interference sources that are uncorrelated

with each other and with the white noise. The spatial steering

vectors of the satellite, s, and interferences, vj , j = 1, · · · , L,

are given by

s = ejk0Pus , vj = ejk0Puj , (1)
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Fig. 3. The relationship between the optimum beamforming filter wopt, the
interference subspace VI and the nullspace R−1

n .

where k0 = 2π/λ, P = [px py], and the DOAs are given by the

u-space parameter u = [cos θ cosφ cos θ sinφ]T , with φ being

the azimuth angle and θ the elevation angle. The interference-

plus-noise covariance matrix becomes

Rn = σ2I + VIΣVH
I , (2)

where the steering matrix VI = [v1, · · · , vL] has the inter-

ference steering vectors as its columns, I denotes the identity

matrix, σ2 is the noise power, and (·)H denotes conjugate

transpose. The diagonal matrix Σ has the interferer powers

σ2
j arranged along its diagonal. When σ2

j � σ2, ∀j, it was

shown in [24] that

R−1
n ≈ 1

σ2

(
I − VI

(
VH

I VI

)−1
VH

I

)
, (3)

approximates the interference nullspace. The optimum adap-

tive beamforming filter wopt = γR−1
n s, where γ is a constant,

is then approximately equal to the projection of the satellite

steering vector s onto the interference nullspace. The SCC, α,

is then defined as the cosine of the angle ϑ between the signal

and the interference subspace, as shown in Fig. 3. Assuming

without loss of generality ‖s‖2 =
√
N , the squared SCC is

expressed in terms of the determinants of two matrices,

|α|2 = 1− |Ds|
‖s‖22|DI | = 1− |Ds|

N |DI | , (4)

where

DI = VH
I VI , and Ds = VH

s Vs. (5)

with Vs = [s,VI ]. The signal-to-noise ratio (SNR) at the

output of the adaptive filter is given in terms of the SCC as

[24],

ρout = σ2
ssHR−1

n s = ρin ·N(1− |α|2), (6)

where σ2
s is the signal power and ρin is the input SNR. We see

that ρout depends on both the number of available antennas N
and the squared SCC. Thus, for fixed N , the performance can

be improved by changing the array configuration to reduce

the SCC value. Alternatively, a reduction in the number of

antennas can be compensated by a suitable design of the

antenna configuration to reduce the SCC. Observe that if the

DOAs of the interference sources are mutually orthogonal, i.e.,

vHi vj = 0, ∀i �= j, then

|α|2 =

L∑
j=1

|sHvi|2
(sHs)(vHj vj)

=
L∑

j=1

|αj |2. (7)

Here, αj is the SCC value of the desired signal and the jth

interference. The squared SCC value becomes the sum of the

squared SCCs of the individual interference sources. In the

case of single interference as in [15], the squared SCC in Eq.

(4) reduces to

|α|2 =
|sHv|2

‖s‖22‖v‖22
=

|sHv|2
N2

, (8)

where v denotes the steering vector of the single interference.

B. The Antenna Selection Strategy

The optimum subarray selection based on the minimization

of the SCC for the single interference case was provided in

[15]. Let x be a length-N selection vector with an entry of

1 indicating that the antenna element at the corresponding

position is selected, and 0 otherwise. The steering vectors with

respect to the subarray are s̃ = x � s and ṽ = x � v, where �
denotes element-wise product, and

|α|2 =
|̃sH ṽ|2

‖s̃‖22‖ṽ‖22
. (9)

Defining the vector w̃ = s�v, the squared SCC of the selected

K-antenna subarray is rewritten as,

|α|2 =
xT (w̃w̃H)x

K2
. (10)

The antenna selection problem is then cast as a two-way

partitioning model [32] as follows:

min
x

|α|2
s.t. xi(xi − 1) = 0, i = 1, ..., N,

and 1T x = K, (11)

where 1 is a vector of all ones. Eq. (11) can be solved using the

Correlation Measurement (CM) method [33], which applies a

simple greedy search approach. Specifically, in every iteration,

it removes the antenna with the largest total correlation relative

to all remaining elements in order to reduce the candidate set

size.

The CM method cannot control the subarray response,

possibly resulting in high sidelobes and grating lobes. In

contrast, the Difference of Convex Sets (DCS) method, which

replaces the binary constraint by an equivalent difference of

two convex sets, allows a beampattern to be specified as SCC

values on a DOA sampling grid. This is then solved using an

iterative algorithm that terminates when the difference between

two successive solutions becomes sufficiently small.

The optimization problem for optimum subarray selection in

the presence of multiple interferers is cast as the minimization

min
x

1− |D̃s|
K|D̃I |

s.t. xi(xi − 1) = 0, i = 1, ..., N,

1T x = K, (12)

where D̃I = VIdiag(x)VI and D̃s = Vsdiag(x)Vs are positive

definite, and diag(x) is a diagonal matrix with the vector x
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(a) 18-antenna optimum subarray 1 selected by subspace based SCC (‘sub1’)

(b) 18-antenna optimum subarray 2 selected by sum of SCC (‘sub2’)

Fig. 4. The selected subarrays, with the chosen antennas shown as points.
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Fig. 5. Minimum variance distortionless response beampatterns of the full
array and two optimum subarrays. The number of time snapshots is 100.

populating its diagonal. This is equivalent to,

min
x

log(|D̃I |)− log(|D̃s|),
s.t. xi(xi − 1) = 0, i = 1, ..., N,

1T x = K, (13)

which is a Difference of Convex (D.C.) Programming problem

[34] and is solved in [30] using a convex-concave procedure.
To show the performance of the antenna selection strategy,

we consider four interferers, all having interference-to-noise

ratio (INR) of 30 dB and arriving from azimuth angles

52◦, 47◦, 60◦, and 35◦. We select 18 antennas from a 38-

antenna ULA. Fig. 4 shows the performance of two subarrays:

“sub1” is obtained from (13), whereas “sub2” is derived from

(7) which assumes the sources to be mutually orthogonal. The

associated beampatterns of the two subarrays are depicted in

Fig. 5. Note that “sub1” exhibits the same mainlobe width and

peak sidelobe level (SLL) as the full array but deeper nulls.

On the other hand, “sub2” shows poorer performance due

to the orthogonality assumption being invalid. The increased

null depths produced by “sub1” are due to the fact that

the interferences and satellite signal of interest are “more

orthogonal” with respect to the selected subarray.
The applicability of the above method to anti-jam GPS re-

ceivers requires either multiplexing among different subarrays,

each is optimum for one satellite, or solving the optimization

problems (9) and (10) involving the SCC of all satellites in

the field of view.

III. ENHANCED DOA ESTIMATION WITH ADAPTIVELY

THINNED ARRAYS

Beside interference mitigation, antenna selection strategies

were developed in [35] for DOA estimation with arbitrar-

ily shaped arrays using the CRB criterion. This essentially
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Fig. 6. Total CRB versus azimuth angle. The SNR is 10 dB.

involves the minimization of the trace of CF , denoted as

tr(CF ), with CF being the inverse of the Fisher information

matrix (FIM). Both isotropic and directional subarrays were

considered. In the absence of a priori knowledge of the DOAs,

an isotropic subarray, that is, a subarray with the same CRB

for all DOAs, should be used. If a particular direction is of

interest, we seek a directional array that minimizes the CRB

at that DOA. As there is inherently a trade-off between the

minimization of the CRB and SLL control for non-uniform

subarrays, the SCC is incorporated into the optimization

procedure to enable control of the SLL. This is again done

by specifying SCC values on a DOA sampling grid.

In order to formulate the antenna selection problem, the FIM

is expressed in terms of the selected antenna position vectors,

p̃x = x � px and p̃y = x � py , where px and py are defined

in the previous section and x is the binary selection vector.

The goal in the isotropic array case is to minimize tr(CF )
while constraining the off-diagonal entries of the FIM to 0.

Relaxing the binary constraint using the DCS method allows

the problem to be solved in polynomial time [35].

For directional subarrays, the constraint on the off-diagonal

elements of the FIM is removed and tr(CF ) is minimized. This

was recast as the minimization of the ratio of the traces of two

matrices. A Dinklebach-type algorithm [36] was proposed in

[35] for adaptive directional subarray selection.

The performance of the two methods is shown in Fig. 6. A

10-antenna subarray is chosen from a planar 5×5 array. For the

simulation, the elevation is set to 10◦ and the azimuth is swept

from 0◦ to 180◦. A directional subarray focused at 0◦ azimuth,

depicted by the red curve, exhibits degraded performance at

other angles. In contrast, it is clear from the green curve that

optimal directional subarrays, where the optimal subarray is

chosen for each azimuth, provide the best performance across

the entire DOA range. The isotropic array, shown by the

blue curve, compromises the CRB in order to attain identical

performance across all azimuth angles.

IV. COARRAY BASED SPARSE GEOMETRIES FOR DOA

ESTIMATION WITH MULTIPLE CRPA ARRAYS

In this section, we consider multiple CRPA GNSS arrays

that have a circular aperture with one element at the center and

three to seven on the circumference. Guided by the coarray

formalism, we design sparse placements of multiple CRPA

arrays on a regular Cartesian grid to permit DOA estimation
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of a number of interferers much higher than the number of

physical antennas.

A. Difference Coarray

The difference coarray is defined as the set of pairwise

differences of the physical array element positions [16]. This

difference set occurs naturally in the computation of the

second-order statistics, such as the spatial covariance matrix of

a signal received by an N -element array. Thus, applications

relying on second-order statistics, such as DOA estimation,

can exploit all the DOFs offered by the difference coarray.

Assume that the positions of the array elements form the set

P = {pi = (mi, ni)d0 : i = 1, · · · , N}, (14)

for non-negative integers mi and ni, and d0 is the fundamental

unit inter-element spacing (usually one-half wavelength). The

corresponding difference coarray has positions,

Pd = {pi − pj : i, j = 1, · · · , N}. (15)

The received signal correlation can be calculated at all “lags”

comprising the difference coarray. Hence, by suitable con-

struction of the original set P, the number of spatial lags

can be substantially increased for a given number N of

physical antennas. An example of such an array structure is

minimum redundancy linear array (MRLA) [37]. Given N
physical antennas, an MRLA aims at minimizing the number

of redundant lags without introducing any missing lags or

“holes” in the difference coarray. For illustration, a 4-element

MRLA with element positions P = {0, 1, 4, 6}d0 generates

a uniformly spaced difference coarray with element positions

Pd = {−6,−5, · · · , 5, 6}d0.

B. Sparse Geometries of Multiple CRPA GNSS Arrays

We first consider a single CRPA array consisting of eight

antennas, with one antenna in the center and the remaining

seven uniformly distributed along the circumference of a circle

with radius one wavelength, as indicated by the magenta filled

circles in Fig. 7. Its difference coarray, represented by the

green circules in Fig. 7, comprises four concentric circular

arrays, each having 14 uniformly distributed virtual elements,

plus one virtual antenna in the center. The resulting total

number of distinct spatial lags is N(N−1)+1 = 57, including

both positive and corresponding negative lags. In case of

multiple CRPA arrays, the corresponding difference coarray

consists of not only the self-differences between the elements

of the same CRPA array, but also the cross-differences between

the elements of different CRPA arrays. Unlike conventional

two-dimensional (2-D) non-uniform array design, the sparse

configuration design using multiple CRPA arrays imposes

additional constraints due to the circular nature of each CPRA

array. With this restriction, we consider each CRPA array

as a unit element and design sparse placements of multiple

CPRA arrays on a regular Cartesian grid such that the cross-

differences have minimum or reduced redundancy and are

distinct from the self-differences.

More specifically, consider the placement problem of four 8-

element CRPA arrays. The “linear” configuration that provides
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Fig. 7. A single CRPA array with center element (magenta filled circles)
and its corresponding difference coarray (green circles).
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Fig. 8. MRLA configuration of four CRPAs and the corresponding coarray.

minimally redundant cross-differences and no overlap with

the self-differences is based on a 4-antenna MRLA structure.

This configuration and its corresponding coarray are shown

in Fig. 8 by the magenta and green circles, respectively. The

center-to-center distance between the various CRPA arrays in

the designed configuration equals four wavelengths, which is

approximately the diameter of the difference coarray corre-

sponding to a single CRPA array. We observe that, in addition

to the four concentric virtual arrays generated by the self-

differences of each CPRA array, there are nine additional

concentric arrays corresponding to the cross-differences. In

total, 741 distinct spatial lags (positive and negative) are

generated in the coarray.

Next, we arrange the four CRPA arrays into a 2-by-2

boundary configuration with a center-to-center spacing of 4
wavelengths, as shown in Fig. 9. The corresponding coarray

consists of nine concentric virtual arrays arranged as a 3-

by-3 square. There are a total of 513 distinct positive and

negative spatial lags in the coarray. Clearly, both MRLA based

and boundary sparse configurations of multiple CRPA arrays

produce coarrays with much higher number of DOFs than

the physical array. This enables accurate localization of a

significantly larger number of interferers than the physical

aperture permits. Note that the two sparse structures offer

different resolution capabilities in azimuth and elevation.

C. DOA Estimation Using Multiple CRPA Arrays

In order to fully exploit the enhanced DOFs offered by

the coarrays of the sparse configurations, DOA estimation

should proceed within the coarray framework. There are

two approaches that utilize coarrays for high-resolution DOA

estimation, namely, covariance augmentation [17], [38] and

covariance vectorization [18]. As the former requires compli-

cated matrix completion to guarantee the positive definiteness

of the augmented Toeplitz matrix [39], we focus here on the

latter technique.

Let us consider L narrowband jammers and K satellite
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signals impinging on an N -antenna array (L > N ). All L
jammers and K satellite signals are assumed to be uncorrelated

with each other. Let the steering vector of the lth jammer be

denoted by vl and that of the kth satellite be sk. These are

defined according to (1). In what follows, we use the subscripts

j and s to specify the parameters of a jammer and satellite

respectively. Then, the correlation matrix Rx of the signal plus

noise is given by

Rx = VRsVH + σ2I, (16)

where the array manifold matrix V =
[v1, · · · , vL, s1, · · · , sK ], and Rs represents the source

correlation matrix, which is a diagonal matrix with the source

powers σ2
j1, · · · , σ2

jL, σ
2
s1, · · · , σ2

sK along its diagonal. The

(i, j)th element of Rx is,

[Rx]ij =

K∑
k=1

σ2
jke

jk0d0((mi−mj)μk+(ni−nj)νk) + σ2δ(i− j)

+
L∑

l=1

σ2
sle

jk0d0((mi−mj)μsl+(ni−nj)νsl), (17)

where δ(i−j) is the Kronecker Delta function, and u = [μ, ν]T

is the u-space parameter. It is clear that [Rx]ij can be treated

as the data received by the coarray element position (mi −
mj , ni − nj)d0.

Vectorizing Rx, we obtain

ỹ = vec(Rx) = Ṽb + σ2̃i, (18)

where Ṽ = V∗ ⊗ V with ⊗ denoting Khatri-Rao product,

b = [σ2
j1, · · · , σ2

jL, σ
2
s1, · · · , σ2

sK ]T and ĩ = vec(I). The vector

ỹ can be viewed as a single snapshot received by the difference

coarray. Utilizing the coarray measurement vector ỹ for DOA

estimation permits exploitation of the enhanced DOFs offered

by the coarray. The equivalent source signal b consists of the

source powers and the noise becomes a deterministic vector.

Therefore, the rank of the covariance matrix of ỹ is one and

subspace-based DOA estimation techniques, such as MUSIC,

would fail. In this case, sparse reconstruction based direction

finding can be employed. It should be noted that if the coarray

has no holes and its elements lie on a uniform grid, spatial

smoothing can be utilized to restore the rank of the covariance

matrix [40]. Subsequently, either interference spectrum based

DOA estimation approaches or polynomial rooting methods,

both employing the smoothed coarray covariance matrix, can

be used instead of sparse reconstruction approach. The search-

free polynomial rooting method exhibits two main advantages,

namely, reduced computational complexity and off-grid DOA

estimation, over the interference spectrum and sparse recon-

struction methods.

For the sparse reconstruction based DOA estimation [41],

the estimates of b and σ2 are obtained as the solution to an l1-

norm regularization problem. For notational compactness, we

define V̄ = [Ṽ, ĩ] and b̄ = [b, σ2]. Then, (18) can be rewritten

as,

ỹ = V̄b̄. (19)

By defining a dictionary matrix V̄d
as the collection of coarray

steering vectors over a searching grid with Q > L points, the

l1-norm regularization problem can be formulated as,

b̄d
= argminz

{
‖ỹ − V̄dz‖2 + ρ‖z‖1

}
. (20)

Here, the solution vector b̄d
is sparse with L obviously

larger entries than the remaining ones, as jammers are much

stronger than both satellite signals and noise. The l2-norm in

the objective function denotes the least square cost function

ensuring data fidelity, and the l1-norm promotes the sparsity

of the solution. In addition, ρ is the trade-off parameter

between the least square error and the solution sparsity. The

above optimization problem is convex and can be effectively

solved by a variety of methods, such as convex programming

[32] for problems of moderate size and complex variants of

LASSO [42] for large scaled problems. It is noted that the

sparse reconstruction methods are sensitive to coherency of

the dictionary matrix V̄d
and the determination of the trade-off

parameter ρ is still an open problem [43], [44]. Alternatively,

Bayesian compressive sensing, which is more robust to dic-

tionary coherence, can be utilized for DOA estimation using

the difference coarray. Interested readers are referred to [30]

for detailed formulation of the Bayesian approach.

As an illustrative example of the coarray based DOA

estimation using multiple CRPA arrays, we first consider the

“linear” structure of Fig. 8. We assume 70 jammers uniformly

distributed within the [10◦, 355◦] azimuth sector with 5◦

increment at 0◦ elevation, all having an INR of 20 dB. The

sensing spectrum of the coarray based sparse reconstruction

approach is depicted in Fig. 10. We can see that all 70 sources

have been successfully identified. However, some spurious

peaks are also observed and large bias appears in the vicinity

of the endfire directions of 0◦, 180◦ and 360◦. The latter issue

is inherited from “linear” arrays.

On the other hand, the boundary configuration depicted in

Fig. 9, fails to estimate all 70 jammers correctly due to its

decreased number of spatial lags, as seen in Fig. 11 (top

plot). Next, we consider 40 jammers uniformly distributed

within the azimuth sector of [20◦, 332◦] with 8◦ increment

at 0◦ elevation, all having an INR of 20 dB. The sensing

spectrum obtained with the boundary array is shown in the

bottom plot of Fig. 11, where the jammer DOAs have been

correctly estimated.
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Fig. 10. Sensing spectrum of the coarray depicted in Fig. 8.
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Fig. 11. Sensing spectrum of the coarray depicted in Fig. 9.

V. INTERFERENCE SUPPRESSION WITHIN THE COARRAY

FRAMEWORK

GNSS receivers are vulnerable to the presence of jammers

and interferences. In order to counter this problem, a number

of anti-jam techniques have been developed based on the

spatial and temporal DOFs [4], [26], [45], [46]. Multiple

antenna receivers allow the implementation of spatial nulling

and beamsteering based on adaptive beamforming and high-

resolution DOA estimation methods. Adaptive interference

nulling algorithms based on antenna arrays can be broadly

classified into two types, namely, open-loop and closed-loop

techniques. The open-loop null-steering algorithms involve

a two-step procedure [47]. First, the DOAs of all signals

impinging on the array are estimated. Second, a set of complex

weights is computed which places proper nulls in the estimated

interference directions. In this regards, accurate interference

DOA estimates would imply better jammer suppression.

Typical high-resolution DOA estimation techniques are

those evolving around Capon’s method and MUSIC algorithm.

However, the number of estimated signals cannot exceed the

number of physical antennas. This may present a challenge

for GNSS receivers, stemming from their limited number of

antennas. As such, coarray-based DOA estimation can be

utilized for detecting a high number of jammers that may

exceed the number of physical antennas. One such approach,

namely the coarray-based sparse reconstruction, was discussed

in Section IV-C and can be utilized to sense the interference

environment in the GNSS receivers field of view. However,

the coarray based processing does not directly lend itself to

interference nulling as in the case of physical arrays. There-

fore, all potential jammers should be subsequently identified

and their strengths should be determined. Stronger and more

deleterious jammers can then be suppressed using methods

such as subspace projection [48].

For illustration, consider the 8-element CRPA array

shown in Fig. 7. Suppose there are 10 jammers arriving

from [10◦, 20◦, 30◦, 10◦, 20◦, 30◦, 10◦, 20◦, 30◦, 38◦] in eleva-

tion and uniformly distributed in [30◦, 300◦] azimuth sec-

tor with 30◦ increment. The corresponding INR values are

[10, 20, 10, 20, 20, 10, 20, 20, 30, 20] dB. Two satellites, SVN-

5 and SVN-10, are viewed from [30◦, 60◦] and [15◦, 120◦] in

elevation and azimuth, respectively, with equal SNR of 10 dB.

The Doppler frequency and Coarse/Acquisition (C/A) code

shift of SVN-8 are 1.5 kHz and 800 chips, while those of SVN-

10 are 1 kHz and 600 chips. The interfering jammers are first

estimated by utilizing the coarray based sparse reconstruction

approach. The DOA estimates are shown in Fig. 12, where the

elevation is plotted along the radius and the azimuth on the cir-

cumference. We can observe that the estimated angles coincide

with the true angles, which further validates the effectiveness

of the coarray based approach. Seven strong jammers are iden-

tified from the sparse reconstruction based sensing spectrum

and excised from the received signal by projecting it onto

jammers’ orthogonal subspace. The acquisition processing is

then applied to the signal after mitigation of strong jammers.

The acquired Doppler frequency and C/A code phase shift of

the SVN-10 and SVN-5 are clearly indicated in Fig. 13 and

Fig. 14, respectively.

For comparison, a traditional direct implementation of min-

imum output power (MOP) based on physical array is also

utilized for interference suppression [7]. More specifically, we

simply constrain the weight of the first antenna, and then

minimize the output power without attempting to preserve the

gain in the signal direction. This method has the disadvantage

of allowing for possible signal fades, but enjoys the advantage

of not requiring the user to know the expected DOA of the

incoming satellite signal. The optimization formulation of the

MOP criterion is,

min
w

wHRxw subject to wH f̃ = 1. (21)

Here f̃ = [1, 0, · · · , 0]T ∈ R
N . Implementing Lagrange

Multiplier yields,

wc = μR−1
x f, (22)

where μ is a constant scalar. As the number of jammers ex-

ceeds that of physical antennas, the traditional MOP anti-jam

approach fails, as confirmed by the acquisition performance

for SVN-10 in Fig. 15.

VI. SPARSE SAMPLING

Commonly used jammers are frequency modulated (FM)

signals which are characterizable as instantaneously narrow-

band. Depending on how their instantaneous frequencies (IFs)

vary with time, such FM jammers range from chirp-like

waveforms to higher-order polynomial phase signals. In this

section, we address jammer suppression based on jammer

waveform estimation and temporal domain suppression. Of

particular interest is the case when a substantial portion of the
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Fig. 13. Acquisition performance of the SVN-10 using coarray-based open-
loop approach.

Fig. 14. Acquisition performance of the SVN-5 using coarray-based open-
loop approach.

Fig. 15. Acquisition performance of the SVN-10 using MOP based on
physical arrays.

data samples is missing, rendering the conventional jammer

waveform estimation methods ineffective.

FM jammers cannot be simply mitigated by windowing or

filtering because they usually occupy the entire GNSS signal

bandwidth and span a large portion, or the entire period, of

the time. An effective approach to achieve jammer waveform

estimation and suppression is through accurate estimation of

the jammer IFs, and joint-variable signal representations in

the TF domain are often used to reveal the jammer signatures

due to their power concentrations in the IF ridges [49]. In this

case, jammer excision becomes a two-step process. The first

step is to estimate the TF signature or the IF of the jammer,

whereas the second step is to perform excision based on such

estimates. Both steps can be performed as a pre-processing

prior to the correlation and despreading procedures of a GNSS

receiver. A number of methods have also been developed for

parametric estimations and synthesis of FM jammer signals in

which the jammer polynomial phase characteristics are utilized

[50], [51]. For the second step, some of the temporal anti-jam

techniques proceed to subtract the jammer from the received

data, and it is more common to perform data projection on the

null space of the jammer to avoid performance degradation

with signal subtraction when the phase estimation errors are

not negligible [26].

Traditional anti-jam GNSS receivers assume the received

signals to be uniformly sampled at the chip rate or over-

sampled above the chip rate of the spreading codes. In real-

world operations, however, jammed GNSS signal samples

may be randomly missing due to various reasons. Consider

an impulsive noise present in the data in conjunction with

an FM jammer [52]. In this case, it becomes difficult to

provide an accurate jammer estimate due to the highly contam-

inating impulsive noise. Discarding the high amplitude data

samples can remove most of the impulsive noise, rendering

the data “incomplete” or randomly sampled [53]. Impulsive

noise sources may, for example, include motor ignition noise,

which is generated by spark plugs used in internal combustion

engines, impulsive and noise-like waveforms generated by

radar systems, and ultrawideband emitters. Obstructed line-

of-sight may also yield random highly attenuated or missing

samples.

Missing samples generate noise-like artifacts in the TF

domain representations, making conventional approaches for

anti-jam infeasible. Waveform recovery and/or IF estimation

of FM signals from sparsely sampled observations fall un-

der the emerging area of compressive sensing and sparse

reconstruction [19], [53], [54]. Owing to their instantaneous

narrowband characteristics, these signals exhibit local sparsity

when viewed through a short window or when they, in general,

are represented in the joint-variable TF domain. Such sparsity

property invites compressive sensing and sparse reconstruction

techniques to play a role in anti-jam GNSS. In [53], the effect

of missing samples on bilinear TFDs is analyzed. IF estimation

based on applying a signal-dependent adaptive optimal kernel

(AOK) together with sparse signal reconstruction is described.

In this section, we address compressive sensing-based ap-

proach for accurate IF estimation and excision of jammers

from incomplete signal observations [20]. Jammer TF sig-

nature estimation is achieved by exploiting the fact that the

FM jammers are locally sparse in the TF domain due to their

power localizations at and around their IFs. Reconstruction

of such jammer signals from few random observations falls

under the emerging area of compressive sensing [19], [53],

[55]. Note that, when the observed signals do not have missing

samples, the compressive sensing-based techniques still show

improvement over the non-sparsity-aware techniques. Com-

pressive sensing-based techniques are particularly attractive
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when the jammers cannot be parameterized and conventional

jammer waveform estimation methods become ineffective.

A. Signal Model

GNSS signals and the associated jammers adhere to the

narrowband signal model. Consider a situation where K GNSS

signals sk(t), k = 1, · · · ,K, are contaminated by L jammer

signals vl(t), l = 1, · · · , L. Then, the discrete-time received

signal vector can be expressed as

y(t) =

K∑
k=1

hksk(t) +

L∑
l=1

hlvl(t) + n(t) (23)

for 0 ≤ t ≤ T −1, where hk and hl are the respective channel

coefficients for the kth GNSS signal and the lth jammer. The

jammer signals vl(t), l = 1, · · · , L, are assumed to be FM with

unit power. In addition, n(t) is the additive white Gaussian

noise CN (0, σ2
n). Note that t is discretized with a sampling

interval of Δt.
Consider sparse sampling of the observations with a random

pattern. As such, the sparse observation is given as

x(t) = y(t) · b(t), (24)

where b(t) ∈ {0, 1} is a binary mask, and the data at time t
is missing when b(t) = 0.

B. Time-Frequency Representations

A signal can be quadratically represented as joint-variable in

the TF domain, instantaneous autocorrelation function (IAF)

domain, and the ambiguity function (AF) domain. The IAF of

signal x(t) is defined for time lag τ as

C(t, τ) = x(t+ τ)x∗(t− τ). (25)

The Wigner-Ville distribution (WVD) is known as the simplest

form of a TFD. The WVD is the Fourier transform of the IAF

with respect to τ , expressed as

W (t, f) = Fτ [C(t, τ)] =
∑
τ

C(t, τ)e−j4πfτ , (26)

where f represents the frequency. Note that 4π is used in the

discrete-time Fourier transform (DFT) instead of 2π because

the time-lag τ takes integer values in (25). On the other hand,

the inverse DFT (IDFT) of the IAF with respect to t yields

the AF, expressed as

A(ζ, τ) = Ft[C(t, τ)] =
∑
t

C(t, τ)e−j2πft, (27)

where ζ is the frequency shift or Doppler.

It is clear that WVD maps one-dimensional (1-D) signal

x(t) in the time domain into 2-D signal representations in the

TF domain. The fundamental TFD property of concentrating

the FM jammer energy at and around its IF, while spreading

the GNSS signal and noise energy over the entire TF domain,

enables effective jammer and GNSS signal separations when

considering the time and frequency variables jointly.

For illustration purposes, we consider two FM jammers that

impinge on the receiver along with a C/A code GPS signal.

The IFs of the two FM jammers are expressed as,

f1(t) = 0.05 + 0.1t/T + 0.3t2/T 2, (28)

f2(t) = 0.15 + 0.1t/T + 0.3t2/T 2, (29)

for t = 1, ..., T , where the block size of the signal is chosen to

be T = 128, and each sample corresponds to a chip interval.

The input SNR of the GPS signal is −16 dB, and the input

INR is 25 dB. In Fig. 16, we show the real-part waveform

and the magnitudes of the WVD, AF, and IAF of the two-

component jammer. While the jammer IFs are clearly observed

in the WVD, it also shows strong cross-terms between the

two jammer components, as well as those between the same

components due to the nonlinear IF signatures.
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Fig. 16. Real-part waveform, WVD, AF, and IAF of a two-component
jammer without missing samples.

1) Effect of Missing Samples: Missing time-domain sam-

ples generate missing entries in the IAF and, as a result, yield

noise-like artifacts in the WVD as well as the AF domain. To

understand such effects, we depict in Fig. 17 the same plots

as in Fig. 16, but with 50% (or 64) randomly missing data

samples. The missing data positions are marked with red dots

in Fig. 17(a). It is clear that both WVD and AF are cluttered

by the artifacts due to missing data samples.

2) Time-Frequency Kernels: WVD is often regarded as the

basic or prototype quadratic TFDs, since other quadratic TFDs

can be described as filtered versions of the WVD. WVD is

known to provide the best TF resolution for single-component

linear FM signals, but it yields high cross-terms when the

frequency law is nonlinear or when a multi-component signal

is considered. Various reduced interference kernels have been

developed to reduce the cross-term interference [56]. As such,

the properties of a TFD can be characterized by the constraints

on the kernel. Different kernels have been designed and used

to generate TFDs with prescribed, desirable properties. While

some kernels assume fixed (signal-independent) parameters,

other kernels, such as the AOK, provide signal-adaptive filter-

ing capability [57].
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jammer with 50% missing samples. The red dots in the waveform show the
missing data positions.

The AOK is obtained by solving the following optimization

problem for AF A(r, ψ) defined in the polar coordinates [57]:

max
Φ

∫ 2π

0

∫ ∞

0

|A(r, ψ)Φ(r, ψ)|2 rdrdψ

subject to Φ(r, ψ) = exp

(
− r2

2σ(ψ)

)
,

1

4π2

∫ 2π

0

σ(ψ)dψ ≤ α,

(30)

where α ≥ 0 is a constant. Fig. 18(a) shows the TFD of

the same 50% missing sample case after the AOK is applied.

The artifacts due to missing samples are significantly reduced

compared to the WVD depicted in Fig. 17(b).
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Fig. 18. TFD with 50% of missing samples obtained from AOK and the
corresponding sparse reconstruction results using OMP.

3) Time-Frequency Representations through Sparse Recon-
struction: Jammer TF sparse signature reconstruction builds

upon the linear Fourier relationship between the TF domain

and compressed observation domain. Depending on the spe-

cific domain representing the observation, the linear Fourier

relationship may be 1-D or 2-D [53], [55]. In particular, the

IAF and the TF representations are related by a 1-D DFT

relationship. With this underlying linear model, a number of

methods become available for the reconstruction of sparse FM

jammer signals after proper TF kernels are applied. Orthogonal

matching pursuit (OMP) is a method that allows specification

of the number of jammer components in each time instant

[58]. Recently, enhanced reconstruction of the FM signals with

missing data is achieved by exploiting the contiguous structure

of the FM signatures [54]. The proposed technique for jammer

suppression under incomplete data builds on recent advances

in TF analyses within the compressive sensing paradigm.

Denoting the kernelled AF in polar coordinates as Ã(r, ψ) =
A(r, ψ)Φ(r, ψ), which is converted to the Cartesian coordinate

system as Ã(ζ, τ). Let A represent the AF matrix of Ã(ζ, τ)
with all ζ and τ entries. A conventional kernelled TFD

matrix is obtained by a 2-D DFT of the kernelled AF matrix,

expressed as

D = F−1
ζ AFτ , (31)

where Fz and F−1
z respectively denote the DFT and IDFT

matrices with resect to z. Alternatively, we can obtain the

TFD through sparse reconstruction from A. In this case, rather

than utilizing the 2-D DFT relationship between the AF and

the TFD as in [55], it is shown in [53], [54] that the 1-D

DFT relationship between the IAF and the TFD yields simpler

computations and, more importantly, enables the exploitation

of local sparsity in the TF domain with respect to each time

instant t.

The 1-D IDFT of A with respect to ζ results in the kernelled

IAF matrix C, which is represented with respect to time t and

time delay τ ,

C = F−1
ζ A. (32)

Denote c[t] as a column of matrix C corresponding to time t,
and u[t] as a vector contains all the TFD entries with respect

to the frequency for the same time t. Then, the 1-D DFT

relationship between the IAF and the TFD becomes

c[t] = Fτu
[t], (33)

for 0 ≤ t ≤ T − 1. This is a standard compressive sensing

formulation and can be solved by a number of methods, such

as the OMP, LASSO, and Bayesian compressive sensing. Fig.

18(b) shows the sparse TF representation, corresponding to

Fig. 18(a), using the OMP method.

C. Jammer Suppression

We use the orthogonal projection scheme for effective

jammer suppression. That is, the received signal vector,

x̃ = [x(0), · · · , x(T − 1)]T , is projected into the orthogonal

subspace of the estimated jammers. Consider the estimated

temporal signature of the lth jammer as

v̂l = [v̂l(0), · · · , v̂l(T − 1)]T . (34)

Let VJ = [v̂1, · · · , v̂L]. The projection matrix into the

orthogonal subspace of the jammers is given by [26]

P = INT −VJ

(
VH

J VJ

)−1
VH

J . (35)

The jammer-suppressed time-domain samples are expressed as

the T × 1 vector x̂ = Px̃.



11

D. Suppression of Sparsely Sampled Jammer Signals
For the jammed GPS signal depicted in Figs. 17, the output

SINR averaged over 20 independent trails, evaluated in each

GPS symbol, is −0.72 dB. When the proposed technique is

applied, the 128-sample data is divided into four segments in

performing jammer suppression. Fig. 19(a) shows the resulting

jammer waveform, and Fig. 19(b) shows the GPS signals

before and after jammer suppression. It is evident that the

jammers are substantially mitigated. The yielding output SINR

averaged over the same 20 independent trails is 12.59 dB.
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Fig. 19. Real-part waveform of the jammed signal after jammer suppression,
and the GPS signals before and after jammer suppression.

VII. CONCLUSION

In this paper, we discussed the applications of sparse array

design and sparse signal processing for the estimation of

jammer signal structure and DOA. We reviewed recent devel-

opments in antenna selection techniques for the maximization

of the beamforming SINR, for DOA estimation using CRB

as the optimization metric. The coarray concept associated

with autocorrelation computations for beamforming and DOA

estimation was presented and applied to single and multiple

CRPA receivers, showing enhanced jammer mitigation. When

sparsity is exhibited in jammer signal representation, such as

FM jammers in the TF domain, we demonstrated that effective

jammer signal reconstruction is achievable under compressed

observations that might result from random or missing sam-

pling. Many open problems still remain in sparsity-aware anti-

jam GNSS which should include full evaluation of multi-

sensor receiver performance in terms of satellite signal ac-

quisition and tracking in presence of smart jamming.
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