
1

Adaptive Array Thinning for Enhanced DOA
Estimation

Xiangrong Wang, Elias Aboutanios, Senior Member and Moeness G. Amin, Fellow

Abstract—Antenna array configurations play an important
role in direction of arrival (DOA) estimation. In this letter,
performance enhancement of DOA estimation is achieved by
reconfiguring the multi-antenna receiver through an antenna
selection strategy. We derive the Cramer-Rao Bound (CRB) in
terms of the selected antennas and associated subarray for both
peak sidelobe level (PSL) constrained isotropic and directional
arrays in single source cases. Since directional arrays are angle
dependent, a Dinklebach type algorithm and convex relaxation
are introduced to maintain the optimum selection by adaptively
reconfiguring the directional subarrays using semi-definite pro-
gramming. Simulation results validate the effectiveness of the
proposed antenna selection strategy.

Index Terms—Cramer-Rao bound, antenna selection, direc-
tional array, isotropic array, Dinklebach algorithm

I. Introduction

ESTIMATING the direction of arrival (DOA) using antenna
arrays has been an important topic in signal processing with
diverse applications. DOA estimation accuracy is dependent
not only on the employed algorithm, but also on the receiver
array configuration. Extensive research has been devoted to
investigate the effect of array configuration on DOA estimation
performance for both near-field [1], [2] and far-field scenarios
[3]. The Cramer-Rao Bound (CRB) is commonly used as a
metric for characterising the estimation performance in terms
of the array configuration [4]. A compact formula of the CRB
in terms of antenna positions for isotropic 2D and 3D arrays
was derived in [5]–[8], and a Bayesian CRB approach for a
single source with known prior probability distribution was
proposed in [9]. A study of the CRB for 2D arrays, presented
in [10]–[12], showed that the optimum array is V-shaped under
the assumptions of equal inter-element spacing and concave
array geometry. The design of optimum directional arrays was
also introduced in [11], but the work considered only the
most favourable direction and the proposed exhaustive search
strategy places limitations on the practicality of this method.

Beside the computational cost, the prohibitive hardware cost
of large arrays, where a separate receiver is used for each an-
tenna, is impractical and presents a significant limiting factor.
Therefore, we maximize the DOA estimation performance for
a given reduced number of antennas (i.e. reduced hardware
and computational cost) by varying the array geometry [3]. In
order to realize the array reconfigurability, we thin a full array
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by acting on a sequence of Radio Frequency (RF) switches.
The problem of sensor selection for a desired CRB with the
smallest number of antennas was considered in [13], albeit for
a uniform linear array. We, on the other hand, generalize in
this work the antenna selection to achieve the lowest CRB with
a fixed number of antennas over arbitrarily shaped arrays that
are either isotropic or directional. Since the non-uniformity
of selected antennas typically results in high sidelbobes, the
trade-off between peak sidelobe suppression and estimation
accuracy is controlled though the Spatial Correlation Coeffi-
cient (SCC) [14]. Continuously changing operational environ-
ments in radar, satellite communication etc. require adaptive
enhanced interference localization for subsequent cancellation.
It is well-known that antenna selection is essentially an NP-
hard combinatorial optimization. Optimum peak sidelobe level
(PSL) constrained isotropic subarrays may be found using
an exhaustive search, whereas directional subarrays are angle
dependent and require a polynomial-time selection algorithm
to implement array thinning adaptively. Therefore, we employ
an effective Dinklebach-type algorithm and convex relaxation
for antenna selection through semi-definite programming.

The remainder of this letter is organized as follows: The
mathematical model is derived in Section II. In sections III and
IV, the selection of optimum PSL constrained isotropic and
directional subarrays are introduced respectively. Simulation
results are presented in section V. The last section gives some
concluding remarks.

II. MathematicalModel

Consider a set of N antennas located in the (x, y) plane. We
associate each antenna with the x and y coordinates xn and
yn, n = 1, · · · ,N respectively. A single narrow-band signal
s(t) with wavelength λ is impinging on the array from azimuth
φ ∈ [0, 2π] and elevation angle θ ∈ [0, π/2]. The steering vector
of the signal is,

a = [e jk0(x1ux+y1uy), ..., e jk0(xN ux+yN uy)], (1)

where k0 = 2π/λ, ux = sin θ cos φ and uy = sin θ sin φ.
Assuming omni-directional antennas and far-field sources, the
received signal can then be expressed as

x(t) = as(t) + n(t), t = 1, ...,T. (2)

The model is referred to as deterministic if s(t) is a determinis-
tic unknown signal, and random if s(t) is assumed random. The
choice of either model depends on the application. Since the
CRBs of both data models have the same dependence on the
array structure [5], we consider the random waveform model
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in what follows. We assume both the estimated signal and
noise to be Gaussian with zero mean, and constant variances
σ2

s and σ2
n, respectively. The signal-to-noise ratio (SNR) is

defined as ρ = σ2
s/σ

2
n.

Given the full array, we define the following vectors using
the antenna positions,

x = [x1, · · · , xN]T , y = [y1, · · · , yN]T , xx = [x2
1, · · · , x

2
N]T , (3)

yy = [y2
1, · · · , y

2
N]T , xy = [x1y1, · · · , xNyN]T . (4)

Let the Fisher Information Matrix (FIM) for the estimation of
elevation angle θ and azimuth angle φ be J, i.e.,

J =

[
Jθθ Jθφ
Jφθ Jφφ

]
. (5)

We define w ∈ {0, 1}N to be a binary selection vector where
an entry of zero means that the corresponding antenna is
discarded and one means it is selected. Suppose the number
of active (selected) antennas is K, the center of gravity of the
thinned array is defined as [7],

xc =
1
K

N∑
i=1

w(i)xi =
1
K

wT x, yc =
1
K

N∑
i=1

w(i)yi =
1
K

wT y. (6)

We assume, without loss of generality, that the centre of the
coordinate system is colocated with the centre of gravity of
the thinned array [7], i.e.,

xc =
1
K

wT x = 0, yc =
1
K

wT y = 0. (7)

As shown in [6], [7], [15], the CRB is a function of the array
configuration through the following parameters involving the
selected antenna positions,

Qxx = wT xx,Qyy = wT yy,Qxy = wT xy. (8)

The FIM, J, can then be expressed in terms of the selected
antennas as follows [6], [7], [15],

Jθθ = G cos2 θ
{
cos2 φQxx + sin2 φQyy + sin 2φQxy

}
, (9)

Jφφ = G sin2 θ
{
sin2 φQxx + cos2 φQyy − sin 2φQxy

}
, (10)

and

Jφθ =
G

4
sin 2θ

{
sin 2φ(Qxx − Qyy) − 2 cos 2φQxy

}
, (11)

where Jθφ = Jφθ and G = 2Nρ2k2
0/(1 + ρN) is angle indepen-

dent.

III. Optimum PSL Constrained Isotropic Subarray

The single source CRB of an isotropic array is independent
of the azimuth angle in [8]. The configuration of an optimum
isotropic array is independent on arrival directions, i.e. both el-
evation and azimuth angles. Then isotropic arrays are obtained
when, [7],

Qxy = 0, Qxx = Qyy = Q. (12)

Combining the condition in Eq. (12) with Eqs. (9-11) implies
that the FIM is a diagonal matrix and the CRB becomes,

C = J−1 =
1
G

[
1/(cos2 θQ) 0

0 1/(sin2 θQ)

]
. (13)

It should be noted that an isotropic subarray satisfying the
symmetric condition of Eq. (12) does not always exist.

Now proceeding from Eq. (13), and minimizing the trace of
the CRB for optimum array thinning [16], [17], we have that,

min
{

tr(C) =
1

sin2 θ cos2 θQ

}
⇔ max{Q}, (14)

where tr(•) denotes the trace of the matrix •. It is clear from
Eq. (14) that the optimum isotropic thinned array includes the
boundary antennas, which can guarantee the largest aperture.
This observation agrees with the conclusion in [18] for linear
arrays. But, the optimum isotropic subarrays that consist of the
boundary antennas typically exhibit high sidelobes [19]–[21].
In order to solve this problem, we utilise the spatial correlation
coefficients (SCC) [14], [22] to control the trade-off between
the estimation variance and the synthesized beampattern. Since
the SCC denotes the cross correlation between the steering
vectors of two separated incoming sources, it is only dependent
on electrical angle differences, i.e. ∆u = [∆ux,∆uy]T . Let
∆ui, j = [∆ui

x,∆u j
y] ∈ [−2, 2] × [−2, 2], i, j = 1, ..., L1(L2) be the

samples of angle differences in u-space. Then the correlation
steering vector vi, j is defined as, [14],

vi, j = e jk0(∆ui
xx+∆u j

xy), i, j = 1, ..., L1(L2). (15)

The samples, ∆ui, j, can be set to be the specified electrical
angular region with the constrained PSL.

Now, we consider a set of subarrays with K antennas and
the array center of gravity colocated with the center of the
coordinate system,

S = {w ∈ {0, 1}N : wT x = 0; wT y = 0; 1T w = K}, (16)

where 1 is a vector with all ones. Note that the set S comprises
the extreme points of the polyhedra,

P = {w ∈ [0, 1]N : wT x = 0; wT y = 0; 1T w = K}. (17)

The problem of determining the optimum isotropic subarray
with constrained PSL is formulated as,

max
w

wT xx

s.t. w ∈ S; wT xy = 0; wT (xx − yy) = 0;

wT Vi, jw ≤ δi, j, i, j = 1, ..., L1(L2), (18)

where Vi, j = real(vi, jvH
i, j) and δi, j < 1 is the desired nor-

malised sidelobe power level with respect to the mainlobe.
The problem in Eq. (18) is convex programming, except for
the binary constraints w ∈ {0, 1}N . Since the isotropic array
is independent of the estimated angle, the optimum solution
of Eq. (18) may be calculated off-line through an exhaus-
tive search. In order to reduce computational load, another
method of solving Eq. (18) is to relax the binary constraints
through the difference of two convex sets (DCS), which is a
polynomial-time algorithm with the detailed implementation
procedure given in [14]. Here, we formulate the DCS for
antenna selection in the (k + 1)th iteration as follows,

max
w

wT (xx + 2µwk − µ1)

s.t. w ∈ P; wT xy = 0; wT (xx − yy) = 0;

wT Vi, jw ≤ δi, j, i, j = 1, ..., L1(L2), (19)
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where µ is a trade-off parameter which compromises between
the solution sparseness and the CRB.

IV. Optimum Directional Subarray
As shown in Eqs. (9)-(11), the FIM depends on the array

geometry and the source DOAs. Therefore, the optimum array
for one angle is not necessarily optimum for other angles. If
prior information on the source DOAs is available, it would
be desirable to select directional subarrays that optimize the
estimation performance in a certain neighbourhood of the
privileged direction, including both elevation and azimuth.
For example, some prior information on the DOAs can be
obtained utilising PSL constrained isotropic subarrays. Since
the estimated angle is narrowed down within a small range,
it becomes unnecessary to consider peak sidelobe suppression
for directional subarrays.

A. Problem Formulation

Assume the neighbourhood of interest is around the angle
[θ, φ]. After mathematical manipulations, the CRB of θ is

Cθθ =
1
G
·

1
cos2 θ

·
sin2 φQxx + cos2 φQyy − sin 2φQxy

QxxQyy − Q2
xy

, (20)

similarly, the CRB of φ is

Cφφ =
1
G
·

1
sin2 θ

·
cos2 φQxx + sin2 φQyy + sin 2φQxy

QxxQyy − Q2
xy

. (21)

Unlike [15], where the volume of the confidence region was
introduced for azimuth-invariant cases and was defined only
in terms of the determinant of the FIM, i.e., the denominator
QxxQyy − Q2

xy, we utilise the trace of the CRB as a metric,

tr(C) =
1
G
·

1
QxxQyy − Q2

xy
·
[
αQxx + βQyy + ζQxy

]
, (22)

where

α =
sin2 φ

cos2 θ
+

cos2 φ

sin2 θ
, β =

cos2 φ

cos2 θ
+

sin2 φ

sin2 θ
, ζ =

sin 2φ
sin2 θ

−
sin 2φ
cos2 θ

.

The optimization problem can be formulated as,

min
w

wT (α̃xx1T + β̃yy1T + ζ̃xy1T )w
wT (xxyT

y − xyxT
y )w

s.t. w ∈ S; (23)

where α̃ = α/K, β̃ = β/K and ζ̃ = ζ/K. Contrary to isotropic
subarrays, an optimum K-antenna directional subarray always
exists. The objective function in Eq. (23) is a quadratic
fractional, which makes Eq. (23) difficult to solve. In order
to alleviate the problem, we introduce another variable W
along with the rank-one constraint W = wwT . Then the binary
constraint can be reformulated as,

tr(WEi) − eT
i w = 0, i = 1, · · · ,N (24)

where ei is the ith unit vector with the ith entry being one and
all others being zero and Ei = eieT

i . Correspondingly, the set
S is rewritten as,

S = {w,W : wT x = 0; wT y = 0; 1T w = K;
trace(WEi) − eT

i w = 0, i = 1, · · · ,N}.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
10−antenna linear subarray with constrained PSL

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
10−antenna linear subarray without constrained PSL

Fig. 1: Optimum 10-antenna linear subarrays.

We rewrite Eq.(23) by relaxing the rank-one constraint as
follows,

min
tr(WNu)
tr(WDe)

s.t. {w,W} ∈ S, W ≥ wwT , (25)

where Nu = α̃xx1T + β̃yy1T + ζ̃xy1T and De = xxyT
y − xyxT

y .
An exhaustive searching within S can be conducted for small
arrays to find the optimum directional subarray, while for large
arrays, we propose a Dinklebach-type algorithm for adaptive
directional subarray selection.

B. Dinkelbach-type Algorithm

The Dinkelbach-type algorithm is based on a theorem
concerning the relationship between factional and parametric
programming [23]. The parametric objective function is trans-
formed from the fraction in Eq. (25),

F(η) = tr(WNu) − ηtr(WDe). (26)

The detailed derivation and performance analysis can be found
in [23]. Here we give an outline of the procedure as follows.

Step 1: Initialize η1 and the termination threshold ε = 0.01;
Step 2: Solve the following minimization problem to obtain

global solutions wk, Wk and the optimum value F(ηk):

min F(ηk)
s.t. {w,W} ∈ S; W ≥ wwT . (27)

Step 3: If F(ηk) ≤ ε, then terminate. Otherwise, let

ηk+1 =
tr(WkNu)
tr(WkDe)

. (28)

and return to Step 2.
The selection vector w is generated by setting the K largest

entries to be one. The initial η1 can take the corresponding
value of the isotropic subarray to accelerate convergence rate.

V. Simulation Results

Firstly, we select a 10-antenna subarray from a 20-antenna
uniform linear array (ULA) for DOA estimation. Since the
effect of the array geometry on the CRB for a linear array
can be separated from the arrival angle, the optimum linear
subarray is always isotropic. The two optimum subarrays with
and without constrained PSL are shown in Fig. 1. The subarray
without constrained PSL comprises two clusters of antennas,
one at each end of the linear array. For the subarray with
constrained PSL, the squared SCC value is set to be δ = 0.5,
which implies the PSL is -6dB as shown in Fig. 2. Finally,
the estimation variance versus SNR for the two subarrays is
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Fig. 2: Beampatterns of two linear subarrays.
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Fig. 3: Estimation variance of two subarrays versus SNR. Each
point is averaged by 500 Monte-Carlo runs.

shown in Fig. 3. The subarray with constrained PSL has 2.1
dB performance loss compared to the other subarray, however
it exhibits a 5 dB smaller threshold value due to the well
synthesized beampattern. The ULA exhibits 3.14 dB and 1.04
dB smaller estimation variance than the two subarrays with
and without PSL constraints respectively, although with 10
more antennas.

Next, we select a 10-antenna subarray from a 6 × 4 rect-
angular planar array. Due to the symmetric requirement, it is
impossible to select an isotropic 10-antenna subarray from this
rectangular array. Thus we assume another 5 × 5 square array
for comparison. The desired signal is impinging on the array
from an azimuth of 10◦ and elevation of 175◦. The isotropic
and two directional subarrays are shown in Fig. 4. Note that
the directional subarray configurations may have grating lobes,
which does not affect the DOA estimation performance with
some prior knowledge of the arrival angle. The total estimation
variance, given by the sum of the elevation and azimuth, for
the three subarrays are shown in Fig. 5. The first directional
subarray has 1.11dB better performance than the isotropic
subarray, while the second directional subarray exhibits the
best estimation performance with 2.26 dB smaller estimation
variance compared to the isotropic one. It should be noted that
the low threshold value for both directional subarrays results
from the prior information.

Finally, we investigate the relationship between the op-
timum directional and isotropic subarrays. It is clear from
Eq. (22) that when ζ is close to zero and α is close to β,
the optimum directional subarray is essentially the isotropic
one. This occurs when the estimated elevation angle is in the
neighbourhood of 45◦. Now we fix the elevation angle to be
10◦ and sweep the azimuth angle from 0◦ to 180◦. The total
CRB, given by the sum of the CRBs for the elevation and
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Fig. 4: Three 10-antenna planar subarrays.

−5 0 5 10 15 20 25 30
−50

−40

−30

−20

−10

0

10

SNR (dB)

T
ot

oa
l E

st
im

at
io

n 
V

ar
ia

nc
e 

(d
B

)

 

 
simulation results (directional subarray 1)
directional CRB (directional subarray 1)
simulation results (isotropic subarray)
CRB (isotropic subarray)
CRB (directional subarray 2)
simulation results (directional subarray 2)

16 18 20 22

−36

−34
−32

−30

−28

 

 

Fig. 5: Total estimation variance for three subarrays versus
SNR. Each point is averaged by 500 Monte-Carlo runs.

0 20 40 60 80 100 120 140 160 180
−24.5

−24

−23.5

−23

−22.5

−22

−21.5

−21

−20.5

azimuth angle (deg)

T
ot

al
 C

R
B

 (
dB

)

 

 

CRB of directional subarray 1
CRB of isotropic subarray
CRB of optimum directional subarrays
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azimuth, is shown in Fig. 6 for both the isotropic and the
first directional subarray in Fig. 4(b). The CRB of optimum
directional subarrays corresponding to each azimuth angle is
also shown for comparison. We can see that reconfiguring
optimum directional subarrays adaptively can achieve almost
the same estimation performance regardless of the azimuth an-
gle. In other words, the dependence of the estimation variance
on arrival angles can be compensated by reconfiguring array
geometry, which enables directional subarrays to mimic the
angle-independent performance as isotropic subarrays while
offering a better estimation performance.

VI. Conclusion

In this letter, we proposed an array thinning strategy for
enhancing DOA estimation performance. Problem formulation
and solution of antenna selection based on CRB for both
isotropic and directional arrays were provided. We presented
a Dinklebach-type algorithm and convex relaxation to solve
the combinational optimization in polynomial time. For multi-
source scenarios, the PSL constrained isotropic array is uni-
versal and can be utilised initially for some prior information.
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The optimum directional subarray is then reconfigured for each
estimated source for performance enhancement.
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