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Reduced-Rank STAP for Optimum Detection by
Antenna-Pulse Selection

Xiangrong Wang, Elias Aboutanios, Moeness G. Amin

Abstract—Space-time adaptive processing (STAP) is an effec-
tive strategy for clutter suppression in airborne radar systems.
Limited training data, high computational load and the hetero-
geneity of training data constitute the main challenges in STAP.
Most reduced-rank detection approaches, such as eigenvector de-
composition, utilise a linear transformation to reduce the problem
dimensionality. In this letter, we propose a new detection strategy
based on selecting an optimum subset of antenna-pulse pairs
associated with maximum separation between the target and
the clutter trajectory. The proposed strategy reduces redundancy
while addressing the above three interlinked challenges. An iter-
ative Min-Max algorithm is proposed to solve the antenna-pulse
selection problem, which is NP-hard combinatorial optimization.
Extensive simulation results confirm the effectiveness of the
proposed strategy.

Index Terms—STAP, Heterogeneous clutter, Clutter trajectory,
Combinatorial optimization, Min-Max algorithm

I. INTRODUCTION

Space-time adaptive processing (STAP) is a well-established
framework for the detection of slow-moving targets in airborne
radar systems with strong clutter interference, see [1], [2], [3],
[4] and the references therein. The optimum STAP processor
employs the clutter-plus-noise covariance matrix (CCM) to
whiten the received data prior to the application of a matched-
filter detector. In practical applications, the true CCM is not
available and is usually estimated from secondary range cells,
using for example the sample matrix inversion (SMI) method.
The number of independent and identically distributed (IID)
training data, required by the SMI to ensure an average
signal-to-clutter-plus-noise ratio (SCNR) loss within 3dB of
the optimum processor, is twice the number of degrees of
freedom (DoFs) of the detector. This is usually on the order of
several hundreds for typical STAP applications [5] and can far
exceed the available data measurements[6]. In a homogeneous
environment, where the secondary range gates share the same
CCM with the cell under test (CUT), the SMI maximizes
the SCNR [7]. However, when the environment is non-
homogeneous, the SMI may incur a significant performance
degradation [8].

In real-world scenarios, practical implementations of STAP
continue to face a number of challenges including limited
sample support, clutter heterogeneity, and computational cost.
These problems have been studied extensively in the literature
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and solutions have been proposed to address each of them.
For instance, preprocessing can be used to select statisti-
cally representative training data in order to mitigate clutter
heterogeneity, [9], [10], [11]. Knowledge-aided (KA) STAP
incorporates a priori knowledge into the estimation process
to accelerate the convergence of the CCM, [12], [13]. Test
data only algorithms such as the D3 algorithm, [14], and
the MLD, [15], do away with the need for training data. An
image processing-based STAP technique was proposed in [16].
Alternatively, the problem dimensionality can be reduced by
projecting the data onto a lower dimensional subspace, which
reduces the sample support requirement. Principle Component
Analysis (PCA) constructs the projection matrix from the
eigenvectors of the CCM [17], [18]. Other transformation
methods can be found in [19], [20] and references therein.

In addition to clutter heterogeneity, the computational cost
of the full optimum processor is also problematic. A radar
array with N antennas and M coherent pulses involves the
inversion of an NM × NM matrix, requiring an order of
(NM)3 operations. The fact that the algorithm must be
executed for each range gate, as well as angle and Doppler
bins exacerbates the problem. Traditional projection methods,
like PCA, reduce the high sample support by determining the
projection matrix adaptively, but do not alleviate the computa-
tional load. Among all available strategies, reducing the DoFs
prior to the processing is most desirable as it simultaneously
tackles the three aforementioned problems [21]. Specifically,
it leads to a lower computational load, fewer training data
required, and improved robustness to clutter heterogeneity.
In this paper, we propose a novel approach consisting of an
antenna-pulse selection strategy where we choose the optimal
K < MN antenna-pulse pairs in each range gate before
STAP and detection. The goal is to select the antenna-pulse
pairs that give significantly better performance compared to
the standard, consecutively sampled, antenna-pulse pairs. The
selection is carried out such that the resulting space-time
configuration attenuates clutter returns while maximising the
target response. In [22], Ward examined the application of
thinned arrays in airborne radar to reject ground clutter. It
was shown that the effective rank of the CCM depends on
the precise thinned array configuration [22]. However, the
selection of the optimum subarray was not discussed, and the
thinned array which preserves the clutter rank may not lead
to the best performance. Unlike [22], we carry out thinning in
both space and time through joint antenna-pulse selection.

The paper is organized as follows: In section II, we review
the clutter model, introduce the Space-Spectral Correlation Co-
efficient (S2C2), and propose an iterative Min-Max algorithm
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Fig. 1. Ariborne radar geometry. The linear array is configured as side-
looking and moving along the x-direction. P1, P2 and P3 denote three
adjacent range gates respectively.

to select the optimum space-time configuration. Section III
gives simulation results that validate the performance of the
proposed strategy for combatting the clutter heterogeneity and
reducing the computational cost. Finally, some conclusions are
drawn in section IV.

II. ANTENNA-PULSE SELECTION FOR CLUTTER
SUPPRESSION

Consider a sidelooking radar having a uniform linear array
(ULA) with N isotropic antennas as shown in Fig. 1. The radar
transmits M coherent pulses with a pulse repetition interval
(PRI) T . Without loss of generality, we assume the radar is
moving along the positive x-direction with a velocity vp.

A. Clutter Model

The phase difference between the returns corresponding to
P1 at two sensors separated by d is,

∆ϕ = 2πfs = 2π
d cosφ cos θ

λ
, (1)

where φ and θ are the azimuth and elevation angles respec-
tively. fs is the normalized spatial frequency and λ is the
wavelength. The normalized clutter Doppler shift is given by

fd =
2vpT

λ
cosφ cos θ. (2)

Thus, the length NM interleaved space-time steering vector
of the clutter patch P1, c(fs, fd) comprises of the elements

cnm(fs, fd) = ej2π(nfs+mfd), (3)

for n = 0, . . . , N−1 and m = 0, . . . ,M−1. The target space-
time steering vector s ∈ CNM×1 can be similarly derived.

Eqs. (1) and (2) reveal that, for a sidelooking radar, the
trajectory of the clutter spectrum in the Spatial-Doppler plane
is a straight line with slope β = 2vpT/d. This implies that
most of the clutter energy is concentrated in a ridge and the
effective clutter rank is much smaller than MN . In fact, for
a sidelooking ULA, Brennan’s rule gives the effective rank of
the CCM to be, [7],

Nr = int{N + β(M − 1)}, (4)

where int{} denotes the next integer number. This rule states
that there are at most Nr clutter eigenvalues that are larger
than the noise floor σ2

n. In other words, the clutter subspace is

spanned by the Nr eigenvectors corresponding to the dominant
eigenvalues. The remaining MN − Nr eigenvectors span
the white noise subspace. Note that the signal space is also
spanned by the Angle-Doppler steering vectors and there exists
a unitary transformation between the Eigenvector and Fourier
basis vectors. This unitary transformation “spreads” the clutter
energy over a larger subset of Fourier basis vectors. However,
as shown in [23], for large enough clutter-to-noise ratio (CNR),
the clutter trajectory is well defined by Fourier basis vectors,
and the number of clutter eigenvalues corresponds to the
number of Angle-Doppler cells where the clutter power is
significant. Thus, the center points of the resolution grids along
the clutter trajectory can be used as a set of approximate
Fourier basis vectors of the clutter subspace, which circum-
vents the need for the computationally expensive eigenvalue
decomposition. Clearly there is no specific rule that governs
this choice and the simplest approach is to choose the cells
where the clutter power is largest. Better clutter representation
and performance is achieved by including more Fourier basis
vectors at the expense of increased complexity. Thus, using
Eq. (3), the approximate set of Fourier basis of the clutter
subspace is given by [c(f1s , f

1
d ), c(f2s , f

2
d ), · · · , c(fNr

s , fNr

d )].

B. Spatial Spectral Correlation Coefficient
Let c(fs, fd) be a clutter steering vector corresponding to

the frequency (fs, fd). We define the S2C2as

α =
sHc(fs, fd)√

(sHs)(c(fs, fd)Hc(fs, fd))
=

sHc(fs, fd)

NM
. (5)

This definition extends the Spatial Correlation Coefficient
(SCC) of [24] to a two-dimensional parameter. Similarly to the
SCC, |α| ∈ [0, 1] and the S2C2 represents the angle between
the target and clutter steering vectors. The smaller the value
of the S2C2 is, the more separable the target and clutter are,
thereby implying better adaptive processing performance. The
motivation of this work is to reduce the number of antennas
and pulses, thereby reducing the number of DoFs, while
enhancing performance by minimizing the S2C2.

C. Iterative Min-Max Algorithm
The antenna-pulse selection strategy aims to maximize the

SCNR for the expected worst case clutter covariance, [25].
To this end, we propose a Min-Max algorithm that minimises
the maximum S2C2 between the target steering vector and the
selected Nr clutter steering vectors. Let us define a selection
vector z ∈ {0, 1}NM , where an entry of one implies that the
corresponding antenna-pulse pair is selected, and zero means
it is discarded. Then, the problem is formulated as

min
z,t

t,

s.t. zTWi
csz ≤ t, i = 1, · · · , Nr

z ∈ {0, 1}NM ,
1T z = K,

t > 0. (6)

Here the correlation steering matrix is Wi
cs = wcswHcs, and

wcs = c∗(f is, f
i
d) � s. � denotes the element-wise product
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and •∗ is the conjugate of •. K is the number of selected
antenna-pulse pairs and 1 is the vector of ones.

In order to assess our strategy, we adopt the Adaptive
Matched Filter (AMF) detector in this work [26]. The the-
oretical false alarm rate PFA of the AMF for a standard ULA
with K antenna-pulse pairs and Kt training data, is

PFA =

∫ 1

0

(
1 +

γη

Kt

)−L

fβ(η;L+ 1,K − 1)dη, (7)

where γ is the threshold value of the AMF detector and
L = Kt −K + 1. η is a type I beta distributed variable with
parameters L + 1 and K − 1. The detection probability PD,
on the other hand, is

PD = 1−
∫ 1

0

h(η)fβ(η;L+ 1,K − 1)dη, (8)

where

h(η) =

(
1 +

γη

Kt

)−L L∑
l=1

(
L
l

)(
γη

Kt

)l
Gl(

ηKρ

1 + γη
Kt

), (9)

and

Gl(y) = e−y
l∑

n=0

yn

n!
, (10)

where ρ is the signal to noise ratio (SNR). The number K of
selected antenna-pulse pairs can be determined from Eq. (8)
by setting PFA, PD and SNR to the desired values for actual
scenarios. If only antenna selection is required for wide-band
signal cases, this is a special case of Eq. (6). The problem of
separately enforcing a number of selected antennas and pulses
is more complicated and beyond the scope of this paper.

The optimization problem in Eq. (6) is convex except for the
binary constraint z ∈ {0, 1}NM which renders it an NP-hard
combinatorial problem. To overcome this difficulty, we use the
difference of convex sets (DCS) method, [24], to reformulate
the optimization as

min
z,t

t+ µ(1T z− zT z),

s.t. zWi
csz ≤ t, i = 1, · · · , Nr

z ∈ [0, 1]NM ,

1T z = K,

t > 0, (11)

where µ is a regularization parameter that balances between
the solution sparsity and S2C2minimization. Finally, a se-
quential convex programming based on the first order Taylor
decomposition is adopted to solve Eq. (11) iteratively. The kth
iteration of the Min-Max algorithm then becomes,

min
z,t

t+ µ(1− 2zk−1)T z;

s.t. zWi
csz ≤ t, i = 1, · · · , Nr

z ∈ [0, 1]NM ,

1T z = K,

t > 0. (12)

It should be noted that Eqs. (6) and (11) are equivalent and
have the same minimum objective value for large enough µ.
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Fig. 2. (a) SCNR loss versus normalised Doppler frequency; (b) detection
probability versus different numbers of selected antenna-pulse pairs (for
PFA = 10−3). Each point is averaged over 105 Monte-Carlo runs.

III. SIMULATION RESULTS

In this section, we present simulation results to validate the
effectiveness of the proposed strategy. We use an 8-antenna
side-looking linear array transmitting a train of 8 coherent
pulses satisfying the Displaced Phase Center Antenna (DPCA)
condition. The number of IID training data required by the
SMI algorithm to achieve an SCNR loss within 3 dB of the
optimum is 2NM = 128. However, as the effective rank of
the clutter is 15 [2], we set the number of selected antenna-
pulse pairs to K = 16, meaning that only 2K = 32 training
data snapshots are required. In all simulations, we assume the
target is in broadside, that is it has an azimuth of 90◦.

The performance of clutter suppression strategies in STAP
is commonly assessed using the SCNR loss, [27],

Ls =
SCNRhete

SNR
=

(sHR̂
−1

n s)2

(sHR̂
−1

n RnR̂
−1

n s)(sHs/σ2
n)
, (13)

where R̂n and Rn are the estimated and true CCMs respec-
tively and σ2

n is the white noise power. Ls compares the
interference-limited performance to the noise-only case for
each configuration. The simulation results are shown in Fig.
2(a). The target Doppler frequency sweeps over the range
[−0.1, 0.5] and we calculate the optimum set of antenna-
pulse pairs corresponding to each frequency. We compare
the optimum configuration, which we denote by subopt, to
the non-optimum configuration, subnon, consisting of the 16
samples obtained from the first 4 antennas and 4 pulses. The
performance of the full configuration is also included for
reference. Notice the significant gain in SCNR of the optimum
sub-configuration with respect to subnon when the target is
close to the clutter ridge. Although both sub-configurations
incur a SCNR loss with respect to the full configuration, the
optimum sub-configuration, which maximises the separation
between the target and clutter, recovers a large part of this loss
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Fig. 3. Detection probability curve versus SCNR in both homogeneous and
heterogeneous clutter, the target is close to the clutter trajectory, each point
is averaged over 105 Monte-Carlo runs (for PFA = 10−3).

and gets closer to the full configuration performance. When
the target is far from the clutter, all sub-configurations exhibit
similar performance and there is no advantage to the proposed
antenna-pulse selection strategy. Thus, the selection strategy is
most useful for slow moving targets that are close to the clutter
ridge.

Next we examine the relationship between the probability of
detection and the number of selected antenna-pulse pairs K.
The results, shown in Fig. 2(b), include two scenarios; one
where the target is close to the clutter ridge, having Doppler
frequency fd = 0.02, and another where the target is far from
the clutter with fd = 0.2. For the close target, we show curves
for SCNR values of both 0dB and -2dB. For each K, the
optimum configuration is calculated and the non-optimum one
is simply consisting of the first K consecutive antenna-pulse
pairs. The results demonstrate the significant performance
gain that the selection strategy achieves. When the target
is far from the clutter, the non-optimum and optimum sub-
configurations exhibit very similar performance and practically
coincide. However, when the target is close to the clutter ridge,
the performance of the non-optimum configuration degrades
markedly, whereas that of the optimal sub-configuration does
not. Importantly, we see that the optimum sub-configuration
achieves the same detection performance as the full one for
a much smaller number of DoFs. For instance, when the
SCNR is 0dB, subopt needs only about 40 antenna-pulse pairs,
whereas subnon compared with 52 for the non-optimum sub-
configuration.

Finally we illustrate the improvement in the detection prob-
ability that the selection strategy gives in both homogeneous
and heterogeneous scenarios. In the simulation, the probability
of false alarm rate is set to PFA = 10−3. As we are primarily
interested in low-velocity targets, we assume the normalised
target Doppler frequency to be uniformly distributed over the
range [0.005, 0.09]. The simulation results are shown in Fig. 3.
The labels “homo” and “hetero” refer to the homogeneous and
heterogeneous environments respectively. In the homogeneous
case, we obtain the detection curves for subopt when the
CCM is estimated from 32 and 128 training data snapshots

respectively. Additionally, for reference, the theoretical Pd
curve is plotted for the full configuration. In the heterogeneous
scenario, we simulate the clutter heterogeneity by inserting 15
high-amplitude, mainbeam discrete targets into various range
cells and Doppler frequencies [9]. The required training data
snapshots for both sub-configurations are selected using the
GIP-based non-homogeneity detector (NHD) of [9]. Specif-
ically, we sort the GIP values and retain the 2K = 32
realizations corresponding to smallest GIP value. Moreover,
the curve labelled “Ext” is the result of using the maximum
number of homogeneous snapshots that returned by the NHD.
Note that the subnon is the same as that used to obtain
the SCNR loss results of Fig. 2(a). We make the following
observations:

• The simulated and theoretical detection curves of the full
configuration coincide in the homogeneous case;

• The optimum sub-configuration exhibits better perfor-
mance than the non-optimum sub-configuration in both
homogeneous and heterogeneous clutter;

• In heterogeneous clutter, both sub-configurations com-
bined with the NHD outperform the full array. In fact
they retain practically the same performance as the ho-
mogeneous case. Importantly, we see that the optimum
sub-configuration shows the best detection performance.

• A deeper examination of the optimum sub-configuration
reveals that it always maintains an effective clutter rank
equal to that of the full configuration (that is 15). This
allows for better clutter rejection, which is compared to
a clutter rank of 9 for the non-optimal sub-configuration
which may result in poor clutter suppression;

• When the target is close to the clutter trajectory, the
optimum space-time configuration usually includes the
extreme antenna-pulse pairs, thus preserving the maxi-
mum spatial-temporal aperture length.

IV. CONCLUSION

This paper proposed and investigated a novel antenna-pulse
selection problem in order to enhance target detection perfor-
mance of STAP while reducing the training data requirement,
computational load and sensitivity to clutter heterogeneity. We
proposed to use Spatial and Spectral Correlation Coefficient
(S2C2) to characterise the space-time separation between the
target and clutter steering vectors. We formulated the antenna-
pulse selection problem as a minimisation of the S2C2 and
presented an iterative Min-Max algorithm to select the op-
timum antenna pulse pairs for any particular scenario. The
performance of the proposed antenna-pulse selection strategy
was validated using simulations, which demonstrated its ef-
fectiveness at preserving the performance while reducing the
computational load and addressing the problems of clutter
heterogeneity and limited sample support.
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