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Abstract

We address the problem of slow target detection in heterogeneous clutter through dimensionality reduction.

Traditional approaches of implementing the space-time adaptive processing (STAP) require a large number of training

data to estimate the clutter covariance matrix. In order to address the issue of limited training data especially in the

heterogeneous scenarios, we propose a novel thinned STAP through selecting an optimum subset of antenna-pulse

pairs that achieves the maximum output signal-to-clutter-plus-noise ratio (SCNR). The proposed strategy utilises

a new parameter, named spatial spectrum correlation coefficient (S2C2), to analytically characterize the effect of

space-time configuration on STAP performance and reduce the dimensionality of traditional STAP. Two algorithms

are proposed to solve the antenna-pulse selection problem. The effectiveness of the proposed strategy is confirmed

by extensive simulation results, especially by utilising the MCARM data set.

Index Terms

Spatial spectrum correlation coefficient, Heterogeneous clutter, MCARM, Combinatorial optimization, Antenna-

pulse Selection

I. INTRODUCTION

Space-time adaptive processing (STAP) involves combining signals linearly from an array of antennas and multiple

pulses to improve airborne radar detection performance in severe clutter and jamming environments [1]–[3]. The

optimum STAP processor employs the clutter-plus-noise covariance matrix (CCM) to whiten the received data prior

to the application of a matched-filter detector. As the CCM is usually unknown, practical STAP approaches such

as the sample matrix inversion (SMI) method obtain the maximum likelihood estimate of the CCM from secondary

cells. The number of independent and identically distributed (IID) training data, required by the SMI to ensure an

average signal-to-clutter-plus-noise ratio (SCNR) loss within 3dB of the optimum processor, is twice the number

of degrees of freedom (DoFs) of the detector. This is typically on the order of several hundreds for common STAP

applications and can far exceed the available data measurements [4]. For non-homogeneous environment, the SMI

may incur a significant performance degradation due to lack of sufficient IID training data [5].

In addition to clutter heterogeneity and limited sample support, practical implementations of STAP continue

to face other challenges including high computational cost in real-world scenarios. Fortunately, most interference

suppression problems in airborne radar systems are rank deficient in nature, that is, they require fewer adaptive DoFs

compared to those offered by the array. By appropriate design, the redundant DoFs can be discarded and partial
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STAP can be applied [6]. For instance, preprocessing can be used to select statistically representative training data

in order to mitigate clutter heterogeneity [7]–[11]. Knowledge-aided (KA) STAP incorporates a priori knowledge

into the estimation process to accelerate the convergence of the CCM [12]–[15]. Test data only algorithms such

as the D3 algorithm [16] and the MLED [17] do away with the need for training data. An image processing-

based STAP technique was proposed in [18]. Principle Component Analysis (PCA) projects the data onto a lower

dimensional subspace [19], [20] to reduce the high sample support. Some recent work has considered utilizing

sparse recovery (SR) techniques of the clutter spectrum in the angle-Doppler plane for moving target indication

[21], [22]. However, these SR approaches are computationally more expensive than conventional STAP because

they require a full-dimensional matrix inversion and the recovery procedure calls for additional computations. The

work in [23], [24] assumes the sparse property of the STAP filter weights instead of the clutter spectrum and

utilized the l1-norm to promote sparsity.

In this paper, we propose a novel thinned STAP approach consisting of an antenna-pulse selection strategy

where we select a subset of optimal antenna-pulse pairs in each range gate prior to applying STAP and target

detection. Traditional selection strategies viewed the antenna array separately from the pulse train and examined

the selection on the array only in airborne radar to reject ground clutter [25], [26]. Whereas in this paper we view

the interleaved antenna-pulse data as a virtual large array where each sensor is specified by the antenna number

and pulse number. We carry out the “thinning” in both space and time through joint antenna-pulse selection to

obtain a sub-configuration comprising the optimal sensor elements and consequently the optimal subset of antenna-

pulse pairs. Compared to our work in [27], which implemented the antenna-pulse selection in terms of maximizing

the separation between the target and the closest clutter Fourier basis, the contributions of this paper are: (1)

We reformulate the parameter, referred to as spatial spectrum correlation coefficient (S2C2), to characterize the

separation between the target and the clutter subspace and use it for analytically expressing the output SCNR. (2)

We formulate and perform the antenna-pulse selection such that the resulting space-time configuration maximizes

the output SCNR; (3) We propose two effective algorithms to implement the selection process; (4) We investigate

the selection problem based on the eigenbasis, which exhibits slightly better performance than the Fourier basis

based selection; (5) In addition to extensive simulations, the performance of the proposed antenna-pulse selection

strategy is evaluated using monostatic Multi-Channel Airborne Radar Measurement (MCARM) data.

The paper is organized as follows: In section II, we review the clutter model and fundamental detection theory.

In section IV, we introduce the parameter S2C2 and propose two approaches to solve the antenna-pulse selection

problem. We also investigate the selection problem based on eigenbasis at the end of section IV. Section V gives

simulation and experimental results that validate the performance of the proposed strategy. Finally, some conclusions

are drawn in section VI.

II. SIGNAL MODEL

The geometry of a sidelooking airborne array radar of N uniformly spaced antennas with inter-element spacing

d in a Cartesian Coordinate system is shown in Fig. 3.2 in [2]. Let P be a scatterer patch on the ground having

elevation angle θ and azimuth angle φ with respect to the array center. Consider an antenna with a distance

nd, n = 0, · · · , N − 1 relative to the array origin. The signal received by the antenna from the stationary scatterer

patch P is phase shifted relative to the origin by,

n2πfs = n
2π

λ
d cosφ cos θ, (1)
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where fs = (d/λ) cosφ cos θ ∈ [−1/2, 1/2] is the normalized spatial frequency under the condition d = λ/2 and

λ is the wavelength. The spatial steering vector can be expressed as,

as = [1, ej2πfs , · · · , ej(N−1)2πfs ]T . (2)

In pulse Doppler radar, the Doppler frequency is measured by phase comparison between echo signals due to a

transmitted coherent pulse train with pulse repetition interval (PRI) T̃ . The unit phase shift incurred by the platform

moving with the velocity vp is given by

2πfd = 2πT̃
2vp
λ

cosφ cos θ. (3)

Here we denote fd = (2vpT̃ /λ) cosφ cos θ as the normalized Doppler frequency. Then the temporal steering vector

with M coherent pulses can be written as,

at = [1, ej2πfd , · · · , ej(M−1)2πfd ]T . (4)

Thus, the interleaved space-time steering vector, a(θ, φ) ∈ CNM×1, is

a(θ, φ) = as ⊗ at, (5)

where ⊗ denotes Kronecker product. Consider a single range increment, specified by the elevation angle θ, the

total clutter echo is an integral over the various contributions from all ground scatterers in azimuth,

c(θ) =
∫ 2π

φ=0
AD(φ, θ)G(φ, θ)a(θ, φ)dφ, (6)

where A stands for ground reflectivity that is assumed to be a circular complex Gaussian variable, D(φ, θ) and

G(φ, θ) are the receive and transmit directivity patterns respectively. The trajectory of clutter spectrum in the angle-

Doppler (fs-fd) plane is very important for extracting the information on clutter subspace. For a sidelooking array,

the clutter trajectory is

fd = κfs, (7)

which is a straight line in the fd-fs plane with a slope κ = 2vpT̃ /d.

The detection problem is usually treated as a hypothesis test to determine the presence of a target. The model

of the received signal, x ∈ CNM , in a single range increment is,

H0 : x = c + n, (8)

where H0 denotes the null hypothesis. For simplicity of notation, we put c instead of c(θ) and n denotes the

Gaussian white noise with power σ2n. The alternative hypothesis is given by,

H1 : x = αt + c + n, (9)

where α denotes the complex amplitude of target signal. The target space-time steering vector t ∈ CNM×1 can be

similarly constructed according to Eqs. (2), (4) and Eq. (5) with fs = (d/λ) cosφt cos θt and fd = 2vtT̃ /λ given

a target in elevation θt and azimuth φt with radial velocity vt relative to the platform.

We assume that all components of x are mutually independent. The CCM, Q, is then a sum of clutter and noise
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covariance matrices as follows,

Q = E{xxH} = σ2nINM + Qc, (10)

where Qc stands for the clutter covariance matrix and is usually rank-deficient. For a sidelooking linear array,

Brennan’s rule gives the clutter rank Ne to be, [1], [28],

Ne = int{N + κ(M − 1)}, (11)

where int{} denotes the next integer number. Suppose the clutter rank is Ne, then

Qc =

Ne∑
i=1

σ2i eieHi =

Ne∑
j=1

PjvjvHj , (12)

where ei and σ2i are the ith eigenvector and its corresponding eigenvalue of clutter covariance matrix Qc respectively.

We call ei, i = 1, · · · , Ne as clutter eigenbasis in the following. The clutter subspace is also spanned by Ne Fourier

basis vectors vj , j = 1, · · · , Ne with power coefficients Pj . The definition of Fourier basis vj is same with that of the

interleaved space-time steering vector a in Eq. (5) with its corresponding spatial and Doppler frequencies. Since the

two sets of Ne basis vectors span the same clutter subspace, i.e. span(ei, i = 1, · · · , Ne) = span(vj , j = 1, · · · , Ne),

each Fourier basis vector can be expressed as a linear combination of eigenbasis, i.e.,

vj =
Ne∑
i=1

µji ei. (13)

As the clairvoyant CCM is not available in practice, we adopt the Adaptive Matched Filter (AMF) detector in this

work [29], which is formulated as
|vHQ̂

−1
x|2

vHQ̂
−1

v
≶H0

H1
T , (14)

where T is the threshold value and v is the scanning steering vector over the angle-Doppler plane. The CCM Q
is estimated by Q̂ = 1

L

∑L
l=1 x(l)xH(l) given L homogeneous training data under the hypothesis H0. Clearly, the

maximum value of Eq. (14) occurs when v = t in the cell under test (CUT).

III. GENERALIZATION OF SPATIAL SPECTRAL CORRELATION COEFFICIENT

The spatial spectrum correlation coefficient (S2C2) was derived in a similar way to the single interference case

in [27] and is therefore not suitable for the multi-interference case. In this section, we generalise the definition of

S2C2 using the concept of the clutter subspace to effectively deal with multiple interferences [30].

A. Matrix-Vector Expression

Proceeding from Eq. (12), we arrange the Ne Fourier basis vectors into a matrix Vc ∈ CMN×Ne ,

Vc = [v1, v2, · · · , vNe
]. (15)

Defining P = diag[P1, · · · , PNe
], we rewrite the CCM in Eq. (10) as,

Q = σ2nINM + VcPVH
c . (16)
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Applying the Woodbury matrix identity to the inverse CCM, Q−1, yields,

Q−1 =
1

σ2n
(INM − Vc(σ

2
nP−1 + VH

c Vc)
−1VH

c ). (17)

We assume the clutter is much stronger than white noise, i.e. P1 > · · · > PNe
� σ2n, then Eq. (17) can be further

simplified as

Q−1 ≈ 1

σ2n
(INM − Vc(VH

c Vc)
−1VH

c ). (18)

From the above equation it is clear that when the CNR is high, Q−1 approximates the clutter nullspace. Accordingly,

the optimum STAP weight vector, [2], [29],

wopt = ηQ−1t ≈ η

σ2n
(INM − Vc(VH

c Vc)
−1VH

c )t, (19)

becomes the interference eigencanceler proposed in [19]. Here η = (tQ−1t)−1/2 does not affect the output SCNR.

The steering vector of the target signal t can be decomposed into two orthogonal components: the clutter subspace

component tc and the nullspace component t⊥, i.e., t = tc + t⊥ with tc = (Vc(VH
c Vc)

−1VH
c )t and t⊥ = (INM −

Vc(VH
c Vc)

−1VH
c )t respectively. The STAP weight vector wopt, is along the clutter nullspace direction t⊥. We define

the S2C2 as the absolute value of the cosine of the angle between the target signal t and clutter subspace component

tc, i.e.,

|α| = | cosϑ| =
∣∣∣∣ tH tc
‖t‖2‖tc‖2

∣∣∣∣ . (20)

Here the length of t is ‖t‖2 =
√
MN under the assumption of isotropic antennas. As the SCNRout is directly related

to the squared value of the S2C2, we substitute the expression of tc into Eq. (20) and take the squared value yields,

|α|2 =

∣∣tHVc(VH
c Vc)

−1VH
c t
∣∣2

MN‖Vc(VH
c Vc)−1VH

c t‖22
,

=
1

MN
tHVc(VH

c Vc)
−1VH

c t. (21)

Finally, combining Eqs. (18) and (21), the output SCNR (SCNRout) becomes

SCNRout = σ2t tHQ−1t

≈ σ2t
σ2n

tH(INM − Vc(VH
c Vc)

−1VH
c )t

≈ SNR ·MN(1− |α|2), (22)

where σ2t denotes the power of the target signal and SNR = σ2t /σ
2
n. Eq. (22) shows that the SCNRout depends on

two factors: the number of available DoFs (which is MN for the full configuration) and the squared S2C2 value

|α|2. When the number of available DoFs is fixed, the performance can be improved by changing the space-time

configuration to reduce the S2C2 value. Thus the S2C2 characterizes the effect of the space-time geometry on the

adaptive filtering performance and, in this respect, is an effective metric for optimum antenna-pulse selection.

B. Determinant Expression

The matrix-vector expression of the S2C2 given in Eq. (21) is not a convenient form for antenna-pulse selection.

Below we derive a compact formula of the S2C2 based on Eq. (21) in terms of matrix determinants.
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Let the clutter cross-correlation matrix Dc ∈ CNe×Ne be

Dc = VH
c Vc

=


ρ11 ρ12 · · · ρ1Ne

ρ21 ρ22 · · · ρ2Ne

· · · · · · · · · · · ·
ρNe1 ρNe2 · · · ρNeNe

 , (23)

where the entry ρij = vHi vj for i, j = 1, ..., Ne. Note that the estimated Fourier basis vectors (v̂j in Eq.

(39)) are not orthogonal in practical applications, thus we do not simplify Dc as INe
for generality. Define

Vt = [t, v1, v2, · · · , vNe
], the target plus clutter cross-correlation matrix Dt ∈ C(Ne+1)×(Ne+1) is

Dt = VtVH
t

=


ρtt ρt1 · · · ρtNe

ρ1t ρ11 · · · ρ1Ne

· · · · · · · · · · · ·
ρNet ρNe1 · · · ρNeNe

 ,

=

[
MN tHVc

VH
c t Dc

]
, (24)

where the entry ρtj = ρ∗jt = tHvj for j = 1, ..., Ne. Utilizing the determinant formula of a block matrix in Eq. (24)

yields,

|Dt| = |Dc|(MN − tHVcD−1c VH
c t). (25)

Thus,

tHVcD−1c VH
c t =MN − |Dt|

|Dc|
. (26)

Substituting Eqs. (23) and (26) into Eq. (21), the expression of the S2C2 can be rewritten in terms of the ratio of

two matrix determinants,

|α|2 = 1

MN
tHVcD−1c VH

c t = 1− |Dt|
MN |Dc|

. (27)

In the case of single interference as in [31], i.e. when Ne = 1, the two cross-correlation matrices in Eqs. (23) and

(24) reduce to Dc = ρ11 =MN and

Dt =

[
MN ρt1

ρ1t MN

]
, (28)

respectively. Substituting |Dc| =MN and |Dt| =M2N2−|ρt1|2 into Eq. (27) yields |α|2 = |ρt1|2/(M2N2). Thus

this generalized formula is in accordance with the formula of the single interference case given by Eq. (11) in [31].

Now, we proceed to substitute Eq. (27) into Eq. (22),

SCNRout ≈ SNR ·MN(1− |α|2) ≈ SNR · |Dt|
|Dc|

. (29)

Note that Eq. (29) is equivalent to Eq. (22), but there is no explicit linear dependence between the performance
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and the number of selected antenna-pulse pairs in Eq. (29). This further demonstrates the non-linear relationship

between the SCNRout and the number of DoFs. In section IV, we implement antenna-pulse selection in terms of

maximizing the SCNRout in Eq. (29) directly.

IV. ANTENNA-PULSE SELECTION FOR CLUTTER SUPPRESSION

We propose two selection algorithms in terms of maximizing the output SCNR in this section. Subsequently we

present two ways to estimate the clutter subspace.

A. D.C. Programming

Define the binary selection vector z ∈ {0, 1}MN with “one” meaning the corresponding antenna-pulse pair is

selected and “zero” meaning discarded. Then, the two cross-correlation matrices of the selected subarray can be

expressed as

Dc(z) = VH
c diag(z)Vc, Dt(z) = VH

t diag(z)Vt, (30)

with the two matrices Vc and Vt defined in Eqs. (15) and (24). Note that Dc(z) is not an identity matrix after

implementing selection although the Ne clutter basis vectors of the full configuration are mutually orthogonal. This

is the second reason why we could not simplify Dc as INe
in Eq. (23). Correspondingly, the SCNRout of the selected

sub-configuration can be written as

SCNRout = SNR · |Dt(z)|
|Dc(z)|

= SNR · |V
H
t diag(z)Vt|

|VH
c diag(z)Vc|

. (31)

The antenna-pulse selection problem in terms of maximizing the SCNRout is formulated as,

min
z

|Dc(z)|
|Dt(z)|

,

s.t. z ∈ {0, 1}MN . (32)

Note that the objective function in Eq. (32) is equivalent to maxz SCNRout. It is clear that the global minimizer is a

vector of all ones, when no restriction is placed on the number of selected entries. As it is critical in STAP that the

number of DoFs be matched to the available training data [32], we constrain the number of selected antenna-pulse

pairs to be K, given L = 2K training data. The optimization problem becomes,

min
z

|Dc(z)|
|Dt(z)|

,

s.t. z ∈ {0, 1}MN ,

1T z = K. (33)

Define the feasible set S = {z : z ∈ {0, 1}MN}, which comprises the extreme points of the polytope D = {z : 0 �
z � 1}, and relax the constraint z ∈ S to z ∈ D. Since both Dc(z) and Dt(z) are positive definite and the logarithm

function is monotonically increasing [33], Eq. (33) is relaxed into the following problem,

min
z

log(|Dc(z)|)− log(|Dt(z)|),

s.t. 1T z = K,

z ∈ D. (34)
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The objective function of Eq. (34) is a difference of two concave functions and belongs to D.C. Programming

[34]–[36]. A convex-concave procedure (CCP) is adopted to solve it [37], which is proven to be able to converge

to a stationary point in [38], [39] with a feasible initial point. Although the stationary point may not be necessarily

the local minimum, it was proven to converge to the global optimum under certain conditions in [36]. Note that the

DCA (d.c. algorithm) in [34], [35] is reduced to the CCP for differentiable optimization problems. In the following,

we give a detailed implementation of the CCP.

The concave function f(z) = log(|Dc(z)|) is approximated iteratively by its first-order Taylor decomposition in

the (k + 1)th iteration as

f(z) ≈ f̂(z) = f(z(k)) + Of(z(k))T (z− z(k)). (35)

The jth entry of the gradient Of(z(k)) is

Ofj(z(k)) = tr
{

D−1c (z(k))(vc,jvHc,j)
}
, (36)

where the operator tr{•} takes the trace of the matrix • and vc,j ∈ CNe×1 is the jth row vector of Vc. Substituting

Eqs. (35), (36) into Eq. (34) and dropping the constant terms, the (k + 1)th iteration is formulated as,

min
z

Of(z(k))T z− log(|Dt(z)|),

s.t. 1T z = K,

z ∈ D. (37)

According to [40], [41], the global optimum solution of a D.C. programming is on the edge of the polytope D,

which is sparse but not necessarily binary. Solving DC problems most often relies on branch and bound methods

or cutting plane methods, whereas these global methods often prove slow in practice, requiring many partitions or

cuts. Therefore, we are instead concerned with local heuristic that can find local optimum binary solutions rapidly.

Inspired by the effective Gaussian randomization approach in [42], we modify the randomization procedure to

obtain a binary solution. We assume a random vector ξ with each component ξi ∼ N (ẑi, εi), where the mean ẑ is

the optimum solution of Eq. (37) and εi denotes the variance of the ith entry ξi. After obtaining a random vector ξ

by sampling N (ẑ, diag(ε)), we then set the first K largest entries to one and others to zero to generate a feasible

point. Moreover, we repeat this random sampling multiple times and choose the one that yields the best objective.

As shown in [42], randomization provides an effective approximation for a small number of randomizations. The

same conclusion applies here. In order to preserve the one and zero entries of ẑ while varying the non-binary

entries, we set εi = ẑi(1− ẑi) with the highest variance 0.25 for the most ambiguous entry 0.5. We point out that

D.C. Programming can also be adapted to find the sparsest configuration with the required performance. This is

achieved by swapping the output SCNR term in the objective function with the number constraint in the second

line of Eq. (37).

B. Modified Correlation Measurement

Since the CCP requires solving a sequence of convex optimization problems with computational complexity of

order O((MN)3.5) for each iteration in the worst case scenario, D.C. Programming is computationally expensive

although with theoretical convergence guarantee. We devise a simple alternative search method, named Modified

Correlation Measurement (MCM) based on [31]. The MCM belongs to greedy search algorithm which is effective
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TABLE I
MODIFIED CORRELATION MEASUREMENT METHOD

Step 1 Select all antenna-pulse pairs, i.e. z = 1, iteration
number k = 1, index set χ(1) = [1, · · · ,MN ];

Step 2 For l = 1 :MN − k + 1

Set z̃ = z and z̃(χ(k)(l)) = 0,
Calculate r(l) = |Dc(z̃)|

|Dt(z̃)| ,
End;

Step 3 Obtain i = argminl=1,...,MN−k+1 r(l);
Step 4 Set z(χ(k)(i)) = 0, and update the index set

χ(k+1) = χ(k) \ χ(k)(i) = {n ∈ χ(k), n 6= χ(k)(i)};
Step 5 k = k + 1, If k =MN −K, terminate;

otherwise go back to Step 2.

in solving combinatorial optimization problems although without complete mathematical proof up to now [43].

The detailed implementation procedure of the MCM is presented in Table I. Basically, all antenna pulse pairs are

selected initially and a backward search is utilized to discard the antenna-pulse pair that gives the smallest objective

value in Eq. (33) in each iteration until K antenna-pulse pairs remain.

In practice we may need to obtain the sparsest space-time configuration which satisfies the performance require-

ment. Since the output SCNR is monotonically increasing with the number of selected antenna-pulse pairs, the

MCM can be adapted to achieve this aim. Instead of enforcing constraints on the number of selected antenna-pulse

pairs, the termination condition in Step 5 can be the reduction of the output SCNR.

Now Let us calculate the computational complexity of the MCM method. As there are in total MN −K steps in

MCM and we need to calculate the determinant of a matrix with dimension Ne×Ne in each step, the computational

complexity of the MCM is thus of the order O(N3
e × (MN−K)). Taking the filter weight calculation into account,

i.e. implementing STAP with K antenna-pulse pairs, the total computational load is of the order O(N3
e×MN+K3),

which is smaller than that of the traditional STAP of complexity O(M3N3). The reason is that the effective clutter

rank Ne �MN , such as Ne =M+N for the sidelooking array. More importantly, the proposed selection strategy

is most advantageous for detecting slow-moving targets with reduced training data, which means it is not necessary

to implement selection for each angle-Doppler bin.

C. Clutter Subspace Estimation

The implementation of antenna-pulse selection can be directly performed by the element-wise product ṽj =

z � vj , j = 1, · · · , Ne. Thus it is intuitive that the reduced dimensional clutter subspace can be characterized by

ṽj , i = 1, · · · , Ne after selection, i.e. Ṽc = [ṽ1, · · · , ṽNe
] spans the reduced dimensional clutter subspace. Since

the accuracy of Fourier analysis is restricted by its leakage effect, we prefer the eigenbasis to describe the clutter

subspace. Substituting Eq. (13) into ṽj , we have that

ṽj =
Ne∑
i=1

µji (z� ei) =
Ne∑
i=1

µji ẽi, j = 1, · · · , Ne. (38)

Therefore, the set of selected eigenbasis Ẽc = [ẽ1, · · · , ẽNe
] also spans the reduced dimensional clutter subspace,

i.e. span(Ẽc) = span(Ṽc). We can replace Vc = Ec and set Vt = [Ec, t] to carry out the antenna-pulse selection.
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Since the two sets of exact clutter basis ei, i = 1, · · · , Ne and vj , j = 1, · · · , Ne are not known as a prior, we

need to estimate them in practice. The estimate of Fourier basis can be obtained by applying Fourier analysis to

the received data in the CUT, i.e.,

v̂ = argmaxv|vHx|. (39)

The estimated power coefficient is then P̂ = |v̂Hx|2. The steering vector v is scanning the whole angle-Doppler

plane, which is covered by MN resolution grids with N and M uniformly distributed spatial and Doppler normalized

frequencies respectively. As shown in [44], for large enough clutter-to-noise ratio (CNR), the clutter subspace is

well defined by Fourier basis vectors, and the clutter rank corresponds to the number of angle-Doppler grids where

the clutter power is significant. The estimation of clutter eigenbasis requires training data to perform eigenvalue

decomposition on the estimated covariance matrix Q̂.

We give a comparison between the eigenbasis and Fourier basis for antenna-pulse selection. Clearly, eigenvalue

decomposition is computationally expensive. The set of clutter Fourier basis vectors is easy to compute and only

the received data in the CUT is sufficient, whereas additional training data is required for computing the eigenbasis.

As there is no accurate threshold to define the set of significant clutter Fourier basis [44], the set of eigenvectors

achieves a better characterization of the clutter subspace and exhibits more robustness than the Fourier basis, thus

the selected sub-configuration based on the eigenbasis would be expected to exhibit slightly better performance

than that obtained using the Fourier basis, which can be observed from the simulation results in subsection V-B.

V. SIMULATION AND EXPERIMENTAL RESULTS

We now validate the proposed thinned STAP using simulated (subsections V-A to V-D) and experimental

(subsection V-E) data. We utilize the MCM method to calculate optimum sub-configurations and the CNR is

fixed at 20 dB throughout this section.

A. Validation of two proposed methods

In order to demonstrate the effectiveness of the proposed two antenna-pulse selection methods, we use a small

radar system which permits us to enumerate all possible sub-configurations. Thus the radar has 4 antennas and 4

pulses and we select 10 antenna-pulse pairs out of 16. We take the sidelooking array as an example in the whole

simulation, even though the proposed antenna-pulse selection strategy has no restriction on the array orientation. We

inject a target at a broadside, that is fs = 0. The Doppler frequency is swept over the range [−0.5, 0.5]. An optimum

subset of 10 antenna-pulse pairs is selected through both proposed selection methods as well as enumeration. In

Fig. 1, we plot the normalized distance De between the evaluated ˜SCNRout and the true value SCNRout as a function

of fd, i.e.,

De =
SCNRout − ˜SCNRout

SCNRout
, (40)

where ˜SCNRout is the output SCNR evaluated at the obtained solution and SCNRout denotes the true optimum

value though enumeration. We can see that both methods are capable of finding the global optimum configuration

for slow-moving targets. In other scenarios the sub-optimum solutions can also produce acceptable performance

through empirical simulations.
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Fig. 1. Validation of the MCM, D.C. programming and randomization.

B. Redundancy of Full Configuration

A large array of uniformly spaced elements often exhibits significant redundancy, meaning that dropping the

redundant elements hardly affects performance. To show this, we now use a radar platform with 11 antennas and

20 pulses and examine the relationship between the probability of detection and the number of selected antenna-

pulse pairs K. Again, we run the simulation for both the Fourier and eigenbasis in Fig. 2. We consider two scenarios

where the target normalized Doppler frequency is fd = 0.05 and fd = 0.1 respectively. The spatial frequency of

the target is set as zero. The output SCNR value is set to −5dB for the full configuration and homogeneous clutter

is assumed. For each K, the optimum configuration of K antenna-pulse pairs is calculated. We utilize L = 2K

IID training data to calculate the CCM in the outer plot and fix L = 220 in the inner plot. We can see that the

optimum sub-configuration achieves the same detection performance as the full one with a much smaller number of

DoFs from the outer plot, only about 80 antenna-pulse pairs when fd = 0.05. The number increases to 120 when

fd = 0.1. The results demonstrate the significant redundancy of the full configuration, especially for slow-moving

targets. When there is a fixed number of training data, such as L = 220 in the inner plot, the best performance

is achieved in the neighbourhood of K = L/2. Interestingly, an optimum sub-configuration with 50 antenna-pulse

pairs is sufficient when fd = 0.05, whereas the detection probability is only 65% when fd = 0.1. This further

confirms the efficiency of the proposed thinned STAP for detecting slow-moving targets. Also observe that there is

slight performance difference between the eigenbasis based selection and that of the Fourier basis, which justifies

the use of the Fourier basis especially that it is computationally much simpler. The antenna-pulse selection is carried

out on the Fourier basis in what follows.

C. Normalized SCNR Loss

We still assume homogeneous clutter returns in this simulation. The number of IID training data required by the

SMI algorithm for the full configuration to achieve an SCNR loss within 3 dB of the optimum is 2NM = 440.

But we set the number of selected antenna-pulse pairs to K = 100, meaning that only 2K = 200 training data

snapshots are required for the sub-configurations. The performance of clutter suppression strategies in STAP is
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averaged over 105 Monte-Carlo runs.

commonly assessed using the normalized SCNR loss, [3],

Ls =
|vHQ̂

−1
v|2

|vHQ̂
−1

QQ̂
−1

v||vHQ−1v|
, (41)

where Q̂ = 1
L

∑L
i=1 xixHi is the sample CCM and v is the scanning steering vector. Firstly, we examine the CCM

convergence rate in the upper plot of Fig. 3. The normalized Doppler frequency of the target is set to fd = 0.05,

where the corresponding optimum sub-configuration is shown in Fig. 4. Clearly, the extreme antennas and pulses

on the boundary are always included to preserve the maximum spatio-temporal aperture length, which directly

determines the minimum detectable velocity. The number of homogeneous training data is changing from 100 for

the sub-configuration (220 for the full configuration to avoid singularity) to 440 in steps of 10. We can see that

the CCM of the full configuration requires at least 300 IID training data to converge, which is much slower than

the sub-configuration. We then examine the relationship between Ls and the normalized Doppler frequency in the

lower plot of Fig. 3. The normalized Doppler frequency of the target sweeps over the range [−0.5, 0.1] and we

calculate the optimum subset of 100 antenna-pulse pairs corresponding to each frequency. We compare the optimum

configuration, which we denote by “subopt” using 200 training data, to the full configuration, denoted by “full”

using 440 training data. The performances of the full and sub-configuration with 300 training data are also included

for reference. We can observe the considerable performance degradation for the full configuration without sufficient

training data.

D. Robustness against Heterogeneity

Finally we illustrate the improvement of the detection probability that the selection strategy provides in hetero-

geneous clutter. In the simulation, the probability of false alarm rate is set to Pfa = 10−3. As we are primarily

interested in slow moving targets, we assume the normalised target Doppler frequency to be uniformly distributed

over the range [−0.1, 0.1]. We use the label “homo” to refer to curves for a homogeneous environment, leaving

all others that show the performance under heterogeneity without a label. In the homogeneous case, we obtain

the detection curves for the full configuration when the CCM is estimated from 440 IID training data snapshots.

In the heterogeneous scenario, we simulate the clutter heterogeneity by inserting 60 high-amplitude, mainbeam
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discrete targets into various range cells with normalized spatial and Doppler frequencies uniformly distributed within

[−0.5, 0.5], [7]. The required training data snapshots for both sub-configurations are selected using the generalized

inner product (GIP)-based non-homogeneity detector (NHD) of [7]. Specifically, we sort the GIP values and retain

the 2K = 200 realizations corresponding to smallest GIP value. Moreover, the labels 2K and 2MN indicate the
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Fig. 6. Clutter spectrum in angle-Doppler plane for both full configuration (left) and the selected optimum sub-configuration (right).

number of snapshots used for the CCM estimation and the curve labelled “Ext” is the result of using all the snapshots

that are returned by the NHD with GIP value below some threshold. In order to better exhibit the superiority of

the proposed selection method, we compare its detection performance with the iterative min-max algorithm [27],

denoted as “min-max”. Note that the subnon is the sub-configuration with the first 100 antenna-pulse pairs selected.

We make the following observations:

• The sub-configurations combined with the NHD retain practically the same detection performance as the

homogeneous case. We do not plot the curves for the sub-configurations in the homogeneous case for simplicity.

• The proposed subspace based selection method outperforms the iterative min-max algorithm, as the generalized

S2C2 directly relates the output SCNR with the selected antenna-pulse pairs;

• The optimum sub-configuration exhibits better performance than the non-optimum and min-max configurations

in both homogeneous and heterogeneous clutter;

• In heterogeneous clutter, the optimum sub-configuration combined with the NHD outperforms the full array,

as it requires fewer IID training data than the full one.

• Interestingly, we find that the optimum sub-configuration with extended IID training data exhibits similar

performance with the full configuration in the homogeneous clutter, which further illustrates the redundancy

of the full configuration in the scenarios where the target is close to the clutter trajectory.

E. Experimental Results

The experimental radar data we used is the MCARM database [45]. The radar platform was travelling at around

100ms−1 over an area that includes a variety of terrain types as well as interfering discretes. The radar was

comprised of a rectangular array of two rows in elevation and 11 sensors in azimuth and collected a coherent pulse

interval of length 128 pulses. The pulse repetition frequency was 1984 Hz. The examples presented here are based

on the acquisition 575 from flight 5. Since the number of available range cells is only 630, we employ the upper

11 uniformly spaced antennas and the first 20 pulses which satisfies the sample size requirement for the CCM

estimation. The clutter spectrum in the angle-Doppler plane is estimated in the left plot of Fig. 6. The clutter ridge

is shifted right in the Doppler axis due to the small crab angle.

Using a similar approach to [46], we inject one target into the range gate 290, which is located at broadside and

Doppler bin 3 (corresponding to a Doppler frequency of 46.5 Hz) with a magnitude 0.003. The target location is
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also marked in Fig. 6. The selected optimum sub-configuration with 100 antenna-pulse pairs is shown in Fig. 8.

The clutter spectrum corresponding to the optimum sub-configuration is presented in the right plot of Fig. 6. We

can see that the clutter trajectory is stretched and narrowed, which increases the separation between the target and

the clutter. The normalized AMF statistics versus range cells from 250 to 400 are shown in Fig. 7. The thresholds

for both full and sub-configurations obtained from the simulations above are also shown. Although one cannot
ascertain whether all the peaks above the threshold are valid targets or false alarms, it is fair to say that it is
highly unlikely that they would all be valid targets. It is certainly fair to say the optimum sub-configuration
produces a much more reasonable detection performance, showing a significant reduction in the number of
false alarms and indicating that there is only one target beside the one we injected. (Here needs editing)
The reason is that the maximum number of homogeneous training data is around 300 for acquisition 575 in flight

5 [45], whereas the full configuration requires 440 IID snapshots.

VI. CONCLUSION

This paper proposed a new perspective where we viewed the interleaved antenna-pulse data as forming a single

large sensor array and investigated a thinned STAP by carrying out selection to this large sensor array. Each

sensor, specified by the antenna number and pulse number, corresponds to an antenna-pulse pair. We reformulated

Spatial and Spectral Correlation Coefficient (S2C2) to characterise the space-time separation between the target and

clutter subspace. Based on the S2C2, we implemented the antenna-pulse selection as a maximization of the output

SCNR and presented two algorithms to select the optimum antenna pulse pairs based on both Fourier basis and
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eigenbasis. The performance of the proposed antenna-pulse selection strategy was validated using simulations and

MCARM experimental data, which demonstrated its effectiveness on robust radar target detection while reducing

the computational load and addressing the problems of clutter heterogeneity and limited sample support.
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