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Abstract—This paper focuses on the efficient estimation of
the frequencies and damping factors of a single two-dimensional
(2-D) damped complex exponential in additive Gaussian noise.
We derive the estimators by extending the FFT-based frequency
estimator that relies on interpolation on Fourier coefficients
to 2-D damped signals. Performance analysis shows that the
algorithm can achieve minimum variances at the fixed point
when implemented in an interleaved manner for two iterations.
Furthermore, we propose linearised version of the estimators that
render them more amenable to real-time DSP implementation.
We also demonstrate that the iterative implementation of the
algorithm combining both versions is both unbiased and accurate.

Index Terms—Two-dimensional (2-D) parameter estimation,
interpolation algorithm, nuclear magnetic resonance (NMR)
spectroscopy, zero-padding.

I. I NTRODUCTION

T WO-DIMENSIONAL (2-D) parameter estimation is a
significant research problem that appears in many en-

gineering applications. In 2-D nuclear magnetic resonance
(NMR) spectroscopy, for example, the signal is modeled as
a sum of damped complex exponentials in additive noise, [1],
[2], and the frequencies, damping factors as well as amplitudes
of the signal contain key information on the composition of the
chemical sample. An acquired NMR signal usually comprises
a large number of time samples, demanding a computationally
simple and accurate method to estimate the key parameters.
This problem is certainly exacerbated in the 2-D NMR case.

In this paper, we focus on the efficient estimation of the
frequencies and damping factors of a single 2-D damped
complex exponential in noise. The signal model is given by:

x(m,n) = Ae(−η+j2πµ)m+(−γ+j2πν)n + w(m,n) (1)

where m = 0 . . .M − 1, n = 0 . . .N − 1. A = |A|ejφ

represents the complex amplitude of the signal whileµ, ν ∈
[−0.5, 0.5] and η, γ > 0 are respectively the normalized
frequencies and damping factors that we need to estimate.
The noise termsw(m,n) are assumed to be complex white
Gaussian noise with zero mean and varianceσ2. The nominal
signal to noise ratio (SNR) is then given byρ = |A|2/σ2, [2].

Over the past few decades, various high-resolution
techniques have been proposed to solve the 2-D fre-
quency/parameter estimation problem. These include ap-
proaches such as MEMP [3], 2-D ESPRIT [4] and IMDF
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[5]. However, these suffer from high computational cost due
to their use of the singular value decomposition (SVD) [5].
Recently in [6], Soet al. presented the PUMA method for
single-tone signal estimation and showed that it can achieve
the Cramér-Rao lower bound (CRLB). Although this method
has a lower computation complexity than high resolution
estimators, it still requires the SVD operation, which severely
restricts its implementation as the signal size becomes large.

Computationally simple parameter estimators have been
developed for the undamped and damped 1-D single tone
case, [2], [7], [8]. These operate in the frequency domain and
can thus take advantage of the fast Fourier transform (FFT)
algorithm to reduce the computational load. In particular,the
estimators of [2], [8], achieve a performance that is extremely
close to the CRLB. Recent work extended these estimators to
the 2-D (undamped) exponentials, [9]. The work presented in
this paper builds on [9], by formulating these estimators inthe
case of a single 2-D damped exponential. Unlike [9], however,
the estimators are derived here in the general sense of both
an arbitrary interpolation location and an arbitrary amount of
zero-padding in each dimension.

The paper is organised as follows. In section II, we present
the generalised 2-D parameter estimation algorithm. In Section
III, performance analysis is carried out including the analysis
of theoretical variances and the linearisation of the estimators.
Simulation results are given in Section IV and finally, relevant
conclusions is drawn in Section V.

II. ESTIMATION ALGORITHM

Let x̂ be the estimate of a quantityx and consider the case
where both dimensions are zero-padded to lengthsK = rM
andL = sN respectively, wherer, s ≥ 1. The true frequencies
of the signal can then be expressed asµ = (k0 + δ)/K and
ν = (l0 + ζ)/L, wherek0 and l0 are integer indices andδ
andζ denote the frequency residuals. Ignoring the noise, the
coarse estimation stage, with the maximizer applied to the
KL-point periodogram, returns the corresponding maximum
bin (k0, l0), [2]. We then examine the Fourier coefficients at
location(k0 + p, l0 + q), where0 ≤ p ≤ r and0 ≤ q ≤ s:

Xp,q =
M−1
∑

m=0

N−1
∑

n=0

x(m,n)e−j2π(m
k0+p

K
+n

l0+q

L
)

= A
(1 − e−Mη+j2π δ−p

r )(1 − e−Nγ+j2π ζ−q

s )

(1− e−η+j2π δ−p
K )(1 − e−γ+j2π ζ−q

L )
. (2)
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Denotingzh = eη−j2π δ
K , zg = eγ−j2π ζ

L and

bp,q = A
(1 − e−Mη+j2π δ−p

r )(1 − e−Nγ+j2π ζ−q

s )

1− e−γ+j2π ζ−q

L

,

cp,q = A
(1− e−Mη+j2π δ−p

r )(1− e−Nγ+j2π ζ−q
s )

1− e−η+j2π δ−p

K

,

we have

Xp,q =
bp,q

1− z−1
h e−j2π p

K

(3)

=
cp,q

1− z−1
g e−j2π q

L

. (4)

Now the coefficient at location(k0 + p− r, l0 + q) is

Xp−r,q =
bp−r,q

1− z−1
h e−j2π p−r

K

.

Using the fact thatbp,q = bp−r,q, we can recoverzh by:

zh =
e−j2π p

K Xp,q − e−j2π p−r

K Xp−r,q

Xp,q −Xp−r,q

. (5)

Thus the estimators ofδ andη are given by:

δ̂ = −
K

2π
Im{ln(zh)}; η̂ = Re{ln(zh)}. (6)

Similarly, by combining the coefficient

Xp,q−s =
cp,q−s

1− z−1
g e−j2π q−s

L

with (4), and using the factcp,q = cp,q−s, we can recoverzg
by:

zg =
e−j2π q

LXp,q − e−j2π q−s

L Xp,q−s

Xp,q −Xp,q−s

(7)

and the estimators ofζ andγ become:

ζ̂ = −
L

2π
Im{ln(zg)}; γ̂ = Re{ln(zg)}. (8)

III. PERFORMANCEANALYSIS

In this section, we present the performance analysis of the
2-D estimators proposed above. In the first subsection, we
derive the theoretical variances of the estimators, and then
find the best interpolation location of each dimension. Thisis
followed by a discussion on the iterative implementation of
the algorithm. The linearisation of the estimators is then dealt
with in the second subsection.

A. Theoretical Variance Analysis

For brevity, we give the variance derivation ofδ̂ andη̂ as the
variances of̂ζ andγ̂ can be easily obtained by the appropriate
substitutions. In order to simplify the notation, letX+ and
X− denoteXp,q andXp−r,q and also putλ+ = e−j2π p

K and
λ− = e−j2π p−r

K . Including the noise terms, (5) becomes:

z̃h =
λ+(X+ +W+)− λ−(X− +W−)

(X+ +W+)− (X− +W−)

=
(λ+X+ − λ−X−) + (λ+W+ − λ−W−)

(X+ −X−)
(

1 + W+−W
−

X+−X
−

) . (9)

At high enough SNR, we have that|W±/X±| ≪ 1, [2].
Therefore, (9) can be written as:

z̃h ≈

(

zh +
λ+W+ − λ−W−

X+ −X−

)(

1−
W+ −W−

X+ −X−

)

≈ zh + ǫ (10)

whereǫ denotes the error:

ǫ =
(λ+ − zh)W+ − (λ− − zh)W−

X+ −X−

.

Now we expandln(z̃h) as a Taylor series aboutzh:

ln(z̃h) ≈ ln(zh) +
ǫ

zh
+O

[

(

ǫ

zh

)2
]

≈ η − j
2π

K
δ +

ǫ

zh
. (11)

The approximate expressions of the theoretical variance ofµ̂
and η̂ become

var[µ̂] ≈
1

4π2
var

[

Im

{

ǫ

zh

}]

≈
MNQ1Q2

32π2ρ sin2
(

π
M

)

Q3

, (12)

andvar[η̂] ≈ var

[

Re

{

ǫ

zh

}]

≈
MNQ1Q2

8ρ sin2
(

π
M

)

Q3

, (13)

wherevar[Re{W±}] = var[Im{W±}] = MNσ2/2 is used
here and:

Q1 =

{

1 + e−2η − 2e−η cos

[

2π

K
(δ − p)

]}

×

{

1 + e−2η − 2e−η cos

[

2π

K
(δ − p+ r)

]}

×

{

1 + e−2γ − 2e−γ cos

[

2π

L
(ζ − q)

]}

;

Q2 = 2 + 2e−2η

−2e−η

{

cos

[

2π

K
(δ − p)

]

+ cos

[

2π

K
(δ − p+ r)

]}

;

Q3 = e−2η

{

1 + e−2Mη − 2e−Mη cos

[

2π

r
(δ − p)

]}

×

{

1 + e−2Nγ − 2e−Nγ cos

[

2π

s
(ζ − q)

]}

.

Applying similar arguments tozg leads to the theoretical
variances of̂ν andγ̂. Alternatively, these can also be obtained
by appropriate parameter substitutions in Eqs. (12) and (13).

The variance expressions reveal that the values ofp and
q affect the estimation performance. Therefore, we expect
there to be an interpolation location for each dimension that
produces the best performance for a zero-padding amounts.
To find the best interpolation location of the first dimension,
we examine the value ofvar[µ̂] versusδ andζ under various
values ofp, q in the unpadded case (r = s = 1) when the
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Fig. 1: Theoretical variance of̂µ under different values ofp andq whenr = s = 1 (η = γ = 0.01,M = N = 32, ρ = 10dB):
(a) p = 0.5, q = 0; (b) p = 0.5± 0.25, q = 0; (c) p = 0.5, q = ±0.25.

signal size and SNR are fixed. In Fig. 1, we plot the variances
obtained by five different sets ofp andq with M = N = 32,
η = γ = 0.01, ρ = 10dB. It can be easily observed that setting
p = r/2 and q = 0 centers the variance atδ = ζ = 0 and
gives the smallest maximum values for it. The same conclusion
can be reached forzg and the best interpolation location of
p = 0 and q = s/2 are found for the second dimension. By
interpolating on the best location in both dimensions, we can
obtain the most robust estimation for all the parameters. From
this point on, the estimators are assumed to be working on the
best interpolation locations unless otherwise indicated.

The variances of the various quantities are all dependent
on the frequency residuals. In order to consistently obtainthe
lowest estimation variances at the fixed pointδ = ζ = 0,
we proceed in line with the methodology proposed in [9] and
[2] to consider the alternative and iterative implementation of
the proposed estimators. Therefore, the estimation is applied
according to the following sequence:δ1 → ζ1 → δ2 → ζ2
to obtain residual estimates and remove all the previous
estimation from the maximum bin before the next estimation.
In the second iteration, the damping factors are estimated
alongside with the frequency residuals. As a result of the
iterative implementation, the estimation variances converge to
δ = ζ = 0 and reach their minimum values consistently.

B. Linearised Estimators

The expression of (5) and (7) involve logarithmic and angle
operations, which are undesirable in many real-time applica-
tions. Therefore, we give alternative estimation expressions
that avoid these non-linear functions.

Applying the expansionex = 1+x+O(x2) to zh we have

zh = 1 + η − j
2π

K
δ +O

[

(

η − j
2π

K
δ

)2
]

. (14)

Thus we can obtain the linearised estimators ofδ andη as:

δ̂L = −
K

2π
lm{zh}; η̂L = Re{zh} − 1. (15)

Similarly we can also find the linearised version of (8):

ζ̂L = −
L

2π
lm{zg}; γ̂L = Re{zg} − 1. (16)

The cost of achieving the computational simplicity of the
estimation expressions is that a bias ofε ∼ O

[

(

η − j 2π
K
δ
)2
]

is introduced into the estimators. In order to strike a balance
between the computational cost and the estimation perfor-
mance, we propose the use of the linearised estimators (15)
and (16) in the first iteration of the estimation followed by the
exact version (5) and (7) in the second iteration. This means
that the final estimates are bias free. We now summarize the
2-D parameter estimation algorithm:

1) Zero-pad the signal toK = rM , L = sN ;
2) CalculateX(k, l) = FFT (x)(x being the zero-padded

signal) and find the maximum bin(k̂0, l̂0) of the peri-
odogram|X(k, l)|2;

3) Use (15) to obtain̂δ1 and update(k̂1, l̂0) = (k̂0+ δ̂1, l̂0);
Then use (16) to obtain̂ζ1 and set(k̂1, l̂1) = (k̂1, l̂0+ζ̂1);

4) Use (5) to obtain̂δ2 , η̂ and update(k̂2, l̂1) = (k̂1 +
δ̂2, l̂1); Then use (7) to obtain̂ζ2, γ̂ and set(k̂2, l̂2) =
(k̂2, l̂1 + ζ̂2);

5) Find µ̂ = k̂2

K
and ν̂ = l̂2

L
.

IV. SIMULATION RESULTS

In this section, we present simulation results in order to
verify the performance of the algorithm presented above.

In Fig. 2 we show the root mean square error (RMSE)
of both frequency and damping factor estimates versus SNR
whenη = 0.01, γ = 0.02 andM = N = 32. The algorithm
is simulated in both unpadded case(r = s = 1) and padding
both dimensions to twice of their original lengths(r = s = 2).
For the sake of comparison, we also show the results estimated
by the PUMA algorithm [6], the theoretical variances at the
fixed point δ = ζ = 0 as well as the 2-D CRLB [10].
Frequencies are selected randomly in 5,000 Monte Carlo runs.
We can observe that for the unpadded case, the novel algorithm
has a breakdown threshold of about−8dB, which performs
slightly better than PUMA. This difference is more observable
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Fig. 2: RMSE of different estimators versus SNR whenη = 0.01, γ = 0.02 andM = N = 32.

in damping factor estimates shown in Fig. 2c and Fig. 2d. The
novel estimators show improved robustness after zero-padding
having a breakdown threshold of−11dB. This is due to the
improved performance of the maximum bin search during the
coarse estimation stage. In high SNR, both algorithms share
similar performance that is quite close to the CRLB.

V. CONCLUSION

In this paper, we have proposed a computationally simple
algorithm for estimating frequencies and damping factors of
a single 2-D damped complex exponential by generalising the
interpolation locations of Fourier coefficient as well as the
amount of zero-padding. We derived theoretical expressions
of the estimation variances and showed that there exists a
best interpolation location for each dimension. In order to
further reduce the computational burden, we have developeda
linearised version of the estimators that avoids the logarithmic
and angle operations. By combining the exact version and
the linearised version, the iterative implementation of the
estimators can converge to the fixed point, where lowest
estimation variances can be obtained. Finally, the simulation
results are used to verify the theory.
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