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Abstract—This paper focuses on the efficient estimation of [5]. However, these suffer from high computational cost due
the frequencies and damping factors of a single two-dimenshal o their use of the singular value decomposition (SVD) [5].
(2-D) damped complex exponential in additive Gaussian nais Recently in [6], Soet al. presented the PUMA method for
We derive the estimators by extending the FFT-based frequeay . ) . - . .
estimator that relies on interpolation on Fourier coefficients smgle-ton,e signal estimation and showed that it can aehiev
to 2-D damped signals. Performance analysis shows that thethe Cramér-Rao lower bound (CRLB). Although this method
algorithm can achieve minimum variances at the fixed point has a lower computation complexity than high resolution
when implemented in an interleaved manner for two iteratiors. estimators, it still requires the SVD operation, which sele

Furthermore, we propose linearised version of the estimats that  egyricts jts implementation as the signal size becomee lar
render them more amenable to real-time DSP implementation.

We also demonstrate that the iterative implementation of tke Computationally simple parameter estimators h_ave been
algorithm combining both versions is both unbiased and acaate.  developed for the undamped and damped 1-D single tone

case, [2], [7], [8]. These operate in the frequency domaih an
Index Terms—Two-dimensional (2-D) parameter estimation, Can thus take advantage of the fast Fourier transform (FFT)
interpolation algorithm, nuclear magnetic resonance (NMR algorithm to reduce the computational load. In particullae,
spectroscopy, zero-padding. estimators of [2], [8], achieve a performance that is extlym
close to the CRLB. Recent work extended these estimators to
. INTRODUCTION the 2-D (undamped) exponentials, [9]. The work presented in
WO-DIMENSIONAL (2-D) parameter estimation is athis paper builds on [9], by formulating these estimatorti
significant research problem that appears in many egase of a single 2-D damped exponential. Unlike [9], however
gineering applications. In 2-D nuclear magnetic resonangte: estimators are derived here in the general sense of both
(NMR) spectroscopy, for example, the signal is modeled as arbitrary interpolation location and an arbitrary antoofn
a sum of damped complex exponentials in additive noise, [kkro-padding in each dimension.
[2], and the frequencies, damping factors as well as antf#l8u  The paper is organised as follows. In section II, we present
of the signal contain key information on the compositiont® t the generalised 2-D parameter estimation algorithm. Ii@ec
chemical sample. An acquired NMR signal usually comprisgg, performance analysis is carried out including the gt
a large number of time samples, demanding a computationabtheoretical variances and the linearisation of the estims.

simple and accurate method to estimate the key parametejigaylation results are given in Section IV and finally, reiey
This problem is certainly exacerbated in the 2-D NMR casggnclusions is drawn in Section V.

In this paper, we focus on the efficient estimation of the
frequencies and damping factors of a single 2-D damped
complex exponential in noise. The signal model is given by:

x(m,n) = Ae(—ntizrp)ymt(=y+i2mv)n | w(m,n) (1)

_ B _ B _ ib Let & be the estimate of a quantityand consider the case
wherem = 0...M =1, n =0...N—1 4 = |e where both dimensions are zero-padded to lengths rM/
dandL = sN respectively, where, s > 1. The true frequencies
L the signal can then be expressedias: (ko + 6)/K and
& — (lo +¢)/L, whereko andl, are integer indices and
and ¢ denote the frequency residuals. Ignoring the noise, the
coarse estimation stage, with the maximizer applied to the

Over the past few decades, various high-resoluticfﬁ_L'pOint periodogram, returns the corresponding maximum

techniques have been proposed to solve the 2-D fin (l_co,lo), [2]. We then examine the Fourier coefficients at
quency/parameter estimation problem. These include aRcation (ko +p,lo +¢), where0 < p <rand0 <g < s
proaches such as MEMP [3], 2-D ESPRIT [4] and IMDF N

M
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II. ESTIMATION ALGORITHM

represents the complex amplitude of the signal while €
[-0.5,0.5] andn, v > 0 are respectively the normalize
frequencies and damping factors that we need to estim
The noise termsv(m,n) are assumed to be complex whit
Gaussian noise with zero mean and variam¢eThe nominal
signal to noise ratio (SNR) is then given py= |A4|? /o2, [2].
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Denotingz;, = " 7*"x, z, = 7 7/*"Z and

1— 671\4774»3'2776%?)(1 _ efN'erjQﬂCS;q)

bpqg = A(
p,q 1 _ 677+j27r<[‘;q )

(1- e—Mn+j27r“+P)(1 _ e—Nv+j27r<%’)

Cpg = A
P.q 1— 6_77+j2ﬂ_5—7p )
we have
b
Xpg=——20 3
p,q 1— Z}:le__]gﬂ-% ( )
C
— P,q . (4)
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Now the coefficient at locatiofky + p — r,lg + q) is

bP*T-,q
T

Xp-rq =
Using the fact thab, , = b,_, 4, we can recovee;, by:

Zh =

eijQﬂ%Xp,q _ eijQWP_I;TXp,nq
Xp,q - Xp—nq '

Thus the estimators of andn are given by:

7 = Re{ln(zp)}. (6)

Similarly, by combining the coefficient

(®)

5= _glm{ln@m};

Cp,g—s
X ,q—s — #75
b 1— z5te—d2mig"
with (4), and using the facat, ; = ¢, q—s, W€ Can recoveeg,
by:
—ior L — oS
eTLXy g — e T Xy g
XP-,q - XPvQ*S

and the estimators af and~y become:

= —%Im{ln(zg)}; 4 = Re{ln(zy)}. (8)

(@)

Zg:

Ill. PERFORMANCEANALYSIS

At high enough SNR, we have thalV./X.| <« 1, [2].
Therefore, (9) can be written as:

5~ (Zh+ A Wy —/\W> <1 Wy —W>
X, —-X_ Xy —X_
R zp + e (10)
wheree denotes the error:
_ ()\+ - Zh)W+ - ()\_ - Zh)W_
X, —X_
Now we expandn(Z,) as a Taylor series about;:
€ 2
In(zp) ~ In(zp) + o +0 (Z) ]
27 €
""“77_]?64'2- (11)

The approximate expressions of the theoretical variancg of

and7 become
1 €
Hvar |:Im {Z }:|

MNQ:1Q2

var[j] =

~ 3272 p sin’ (%) Q3 (12)
andvar[)] ~ var [Re {;H
h
MNQ,1Q> (13)

8p sin? (%) Qs’
wherevar[Re{W.}] = var[Im{W.}] = MNo?/2 is used

here and:
21
—2n _ 9,—1 2085 —
{1+e 2e cos[ (6 p)}}

Q1 =
X {1 +e72" — 2¢7 " cos [2%(5—]94—7“)}}

X {1 +e 27 — 27 cos {2%(( - q)} } ;
In this section, we present the performance analysis of the

2-D estimators proposed above. In the first subsection, W& =

derive the theoretical variances of the estimators, and the

find the best interpolation location of each dimension. Téis

followed by a discussion on the iterative implementation of

the algorithm. The linearisation of the estimators is theald

with in the second subsection. Qs =

2+ 2™

—9e L eos | 25— p)| +cos | 2Z@G—p+r)| b
K K

2
e 21 {1 e 2Mn _ 96~ M1 o5 {%(5 - p)] }

2
X {1 +e N7 27N cos [—W(C - q)] } .
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For brevity, we give the variance derivation®énds as the . o .
variances of and¥ can be easily obtained by the appropriate ~APPIYing similar arguments ta;, leads to the theoretical
substitutions. In order to simplify the notation, Iat, and variances of> and4. Alternatively, these can also be obtained

X_ denoteX, , and X,_,., and also pub\, = o727 % and BY appropriate parametgr substitutions in Egs. (12) anyl (13
A = 7275 Including the noise terms, (5) becomes: The variance expressions reveal that the values ahd

g affect the estimation performance. Therefore, we expect
5 = X A W) - A (X + W) there to be an interpolation location for each dimension tha
(Xp4+Wy)— (X +Wo) produces the best performance for a zero-padding amounts.
X A X )W =X W) ©) To find the best interpolation location of the first dimension
o (X4 — X_) (1 i W+7W,) ' we examine the value ofar[j] versuss and¢ under various
Xy —X— values ofp, ¢ in the unpadded case (= s = 1) when the

A. Theoretical Variance Analysis




Variance
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Fig. 1: Theoretical variance qgf under different values of andqg whenr =s=1 (n =~ =0.01, M = N = 32, p = 10dB):
(@)p=0.5¢=0;(b)p=0.5+0.254¢=0; (c) p=0.5,q = +0.25.

signal size and SNR are fixed. In Fig. 1, we plot the varianc&milarly we can also find the linearised version of (8):
obtained by five different sets @f andq with M = N = 32, R I X
n =~ = 0.01, p = 10dB. It can be easily observed that setting (=—5Im{zg};  Jr=Re{z} -1  (16)
p = r/2 and ¢ = 0 centers the variance at= ¢ = 0 and
gives the smallest maximum values for it. The same conatusio ) ) ? " o o\ 2
can be reached for, and the best interpolation location oféStimation expressions is that a biascof O (n __375)
p=0andq = s/2 are found for the second dimension. ByS introduced into the estimators. In order to S'Frlke_a bedan
interpolating on the best location in both dimensions, we c®etween the computational cost and the estimation perfor-
obtain the most robust estimation for all the parametexsmir Mance, we propose the use of the linearised estimators (15)
this point on, the estimators are assumed to be working on ffad (16) in the first iteration of the estimation followed bt
best interpolation locations unless otherwise indicated. ~ €xact version (5) and (7) in the second iteration. This means

The variances of the various quantities are all dependdfigt the final estimates are bias free. We now summarize the
on the frequency residuals. In order to consistently obffain 2-D parameter estimation algorithm:
lowest estimation variances at the fixed pobt= ¢ = 0, 1) Zero-pad the signal t& = rM, L = sN;
we proceed in line with the methodology proposed in [9] and 2) CalculateX (k,l) = FFT(z)(x being the zero-padded
[2] to consider the alternative and iterative implemewtatf signal) and find the maximum bif¥o, lo) of the peri-
the proposed estimators. Therefore, the estimation isiexppl odogram| X (k, 1)|?; o o
according to the following sequenc& — (; — 6 — (o 3) Use (15)to obtaid; and updaték:,lo) = (ko +d1,lo);
to obtain residual estimates and remove all the previous Thenuse (16)to obtaity and setk1, 1) = (k1,lo+C1);

+

The cost of achieving the computational simplicity of the

estimation from the maximum bin before the next estimation. 4) Use (5) to obtair, , 7 and update(kz,l1) = (k1
In the second iteration, the damping factors are estimated 02,/1); Then use (7) to obtaigy, 4 and set(ks, I2)
alongside with the frequency residuals. As a result of the (k2,01 + C2);

iterative implementation, the estimation variances coyedo 5) Find g = ’“72 andi = 2.
0 = ¢ = 0 and reach their minimum values consistently.

o~

IV. SIMULATION RESULTS

B. Linearised Estimators In this section, we present siml_JIation results in order to
_ _ o verify the performance of the algorithm presented above.

The expression of (5) and (7) involve logarithmic and angle |n Fig. 2 we show the root mean square error (RMSE)
operations, which are undesirable in many real-time applicof both frequency and damping factor estimates versus SNR
tions. Therefore, we give alternative estimation expmssi whenyn = 0.01, v = 0.02 and M = N = 32. The algorithm
that avoid these non-linear functions. is simulated in both unpadded cage= s = 1) and padding

Applying the expansion® = 1+ 2+ O(z?) to z, we have both dimensions to twice of their original lengths= s = 2).

9 For the sake of comparison, we also show the results estimate
o =1+1n— j2—76 ) (77 _jz_ﬂ(;) . (14) by the PUMA algorithm [6], the theoretical variances at the
K K fixed pointd = ¢ = 0 as well as the 2-D CRLB [10].
) ) ) ) _ Frequencies are selected randomly in 5,000 Monte Carla runs
Thus we can obtain the linearised estimator$ @nd7 as: e can observe that for the unpadded case, the novel algorith
N K . has a breakdown threshold of abou8dB, which performs
op = —g-Im{z}; A =Re{z} 1. (15) slightly better than PUMA. This difference is more obseteab
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Fig. 2: RMSE of different estimators versus SNR whes: 0.01,v = 0.02 and M = N = 32.

in damping factor estimates shown in Fig. 2c and Fig. 2d. The plication to NMR spectroscopy data,1EEE Transactions on Signal

novel estimators show improved robustness after zeroipgdd
having a breakdown threshold ef11dB. This is due to the

(2]

improved performance of the maximum bin search during the

coarse estimation stage. In high SNR, both algorithms shaf8

similar performance that is quite close to the CRLB.

V. CONCLUSION

(4

Processing, vol. 44, no. 9, pp. 2245-2259, 1996.

E. Aboutanios, “Estimation of the frequency and decagtda of a
decaying exponential in noisdEEE Transactions on Signal Processing,
vol. 58, no. 2, pp. 501-509, 2010.

Y. Hua, “Estimating two-dimensional frequencies by maenhance-
ment and matrix pencil,1EEE Transactions on Signal Processing, vol.
40, no. 9, pp. 2267-2280, 1992.

S. Rouquette and M. Najim, “Estimation of frequencies atamping
factors by two-dimensional ESPRIT type method€EE Transactions
on Sgnal Processing, vol. 49, no. 1, pp. 237 —-245, 2001.

In this paper, we have proposed a computationally simplg] J. Liu and X. Liu, “An eigenvector-based approach for titlinensional
algorithm for estimating frequencies and damping factdrs o

a single 2-D damped complex exponential by generalising t
interpolation locations of Fourier coefficient as well a® th

H%] H.C. So, FK.W. Chan, W.H. Lau, and C.-F. Chan,

amount of zero-padding. We derived theoretical expression

of the estimation variances and showed that there exists

linearised version of the estimators that avoids the |digaic

frequency estimation with improved identifiabilityfEEE Transactions
on Sgnal Processing, vol. 54, no. 12, pp. 4543 —4556, 2006.

“An effitie
approach for two-dimensional parameter estimation of glsitone,”
|EEE Transactions on Sgnal Processing, vol. 58, no. 4, pp. 1999-2009,
2010.

- ) ] ' ‘ ﬁ M. Bertocco, C. Offelli, and D. Petri, “Analysis of damgpesinusoidal
best interpolation location for each dimension. In order to

further reduce the computational burden, we have develaped

(8]

and angle operations. By combining the exact version and

the linearised version, the iterative implementation oé th
estimators can converge to the fixed point, where Ioweé?]
estimation variances can be obtained. Finally, the sirmurat

results are used to verify the theory.
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