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Abstract—The estimation of the frequencies of multiple super-
imposed exponentials in noise is an important research problem
due to its various applications from engineering to chemistry.
In this paper, we propose an efficient and accurate algorithm
that estimates the frequency of each component iteratively
and consecutively by combining an estimator with a leakage
subtraction scheme. During the iterative process, the proposed
method gradually reduces estimation error and improves the
frequency estimation accuracy. We give theoretical analysis where
we derive the theoretical bias and variance of the frequency
estimates and discuss the convergence behaviour of the estimator.
We show that the algorithm converges to the asymptotic fixed
point where the estimation is asymptotically unbiased and the
variance is just slightly above the Cramer-Rao lower bound. We
then verify the theoretical results and estimation performance
using extensive simulation. The simulation results show that
the proposed algorithm is capable of obtaining more accurate
estimates than state-of-art methods with only a few iterations.

Index Terms—Frequency estimation, interpolation algorithm,
Fourier coefficient, leakage subtraction.

I. Introduction

ESTIMATING the frequencies of the components in sums
of complex exponentials in noise is an important research

problem as it arises in many applications such as radar,
wireless communications and spectroscopy analysis [1], [2].
The signal model given by

x(n) =

L∑
l=1

sl(n) + w(n)

=

L∑
l=1

Ale j2π fln + w(n), n = 0 . . .N − 1. (1)

Here L is the number of components, which is assumed to
be known a priori, and fl ∈ [−0.5, 0.5] is the normalised fre-
quency of the lth component. The noise terms w(n) are additive
Gaussian noise with zero mean and variance σ2. The signal
to noise ratio (SNR) of the lth component is ρl = |Al|

2/σ2. We
note that resolving closely spaced components, as a distinct
research problem itself, is not a concern of this paper.

The estimation of the frequencies of multi-tone exponentials
has been the subject of intense research for many decades.
The various algorithms that have been proposed to handle it,
[3], [4], can be categorised into two types: non-parametric
estimators and parametric estimators.

Non-parametric estimators, including the traditional Capon
[5], APES [6] and IAA [7] estimators exhibit high resolution,
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that is they can resolve closely spaced sinusoids but are
computationally highly complex. Efficient implementation of
these methods [8]–[10] consume O(N2 + K log2 K) for the
computation of a length-K spectrum estimate. The frequency
estimation can be performed using peak picking but this
requires a dense sampling of the spectrum, that is K � N,
which exacerbates the computational burden.

Instead of estimating the signal spectrum, parametric esti-
mators try to find accurate estimates of the signal parameters
only. They can be further classified into time and frequency
domain approaches. The time domain approaches are the more
popular ones as they can achieve both high resolution as well
as accurate estimation. These include subspace approaches
such as Matrix Pencil (MP) [11] and ESPRIT [12], [13]
which use the singular value decomposition (SVD) to separate
the noisy signal into pure signal and noise subspaces, or
iterative optimisation algorithms including IQML [14] and
Weighted Least Squares (WLS) [15], [16] that minimise the
error between the noisy and pure signals subject to different
constraints. However, similar to non-parametric estimators,
they suffer from high computational cost due to the SVD op-
eration, matrix inversion and/or the eigenvalue decomposition
involved, which require O(N3) for computation for large N.
Frequency-domain parametric estimators, on the other hand,
are computationally more efficient. The traditional CLEAN
approach [17], which combines the maximiser of the discrete
periodogram and an iterative estimation-subtraction procedure,
is not desirable as the estimation error is of the same order
as the reciprocal of the size of the discrete periodogram [18].
This makes it inaccurate when a sparse spectrum is calculated,
or computationally complex for obtaining a dense spectrum.

A number of efficient algorithms have been proposed in
[19]–[21] to refine the maximiser of the N-point periodogram
by interpolation on Fourier coefficients. But, as these are
developed for single-tone signals, they perform poorly in the
multiple component case due to the bias resulting from the
interference of the components with one another. Much work,
[1], [22], [23], has been done to reduce the effect of the
interference by applying the interpolators after pre-multiplying
the signal by a time domain window. However, non-rectangular
windows lead to deterioration of estimation accuracy. In this
paper, we overcome the aforementioned limitations by propos-
ing a novel parametric estimation algorithm that operates in
the frequency domain and achieves excellent performance.
The new approach is more computationally efficient than the
non-parametric and time domain parametric estimators, yet it
outperforms them in terms of estimation accuracy.

The rest of the paper is organised as follows. In Section
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II, we present the novel frequency estimation algorithm. We
analyse the algorithm in Section III and give its theoretical
performance. In Section IV, we show simulation results by
comparing the proposed algorithm with state-of-art parametric
estimators and the Cramer-Rao Lower Bound (CRLB). Finally,
some conclusion are drawn in Section V.

II. The ProposedMethod

Let λ̂ denote the estimate of the parameter λ. The A&M
estimator of [18], [19] is a powerful and efficient algorithm
for the estimation of the frequency of a single-tone signal. It
uses a two stage strategy, obtaining first a coarse estimate from
the maximum of the N-point periodogram

m̂ = arg max
k
|X(k)|2

= arg max
k

∣∣∣∣∣∣∣
N−1∑
n=0

x(n)e− j 2π
N kn

∣∣∣∣∣∣∣
2

. (2)

In the noiseless case, we have limN→∞ m̂ = m, a.s. [19]. When
m̂ is the true maximum bin, the frequency of the signal can
be written as

f =
m̂ + δ

N
, (3)

where δ ∈ [−0.5, 0.5] is the frequency residual. The A&M
algorithm then refines the coarse estimate by interpolating on
Fourier coefficients to obtain an estimate for the residual δ.

Let X±0.5 be the Fourier Coefficients at locations m̂ ± 0.5.
In the noiseless case, these are given by

X±0.5 =
1
N

N−1∑
n=0

x(n)e− j 2π
N (m̂±0.5)n

=
A
N

1 + e j2πδ

1 − e j 2π
N (δ∓0.5)

. (4)

Putting z−1 = e− j2π δ
N , an estimate of which is constructed as

ẑ−1 = cos
(
π

N

)
− 2 jh sin

(
π

N

)
, (5)

where h is the interpolation function

h =
1
2

X0.5 + X−0.5

X0.5 − X−0.5
. (6)

From ẑ−1, estimates of δ and consequently of the frequency f
become

δ̂ = −
N
2π
=

{
ln ẑ−1

}
, and f̂ =

m̂ + δ̂

N
. (7)

Here ={•} denotes the imaginary part of •. The key to the
A&M algorithm compared to other interpolators like those
of [24] is that it can be implemented iteratively in order to
improve the estimation accuracy, [19]. In each iteration the
estimator removes the previous estimate of the residual before
re-calculating Fourier coefficients and re-interpolating. It was
shown in [19] that two iterations are sufficient for the estimator
to obtain asymptotically unbiased frequency estimate with the
variance only 1.0147 times the CRLB.

Now turning to the multi-tone case, that is L ≥ 2, let
{m̂l}

L
l=1 be the estimates of the maximum bins. Also let δ̂p

be the estimates of the residuals from the previous iteration.

The Fourier coefficients of the pth component at locations
(m̂p + δ̂p ± 0.5) are

Xp,±0.5 =
1
N

N−1∑
n=0

x(n)e− j 2π
N (m̂p+δ̂p±0.5)n (8)

= S p,±0.5 +

L∑
l=1,l,p

S l,±0.5 + Wp,±0.5, (9)

where S p,±0.5 are Fourier coefficients for a single exponential
sp(n) as per Eq. (4). Wp,±0.5 are the corresponding noise
terms at the interpolation locations. S l,±0.5 is the leakage term
introduced by the lth component,

S l,±0.5 =
1
N

N−1∑
n=0

sl(n)e− j 2π
N (m̂p+δ̂p±0.5)n

=
Al

N
1 + e j2π(δl−δ̂p)

1 − e j 2π
N (Ml,p+δl−δ̂p∓0.5)

, (10)

where
Ml,p = m̂l − m̂p. (11)

As proposed in [1], [25], the leakage terms can be attenuated
by applying a window to the signal. Although this reduces the
bias it also leads to a broadening of the main lobe and comes
at the cost of an increase in the estimation variance. We, on
the other hand, address this problem by estimating the leakage
terms in Eq. (10) and removing them in order to obtain the
expected coefficients of a single exponential. We then apply
the A&M estimator to estimate the frequency. It is clear from
Eq. (10) that this necessitates the parameters δl and Al be
known or at least estimates for them should be available. In
what follows, we construct a procedure to achieve this.

Let us start by assuming that we have estimates{
δ̂l, Âl

}L

l=1,l,p
. Then the total leakage term can be obtained as

L∑
l=1,l,p

Ŝ l,±0.5 =

L∑
l=1,l,p

Âl

N
1 + e j2π(δ̂l−δ̂p)

1 − e j 2π
N (Ml,p+δ̂l−δ̂p∓0.5)

. (12)

Subtracting the estimated total leakage from the Fourier Co-
efficient (shown in Eq. (9)) yields

Ŝ p,±0.5 = Xp,±0.5 −

L∑
l=1,l,p

Ŝ l,±0.5

= Xp,±0.5 −

L∑
l=1,l,p

Âl

N
1 + e j2π(δ̂l−δ̂p)

1 − e j 2π
N (Ml,p+δ̂l−δ̂p∓0.5)

. (13)

Accurately estimating and subtracting the leakage terms
would lead to a reduction in the bias in the estimates of δp

and Ap. Therefore, we propose an iterative procedure where
in each iteration we estimate the parameters, δ and A, of each
component using the previous estimates of all components.
We start by initialising all of the parameter estimates to 0.
To elucidate the procedure, consider the estimation of the pth

component during the ith iteration. Given the set of estimates{
δ̂(i−1)

l , Â(i−1)
l

}L

l=1,l,p
, we calculate the total leakage term at the

locations m̂p + δ̂(i−1)
p ± 0.5 according to Eq. (12). We then

obtain the “leakage-free” Fourier coefficients using Eq. (13)
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and apply the A&M algorithm to get a new estimate of the
residual δ̂(i)

p . The estimate of the complex amplitude, on the
other hand, is obtained by subtracting the sum of the leakage
terms from the amplitude at the true frequency:

Âp =
1
N

N−1∑
n=0

x(n)e− j2π f̂pn −

L∑
l=1,l,p

Ŝ l, f̂l


=

1
N

N−1∑
n=0

x(n)e− j2π f̂pn −

L∑
l=1,l,p

Âl

N
1 − e j2πN( f̂l− f̂p)

1 − e j2π( f̂l− f̂p)
.(14)

As we show in the following section, as the algorithm is
iterated, the error between Ŝ p,±0.5 and S p,±0.5 is consistently
reduced since the leakage terms in Eq. (10) is better estimated.
As the number of iterations increases, the estimation variances
approach the CRLB of the multiple component case.

The estimation procedure of the proposed algorithm is
summarised in Table I. Its overall computational complexity
is O(LN log2 N). Asymptotically, this is of the same order as
the FFT operation. It is therefore more efficient than the non-
parametric estimators and the time-domain parametric estima-
tors, especially when N becomes so large that the SVD, matrix
inversion and eigenvalue decomposition operations utilised in
those methods become unimplementable.

TABLE I
Estimation Procedure of the IterativeMultiple Component Estimator

1. Initialise { f̂l}Ll=1 = {δ̂l}
L
l=1 = {Âl}

L
l=1 = 0;

2. For q = 1 to Q iterations do:
For p = 1 to L, do:

(1) If q = 1, find the maximum bin m̂p;
(2) Use Eqs. (8) and (13) to obtain the “leakage-free”

Fourier Coefficients Ŝ p,±0.5;
(3) Apply the A&M estimator (Eqs. (5)-(7)) using Ŝ p,±0.5

to get δ̂p;
(4) Update Âp using Eq. (14);

3. Finally obtain f̂l =
m̂l + δ̂l

N
, l = 1 . . . L.

III. Analysis
In this section, we present the theoretical analysis of the

proposed algorithm. We proceed to derive the theoretical
bias and variance, then discuss the convergence properties.
Although the noise terms in Eq. (1) are assumed to be additive
Gaussian, the following analysis works under more general
assumption on the noise terms established in [26]. Under these
assumptions, the Fourier coefficients of the noise converge in
distribution, satisfying

lim sup
N→∞

sup
k

|W(k)|2

N−1 ln N
≤ 2π fx(k), (15)

where fx(k) is the spectrum density function of the noise, [26].
Thus W(k) ∼

(
N−

1
2
√

ln N
)

almost surely (a.s.). To proceed, we
make the following assumption on the frequency separations

Assumption 1: For L ≥ 2, we have

∆ = min
p,l=1...L;p,l

∣∣∣ fp − fl
∣∣∣ ∼ O(1).

This assumption implies that the minimum frequency separa-
tion is independent of N.

A. Theoretical Bias and Variance

We first carry out analysis for L = 2, and then generalise
the results to L ≥ 2.

Let ν1 and ν2 be the estimates of δ1 and δ2 respectively,
and M = M2,1 = m̂2 − m̂1. Putting V± = S 2,±0.5 − Ŝ 2,±0.5 and
replacing the subscripts {1, ν1±0.5} by {±}, the “leakage free”
Fourier coefficients of the 1st component can be expressed as

Ŝ ± = S ± + V± + W± (16)

=
a1

N
(
1 − e j 2π

N (δ1−ν1)
) + V± + W± (17)

where

a1 = A1

(
1 + e j2π(δ1−ν1)

)
= 2A1 cos(π(δ1 − ν1))e jπ(δ1−ν1). (18)

The interpolation function of the 1st component is

ĥ1 =
1
2

Ŝ + + Ŝ −
Ŝ + − Ŝ −

=
1
2

S ++S −
S +−S −

+ V++V−+W++W−
S +−S −

1 + V+−V−+W+−W−
S +−S −

=

h1 + j Nλ1

4a1z1 sin( π
N ) (V+ + V− + W+ + W−)

1 + j Nλ1

2a1z1 sin( π
N ) (V+ − V− + W+ −W−)

, (19)

where

h1 =
1
2

S 0.5 + S −0.5

S 0.5 − S −0.5
, (20)

z1 = e j 2π
N (δ1−ν1), (21)

and

λ1 =
(
1 − z1e− j πN

) (
1 − z1e j πN

)
. (22)

Now

V± =
A2

N
1 + e j2π(δ2−ν1)

1 − e j 2π
N (M+δ2−ν1∓0.5)

−
Â2

N
1 + e j2π(ν2−ν1)

1 − e j 2π
N (M+ν2−ν1∓0.5)

, (23)

where Â2 can be expanded as

Â2 =
1
N

N−1∑
n=0

[s1(n) + s2(n) + w(n) − ŝ1(n)]e− j2π f̂2n

= A2
1 − e j2π(δ2−ν2)

N
(
1 − e j 2π

N (δ2−ν2)
) + A1

1 − e j2π(δ1−ν2)

N
(
1 − e j 2π

N (δ1−ν2−M)
)

−Â1
1 − e j2π(ν1−ν2)

N
(
1 − e j 2π

N (ν1−ν2−M)
) + W2. (24)

In Eq. (24), W2 is the noise term at f̂2 = (m̂2 + ν2)/N. Under
Assumption 1, we have that | f2− f1| = |(M+δ2−δ1)/N | ∼ O(1),
so M ∼ O(N) and M/N ∼ O(1). As a result, the second and
third terms of Eq. (24) are O(N−1), and

Â2 = A2
1 − e j2π(δ2−ν2)

N
(
1 − e j 2π

N (δ2−ν2)
) + W2 + O(N−1). (25)
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Therefore

V± =
A2

N
β± −

1 + e j2π(ν2−ν1)

N
(
1 − e j 2π

N (M+ν2−ν1∓0.5)
) (W2 + O(N−1))

=
A2

N
β± −W2± + O(N−2), (26)

where

β± =
1 + e j2π(δ2−ν1)

1 − e j 2π
N (M+δ2−ν1∓0.5)

−

(
1 − e j2π(δ2−ν2)

) (
1 + e j2π(ν2−ν1)

)
N

(
1 − e j 2π

N (δ2−ν2)
) (

1 − e j 2π
N (M+ν2−ν1∓0.5)

) , (27)

W2± = η±W2, (28)

and

η± =
1 + e j2π(ν2−ν1)

N
(
1 − e j 2π

N (M+ν2−ν1∓0.5)
) . (29)

Now we have the following lemma:
Lemma 1: For L = 2, if Assumption 1 holds, f̂1 asymptoti-

cally converges to a normal:

f̂1 → N( f1 + µ f1 , σ
2
f1 ). (30)

The mean µ f1 and variance σ2
f1

of the distribution are respec-
tively given by

µ f1 =
π[(δ1 − ν1)2 − 0.25]
2A1 cos(π(δ1 − ν1))
×

{
[1 − 2(δ1 − ν1)]=

{
e− j2π(δ1−ν1)β+

}
+[1 + 2(δ1 − ν1)]=

{
e− j2π(δ1−ν1)β−]

}}
, (31)

and

σ2
f1 =

π2[(δ1 − ν1)2 − 0.25]2

4ρ1N3 cos2(π(δ1 − ν1))
[1 + 4(δ1 − ν1)2]. (32)

Furthermore, µ f1 |δ1=ν1,δ2=ν2 = 0, meaning the estimator is
unbiased at the true frequencies.

Proof: See Appendix A.
Based on Lemma 1, now we have the following theorem:
Theorem 1: If Assumption 1 holds, the frequency estimates

given by the proposed algorithm are asymptotically statisti-
cally independent and converge in distribution to the standard
normal. that is

∀p = 1 . . . L, f̂p → N
(

fp + µ fp , σ
2
fp

)
, (33)

where µ fp and σ2
fp

are respectively the mean and variance of
the asymptotic distribution of f̂p.

From Eq. (31) it is straightforward to see that the mean of
the asymptotic distribution of f̂p is given by

µ fp =
π[(δp − νp)2 − 0.25]
2Ap cos(π(δp − νp))

×

[1 − 2(δp − νp)]=

e− j2π(δp−νp)
L∑

l=1,l,p

β+,l


+[1 + 2(δp − νp)]=

e− j2π(δp−νp)
L∑

l=1,l,p

β−,l


 ,(34)

where β±,l are obtained by substituting the appropriate param-
eters into Eq. (27). This result implies µ fp |δl=νl(l=1...L) = 0.

The asymptotic variance, on the other hand, is given by:

σ2
fp

=
π2[(δp − νp)2 − 0.25]2

4ρpN3 cos2(π(δp − νp))
[1 + 4(δp − νp)2]. (35)

B. Convergence

We now turn to the convergence of the proposed estimator.
We have the following theorem:

Theorem 2: If Assumption 1 holds, the proposed algorithm
converges to the fixed point with the following properties:

1) The L-dimensional asymptotic fixed point is at the true
frequency residuals (δ1, . . . , δL);

2) The convergence rate is given by

rL ≤
√

LO

 max
l,p=1...L,l,p

√
Γl,p,

√
ln N
N


 , a.s. (36)

where

Γl,p =
|Al|

2

〈N( fl − fp)〉2
∼ |Al|

2O
(
N−2

)
, (37)

and 〈•〉 finds the nearest integer of •.
3) Asymptotically, the estimator is unbiased and the theo-

retical variance of the distribution of f̂p is

σ2
f̂p

=
π2

64ρpN3 , (38)

which is approximately 1.0147 times the asymptotic
CRLB (ACRLB).

Proof: See Appendix B.
Looking at the convergence rate, we see from Appendix B

that the first term in the maximum in Eq. (36) is due to the
leakage terms V± while the second term results from the noise.
Asymptotically, rL = O(N−

1
2
√

ln N) a.s. and the convergence is
dictated by the noise, which is similar to the single component
case. Thus two iterations are sufficient for the estimation error
of residuals to become lower order than the ACRLB [27].

For finite N, on the other hand, the convergence behaviour
is dictated by Γl,p. Consider the equality implied by Eq. (36):

max
l,p;l,p

{
Γl,p

}
=

ln N
N

. (39)

As N increases such that maxl,p;l,p

{
Γl,p

}
< N−1 ln N, we

have rL ≤
√

LO(N−
1
2
√

ln N) a.s.. For L � N, the conver-
gence rate is still dictated by the noise, with two iterations
sufficing. When maxl,p;l,p

{
Γl,p

}
≥ N−1 ln N, we have rL ≤

√
LO

(
maxl,p;l,p

{ √
Γl,p

})
. To conclude, we have the following

theorem:
Theorem 3: If Assumption 1 holds, the convergence rate rL

of the proposed algorithm on a signal with L components is
given for the following cases:

1) Asymptotically:

rL = O

√ ln N
N

 a.s.,

and the algorithm converges in two iterations;
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Fig. 1. Average iterations needed for the convergence of the proposed
algorithm on (40). 5,000 Monte Carlo runs were used.
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Fig. 2. RMSE of f̂1 versus υN obtained by various methods on (40) when
ρ = 20dB and a = 1. 5,000 Monte Carlo runs were used.

2) For finite N:

a) When max
l,p;l,p

{
|Al |

2

〈N( fl− fp)〉2

}
< ln N

N :

rL ≤
√

LO

√ ln N
N

 a.s.,

and the algorithm converges in two iterations provided
L � N;

b) When max
l,p;l,p

{
|Al |

2

〈N( fl− fp)〉2

}
≥ ln N

N :

rL ≤
√

LO
(

max
l,p;l,p

{
|Al|

〈N( fl − fp)〉

})
≤
√

L max
l
{|Al|}O(N−1)

and the algorithm converges when maxl {|Al|} /N, which
represents the maximum ratio of the amplitudes of the
components and the signal length, is small enough so
that rL < 1. It is important to emphasise that this result
only holds when Assumption 1 holds the SNR is above
the breakdown threshold of the algorithm.
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Fig. 3. RMSE of f̂1 versus ρ using various estimation algorithms on Eq.
(40) when υ = 5/N and a = 0.9. 10,000 Monte Carlo runs were used.
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Fig. 4. RMSE of f̂2 versus ρ using various estimation algorithms on Eq.
(40) when υ = 5/N and a = 0.9. 10,000 Monte Carlo runs were used.

IV. Simulation Results

First we test the proposed algorithm on the following signal

x(n) = e j2π f1n + ae jφe j2π( f1+υ)+n + w(n). (40)

Here υ is the interval between the two frequencies, with φ
randomly selected in each run such that φ ∈ [−π, π]. We set
N = 64. a ≤ 1 is the ratio of the two magnitudes and the SNR
of the first component is ρ = 1/σ2.

We start by verifying the convergence of the algorithm as
we vary N from 32 to 512. In this test we fix a = 1, and
f1 = −0.48 and randomly choose ρ in each run in the range 0
to 50dB. Fig. 1 shows the iterations needed for convergence
as a function of N. we consider the convergence of the
algorithm when the difference between the residual estimates
of consecutively two iterations is less than the CRLB. In
addition to the theoretical results, we given three curves of the
average number of iterations needed for convergence for υ to
be 0.05, 0.075 and 0.01. Keeping in mind that the theoretical
results essentially give an upper bound on convergence, we
see that the simulation curves are indeed bounded by the
theoretical ones.
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Next we investigate the performance, in terms of the root
mean square error (RMSE) versus υ. In this test we set
ρ = 20dB, a = 1 and randomly select in each run f ∈
[−0.5, 0.5]. We compare our algorithm with the Hankel Total
Least Square (HTLS) method [13], frequency domain Hann-
windowing method [23] and subspace-WLS approach in [16].
HTLS is essentially ESPRIT [12] with a Total Least Square
(TLS) solution, and is the state-of-art time-domain parametric
estimator. The Hann-windowing method and the subspace-
WLS method are the most recently proposed approaches of
their kinds respectively. We also include in Fig. 2 curves of
the CRLB and theoretical variance. We show performance of
our estimator for Q = 1, 2. For HTLS, the degree of freedom
is M = [N/3] for the best accuracy. For subspace-WLS, we set
the rearranged matrix size to 16×4, which we found yields the
best performance for randomly selected frequencies. First we
see that Q = 2 is sufficient for our algorithm to reach CRLB-
comparable performance at υN ≥ 4, and the resulting RMSE
is approximately 1dB less than that of HTLS. The Hann-
windowing method exhibits the worst performance having an
RMSE that is 5dB higher than the CRLB. Although the case
when M is very small is beyond the scope of this paper,
simulation results given in [28] show that the estimator still
exhibits excellent performance for 1.1 ≤ υN < 4.

Now we show the RMSE versus ρ for various frequency
intervals. The simulation parameters are kept the same as the
previous test. Figs. 3 and 4 give the RMSEs of f̂1 and f̂2 versus
ρ when a = 0.9 and υ = 5/N. It is clear from the curves that
the proposed estimator achieves the best performance in terms
of RMSE and breakdown threshold after only Q = 2 iterations.

In order to show the performance advantage and robustness
of the proposed algorithm we apply it to a signal with L = 15
components:

x(n) =

15∑
l=1

Ale j2πn fl + w(n), n = 0, . . . ,N − 1, (41)

where Al = ale jφl , and N = 64. The parameters al, fl (where
fl = f1 + υl) are generated randomly and fixed at the start
of the simulation. We set without loss of generality a1 = 1,
and choose the other magnitudes randomly from the interval
0.25 to 1. The frequency separations υl are also uniformly
distributed between 2/N and 4/N (which is essentially between
2 and 4 frequency bins). The SNR of the first component was
set to 5dB. The values of the various simulation parameters
are given in table II along with the frequency separations in
bins (υN) and SNRs. The results were obtained form 200, 000
Monte Carlo runs and in each run we generated the phases φl

randomly from a uniform distribution over the interval [−π, π].
Fig. 5 shows the normalised distributions of the frequency

estimates obtained by the proposed method, HTLS and the
Hann-windowing method. The black markers represent the ac-
tual amplitudes at the true frequencies. Note that the subspace-
WLS is not implementable in this test as the number of
components is larger than the possible maximum length of
the dimensions of the rearranged matrix. Although we ran the
proposed method for Q = 6 iterations, there was little change
after 3 iterations. Therefore, we only show here the results up

TABLE II
Simulation Parameters for L = 15 components.

Component Amplitude Frequency Frequency Nominal
Number l al fl Separation υN SNR (dB)

1 1.0000 -0.3071 - 5.0000
2 0.6379 -0.2623 2.8647 1.0947
3 0.3825 -0.2082 3.4616 -3.3472
4 0.8980 -0.1609 3.0282 4.0651
5 0.6046 -0.1204 2.5947 0.6287
6 0.9748 -0.0855 2.2289 4.7784
7 0.4310 -0.0414 2.8284 -2.3111
8 0.5777 -0.0080 2.1330 0.2344
9 0.9284 0.0404 3.1010 4.3547
10 0.8939 0.0785 2.4337 4.0262
11 0.3282 0.1098 2.0082 -4.6781
12 0.4311 0.1655 3.5622 -2.3080
13 0.6182 0.2166 3.2689 0.8227
14 0.8352 0.2683 3.3086 3.4360
15 0.8690 0.3148 2.9780 3.7802

Normalised Frequency
-0.3 -0.2 -0.1 0 0.1 0.2 0.3
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1

Fig. 5. Normalised distributions of frequency estimates obtained by various
methods on (41). 200,000 Monte Carlo runs were used. Blue: The proposed
method using Q = 3; Red: The Hann-windowing method; Green: HTLS
(ESPRIT); Black with crosses: True amplitudes at the true frequencies.

to Q = 3. We also set the degrees of freedom of HTLS to
M = N/2 which allows it to achieve the best performance. As
we can see from the figure the proposed algorithm and HTLS
achieve accurate estimation of the frequencies of all 15 com-
ponents since the distributions of their estimates show peaks at
each of the true frequencies. The Hann-windowed estimator,
on the other hand, has the worst performance. Fig. 6 makes
these observations clearer as we zoom-in on the distributions
of components 1, 6, 8 and 10. The plots demonstrate that the
estimates obtained by the proposed algorithm become more
concentrated at the true frequencies as the number of iterations
increases from 1 to 3. Fig. 7 shows the RMSE of the frequency
estimates of all the components obtained by the three methods.
Again we see that the Hann-windowed method has the worst
performance, whereas the proposed algorithm outperforms the
HTLS algorithm at all but component 6. Similar results can
be found in Fig. 8, where we show the RMSE after increasing
the signal length of Eq. (41) from 64 to 1024.

Finally, we report the computational complexity of the
estimators in table III. Specifically, we give the ratio of
the processing time of the HTLS algorithm to that of the
proposed estimator. Although the Hann-Windowing method
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is very quick, it nonetheless does not match the estimation
performance of the other two algorithms and so we ignore
it. Despite our implementation of the proposed algorithm not
being optimised, we see that as N gets large, the gap between
the two computational loads opens quite wide. For N = 2048,
the HTLS algorithm takes almost 120 times longer than our
algorithm to produce the estimates of the 15 components.

TABLE III
Ratio of the processing time THT LS of the HTLS algorithm to that of the

proposed estimator TMulti.

Number of Samples N 256 512 1024 2048
THT LS
TMulti

2.04 7.21 24.97 119.79
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Fig. 6. Distributions of frequency estimates of varies components obtained
by various methods on (41). 200,000 Monte Carlo runs were used.

V. Conclusion

In this paper, we proposed a novel method for accurately
estimating the frequencies of multiple superimposed complex
exponentials in noise. The proposed algorithm uses an effi-
cient interpolation strategy to estimate the frequency of each
component at a time in combination with an iterative leakage
subtraction scheme. As the algorithm iterates, the leakage
subtraction leads to a gradual reduction in the error of the inter-
polated coefficients due to the other components. Theoretical
analysis showed that the algorithm converges to the asymptotic
fixed point where the estimates are unbiased and minimum
variance is just marginally larger than the CRLB. Simulation
results were presented to verify the theoretical analysis. These
results show that our method outperforms state-of-art methods

Component No.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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E
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Fig. 7. RMSE of frequency estimates obtained by various methods on (41).
200,000 Monte Carlo runs were used.
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Fig. 8. RMSE of frequency estimates obtained by various methods on (41)
when N = 1024. 100,000 Monte Carlo runs were used.

in terms of estimation accuracy. Furthermore, the algorithm
has a computational complexity that is same order as the FFT
operation, which is significantly lower than that of the non-
parametric and time domain parametric estimators.

Appendix A
Derivation of Theoretical Bias and Variance

In the following derivation we consider the case L = 2.
Given | f1 − f2| ∼ O(1) we have that M ∼ O(N). Also W2 ∼

O
(
N−

1
2
√

ln N
)

a.s. [26] and η± ∼ O(N−1), which yields W2± ∼

O
(
N−

3
2
√

ln N
)

a.s.. We also have W± ∼ O
(
N−

1
2
√

ln N
)

a.s.
and Eq. (27) implies that β± ∼ O(1). Thus, the noise terms
in V±, W2± are of smaller order than W±. Also, we know
V± ∼ O

(
N−1

)
from Eq. (26). Now by putting:

Ω = (V+ + V− + W+ + W−)(V+ − V− + W+ −W−), (42)



8

the interpolation function ĥ1 in Eq. (19) becomes

ĥ1 =

h1 + j
Nλ1

4a1z1 sin
(
π
N

) (V+ + V− + W+ + W−)


×

1 − j
Nλ1

2a1z1 sin
(
π
N

) (V+ − V− + W+ −W−)

 + O(Ω)

= h1 + j
Nλ1

4a1z1 sin
(
π
N

)U + O(Ω), (43)

where

U = (1 − 2h1)(V+ + W+) + (1 + 2h1)(V− + W−). (44)

Referring to Eq. (5), the estimation error of z−1
1 is

ζ1 = ẑ−1
1 − z−1

1

= −2 j(ĥ1 − h1) sin
(
π

N

)
=

Nλ1

2a1z1
U + O

(
Ω

N

)
. (45)

Expanding ln ẑ−1
1 as Taylor series around ln z−1

1 yields

ln ẑ−1
1 = − j

2π
N
δ′1 + z1ζ1 + O(z2

1ζ
2
1 ), (46)

where δ′1 = δ1 − ν1. We then have

δ̂′1 = −
N
2π
=

{
ln ẑ−1

1

}
= δ′1 −

N
2π
=

{
z1ζ1 + O(z2

1ζ
2
1 )

}
. (47)

The estimation error of δ′1 can then be obtained by

ε1 = −
N
2π
=

{
z1ζ1 + O(z2

1ζ
2
1 )

}
= −

N2

4π
=

{
λ1

a1
U

}
+ O

(
Ω

N

)
. (48)

To reach Eq. (48) we used the fact z2
1ζ

2
1 ∼ O

(
Ω
N2

)
. Setting

d1 = λ1e− j2π(δ1−ν1), we have

ε1 = −
N2

8πA1 cos(πδ′1)
= {d1U} + O

(
Ω

N

)
. (49)

Asymptotically, the noise terms W± converge in distribution
[26]. Thus, f̂1 asymptotically converges to a normal:

f̂1 → N
(

f1 + µ f1 , σ
2
f1

)
. (50)

We know that E[W±] = E[W2±] = 0, and the mean of (42)
only contains the contribution of the leakage terms V±. Now

h1 = δ′1 + O(N−2) = δ1 − ν1 + O(N−2), (51)

then

λ1 = −
4π2

N2

[
(δ1 − ν1)2 − 0.25

]
+ O(N−3), (52)

and the mean of the asymptotic distribution of f̂1 is given by

µ f1 = −
N

8πA1 cos(πδ′1)
=

{
d1

[
(1 − 2δ′1)β+ + (1 + 2δ′1)β−

]}
=

π[(δ1 − ν1)2 − 0.25]
2A1 cos(π(δ1 − ν1)){

[1 − 2(δ1 − ν1)]=
{
e− j2π(δ1−ν1)β+

}
+[1 + 2(δ1 − ν1)]=

{
e− j2π(δ1−ν1)β−]

}}
. (53)

Note that when δ1 = δ2 = ν1 = ν2 = 0 Eq. (24) gives Â2 = A2+

W2, which when substituted into Eq. (26) yields V± = −W2±
and consequently µ f1 |δ1=δ2=ν1=ν2=0 = 0. Now since

Var[W2] = Var[W±] =
Var[W2±]
|η±|2

=
Var[η±W2]
|η±|2

=
σ2

N
,

and the higher order term Eq. (42) only contains the contri-
bution of the noise terms, we arrive at

σ2
f1 =

N2

64π2A2
1 cos2(πδ′1)

Var[={d1U}]. (54)

Now turning to Var[={d1U}], and using the fact E[W2±] =

E[W±] = 0, we get

Var[={d1U}] =
1
4

Var[d1U − d∗1U∗]

=
1
4

E[|(d1U − E[d1U]) − (d1U − E[d1U])∗|2]

= 2|d1|
2E

[
|Z+ + Z−|2

]
− d2

1E[(Z+ + Z−)2]

−(d∗1)2E[(Z∗+ + Z∗−)2]. (55)

where Z± = (1 ∓ 2h1)(W± − W2±). SinceE[W2
±] = E[W2

2 ] =

E[W+W−] = E[W±W2] = 0, we have that E[(Z+ + Z−)2] =

E[(Z∗+ + Z∗−)2] = 0 and Eq.(55) becomes

Var[={d1U}] =
|λ1|

2

2
E

[
|Z+ + Z−|2

]
, (56)

with E
[
|Z+ + Z−|2

]
given by Eq. (57).

Thus, Eq. (48) leads to σ2
f1

being

σ2
f1 =

N2

64π2A2
1 cos2(πδ′1)

Var[={d1U}]

=
π2[(δ1 − ν1)2 − 0.25]2

4ρ1N3 cos2(π(δ1 − ν1))

{
[1 + 4(δ1 − ν1)2]

−
1
2

[1 − 2(δ1 − ν1)]2|η+|
2

−
1
2

[1 + 2(δ1 − ν1)]2|η−|
2

−
1
2

[1 − 4(δ1 − ν1)2](η∗+η− + η+η
∗
−)

}
. (58)

Now putting M = αN where α < 1, η± becomes

η± =
1 + e j2π(ν2−ν1)

N
(
1 − e j 2π

N (αN+ν2−ν1∓0.5)
)

= j
1 + e j2π(ν2−ν1)

2παN
+ O(N−2) ∼ O(M−1). (59)

As M ∼ O(N), the lower order terms involving η± can be
ignored giving

σ2
f1 =

π2[(δ1 − ν1)2 − 0.25]2

4ρ1N3 cos2(π(δ1 − ν1))
[1 + 4(δ1 − ν1)2]. (60)
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E
[
|Z+ + Z−|2

]
= |1 − 2h1|

2Var[W2+] + |1 + 2h1|
2Var[W2−] + |1 − 2h1|

2Var[W+] + |1 + 2h1|
2Var[W−]

−|1 − 2h1|
2 (

E[W2+W∗+] + E[W∗2+W+]
)
− |1 + 2h1|

2 (
E[W2−W∗−] + E[W∗2−W−]

)
+(1 − 2h1)(1 + 2h∗1)

(
E[W+W∗−] + E[W2+W∗

2−] − E[W2+W∗−] − E[W∗
2−W+]

)
+(1 − 2h∗1)(1 + 2h1)

(
E[W∗+W−] + E[W∗2+W2−] − E[W∗2+W−] − E[W2−W∗+]

)
. (57)

Appendix B
Analysis of Convergence

We proceed with to study the convergence of the proposed
algorithm for the case of two components. Let

γ =
1
N

1 − e j2π(δ2−ν2)

1 − e j 2π
N (δ2−ν2)

=
1
N

1 − e j2π(δ2−ν2)

− j 2π
N (δ2 − ν2)(1 − O(N−1))

=
1 − e j2π(δ2−ν2)

− j2π(δ2 − ν2)
+ O(N−1)

= 1 + δ2 − ν2 + O((δ2 − ν2)2), (61)

where in these manipulations weused the Taylor expansions
1 − ex = −x + O(x2) and 1/(1 + x) = 1 − x + O(x2). Using the
same expansions and putting M = αN, β± becomes

β± =
1 + e j2π(δ2−ν1)

1 − e
j2π
N M(1 + O(N−1))

− γ
1 + e j2π(ν2−ν1)

1 − e
j2π
N M(1 + O(N−1))

=
1 + e j2π(δ2−ν1) − γ[1 + e j2π(ν2−ν1)]

1 − e
j2π
N M

+ O(N−1)

= j
1

2π
(
1 − e

j2π
N M

) {
(δ2 − ν1) + O((δ2 − ν1)2)

−[1 + (δ2 − ν2) + O((δ2 − ν2)2)]
×[(ν2 − ν1) + O((ν2 − ν1)2)]

}
+ O(N−1)

=
A2

α
(δ2 − ν2)O(1), (62)

so we have

V± =
A2

N
β± + W2± + O(N−2) =

A2

α
(δ2 − ν2)O(N−1). (63)

Now we rewrite U in Eq. (44) as

U = (1 − 2h1)V+ + (1 + 2h1)V−
+(1 − 2h1)W+ + (1 + 2h1)W−

= UV + UW , (64)

and ε1 in Eq. (48) becomes

ε1 = ε1,V + ε1,W + O(Ω). (65)

It is clear that ε1,W is identical to the estimation error of the
single component case. From [19] and [29] we know that

ε =
[
δ1 + (ν1 − δ1)O(N−

1
2
√

ln N)
]

O(N−
1
2
√

ln N). a.s. (66)

On the other hand, we have

ε1,V =
A2

α
(δ2 − ν2)O(N−1). (67)

Now the iterative estimation function of δ1 can be written
as a function of ν1, ν2 as

H1(ν1, ν2) = ν1 + (δ1 − ν1) + ε1(ν1, ν2) = δ1 + ε1(ν1, ν2). (68)

For any ν(1)
1 , ν(1)

2 , ν(2)
1 , ν(2)

2 ∈ [−0.5, 0.5] we have

|H1(ν(2)
1 , ν(2)

2 ) − H1(ν(1)
1 , ν(1)

2 )|

≤
A2

α
|ν(2)

2 − ν
(1)
2 |O(N−1)

+|ν(2)
1 − ν

(1)
1 |O(N−

1
2
√

ln N)

+
(
|ν(2)

2 − ν
(1)
2 | + |ν

(2)
1 − ν

(1)
1 |

)
O(Ω)

≤
(
|ν(2)

2 − ν
(1)
2 | + |ν

(2)
1 − ν

(1)
1 |

)
O(

√
Λ2), a.s.

with Λ2 given by

Λ2 = max
{

|A2|
2

〈( f2 − f1)N〉2
,

ln N
N

}
. (69)

To reach Eq. (69) we used the facts that ρl = |Al|
2/σ2 and

f2 − f1 =
αN + δ2 − δ1

N
⇔ αN = 〈N( f2 − f1)〉. (70)

Proceeding similarly for δ2 yields

|H2(ν(2)
1 , ν(2)

2 ) − H2(ν(1)
1 , ν(1)

2 )|

≤
(
|ν(2)

2 − ν
(1)
2 | + |ν

(2)
1 − ν

(1)
1 |

)
O(

√
Λ1), a.s.

with Λ1 = max
{

|A1 |
2

〈( f1− f2)N〉2 ,
ln N
N

}
. Finally we have

|H1(ν(2)
1 , ν(2)

2 ) − H1(ν(1)
1 , ν(1)

2 )|2

+|H2(ν(2)
1 , ν(2)

2 ) − H2(ν(1)
1 , ν(1)

2 )|2

≤ 2(O(Λ1) + O(Λ2))
(
|ν(2)

2 − ν
(1)
2 |

2 + |ν(2)
1 − ν

(1)
1 |

2
)

≤ 2O
(
max

{
Γ1,2,Γ2,1,

ln N
N

})
(
|ν(2)

2 − ν
(1)
2 |

2 + |ν(2)
1 − ν

(1)
1 |

2
)
, a.s. (71)

Here Γl,p is given by Eq. (37). Eq. (71) implies that the
estimation procedure is a contractive mapping and according to
the fixed point theorem [19], the iterative estimator converges
asymptotically to the fixed point of the true frequency residual:

(H1(δ1, δ2),H2(δ1, δ2)) = (δ1, δ2), (72)

with the upper bound on the convergence rate being

r2 ≤
√

2O

max

√
Γ1,2,

√
Γ2,1,

√
ln N
N


 . a.s. (73)

Consequently, the asymptotic mean and variance of f̂1 in the
two-component case can be obtained by substituting δ1 = δ2 =

ν1 = ν2 = 0 in Eqs. (31) and (32), which results in

µ f1 = 0, and σ2
f1 =

π2

64ρ1N3 . (74)
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Thus, the algorithm is asymptotically unbiased and achieves
the minimum variance of the single component case.

The above argument for convergence can be extended to the
general case when L ≥ 2 giving

L∑
l=1

|Hl(ν
(2)
1 , . . . , ν(2)

L ) − Hl(ν
(1)
1 , . . . , ν(1)

L )|2

≤ LO
(

max
l,p=1...L;l,p

{
Γl,p,

ln N
N

}) L∑
l=1

|ν(2)
l − ν

(1)
l |

2. a.s.(75)

The algorithm then converges to the L-dimensional fixed point

(H1(δ1 . . . δL), . . . ,HL(δ1 . . . δL)) = (δ1 . . . δL), (76)

and the upper bound of the convergence rate is

rL ≤
√

LO

 max
l,p=1...L;l,p

√
Γl,p,

√
ln N
N


 . a.s. (77)

Furthermore, the mean and variance of the asymptotic distri-
bution of f̂p are obtained by substituting δl = νl = 0, l = 1 . . . L
in Eqs. (34) and (35) giving

µ fp = 0, and σ2
fp

=
π2

64ρpN3 . (78)

Now given Assumption 1, the ACRLB for multiple compo-
nent case equals to the single component case is, [27],

ACRLB fp =
6

4π2ρpN3 , (79)

Then the asymptotic ratio of σ2
fp

to ACRLB fp is given by
R = (0.25π2)2/6 ≈ 1.0147.
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