
Low-Cost Flow-Based Security Solutions
for Smart-Home IoT Devices

Arunan Sivanathan∗, Daniel Sherratt∗, Hassan Habibi Gharakheili∗, Vijay Sivaraman∗ and Arun Vishwanath†
∗Electrical Engineering and Telecommunications, University of New South Wales, Sydney, Australia.

†IBM Research, Melbourne, Australia.

Emails: {a.sivanathan, d.sherratt}@student.unsw.edu.au, {h.habibi, vijay}@unsw.edu.au, arvishwa@au1.ibm.com

Abstract—The rapid growth of Internet-of-Things (IoT) de-
vices, such as smart-bulbs, smoke-alarms, webcams, and health-
monitoring devices, is accompanied by escalating threats of
attacks that can seriously compromise household and personal
safety. Recent works have advocated the use of network-level
solutions to detect and prevent attacks on smart-home IoT
devices. In this paper we undertake a deeper exploration of
network-level security solutions for IoT, by comparing flow-based
monitoring with packet-based monitoring approaches. We con-
duct experiments with real attacks on real IoT devices to validate
our flow-based security solution, and use the collected traces
as input to simulations to compare its processing performance
against a packet-based solution. Our results show that flow-based
monitoring can achieve most of the security benefits of packet-
based monitoring, but at dramatically reduced processing costs.
Our study informs the design of future smart-home network-level
security solutions.

I. INTRODUCTION

The rapid proliferation of Internet of Things (IoT) devices

is giving rise to “smart-homes” that can be monitored and

controlled remotely over the Internet. Consumers can now

control their lighting systems from anywhere [1], receive alerts

on their mobile phone when smoke is detected in the house

[2], monitor their kids from afar [3], and turn appliances

on/off while driving to/from work [4]. Recent surveys in the

US have shown that many consumers are willing to pay

in excess of $500 for a fully-equipped smart-home, citing

personal or family safety, property protection, lighting/energy

management, and pet monitoring as top motivators [5].
The increasing prevalence of smart-homes with Internet-

connected devices creates security concerns at unprecedented

levels. An eavesdropper can illegitimately snoop into family

activities, and a malicious entity can take control of the home

to either harm the household or to use it as a launch-pad for

attacks into other domains. The vulnerabilities of existing IoT

devices have been documented by several earlier studies [6],

[7], and there is evidence of anecdotal [8] as well as large-

scale attacks [9] on IoT devices.
Securing IoT devices from attacks remains a formidable

challenge. The large heterogeneity in IoT devices, each with

its own hardware, firmware, and software, makes the security

vulnerabilities diverse and the attack vectors manifold. Worse,

device manufacturers have been lax in embedding security in

consumer IoT devices, dissuaded by low margins, time-to-

market pressures, and limited resources. One could argue that

the home router, by virtue of its NAT/firewall functionality,

provides an effective protection against external attacks by

dropping unsolicited Internet traffic directed to household IoT

devices. However, our recent work in [10] has shown that even

this perimeter defense can be bypassed via malware embedded

into mobile Apps; such malware can scout the internal network

for vulnerable IoT devices, and disable the home firewall to

allow Internet attacks on such devices.

We believe that a promising approach to the above problem

is to embed security solutions at the network-level, whereby

network traffic to/from IoT devices is monitored to detect

(and block) attacks, much the way today’s intrusion detection

systems (IDS) monitor enterprise network traffic for security

threats. Indeed, our prior work [11] has demonstrated the

utility of traffic-flow monitoring in securing access to devices

such as light-bulbs in the smart-home; concurrently, work

in [12] has developed a method for specifying IoT security

policies, that are then applied to the network data-plane traffic

via specialized middle-boxes (termed µmboxes).

While the above methods show promise in securing smart-

homes at the network-level, it remains unclear what their

cost/benefit trade-offs are, particularly since inspection of net-

work traffic can involve significant costs that may be difficult

to recover in a residential market wherein profit margins are

low. In this paper, we undertake an evaluation of the cost-

benefit trade-offs of a flow-level approach (that predominantly

uses information about active flows in the network) against a

packet-level approach (that looks into the content of the data

packets) for securing smart-home IoT devices. In this context,

our contributions are:

• We develop an architecture and method for flow-level

characterization of IoT traffic, that can effectively detect

malicious IoT activity while minimizing the need to

inspect content of IoT data packets;

• We validate our approach experimentally by launching

internal and external attacks on real IoT devices, and

analyzing the resulting traffic traces; and

• We evaluate our approach to show that our flow-based

technique can achieve comparable security performance

to packet-level inspection techniques, but at dramatically

reduced processing cost.

The rest of this paper is organized as follows: §II describes

prior work on IoT security solutions, and §III describes our

solution approach that captures and evaluates flow-level infor-

mation. In §IV we describe our experimental setup including

attack emulation and trace collection, used to validate our

solution, while in §V we evaluate the cost-benefit trade-offs

via simulation. The paper is concluded in §VI.

II. BACKGROUND AND PRIOR WORK

Prior work on IoT security can be characterized as host-

based or network-based. Host-based schemes embed security

in the IoT device itself, either adapting existing security

mechanisms, or developing new ones, to suit the resource

constraints of IoT devices. For example, the work in [13]

explores the use of popular IP-based network management

protocols for IoT, and shows that session key generation can be

very costly, making SNMP more suitable in terms of resource

usage than NETCONF. An architecture for secure end-to-end

communication for IoT is proposed in [14], that moves the

expensive authentication and encryption operations out of the

IoT device into an external entity with abundant resources.

A similar approach is taken by [15], which points out that

the DTLS (Datagram Transport Layer Security) handshake

requires significant resource requirements when employing

public-key cryptography for peer authentication and key agree-

ment – by offloading the DTLS connection establishment to a

non-resource constrained delegation server, the authors show

that memory and computation overhead can be reduced by

64% and 97% respectively.

A lightweight secure protocol for IoT devices called Lithe

is proposed in [16]. Resource constrained devices are expected

to use CoAP (Constrained Application Protocol) at the appli-

cation layer, and DTLS (Datagram Transport Layer Security)

at the transport layer for secure communication. However,

since DTLS is not well suited for use in resource constrained

devices, Lithe proposes a novel method to compress the

DTLS protocol using the 6LoWPAN header compression

mechanisms. Experiments demonstrate the suitability of Lithe

for application in IoT devices. The work in [17] identifies

challenges in the handshake phase of HIP DEX (Host Identity

Protocol Diet EXchange), another IP security protocol for use

in constrained IoT devices, and proposes lightweight exten-

sions to it. The standardization effort underway at the Internet

Engineering Task Force (IETF) for securing IoT devices using

CoAP and DTLS is described in [18]. The work in [19]

gives a perspective of how concepts from information centric

networking (ICN), which is still in its infancy, can be used

in IoT security. A comprehensive survey of security solutions

in IoT with a focus on key management, authentication, and

confidentiality can be found in [20].

The host-based IoT security solutions above not only have

to contend with the constrained resources on IoT devices

(processing, memory, battery, and radio), but also the lack

of motivation amongst vendors to implement these schemes.

In their rush to market, vendors often do not have the time,

skills, resources, or financial incentives to embed security in

their products. This has motivated recent proposals to develop

network-based security solutions [12] that are better suited

to the scale of deployment (i.e. billions of devices), nature

Home

Gateway

Home

Network
SDN

Controller
API

y

Internet

Analysis

Engine

rrrrrrrrrrrrrrr

selected mirrored data plane

data plane

Fig. 1. System architecture showing data and control planes

of communication (device-to-device than human initiated),

diverse use cases (e.g. motion sensory triggering an alarm,

temperature sensor opening the windows, etc.), and interop-

erability constraints (devices from different vendors unable to

communicate with each other). Our prior work in [11] also

explores the potential of network-level security for specific IoT

devices like the Phillips Hue light-bulb and Nest smoke-alarm.

While both proposals advocate the use of Software Defined

Networking (SDN) in the control plane, [12] makes use of

specialized micro-middleboxes (µmboxes) in the data plane

to inspect IoT packets. Among the objectives of the present

work is to compare the efficacy and cost of flow-based versus

packet-based security solutions, as described next.

III. OUR FLOW-LEVEL SECURITY SOLUTION

We outline our solution architecture that operates at the

flow-level method to detect intrusions on IoT devices in

the home network. The aim is to discover attack patterns

or suspicious network activity inside the home at low cost

and in a programmatic way, so that the network resources

are used as efficiently as possible for protecting IoT devices

against security attacks. Unlike other proposals that require

the use of deep packet inspection (DPI) or other virtualized

network functions (NFV) for detecting threats, we advocate

the use of dynamic characterization of the traffic at the flow-

level. This requires us to inspect only a tiny fraction of data-

plane traffic, thereby limiting the processing cost and network

bandwidth overheads. The type of flows that need to be

inspected are chosen dynamically and can change according to

the vulnerabilities. Lastly, we manage and process flows from

cloud-based software, instead of embedding the processing

unit into the home gateway that is difficult to maintain and

upgrade.

A. Operational Scenario

Fig. 1 shows our system architecture. Each residence has

a home gateway to which household devices connect. The

home gateway offers Internet connectivity via a (DSL, Cable,

or PON) broadband link. The home gateway is SDN-enabled

and managed by a controller hosted on the cloud. We propose

an “analysis engine” that interacts with the SDN controller

via northbound APIs. It issues requests to the SDN controller

on which flows are inspected. The controller then programs

the home gateway with rule(s) to mirror selected traffic flows

toward the analysis engine. Therefore, the analysis engine will

be able to actively monitor the network activity of IoT devices

by inspecting few packets to/from IoT devices with specific

headers as well as measuring the load of selected flows.

Whenever traffic analysis is concluded, then traffic mirroring

can be stopped by deleting the pertinent rule(s) inside the home

gateway.

B. The Analysis Engine

When the mirrored traffic comes in to the analysis engine

operating in the cloud, an algorithm is run to inspect the

flow, e.g. recording source and destination entities of certain

requests and responses. If needed, the analysis engine requests

the controller to install rule(s) corresponding to IoT devices

that are accessed from the Internet. This may involve setting

up subsequent rules ensuring not all data-plane traffic is

forwarded to the analysis engine. In what follows we describe

the rules in more detail and elaborate on their specific match

and action fields.

C. The Network Rules

A home network is protected by NAT service from potential

Internet-based attackers. However, client devices can be ex-

posed to Internet attacks by abusing the Universal Plug-n-Play

(UPnP) port forwarding capability on a typical home gateway.

We have shown in [10] that a malware application running

on an unsuspecting user’s mobile device can discover IoT

devices within the home by using a standard Simple Service

Discovery Protocol (SSDP); this can be followed by a UPnP

port forwarding command to the home router that allows an

external attacker to directly attack the IoT device. We note

that SSDP and UPnP port forwarding messages are common

in a typical home network environment for various peer-to-

peer applications (e.g. Skype) and multi-player games.

Since protocol-specific traffic is characterized by known

packet headers, we propose to push rules into the home

gateway to capture certain traffic types and and forward them

to the analysis engine. Note that these rules will ensure normal

forwarding of traffic, along with sending a “mirror” copy to

the analysis engine. This allows the home gateway to provide

standard data-plane forwarding without being affected by the

intrusion detection process. By receiving flow-level data, the

analysis engine will gain flow-level visibility into clients (i.e.

IP and MAC addresses) and their network activity within

the home network. For example, SSDP uses UDP transport

protocol on port 1900. Thus, having rule entries that match

UDP source/destination port 1900 would capture all SSDP

requests and responses transferred in the home network. On the

other hand, a port forwarding request is communicated with

the home gateway using HTTP post mechanism. It consists of

a sequence of data exchanges that can be characterized by a

network rule which matches the destination IP address of the

home gateway.

Detection of SSDP and port forwarding messages are not

sufficient to discover suspicious activity or an attack. We pro-

Fig. 2. Testbed showing IoT devices, SDN home gateway, and external
attacker

pose to monitor Internet traffic flows to/from an IoT device to

create a richer context around access of a specific device. The

remote access traffic of an IoT device inside the home network

can be identified by a rule that matches the source MAC of

the default gateway as well as the destination MAC address

of the device for downstream traffic from the Internet (and

vice versa for the upstream direction towards the Internet).

Once the analysis engine receives the first packet of such flow

and extracts the IP address of the remote host, it instructs the

controller to install a pair of new higher-priority rules into

the home gateway that match source/destination IP of remote

host and destination/source IP of the IoT device with action

“normal” only (i.e. no more packets for this flow are forwarded

to the analysis engine). This allows us to reduce the cost of

our inspection process.

IV. EXPERIMENTAL SETUP AND VALIDATION

Setup: We built a small testbed in our lab, depicted in Fig. 2,

to emulate a typical home network. We used a standard TP-

Link WR1043ND home gateway and flashed it with OpenWrt

firmware version 15.05. We also installed additional OpenWrt

packages such as tcpdump for capturing traffic, bash for

scripting, and miniUpnp for managing the home gateway.

We connected the WAN interface of the home gateway to our

university campus Internet while the IoT devices were attached

to the LAN/WLAN interfaces. The IoT devices connected to

the gateway include Samsung’s Smart Things, D-Link DCS-

5300G IP security camera, Belkin’s Wemo switch and Wemo

Motion detector. The Samsung Smart Things kit includes a

collection of IoT devices that connect to the router through an

internal hub. These IoT devices communicate with a mobile

App when an activity is triggered such as motion detection

or a clip is removed. The D-Link DCS-5300G is a standard

IP surveillance camera that a user can control it (i.e. pan, tilt

or move the preset position) and access its video/audio stream

over the network. Belkin’s Wemo switch is a smart switch that

can be turned on/off using pertinent mobile App while Belkin’s

motion detector uses an App to alert the user when someone

has moved near the device. A laptop and an Android phone

were also present in the network to communicate with the IoT

devices and generate user traffic on the network respectively.

To collect traffic flowing through the home gateway, we used

tcpdump application that continuously recorded all traffic of

all interfaces. We then stored the collected data into a pcap

file on an external hard drive attached to the home gateway

via its USB port.

Traffic: The aim is to experiment on a smart-home environ-

ment comprising real IoT devices and validate our approach

by launching internal and external attacks to IoT devices.

Therefore, we recorded all network traffic over an 18 minute

(1080 second) period. During this period all the devices

on the network generated their usual traffic. This included

the application on the smart phone communicating with the

Samsung SmartThing hub when the multipurpose sensor was

triggered. Similarly the Belkin Wemo Motion detector was

continuously transmitting data to the smart phone when it

detected movement. The IP camera was also accessed, and

a live video stream was watched on the laptop, all of this

was occurring on the internal network. Moreover, the android

phone and laptop were accessing popular Internet content

such as Youtube and Facebook to emulate user traffic on the

network. All of this traffic would signify everyday network

usage in a typical home environment.

Attack: While the traffic was being captured, an attack was

launched from a script running on the laptop. We assume

that the laptop was “infected” by malicious code (i.e our

script), and carried out an attack by enabling port forwarding

for selected IoT devices. An infection can occur if a user

unintentionally executes a malicious application. In our case,

we manually ran two python scripts to emulate this attack.

This device would already be authorized to connect to the

internal network and would be connected inside of the NAT.

The infected host would then instigate the attack in three

different stages: (a) Discovery, (b) Port Forwarding and (c)

Access.

SSDP scan: The first python script (i.e. “discovery.py”)

performed an SSDP broadcast. The script sends a msearch

multicast packet to 239.255.250:1900. This is an as-

signed IP address set by IANA for the UPnP protocol. The

IoT devices that implement UPnP would respond with basic

information about themselves and a URL which contains an

XML file that describes the device functionalities. In this

XML file, there is a control URL which is then used to

trigger an action in the device via a HTTP POST request.

For the D-Link IP camera, this URL is the user/browser

presentation (192.168.1.124:5004) and for the Belkin Wemo

switch it is the URL which manipulates the switch state

(192.168.1.223:49153/upnp/control/basicevent1). If the home

gateway has UPnP enabled, then its control URL is contained

under the WANIPConnection service. One of the services

that WANIPConnection provides is to set up a new port

mapping between an internal IP address/port to an external

port.

Port-forwarding: Setting up the port forwarding was the

next step in our attack. Our script (i.e “port-forward.py”) was

run which maps an external port to the control URL of the IoT

<?xml version="1.0"?>

<s:Envelope

 xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"

 s:encodingStyle="httpL//schemas.xmlsoap.org/soap/encoding">

 <s:Body>

 <u:AddPortMapping xmlns:u="urn:schemas-upnp-

org:service:WANIPConnection:1">

 <NewRemoteHost></NewRemoteHost>

 <NewExternalPort>$External_Port</NewExternalPort>
 <NewProtocol>TCP</NewProtocol>

 <NewInternalPort>$Internal_Port</NewInternalPort>
 <NewInternalClient>$Internal_IP</NewInternalClient>
 <NewEnabled>1</NewEnabled>

 <NewPortMappingDescription>Description</NewPortMappingDescription>

 <NewLeaseDuration>0</NewLeaseDuration>

 </u:AddPortMapping>

 </s:Body>

</s:Envelope>

Fig. 3. SOAP message

device, allowing an external user to have direct access the in-

ternal device. The script created a specific SOAP-based HTTP

POST request and sent it to the WANIPConnection control

URL of the home gateway which was discovered earlier by the

first python script. The SOAP Envelope is depicted in Fig. 3.

It can be seen that the IoT device (i.e. $Internal-Port

and $Internal-IP) is exposed to an external attacker via

a direct access to port $External-Port from the Internet.

Accessing the device is the final stage of the emulated attack.

Attack detection: After conducting SSDP discovery and

port forwarding from an internal infected host, we then used

an external host (public IP address 129.94.8.54) to launch the

attack. Given the information collected in previous stages, the

Wemo Switch and IP Camera were successfully accessed from

the external host. This attack has many implications; we can

imagine if the SmartThings multipurpose sensor was on a door,

acting as a security alert when the door was opened. However,

the SmartThings hub was powered through the Wemo Switch.

An external attacker would be able to use the camera and

see whether the Smart Home was occupied. If the attacker

saw that no-one was home, they could turn off the Wemo

Switch, disabling the SmartThings security, thereby allowing

the attacker physical access to the home. In this case the

added layer of physical security has been bypassed due to

insecurity in the network layer. The trace file above enacts

this scenario. Using our flow-based analysis, the sequence of

activity (SSDP scan followed by port-forwarding command

followed by external access) is logged, and the potential

malicious activity is flagged.

V. EVALUATION VIA SIMULATION

We now evaluate the computational cost of our solution by

applying it to real trace data obtained from our testbed. Our

pcap trace file of size 327 MegaBytes covers a 1080 second

period and comprises 334,088 packets. A time trace of the

traffic load is shown in Fig. 4. We note that the average load

on the network is 301 Kbps, however it is seen that the load

sometimes spikes to over 1 Mbps due to the buffering behavior

of Youtube traffic.

We wrote a native simulation in C that takes packet arrivals

from the trace as input, and performs discrete event simulation

on an SDN-based home gateway along with a controller and

an analysis engine. The simulator manages a table of rules (i.e.

a flow table) inside the home gateway according to the events

0 200 400 600 800 1000 1200
0

0.5

1

1.5

2

2.5

Time (sec)

T
o

ta
l
d

a
ta

−
p

la
n

e
 l
o

a
d

 (
M

b
p

s
)

Fig. 4. Total captured load of data-plane

that occur at run time and keeps track of certain events (e.g.

detection of port forwarding attack) and performance metrics

(e.g. mirrored load).

As explained earlier in III-C, the flow table of the home

gateway is initialized by the controller module of our simu-

lator to contain proactive rules that capture SSDP and port

forwarding traffic.

SSDP specific rules: In our simulation, the following

proactive rules capture SSDP requests and responses:

• SSDP-Request: Priority:1, Match:"udp_dst=1900",

Action: "normal,tunnel"

• SSDP-Response: Priority:1, Match:"udp_src=1900",

Action: "normal,tunnel"

In real practice, a “tunnel” interface on the home gateway

is needed to feed the remote analysis engine on the cloud.

Therefore, in our simulation, a packet is deemed to be received

by the analysis engine module only if the packet matches a

rule that has a "tunnel" interface in the action field.

UPnP Port forwarding rules: The DHCP server of our

testbed provides local clients with IP addresses in the range of

192.168.1.100-254/24 with a default gateway of 192.168.1.1.

Therefore, the following proactive rule captures all traffic sent

directly to the local default gateway:

• Priority:1, Match:"ipv4_dst=192.168.1.1", Ac-

tion: "normal,tunnel"

In the analysis engine we use a regular expression pattern

match to identify the port forwarding request and extract the

internal IP and port number. If a host enables a port forwarding

for an IoT device, the analysis engine flags it as suspicious

activity that is trying to create a back-door to access the IoT

device.

Remote access rules: Upon processing SSDP messages,

the IP and MAC addresses of IoT devices inside the home are

discovered by the analysis engine at run time. Therefore, the

following reactive rules are installed to capture intial Internet

traffic from/to each IoT device in order to detect the flows:

• to-IoT: Priority:10, Match:"eth_dst=mac-iot,

eth_src=mac-gw", Action: "normal,tunnel"

• from-IoT: Priority:10, Match:"eth_src=mac-iot,

eth_dst=mac-gw", Action: "normal,tunnel"

We assume that the MAC address of the default gateway (i.e.

"mac-gw") is a known parameter by the controller.

In order to limit the processing cost of mirroring IoT traffic

(specifically for a device like a camera that is sending a

continuous video stream), once the first few packets of a

flow are detected and processed by the analysis engine, the

flow-level details (such as IP address of the remote host) are

recorded. The analysis engine thereafter requests the controller

to install another rule with a higher priority, the match field

is updated with the IP address of the remote host and the

action field is set as "normal" so as to stop mirroring traffic

pertaining to this flow:

• to: Priority:100, Match:"eth_dst=mac-iot,

ipv4_src=remote-ip", Action: "normal"

• from: Priority:100, Match:"eth_src=mac-iot,

ipv4_dst=remote-ip", Action: "normal"

With the above rule inside the home gateway, the analysis

engine is able to track the flow activity by periodic reading of

counters via the controller to maintaining real-time statistics.

Therefore, the load or the volume of the flow can provide

the analysis engine with more information about such remote

access into an IoT device.

Results: Our simulation keeps track of performance metrics

such as the size of the flow table, total network load, and

volume of mirrored traffic. We ran our simulation using the

collected traces from the previous section as input, and make

the following observations. Our analysis engine was able to

detect all SSDP and port forwarding messages exchanged over

the emulated home network, by virtue of the pro-active SDN

rules installed in the home gateway. In Fig. 5(a) we show the

processing cost of our solution: the solid blue line shows the

total data-plane load arising to/from IoT devices, averaging

around 9.65 Kbps, and is proportional to the processing cost

of a packet-based solution that inspects all data-plane IoT

traffic. By contrast, the dashed red line in the figure shows the

volume of traffic that is forwarded to the analysis engine in

our flow-based approach – the average load of mirrored traffic

is only 0.84 Kbps, which is roughly an order of magnitude

lower than required by the packet-based monitoring approach.

This is not surprising, because our approach only needs the

first few packets of each flow to be sent to the analysis

engine, which then inserts a reactive flow-entry to stop the

packet mirroring, and uses packet/byte-counts thereafter to

monitor flow activity without inspecting packet contents. This

dramatically reduces processing costs; indeed Fig. 5(b) shows

the traffic load pertaining to the IP camera that was accessed

from a remote host during our simulation – in this case

forwarding the video packets to the analysis engine is wasteful,

and our method only logs the flow activity rather than the

actual video content. In Fig. 6 we show the volume of IoT data

plane traffic over the 18-minute duration; of the total IoT data

0 200 400 600 800 1000 1200
0

5

10

15

20

25

30

35

40

Time (sec)

L
o

a
d

 (
K

b
p

s
)

IoT data−plane

Mirorred data−plane

(a) IoT traffic load

0 200 400 600 800 1000 1200
0

5

10

15

20

Time (sec)

C
a

m
e

ra
 d

a
ta

−
p

la
n

e
 l
o

a
d

 (
K

b
p

s
)

(b) IP-camera traffic load

Fig. 5. Processing cost: (a) IoT data-plane load and mirrored traffic load; and (b) Traffic load of IP camera

IoT data−plane
 volume (92%)

mirrored data−plane
volume (8%)

Fig. 6. Pie chart of total and mirrored traffic volume

plane traffic volume of 10, 454KB, only 908KB, corresponding

to 8% of the total IoT traffic volume, needs to be forwarded

to the analysis engine in our approach, making the processing

cost acceptable for home users. Lastly, we would like to point

that our method does not inspect packet contents, and would

therefore not detect attacks (such as use of default plain-text

passwords) that require examining the data inside packets.

VI. CONCLUSION

Securing IoT devices in the emerging smart-home is a

critical yet challenging problem. This paper has examined the

use of network-level monitoring to detect and mitigate IoT

security threats. Specifically, we have investigated the use of

SDN to monitor network traffic at flow-level granularity. We

have shown that this is effective in detecting security threats,

without incurring the high costs of packet-level monitoring of

traffic to/from IoT devices. We have validated our solution

in an experimental test-bed with real IoT devices. We have

also evaluated via simulation of gathered traffic traces the

processing overheads of our solution, and found them to be

low is cost. We hope that our work will spur more research into

the use of flow-level monitoring to mitigate security threats on

the future smart-home.

REFERENCES

[1] Phillips. Hue Personal Wireless Lighting. http://www2.meethue.com/.
[2] Nest. Nest Smoke Alarm. https://nest.com/.
[3] Withings. Withings Smart Baby Monitor. http://www.withings.com/us/

en/products/baby/smart-baby-monitor?

[4] Belkin. WeMo Switch. http://www.belkin.com/au/p/P-F7C027/.
[5] iControl. (2014) 2014 State of the Smart Home. http://www.icontrol.

com/docs/pdf/2014 State of the Smart Home - Final.pdf.
[6] HP Enterprise. (2015) Internet of Things Research Study. http://www8.

hp.com/h20195/V2/GetPDF.aspx/4AA5-4759ENW.pdf.
[7] S. Notra, M. Siddiqi, H. H. Gharakheili, V. Sivaraman, and R. Boreli,

“An Experimental Study of Security and Privacy Risks with Emerging
Household Appliances,” in Proc. First International Workshop on Se-

curity and Privacy in Machine-to-Machine Communications (M2MSec),
Oct 2014.

[8] abcNEWS. (2013) Baby Monitor Hacking Alarms Houston
Parents. http://abcnews.go.com/blogs/headlines/2013/08/
baby-monitor-hacking-alarms-houston-parents/.

[9] Business-Insider. (2014) Refrigerator
Hacked. http://www.businessinsider.com.au/
hackers-use-a-refridgerator-to-attack-businesses-2014-1?op=1.

[10] V. Sivaraman, D. Chan, D. Earl, and R. Boreli, “Smart-Phones Attacking
Smart-Homes,” in Proc. ACM WiSec, Jul 2016.

[11] V. Sivaraman, H. H. Gharakheili, A. Vishwanath, R. Boreli, and
O. Mehani, “Network-Level Security and Privacy Control for Smart-
Home IoT Devices,” in Proc. IEEE WiMoB Workshop on Internet of

Things Communications and Technologies (IoT-CT), Oct 2015.
[12] T. Yu, V. Sekar, S. Sheshan, Y. Agarwal, and C. Xu, “Handling a Trillion

(Unfixable) Flaws on a Billion Devices: Rethinking Network Security
for the Internet-of-Things,” in Proc. ACM HotNets, Nov 2015.

[13] A. Sehgal, V. Perelman, S. Kuryla, and J. Schnwlder, “Management
of Resource Constrained Devices in the Internet of Things,” IEEE

Communications Magazine, pp. 144–149, Dec 2012.
[14] R. B. et al., “Secure Communication for Smart IoT Objects: Protocol

Stacks, Use Cases and Practical Examples,” in Proc. IEEE WoWMoM,
USA, Jun 2012.

[15] R. Hummen, H. Shafagh, S. Raza, T. Voigt, and K. Wehrle, “Delegation-
based Authentication and Authorization for the IP-based Internet of
Things,” in Proc. IEEE SECON, Singapore, Jun/Jul 2014.

[16] S. Raza, H. Shafagh, K. Hewage, R. Hummen, and T. Voigt, “Lithe:
Lightweight Secure CoAP for the Internet of Things,” IEEE Sensors

Journal, vol. 13, no. 10, pp. 3711–3720, 2013.
[17] R. Hummen, H. Wirtz, J. H. Ziegeldorf, J. Hiller, and K. Wehrle,

“Tailoring End-to-End IP Security Protocols to the Internet of Things,”
in Proc. IEEE ICNP, Germany, Oct 2013.

[18] S. L. Leoh, S. S. Kumar, and H. Tschofenig, “Securing the Internet
of Things: A Standardization Perspective,” IEEE Internet of Things

Journal, vol. 1, no. 3, pp. 265–275, 2014.
[19] M. A. et al., “Information-Centric Networking for the Internet of Things:

Challenges and Opportunities,” IEEE Network, vol. 30, no. 2, pp. 92–10,
2016.

[20] ——, “M2M Security: Challenges and Solutions,” IEEE Communica-

tions Surveys and Tutorials, vol. 18, no. 2, pp. 1241–1254, Q2, 2016.

