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Abstract—Campuses and cities of the near future will be
equipped with vast numbers of IoT devices. Operators of such
environments may not even be fully aware of their IoT assets, let
alone whether each IoT device is functioning properly safe from
cyber-attacks. This paper proposes the use of network traffic
analytics to characterize IoT devices, including their typical
behaviour mode. We first collect and synthesize traffic traces
from a smart-campus environment instrumented with a diversity
of IoT devices including cameras, lights, appliances, and health-
monitors; our traces, collected over a period of 3 weeks, are
released as open data to the public. We then analyze the traffic
traces to characterize statistical attributes such as data rates
and burstiness, activity cycles, and signalling patterns, for over
20 IoT devices deployed in our environment. Finally, using these
attributes, we develop a classification method that can not only
distinguish IoT from non-IoT traffic, but also identify specific IoT
devices with over 95% accuracy. Our study empowers operators
of smart cities and campuses to discover and monitor their IoT
assets based on their network behaviour.

I. INTRODUCTION

The Internet of Things (IoT), comprising everyday objects
such as lights, cameras, motion sensors, power switches and
appliances, is heralded to bring the next wave of Internet
growth. Cisco predicts that IoT connections will reach 12.2
billion by 2020 [1], representing nearly half of all connected
devices. Homes, enterprises, campuses and cities are expected
to be instrumented with thousands of “smart” IoT devices that
can autonomously interact with each other and be remotely
monitored/controlled.

This rapid growth in scale creates an operational challenge
– knowing what IoT devices are connected and whether
they are functioning normally can become difficult for the
administrator. This might arise from different departments
being involved in asset management. For example, sensors for
lighting may be installed by the local council, sewage and
garbage sensors by the sanitation department and cameras by
the local police division. Consolidating IoT assets from these
various departments may be onerous or error-prone, making
it difficult to ascertain what IoT devices are operating on the
network at any point in time. This lack of “visibility” into
IoT devices can make it very complex for the administrator
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to trouble-shoot problems in their smart-city/campus infras-
tructure, and can become particularly disastrous when cyber-
security attacks have breached this critical infrastructure.

This paper addresses the above problem by characterizing
IoT traffic at the network-level, and using this to identify and
classify IoT devices, alongside detecting anomalous behaviour.
Qualitatively, we expect most IoT devices to send short bursts
of data sporadically. However, there has been no quantitative
study in the literature to profile how much traffic they send in
a burst, how long they idle between bursts, and whether these
patterns are periodic or not. We also lack understanding on
how much signalling they perform (e.g. DNS lookups or time
synchronization using NTP) in comparison to the data traffic
they generate, or how much multicast/broadcast traffic they
generate, needed for service discovery. No study has identified
how these aspects vary from one IoT device to another,
performing different functions (e.g. camera compared to a
smoke-alarm) or similar functions (one brand of camera versus
another). To our knowledge there are no openly available IoT
traffic traces that researchers can use to study these questions.

Understanding the nature of IoT traffic is important for
several reasons: operators of smart-cities and campuses need to
support appropriate performance levels of reliability, loss, and
latency (needed by environmental, health, or safety applica-
tions), while also containing IoT multicast/broadcast discovery
traffic that can impact other applications. The most compelling
reason for profiling IoT traffic is to enhance cyber-security: it
is well recognized that IoT devices are by their nature easier
to infiltrate [2], and every month new stories emerge of how
IoT devices have been compromised and used to launch large-
scale attacks [3]. The large heterogeneity in IoT devices has
led researchers to propose network-level security mechanisms
that analyse traffic patterns to identify attacks (see [4] and our
recent work [5]); success of these approaches relies on a good
understanding of what “normal” IoT traffic profile looks like.

This paper fills the gap in the literature relating to avail-
ability of IoT traffic traces, characterization of IoT traffic
profiles, and classification of IoT devices based on their pro-
files. We instrument a campus environment with over 20 IoT
devices, comprising cameras, lights, activity sensors, health
and well-being monitors, and consumer electronics. Our first
contribution is to collect data traces from this environment
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(a) Experimental setup depicting our smart environment.

Category Device Mac Address Wireless / Wired
Smart Things d0:52:a8:00:67:5e Wired
Amazon Echo 44:65:0d:56:cc:d3 Wireless
Netatmo Welcome 70:ee:50:18:34:43 Wireless
TP-Link Day Night Cloud camera f4:f2:6d:93:51:f1 Wireless
Samsung SmartCam 00:16:6c:ab:6b:88 Wireless
Dropcam 30:8c:fb:2f:e4:b2 Wireless
Insteon Camera 00:62:6e:51:27:2e / e8:ab:fa:19:de:4f Wired / Wireless
Withings Smart Baby Monitor 00:24:e4:11:18:a8 Wired
Belkin Wemo switch ec:1a:59:79:f4:89 Wireless
TP-Link Smart plug 50:c7:bf:00:56:39 Wireless
iHome 74:c6:3b:29:d7:1d Wireless
Belkin wemo motion sensor ec:1a:59:83:28:11 Wireless
NEST Protect smoke alarm 18:b4:30:25:be:e4 Wireless
Netatmo weather station 70:ee:50:03:b8:ac Wireless
Withings Smart scale 00:24:e4:1b:6f:96 Wireless
Blipcare Blood Pressure meter 74:6a:89:00:2e:25 Wireless
Withings Aura smart sleep sensor 00:24:e4:20:28:c6 Wireless

Light Bulbs LiFX Smart Bulb d0:73:d5:01:83:08 Wireless
Triby Speaker 18:b7:9e:02:20:44 Wireless
PIX-STAR Photo-frame e0:76:d0:33:bb:85 Wireless
HP Printer 70:5a:0f:e4:9b:c0 Wireless

Hubs
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(b) List of IoT devices in the smart environment.
Fig. 1. (a) Testbed showing the IoT devices and gateway, (b) Break down of IoT devices into different categories.

over a period of 3 weeks, and to make these openly available
to the research community. These traces include raw packets
(pcap) and flow information, annotated with specific device
attributes, providing researchers a rich data-set to investigate
many aspects of IoT. Our second contribution is to characterize
the traffic corresponding to the various IoT devices, in terms
of their activity pattern (traffic rate, burstiness, idle durations)
and signalling overheads (broadcasts, DNS, NTP). Our last
contribution is to develop a classification technique that learns
the behaviour of an IoT device and is able to identify it based
on its traffic profile. The data and characterization presented in
this paper lay the foundation for enhancing visibility into IoT
devices in a smart-city/campus network, upon which future
works on IoT security and performance can be built.

The rest of this paper is organised as follows: §II describes
relevant prior work. We present our IoT setup and data traces
in §III. The traffic attributes are characterized in §IV, and
in §IV-E we develop a classification method to identify IoT
devices. The paper is concluded in §V.

II. RELATED WORK

There is a large body of work characterizing general Internet
traffic. However, studies focusing on characterizing IoT traffic
(also referred to as machine-to-machine – M2M – traffic) are
still in its infancy. The work in [6] is one of the first large-scale
studies to delve into the nature of M2M traffic. It is motivated
by the need to understand whether M2M traffic imposes
new challenges for the design and management of cellular
networks. The work uses a traffic trace spanning one week
from a tier-1 cellular network operator and compares M2M
traffic with traditional smartphone traffic from a number of
different perspectives – temporal variations, mobility, network
performance, and so on. The study informs network operators
to be cognizant of these factors when managing their networks.

In [7], the authors note that the amount of traffic generated
by a single M2M device is likely to be small, but the total
traffic generated by hundreds or thousands of M2M devices
would be substantial. These observations are to some extent
corroborated by [8], [9], which note that a remote patient
monitoring application is expected to generate about 0.35 MB
per day and smart meters roughly 0.07 MB per day.

A Coupled Markov Modulated Poisson Processes frame-
work to capture the behaviour of a single machine-type
communication as well as the collective behaviour of tens of
thousands of M2M devices is proposed in [10].

A simple model to estimate the volume of M2M traffic
generated in a wireless sensor network enabled connected
home is constructed in [11]. Since behaviour of sensors is
very application specific, the work identifies certain common
communication patterns that can be attributed to any sensor
device. Using these attributes, four generalised equations are
proposed to estimate the volume of traffic generated by a
sensor network enabled connected apartment/home.

While all the above works make important contributions,
they do not undertake fine-grained profiling and character-
ization of IoT traffic in a smart environment such as a
city/campus. Furthermore, statistical models are not developed
that enable IoT device classification based on their traffic
profiles. Most importantly, prior works do not make any data
set publicly available for the research community to use and
build upon. Our work addresses these shortcomings.

III. IOT DATA COLLECTION

Our experimental setup – housed at our campus facility –
comprises a wide range of IoT devices emulating a “smart
environment”, as depicted in Fig. 1(a). The TP Link Archer C7
v2, flashed with the OpenWrt firmware release Chaos Calmer
(15.05.1, r48532), serves as the gateway to the public Internet.
We also installed additional OpenWrt packages on the gate-
way, namely tcpdump (4.5.1-4) for capturing traffic,
bash (4.3.39-1) for scripting, block-mount package
for mounting external USB storage on the gateway, and
kmod-usb-core, kmod-usb-storage (3.18.23-1)
for storing the traffic data. As shown in Fig. 1(a), the WAN
interface of the gateway is connected to the public Internet via
the university network, while the IoT devices are connected
to the LAN and WLAN interfaces respectively. Our smart
environment has a total of 21 unique IoT devices representing
different categories, see Fig. 1(b). These include cameras (Nest
Dropcam, Samsung SmartCam, Netatmo Welcome, Insteon
Camera, TP-Link Day Night Cloud Camera, Withings Smart
Baby Monitor), switches and triggers (iHome, TP-Link Smart
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(c) Load: LiFX light bulb.

Fig. 2. Network load from IoT and non-IoT devices on a representative day.

Plug, Belkin Wemo Motion Sensor, Belkin Wemo Switch),
hubs (Smart Things, Amazon Echo), air quality sensors (NEST
Protect smoke alarm, Netatmo Weather station), electronics
(Triby speaker, PIXSTAR Photoframe, HP Printer), healthcare
devices (Withings Smart scale, Withings Aura smart sleep
sensor, Blipcare blood pressure meter) and light bulbs (LiFX
Smart Bulb). Several non-IoT devices were also connected to
the testbed, such as laptops, mobile phones and an Android
tablet. IoT devices were configured via apps, recommended
by the device manufacturers, installed on the tablet.

All the traffic on the LAN side was collected using the
tcpdump tool running on OpenWrt [12]. Capturing the pre-
NAT traffic allowed us to map packets to specific devices
directly; the MAC addresses in the packet headers reveal the
identity of the devices (see column three in Fig. 1(b)). We
developed a script to automate the process of data collection
and storage. The resulting traces were stored as pcap files on
an external hard drive of 1 TB storage attached to the gateway.

A. Trace Data

We started logging all network traffic in our smart environ-
ment from 23-Sep-2016. The process of data collection/storage
begins at midnight local time each day using the Cron job on
OpenWrt. We wrote a monitoring script on the OpenWrt to
ensure that data collection/storage was proceeding smoothly.
To make the trace data publicly available, we set up an
Apache server on a virtual machine (VM) in our university
data center and wrote a script to periodically transfer the trace
data from the previous day, stored on the hard drive, onto
the VM. The trace data is openly available for download at:
http://149.171.189.1/. The size of the daily logs varies between
61 MB and 2 GB, with an average of 365 MB.

IV. PROFILING AND CHARACTERIZING THE IOT TRAFFIC

We now present our observations using passive packet-level
analysis of traffic from 21 IoT devices over the course of
two weeks (i.e. 23 Sep 2016 to 06 Oct 2016). We study
a broad range of IoT traffic characteristics, including traffic
load and signalling patterns, packet size distribution, dominant
protocols used, and the distribution of active and sleep times.

A. IoT Activity

We first plot in Fig. 2(a) the total network load seen
over a 24 hour period in our testbed on a representative
day, 28 Sep 2016, chosen for illustrative purposes. The total

load comprises traffic from all the non-IoT and IoT devices
connected to the network. Non-IoT traffic comprises video
and web traffic generated by the occupants of the environment
on that day. IoT traffic constitute (i) traffic generated by the
devices autonomously (e.g. DNS, NTP, etc. that are unaffected
by human interaction), as well as (ii) traffic generated due
to occupants interacting with the devices (e.g. Belkin Wemo
sensor responding to detection of movement, Amazon Echo
responding to voice commands issued by a user, LiFX light
bulb changing colour and intensity upon user request, Netatmo
Welcome camera detecting an occupant and instructing the
LiFX light bulb to turn on with a specific colour, and so on).

We see from Fig. 2(a) that when there is activity from
both IoT devices and non-IoT devices (e.g. between 10 am
and 12 pm), the network load peaks at around 17 Mbps,
while the average load is 400 Kbps. However, if we consider
only the load imposed by the IoT devices, then there is a
dramatic reduction in the peak load (1 Mbps) and average
loads (66 Kbps), as depicted in Fig. 2(b), implying that traffic
generated by IoT devices is small compared to traditional non-
IoT traffic. If we zoom into the traffic pattern of one IoT
device (for e.g. the LiFX light bulb) during a short interval,
say one hour between 5 pm and 6 pm, a pattern of active/sleep
communication emerges, as observed in Fig. 2(c). We therefore
use the notion of active/sleep periods (defined as the duration
over which an IoT device is generating traffic or remains idle,
respectively) and the volume of traffic generated during active
periods as attributes to capture the behaviour of IoT devices.

In Fig. 3(a) we plot the CCDF (Complementary Cumulative
Distribution Function) of IoT active time and observe that it
decays rapidly initially (only 5% of sessions last longer than
5 seconds), with the maximum active time being 250 seconds
in our trace. This shows that IoT activities are short-lived in
general. The CCDF in Fig. 3(b) shows that the IoT sleep
duration (intervals during which no packet is exchanged) is
less than 20 seconds 85% of the time, and only 4% of sleep
times are longer than one minute, meaning IoT devices wake
up very frequently and generate some network activity each
time. The CCDF of IoT active volume is depicted in Fig. 3(c),
and shows that more than 75% of IoT sessions transfer less
than 1 KB, and only fewer than 1% of the sessions exchange
more than 10 KB, suggesting that the majority of IoT devices
generate only a small burst of traffic. Finally, we observe from
Fig. 3(d) that IoT packet size decays slowly, with only about
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Fig. 3. CCDF of IoT active/sleep time, active volume and packet size.

10% of packets being larger than 500 Bytes.

B. IoT Application Layer Protocols

We now focus on the application layer protocol (inferred
using the destination port numbers) that IoT devices use to
communicate locally in the LAN and/or externally with servers
on the public Internet. Fig. 4 shows the probability histogram
of destination port numbers for all IoT packets. It can be seen
that HTTPS (i.e. TCP port 443) is the dominant protocol used
by the IoT devices. Nevertheless, about 45% of IoT traffic
(by number of packets) is not sent over HTTPS to the servers
on the public Internet indicating that a sizeable fraction of
IoT traffic is not being securely transported over the Internet.
This raises serious security concerns for the users of those
IoT devices. We note that this observation is in contrast to a
forecast made by Sandvine in 2016 [13], in notes that 70% of
traffic on the Internet is encrypted. Not surprisingly, the second
most dominant application layer protocol is HTTP (i.e. TCP
port 80), which constitutes 11% of IoT Internet traffic.

IoT devices commonly advertise their presence in order
to discover other devices in the network. This behaviour is
visible in our trace data. It can be seen in the figure that UDP
port 1900, indicative of the SSDP protocol, appears in 8%
of IoT packets. We note that SSDP traffic is communicated
to a multicast address 239.255.255.250 and is only visible
within the internal network. Our analysis also shows that UDP
ports 53 and 123, representing DNS and NTP respectively, are
among the other frequently used protocols by the IoT devices.
In the next subsection, we will study these two signalling
protocols in more detail. Lastly, TCP port 1935 accounted for
7% of IoT packets that were sent to the Internet. This port
number was only used by the Whitings baby monitor camera.
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Fig. 4. Probability histogram of destination port numbers for IoT packets
destined to both the local network and the Internet.

TABLE I
MOST FREQUENT DESTINATION PORT NUMBER.

Device Belkin
switch

Blipcare
BP meter

HP
printer

Insteon
camera

LiFX
bulb

port
number

TCP
3478

TCP
8777

TCP
5222

UDP
10001

TCP
56700

Device NEST
Protect

Netatmo
weather

TPLink
camera

Triby
speaker

Withings
camera

port
number

TCP
11095

TCP
25050

TCP
50443

TCP
5228

TCP
1935

C. IoT Device Specific Attributes

Our aim is to examine characteristics of IoT devices from
different viewpoints and highlight their dominant attributes,
enabling us to (a) distinguish an IoT device from a non-IoT
device such as a laptop or mobile phone, and (b) identify a
certain IoT device or its category (as listed in Fig. 1(b)).

Data traffic pattern: In order to glean attributes from a
data traffic and communication perspective, we first convert
the raw pcap files into flows on a daily basis. Then for
a given IoT device, we aggregate all the flows associated
with that device. Given the resulting traffic profile, we study
the probability histogram of the sleep time attribute and
observe that there is a unique pattern for some IoT devices.
For example, sleep times of 90, 60 and 20 seconds occur
respectively for the HP Printer, iHome switch and Netatmo
welcome camera with probability more than 70%. Another
interesting attribute we find is that some devices exchange a
unique volume of data (in bytes) for the most part during their
active periods. For example, in the course of two weeks we
observed that Samsung SmartThings, Samsung SmartCam and
Netatmo weather station consistently exchanged 114, 3341 and
342 bytes during their active periods. Moreover, some devices
such as Withings smart scale, Netatmo weather station and
SmartThings exhibit signatures in terms of the average packet
size; 225, 200 and 75 bytes respectively. Finally, as discussed
in §IV-A, IoT devices generate short bursts of traffic frequently
that result in fairly low bit-rate compared to non-IoT devices.
We therefore measure, for each IoT device, the mean rate,
ratio of peak to mean rate, active time and active volume
from the daily traffic profiles. These attributes collectively help
distinguish IoT devices from non-IoT devices.

Cloud servers: An important observation we make is that
IoT devices differ from non-IoT devices based on the number
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Fig. 5. Clustering of IoT attributes.

Clusters Sleep time 
(Sec)

Active 
volume (B)

Avg. Pckt 
Size (B)

Mean rate 
(Bps)

Peak/ 
Mean rate

Active time 
(Sec)

No. of 
Servers

No. of 
Protocols  

Unique 
DNS Req.

DNS interval  
(Sec)

NTP  interval 
(Sec)

1 4               142           94           462           11              1                    2          3             3             54                32                
2 66             401           144         2,461        66              2                    15        5             20           730             769              
3 241           1,186        234         11,388     229            8                    113     6             61           2,367           4,536           
4 7,985       4,522        327         42,493     474            25                  341     8             193         11,981        20,058         
5 24,832     27,716     699         516,540   1,253         34                  985     17           637         27,601        37,591         

Fig. 6. Measure of attribute clusters.

of different Internet servers (excluding DNS and NTP servers)
they communicate with over a 24-hour period. For example, a
laptop in our testbed that was used for general Internet access
contacted about 500 different servers, identified by unique IP
addresses, within only two hours of activity. This is not surpris-
ing since a non-IoT device usually runs multiple applications
and accesses numerous web sites. However, IoT devices are
designed for specific purposes, and therefore communicate
with their own server(s) (i.e. the device manufacturers’) or
selected cloud providers such as IFTTT servers. Our analysis
shows that each IoT device communicates with less than 10
servers on average per day and the number of cloud servers
contacted is fairly consistent across many IoT devices.

Protocols: As noted in §IV-B, IoT devices predominantly
tend to use a few specific application-layer protocols. If we
examine the most frequently used destination port number
for data exchange, then a unique device-specific signature
emerges. Table I lists the dominant destination port numbers
used by ten IoT devices used in our experiments.

DNS traffic: As mentioned in §IV-B, DNS is one the most
popular protocols among IoT devices. In our dataset, we ob-
served that IoT devices initiate DNS queries for only a limited
number of domains (mostly domain name of their vendors
or service providers) and repeat the queries in a consistent
manner. For example, Amazon Echo, Samsung SmartThings
and Belkin Wemo motion sensor issue periodic DNS requests
every 5, 10 and 30 minutes respectively. Further, on average
these three devices ask for 7, 3 and 5 unique domains within
a day. However, a non-IoT device such as a laptop looks for
more than 300 domain names in a course of a few hours.
Therefore, we believe that the number of unique domains and
the frequency of DNS queries are important attributes that
characterize IoT devices.

NTP traffic: Precise and verifiable timing is crucial for
IoT operations [14]. Our analysis indicates that UDP port

123 (NTP protocol) contributes to 2% of total packets sent
from IoT devices to the Internet. We also find that the time
synchronization occurs repeatedly in our testbed and many IoT
devices exhibit a recognizable pattern in the use of NTP. For
example, SmartThings, LiFX lightbulb and Amazon Echo send
NTP requests every 600, 300 and 50 seconds respectively.

D. IoT Attributes Clustering

We have enumerated a multitude of attributes of interest
for IoTs in the preceding subsection. To enable the reader
to visualize the role played by each of these attributes, we
apply the K-Means clustering algorithm – using the Weka tool
[15] – to the attributes across all the IoT devices. We use five
bins for each attribute. A smaller bin count was not effective
in identifying the unique fingerprint that underpins each IoT
device. Choosing a larger bin size renders the visualisation too
onerous, while adding little additional insights.

The result of the clustering algorithm is shown in Fig. 5.
Each row in the figure denotes an IoT traffic attribute. Each
cell, corresponding to a specific device, has a colour code
that represents the cluster bin (ranging from 1 to 5) assigned
to the respective traffic attribute. It can be seen from the
figure that the columns depict a unique colour map (i.e. a
sequence of colours, corresponding to cluster bins), which
denotes the signature/fingerprint of the traffic attributes that
underpin each IoT device. In other words, no two columns
share the same sequence of colours – equivalently, the cluster
bins – permitting unique identification of the devices from the
respective colour maps. For example, all the traffic attributes
corresponding to the LiFX Smart Bulb belong to cluster 1
(i.e. coded purple), for the Withings Smart Baby Monitor the
DNS interval attribute belongs to cluster 2 (i.e. blue) while the
remaining attributes belong to cluster 1. Thus, given a colour
sequence, the visualization aids in identifying the (unique) IoT
device that matches the sequence. The K-Means algorithm also



returns a single parameter for each cluster, called the “cluster
center”, which is shown in Fig. 6.

The following observations emerge from the above two
figures. First, the attributes number of servers contacted and
unique DNS requests can be used to distinguish if a device is
non-IoT or IoT. For non-IoT devices, the number of servers
is coded green (i.e. cluster 3), while for a vast majority of
IoT devices it is coded purple (cluster 1), and only five are
coded blue (cluster 2). Referring to Fig. 6 we note that, non-
IoT devices communicate with a large number of servers (in
excess of 100), owing to the diverse range of applications (e.g.
video, web, etc.) that are executed on those devices. On the
other hand, the number of servers contacted by IoT devices
is substantially smaller, since IoT devices are custom-built for
specific applications. Similarly, unique DNS requests issued by
non-IoT devices is coded orange (cluster 4), while for all but
one IoT device it is purple (cluster 1); only Netatmo Welcome
camera is coded blue (cluster 2). We note from Fig. 6 that the
number of DNS requests from non-IoT devices is nearly 200,
while for IoT devices it is often less than 5. The analysis
reveals that the number of servers and unique DNS requests
can be used to infer whether a device is non-IoT or IoT.

Second, as described earlier, all the traffic attributes com-
bined help distinguish one IoT device from another. To draw
some insights on what the most dominant attributes are, we
observe from Fig. 5 that active volume and DNS intervals
taken together uniquely identify several IoT devices such
as DropCam, Nest Protect, Insteon Camera, Blipcare Blood
Pressure monitor and Belkin WeMo switch. We employ the
InfoGainAttributeEval tool of the Weka to evaluate the relative
importance of each attribute; the output confirms this intuitive
observation – the ordering of attributes (ranked from the most
dominant) that help distinguish one IoT device from another is
active volume, DNS interval, average packet size, mean rate,
sleep time, number of servers, number of protocols, unique
DNS requests, NTP interval, peak/mean rate and active time.

E. IoT Device Classification

While the preceding subsection only examined the impor-
tance of different attributes via visualization, we now develop a
classification technique, driven by supervised machine learning
algorithms, to help identify IoT devices with high accuracy. To
do so, we rely on numerous algorithms available in the Weka
tool for classification (since we have labelled data sets), and
present results from the Random Forest algorithm (for brevity,
we have omitted results from the other algorithms).

We train the classifiers with dataset from two weeks (i.e. 23-
Sep to 6-Oct). Each training instance of our dataset contains
the following attributes – i.e. sleep time, active volume,
average packet size, mean rate, peak to mean ratio, active time,
number of servers, number of protocols, unique DNS requests,
DNS interval, NTP interval, most frequent port number and a
label identifying the IoT device. We then evaluate the efficacy
of our classifiers using (i) 10-fold cross-validation method, and
(ii) by applying it to an independent test dataset.

Our cross-validation method randomly splits the dataset into
training (90% of total instances) and validation (10% of total
instances) sets. This cross-validation is repeated 10 times. The
results are then averaged to produce a single performance
metric. For independent test data, we collect a new dataset
spanning one week (7-13 Oct), that has not been seen before.
The earlier two-week dataset is used for training and the newly
collected one-week dataset is used for validation purposes.

The classification results indicate that the Random Forest
algorithm reaches a high accuracy of over 97% in the 10-
fold cross-validation test and over 95% in the independent
test analysis, meaning that this algorithm is able to uniquely
identify an IoT device with a very high probability. These re-
sults demonstrate the viability of the proposed traffic attributes
in uniquely classifying and identifying IoT devices.

V. CONCLUSIONS

Despite the proliferation of smart IoT devices in cities and
campuses around the world, operators of such environments
lack an understanding of what IoT devices are connected to
their networks, what their traffic profiles look like and whether
the devices are functioning normally without their security
being compromised. This work is the first to systematically
profile, characterize and classify IoT devices in smart envi-
ronments. We instrumented a campus facility with 21 unique
IoT devices and collected traffic traces over 3 weeks, which
we release to the public. We then statistically characterized
the traffic in terms of activity patterns, signalling, protocols,
etc. Finally, we developed a classification technique that not
only distinguishes between IoT and non-IoT devices, but also
uniquely identifies IoT devices with over 95% accuracy. This
paper sets the stage for future work in performance and
security in IoT-enabled smart cities and campus environments.
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