
Can We Classify an IoT Device
using TCP Port Scan?

Arunan Sivanathan, Hassan Habibi Gharakheili, and Vijay Sivaraman
School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, Australia.

Emails: {a.sivanathan,h.habibi,vijay}@unsw.edu.au

Abstract—The explosion in the number of Internet-of-Things
connecting to smart environments has increased the demand for
obtaining visibility into these devices among network operators,
black-box penetration testers, as well as cyber-attackers. More
specifically, enterprise network operators need efficient tools to
classify devices in operation for a better maintenance of their
network assets, enforce device-specific policies, or quarantine
vulnerable devices, thereby reducing the likelihood that they
will be compromised. Recent works have advocated passive
network monitoring techniques to classify these devices based on
their characteristics. However, these techniques require special
network infrastructures and powerful data analytics engines to
monitor and classify connected devices based on their network
behavioral profile. Also, active discovery methods are often
limited to the number of devices due to various factors. This
paper aims to discover whether an IoT can be classified using an
active TCP port scan. First, we propose a technique to determine
the type of an IoT device by probing its open TCP ports based on
prior knowledge from a range of IoT devices. Then, we evaluate
our method by applying to 19 distinct off-the-shelf consumer IoT
devices from different vendors. Our preliminary results show that
IoT devices can be identified and classified by a very lightweight
network TCP scan.

Index Terms—IoT, device classification, port scan

I. INTRODUCTION AND BACKGROUND

THE rapid increase in the Internet of Things (IoT) com-
prising smart lights, cameras, motion sensors, door locks,

thermostats, power switches, medical devices, industrial and
household appliances connected to the Internet, has already
started a profound effect on our lives. Recent predictions
show that the number of connected devices around the world
will surpass 20 billion by 2020 [1]. It shows that future
enterprises and campus networks will be instrumented with
thousands of connected smart devices to facilitate remote
monitoring, security, entertainment and efficient management
for industries and smart cities. Along with the benefits, the
unprecedented scale of IoT has introduced new challenges to
network administrators.

Getting the visibility into IoT devices on the network is
becoming one of the critical challenges for network adminis-
trators. It is crucial to maintain assets, enforce device-specific
policies, and refrain access permits to the blacklisted devices
from the network. For example, knowing what IoT devices are
operating on the network is vital for trouble-shooting. It will
help operators block or quarantine known vulnerable device
types from the network [2] before they do harm to the network.

The recent focus of researchers and industries on IoT
classification has brought various methods to fingerprint and
identify devices by observing their network traffic passively.
In [3], [4] authors extract the fingerprint of wireless-connected
devices from the radio signaling patterns. In [5], authors
note that the existence of IoT devices in a network can be
identified by observing unique servers communicated through
the gateway. Meantime [6]–[9] discuss various attributes that
can be extracted from IoT device traffic pattern for iden-
tifying and/or classifying IoT devices. Followed by these,
in [10] we characterized the IoT traffic based on the statistical
attributes such as activity cycles, port numbers, signaling
patterns and cipher suites. Also, we proposed a multi-stage
machine learning model to classify the devices using flow-
level attributes extracted from network switches equipped with
special hardware-acceleration (e.g. NetFlow).

While all the above works make important contributions to
device classification based on passive monitoring techniques,
they require special network middle-box infrastructures, spe-
cial hardware accelerators, or inspection engines that monitor
the network traffic of IoT devices. Also, these solutions require
a considerable amount of data to “learn” unique fingerprints
for each device. These are highly sophisticated solutions,
perfect for continuous monitoring of devices, and possibly
discover a new device quickly once they come online.

However, in the scenarios like trouble-shooting or occa-
sional device identification, network administrators may re-
quire a simple and lightweight IoT tool that can identify
and classify IoT devices with a minimal amount of prior
knowledge on various IoT devices. Also, it needs to be highly
portable and can be operated without making any changes to
network infrastructure. In most cases, administrators of a large-
scale network, may not have full visibility into device mapping
and infrastructure. Thus, they may want to “actively” probe
connected devices using endpoint IP addresses to discover the
type of individual devices.

To the best of our knowledge, active device discovery is
still in its infancy. In this paper, we examine few possible
approaches to actively classify IoT devices.

A. OUI Prefix in MAC address

The vendor information obtained from the Organizationally
Unique Identifier (OUI) prefix of the MAC address can be
used to classify a device. However, it may not be accurate
enough since: (a) IoT device manufacturers typically use NICs



TABLE I
OPEN TCP PORTS FOR IOT DEVICES.

Devices TCP ports

Amazon Echo 4070, 4071, 55442, 55443
August Doorbell 554, 8554, 19531
Belkin Cam 80, 81, 443, 9964, 49153
Belkin Motion 53, 49152
Belkin Switch 53, 49155
Dlink Cam 21, 23, 5001, 5004, 16119
Google Chromecast 8008, 8009, 9000
Google Home 8008, 8009, 9000, 10001
HP Printer 80, 443, 631, 3910, 3911, 8080, 9100, 9220, 53048
Hue bulb 80, 8080
iHome Plug 80
Netatmo Cam 80, 5555
Samsung Cam 80, 443, 554, 943, 4520, 49152
Smart Things 23, 39500
TPLink Cam 80, 554, 8080
TPLink Switch 80, 9999
Triby Speaker 80, 5080, 44395
Vivitar power 6668
Whithings Sleep 22, 7685, 7888

supplied by third-party vendors, and hence the OUI prefix of
the MAC address may not convey any information about the
IoT device; (b) it is impossible to distinguish the different
device types from same vendor, even though the OUI provides
correct details of the vendor.

B. DHCP hostname
Few devices use hostname field during the DHCP negotia-

tion to advertise their names to the DHCP server (e.g. Samsung
SmartThings device announces itself as “SmartThings” by the
hostname field). This can be used to identify some devices
in the network. However, there are a number of issues with
the DHCP hostname: (a) many IoT devices do not set the
hostname option in their DHCP requests – indeed we found
that about half the IoT devices we studied do not reveal their
hostnames; (b) even if the IoT device exposes its hostname it
may not always be meaningful (e.g. iHome PowerPlug uses
“hap-29D71D” for its hostname) and lastly; (c) some devices
(e.g. HP printer) allow users to customize the hostnames to an
arbitrary value.
C. Service Discovery Protocols

Several service discovery protocols (e.g. SSDP, Bonjour,
Alljoyn, and IoTivity) are used to advertise the services offered
by the devices to their peers [11]. Most of these protocols are
designed to respond to discovery/search packets generated in
the multicast address space. It is a perfect solution to scout
devices on the network along with the services offered by
them. However, only a limited number of devices have adopted
the discovery protocols to identify themselves so far. Another
downside of using the service discovery protocols is that in
typical network configurations, multicast discovery packets
may not reach devices in other subnets. Thus, it may allow
discovery of devices only within the subnet where the scanner
resides unless the multicast forwarding is enabled.

D. Parsing Service Banners
Some devices respond with a banner to request for a service

exposed by them. Sometimes, these banners may contain

0 1 2 3 4 5 6 7 8 9 10

Number of devices

21

22

23

53

80

81

443

554

631

943

3910

3911

4070

4071

4520

5001

5004

5080

5555

6668

7685

7888

8008

8009

8080

8554

9000

9100

9220

9964

9999

10001

16119

19531

39500

44395

49152

49153

49155

53048

55442

55443

T
C

P
 P

o
rt

s
Fig. 1. Histogram of TCP ports across IoT devices.

details about the device, helping detect and classify them.
For example HTTP service may reveal details such as server
version, type of the host operating system, or hostname. Tradi-
tionally this technique has be used by network administrators
to map their inventory of the systems on their network. Also,
popular IoT device search engines such as Shodan [12],
[13] use bots to parse these banners and index devices like
webcams, SCADA systems, and network routers. Meantime,
as these information can be used by cyber intruders to narrow
down some applicable exploits, some manufacturers started
restricting the details shown in the service banners. In addition
to that, it will become hard to obtain a banner when a device
does not expose services on standard ports (e.g. running a web
server on a custom port number instead of using the standard
port 80).

The methods mentioned above have their own pros and
cons. Each method is able to identify different sets of devices.
Still, there are some devices that cannot be seen under any of
these discovery techniques. Therefore, we have come up with
a technique to classify IoT devices by focusing on open TCP
ports on the device side. This paper aims to find the feasibility
of this approach.

The contributions of this papers are:

• First, we propose a technique to determine the type of
an IoT by probing its open TCP ports based on the prior
knowledge we gathered from a range of IoT devices. We
use a hierarchical port scanning approach to perform an
optimal scanning without creating unnecessary conges-
tion on the network.

• Then, we evaluate our method by applying it to 19
distinct off-the-shelf consumer IoT devices from different
vendors. The set of devices we used includes cameras,



Vivitar power
6668

Whithings sleep
7888

7685

22

Amazon Echo
55443

55442
4071

4070

August doorbell
19531

8554

554

Google Chromecast

Google Home
10001

9000
8009

8008

Dlink cam
16119

5004
5001

21

Smart Things
39500

23

Belkin motion
49152

Belkin switch
49155

53

iHome plug

Triby speaker
44395

5080

Netatmo cam
5555

TPLink switch
9999

Belkin cam
49153

9964
81

Samsung cam
49152

4520
943

554

443

Hue bulb

TPLink cam
554

HP printer
53048

9220
9100

3911
3910

631

443

8080

80

Fig. 2. Hierarchal TCP scan for classifying IoT devices.

light bulbs, power plugs, voice assistants, and home
appliances.

II. DEVICE DISCOVERY USING PORT SCANS

Since most of the IoT devices are manufactured for specific
(and limited) tasks, they expose different sets of services op-
erating on port numbers specific to the device chosen by their
manufacturer [14]. Unlike traditional non-IoT devices, it has
less likelihood to be customized by users in typical scenarios.
We found unique combinations of open ports operational on
various devices in our previous work [15], which evaluates
the security of IoT devices. This inspired us to generate the
inventory of TCP port signatures to distinguish a range of
devices.
A. Device Signature of Open Ports

We now explain two methods for fingerprinting of IoT
devices considering open TCP ports. TCP open ports can be
probed using two different modes: 1) SYN stealth (also known
as half-open) scan, and 2) TCP connect scan.

1) SYN Stealth Scan: It is the quickest scan method since it
probes the ports just by the SYN packet instead of attempting
to establish a full TCP connection. A SYN Stealth scanner
labels a port as open when she receives an SYN/ACK packet
as a response for an SYN request targeted to a port, and as
closed when she receives a RST (reset) from the device. Also,
she notes a port as filtered if no response is received from the

remote device after several attempts. The filtered ports are
mostly occurring because of host-based firewalls that block
reply packets.

2) TCP Connect Scan: In this method the scanner attempts
to establish a successful TCP connection on each port. TCP
connect scanner decides a port as open when the connection is
established successfully after complete three-way handshakes.
Otherwise, she marks it as closed.

TCP connect mode is more reliable than the SYN stealth
scan since all the ports reported by TCP connect scanner
should be mapped to a service which is ready to make a
connection. Thus, we use TCP connect mode to scan our
devices. For this work, we use Nmap to scan the ports of
each device in our testbed.

Table I shows the list of open ports on IoT devices (i.e.
signature) identified by scan over entire port range (i.e. 1
to 65535). Altogether, we found 42 unique open TCP ports
form a collection of 19 devices. Although we see the different
combination of open ports for each device, we find some
similarities specially for devices from the same vendor (e.g.
both Google Chromecast and Google Home use ports 8008,
8009, and 9000). Fig. 1 shows the histogram of TCP ports
across IoT devices. It can be seen that TCP port 80 (i.e. HTTP)
is the dominant port number that is seen in 9 (out of 19)
devices, followed by TCP ports 443, 554 and 8080. Also, we
see several unique ports used by only one device.



B. Device Identification using Hierarchical Port Scanning

Now, we propose an efficient mechanism to identify the
unknown device types based on the open TCP port fingerprints
we extracted earlier. Rather than scanning entire port range in
devices and mapping with the TCP open port fingerprints, we
propose to scan the ports one after the other in a hierarchical
manner.

We used an automated script to build a hierarchical tree
from the fingerprints of the devices as shown in Fig. 2. This
tree depicts the consecutive probing order based on the status
of previous port whether it is open (indicated by green links)
or closed (indicated by red links). Initially, the script chooses
to probe the most used port number first, which is port 80 in
our case. If the port is open, it eliminates the devices that keep
port 80 as closed. Then it attempts the second most frequently
used port number (in our case it is port 8080). In a similar way,
we eliminate the devices until we confirm the fingerprint of a
device(shown by blue nodes). Here, the black nodes indicate
that there are no known fingerprints for further probing.

III. EVALUATION

In this section, we evaluate the efficiency and benefits of
our proposed hierarchical scan.
A. Required Number of Probes

In order to identify a given device by probing the entire
port range (1-65535) would be a highly time-consuming task.
Also, intensive port scan offer a heavy load to the network by
probing packets, thus impacting the network performance. In-
stead of scanning the entire port range, probing the collection
of ports, used by at least one device, can reduce the number
of ports to be probed per device. In our case, still, it requires
42 port probes per device. The number of ports needed to be
checked per device may increase dramatically with the number
of devices in our fingerprint inventory.

Fig. 2 shows that hierarchical tree based scanning approach
needs only 6 ports on average to classify and confirm 19 IoT
devices. Also, we note that many devices can be classified
within a few numbers of probes without checking all ports
identified by fingerprinting. However, we recommend confirm-
ing the full fingerprint rather than pruning trees to decrease
the false positive alarms. For example, probing first 3 port (80,
8080, 443) is enough to classify the HP printer from other
devices. However, probing the rest 6 ports will confirm that, it
is a real HP printer, rather than falsely labeling a device that is
not included in the fingerprint inventory. This shows that our
methodology can classify the IoT devices with the minimal
amount of probings. Also, this tree can be further optimized
by balancing the branches or manually prioritizing the devices
that are in high quantity.

B. Including UDP ports

Scanning the UDP ports are generally slower (and more
complex) compared to TCP scans. The challenge with UDP
port scanning is UDP protocol does not exchange any hand-
shaking packets to initiate the connection. Due to this reason,

most of the time opened UDP ports does not respond to prob-
ing packet which crafted with an empty or arbitrary payload. It
makes difficult to identify the open ports accurately. Meantime,
closed UDP ports respond with ICMP port unreachable error
message. However, many devices limit ICMP port unreachable
error messages in the rate of one per second in by default. It
makes the scanning process extremely slow. Thus on this work,
we limited port fingerprinting to TCP ports only

IV. CONCLUSION

Getting the visibility into IoTs among the thousands of
smart devices connected to an enterprise or campus-scale
network is becoming a tedious task for network operators.
Existing frameworks for IoT device detections mostly depend
on passive traffic monitoring techniques and/or require ad-
ditional special infrastructures. Also, active device discovery
methods are applicable for a very limited set of devices. In
this work, we have analyzed the feasibility of an active device
classification technique using a hierarchical port scanning
method. The preliminary results indicate that this technique
can be used to classify the devices with the minimal amount
of probings.

REFERENCES

[1] IEEE Spectrum. (Last accessed July 2017.) Popular Internet of Things
fore of 50 billion devices by 2020 Is outdated. https://goo.gl/6wSUkk.

[2] Cisco, “Cisco 2017 Midyear Cybersecurity Report,” Tech. Rep., 2017.
[3] V. Srinivasan et al., “Protecting your daily in-home activity information

from a wireless snooping attack,” Proc. UbiComp, p. 202, 2008.
[4] A. Acar, H. Fereidooni, T. Abera, A. K. Sikder, M. Miettinen, H. Aksu,

M. Conti, A. R. Sadeghi, and A. S. Uluagac, “Peek-a-Boo: I see your
smart home activities, even encrypted!” Tech. Rep., 2018. [Online].
Available: http://arxiv.org/abs/1808.02741

[5] H. Guo and J. Heidemann, “IP-Based IoT Device Detection,” in Proc.
ACM workshop on IoT Security and Privacy (IoT S&P), Budapest,
Hungary, Aug 2018.

[6] M. Miettinen, S. Marchal, I. Hafeez, T. Frassetto, N. Asokan, A. R.
Sadeghi, and S. Tarkoma, “IoT Sentinel Demo: Automated Device-Type
Identification for Security Enforcement in IoT,” Tech. Rep., 2017.

[7] Y. Meidan et al., “Profiliot: A machine learning approach for iot device
identification based on network traffic analysis,” in Proc. Symposium on
Applied Computing, Marrakech, Morocco, 2017, pp. 506–509.

[8] Y. Meidan, M. Bohadana, A. Shabtai, M. Ochoa, N. Tippenhauer, J. D.
Guarnizo, and Y. Elovici, “Detection of Unauthorized IoT Devices
Using Machine Learning Techniques,” arXiv, 2017. [Online]. Available:
http://arxiv.org/abs/1709.04647

[9] Y. Amar et al., “An Analysis of Home IoT Network Traffic and
Behaviour,” 2018. [Online]. Available: http://arxiv.org/abs/1803.05368

[10] A. Sivanathan et al., “Classifying IoT Devices in Smart Environments
Using Network Traffic Characteristics,” IEEE Transactions on Mobile
Computing, 2018.

[11] Z. Song, A. A. Cárdenas, and R. Masuoka, “Semantic Middleware for
the Internet of Things,” 2010 Internet of Things, IoT 2010, 2010.

[12] “Shodan.” [Online]. Available: https://www.shodan.io/
[13] J. Guarnizo, A. Tambe, S. S. Bhunia, M. Ochoa, N. Tippenhauer,

A. Shabtai, and Y. Elovici, “SIPHON: Towards Scalable High-
Interaction Physical Honeypots,” 2017.

[14] A. Hamza et al., “Clear as MUD: Generating, Validating and Applying
IoT Behaviorial Profiles,” in Proc. ACM workshop on IoT Security and
Privacy (IoT S&P), Budapest, Hungary, Aug 2018.

[15] F. Loi et al., “Systematically Evaluating Security and Privacy for
Consumer IoT Devices,” in Proc. ACM workshop on IoT Security and
Privacy (IoT S&P), Texas, USA, Nov 2017.


