
Combining MUD Policies with SDN
for IoT Intrusion Detection

Ayyoob Hamza
University of New South Wales

Sydney, Australia
ayyoobhamza@student.unsw.edu.au

Hassan Habibi Gharakheili
University of New South Wales

Sydney, Australia
h.habibi@unsw.edu.au

Vijay Sivaraman
University of New South Wales

Sydney, Australia
vijay@unsw.edu.au

ABSTRACT
The IETF’s push towards standardizing the Manufacturer Usage De-
scription (MUD) grammar and mechanism for specifying IoT device
behavior is gaining increasing interest from industry. The ability to
control inappropriate communication between devices in the form
of access control lists (ACLs) is expected to limit the attack surface
on IoT devices; however, little is known about how MUD policies
will get enforced in operational networks, and how they will inter-
act with current and future intrusion detection systems (IDS). We
believe this paper is the first attempt to translate MUD policies into
flow rules that can be enforced using SDN, and in relating exception
behavior to attacks that can be detected via off-the-shelf IDS. Our
first contribution develops and implements a system that translates
MUD policies to flow rules that are proactively configured into
network switches, as well as reactively inserted based on run-time
bindings of DNS. We use traces of 28 consumer IoT devices taken
over several months to evaluate the performance of our system
in terms of switch flow-table size and fraction of exception traffic
that needs software inspection. Our second contribution identifies
the limitations of flow-rules derived from MUD in protecting IoT
devices from internal and external network attacks, and we show
how our system is able to detect such volumetric attacks (includ-
ing port scanning, TCP/UDP/ICMP flooding, ARP spoofing, and
TCP/SSDP/SNMP reflection) by sending only a very small fraction
of exception packets to off-the-shelf IDS.

CCS CONCEPTS
• Security and privacy→ Intrusion detection systems; •Networks
→ Programmable networks;

KEYWORDS
IoT, MUD, SDN, Intrusion Detection

ACM Reference Format:
Ayyoob Hamza, Hassan Habibi Gharakheili, and Vijay Sivaraman. 2018.
Combining MUD Policies with SDN for IoT Intrusion Detection. In IoT
S&P’18: ACM SIGCOMM 2018 Workshop on IoT Security and Privacy , August
20, 2018, Budapest, Hungary. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3229565.3229571

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IoT S&P’18, August 20, 2018, Budapest, Hungary
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5905-4/18/08. . . $15.00
https://doi.org/10.1145/3229565.3229571

1 INTRODUCTION
Billions of Internet-connected devices such as cameras, light-bulbs,
medical sensors, and smoke alarms have severe security limitations
[13] that make them potential victims of large scale cyber-attacks.
Security firms [5] warn of attackers continuing to exploit IoTs to
launch attacks in the form of DoS, DDoS, brute force, TCP SYN/UDP
flooding, and scanning, while the growth of botnets [10] such as Mi-
rai and Persirai that infect millions of IoTs is facilitating destructive
campaigns of unprecedented magnitude.

Current practise for securing organizational networks is to rely
on Intrusion Detection Systems (IDS) that inspect network traffic
to detect attacks. However, such solutions are either extremely
expensive if they are hardware-based, or unscalable to high data-
rates if they are software-based. Further, the myriad variety of IoT
devices, each with its own specific behavior and security vulnera-
bilities, makes it challenging for the IDS to distinguish normal from
abnormal traffic that could be symptomatic of an attack.

In this paper1 we aim to increase the scalability and efficacy of
IDS using a combination of MUD and SDN. Manufacturer Usage
Description (MUD) [12] is an emerging IETF framework for for-
mally specifying the expected network behavior of an IoT device.
IoT devices generally perform a specific function, and therefore
have a recognizable communication pattern [16], which can be
captured formally and succinctly as a MUD profile. Using the Soft-
ware Defined Networking (SDN) paradigm, this formal behavioral
profile can be translated to static and dynamic flow rules that can
be enforced at run-time by the network – traffic that conforms
to these rules can be allowed, while unexpected traffic inspected
for potential instrusions. Such an approach dramatically reduces
load on the IDS, allowing it to scale in performance and identify
device-specific threats.

We first develop and implement a system that translates MUD
policies to flow rules – some of these can be configured proactively
into network switches, while others are inserted reactively based
on run-time DNS bindings. We then simualte these flow rules for
28 consumer IoT devices with given MUD profiles using real traffic
traces collected over several months, and evaluate aspects of system
performance such as switch flow-table size and fraction of traffic
that misses flow rules and therefore needs software inspection. Fi-
nally, we highlight the benefits and limitations of flow-rules derived
from MUD in protecting IoT devices from internal and external
network attacks, and demonstrate that our system is able to detect
volumetric attacks (including port scanning, TCP/UDP/ICMP flood-
ing, ARP spoofing, and TCP/SSDP/SNMP reflection) by sending
only a very small fraction of exception packets to off-the-shelf IDS.

1This project was supported by theAustralian Research Council (ARC) through Linkage
Grant LP150100666 and Google Faculty Research Awards.

https://doi.org/10.1145/3229565.3229571
https://doi.org/10.1145/3229565.3229571
https://doi.org/10.1145/3229565.3229571


IoT S&P’18, August 20, 2018, Budapest, Hungary A. Hamza, H. Habibi Gharakheili, and V. Sivaraman

2 RELATEDWORK
The IETF MUD specification [12] allows a device manufacturer to
define the behavior of their device in the form of access control
lists. This specification can be fed to an IDS to detect observed
behavior that is not as specified, thereby indicating an anomaly
or threat. In general, specification-based IDS for general-purpose
devices is challenging as polices can be complex, unmanageable,
and difficult to define manually as they are highly dependent on
user activity [18]. However, since IoT devices are expected to be
special-purpose, it is expected that they will have a small number of
predictable traffic flows [16], which can be captured via relatively
simple policies.

An example proposal for using network policy to secure IoT de-
vices in an SDN environment is [19]; however, their policy grammar
requires fine grained access controls that capture the state change
(such as smoke sensed or windows opened) associated with IoT
devices, which may be infeasible if manufacturers encrypt their
sensing data, and undesirable for network operators who do not
want to make semantic interpretations of sensing data; furthermore,
their proposed theoretical framework has not been demonstrated in
implementation. MUD, instead, allows operators to impose a tight
set of rules (down to the port level) for each device, thus limiting
its communication to only intended traffic flows. In HanGuard [6],
the authors propose an access control model to block unauthorized
access to IoT device from mobile devices. This proposed framework
is only limited to local network traffic and mobile to IoT device
communication. In [4], the authors propose a specification-based
approach for a wireless sensor network, and expect the network
operator to define the rules. We believe this is too onerous for the
network operator; the behavior is better defined by the manufac-
turer of the IoT device, which is exactly what MUD intends.

MUD is a relatively new IETF framework [12], and the specifi-
cation is still evolving. A valid MUD profile contains a root object
called “access-lists” container that comprises several access control
entries (ACE), serialized in JSON format. Access-lists are explicit in
describing the direction of communication, i.e., from-device and to-
device. Each ACE would match on source/destination port numbers
for TCP/UDP, and type and code for ICMP. The MUD specifications
also distinguish local-networks traffic from Internet communica-
tions. The MUD proposal defines how a MUD profile needs to be
fetched and how the behavior of an IoT device needs to be defined.
The MUD profile will be downloaded using a MUD url and this will
be passed to the network by the IoT device through either DHCP
option, LLDP, or IEEE 802.1ar. Our work [9] describes our open-
source tool MUDgee [7] that is able to generate the MUD profile for
an IoT device using its traffic trace as an input. To the best of our
knowledge, our work is the first study on the use of MUD profiles
for security enforcement and analysis in an SDN environment.

3 TRANSLATING MUD PROFILE TO
DYNAMIC FLOW RULES

In this section, we outline our SDN-based system to enforce MUD
policies and dynamically inspect exception traffic which is a small
fraction of total packets to/from IoT devices. Our system uses as
input MUD profiles of 28 consumer IoT devices that we have au-
tomatically generated by the MUDgee tool [9] using packet traces

IDSInspection 
Engine

SDN  
Controller

SDN App

MUD Profile

Internet
port-1 port-2

port-3
local 
network

1

MUD 
File Server

2

3

4

5

gateway

SDN switch

Figure 1: Our SDN-based system architecture.

collected over several months. We next begin with the architecture
of our system.

3.1 System Architecture
Fig. 1 shows the functional blocks in our system architecture applied
to a typical home or enterprise network. IoT devices on the left can
communicate with the local network as well as with Internet servers
via a gateway. Our system comprises a switch whose flow-table
rules are managed dynamically by the SDN controller, a packet
inspection engine, and a signature-based IDS.

The switch is initially configured by a default rule to mirror
all traffic to the inspection engine on port-3, as shown by step 1⃝.
Packets from an IoT device, that has not yet been discovered, are
forwarded (on port-2) and mirrored (on port-3), as shown by step
2⃝. The inspection engine keeps track of already discovered devices
on the local network (by maintaining a table of known MAC or IP
addresses). Upon connection of a new device, its traffic is mirrored
which helps the inspection engine detect this device and obtain
the MUD URL from its initial packets (e.g., DHCP request) shown
by step 3⃝ in Fig. 1. Thereafter, the inspection engine fetches the
corresponding MUD profile from a MUD file server as shown by
step 4⃝. The MUD profile is stored (till its validity period), and its
access control entries (ACEs) will be translated into a set of flow
rules (“proactive”). Proactive rules then are inserted into the switch
via the SDN controller as shown by step 5⃝. Access control entries
can be directly translated to flow rules, but it requires a notion of
rules priority which is not captured by the current MUD draft. It is
important to note that the order of flows becomes important when
generating flow rules from a device MUD profile for preventing
unwanted traffic to/from the device

We note that MUD specifications allow manufacturers to specify
Internet endpoints by their domain-name. Therefore, MUD ACEs
pertinent to Internet communications (with domain-name) can not
be directly translated to flow rules. This means that we need to
inspect DNS responses to find their bindings at run-time and store
them in a DNS cache (maintained by the inspection engine). We
also mirror all Internet traffic of individual IoT devices to check
whether their remote IP address exists in the DNS cache; if yes, a
“reactive” flow rule will be inserted into the switch. Note that packet
inspection is conducted for flows associated with a domain-name
to check whether the flow is compliant with policies specified by
the device MUD profile.



Combining MUD Policies with SDN for IoT Intrusion Detection IoT S&P’18, August 20, 2018, Budapest, Hungary

Table 1: Flow rules for Canary camera.
flow-id sEth dEth typeEth Source Destination proto sPort dPort priority action
I <devMAC> * 0x888e * * * * * 20 forward
II <devMAC> FF:FF:FF:FF:FF:FF 0x0800 * * * * 67 20 forward
III <gwMAC> <devMAC> 0x0800 * * 1 * * 20 forward
IV <devMAC> <gwMAC> 0x0800 * gateway IP 17 * 53 20 forward
V <gwMAC> <devMAC> 0x0800 gateway IP * 17 123 * 20 forward
VI <devMAC> <gwMAC> 0x0800 * gateway IP 17 * 123 20 forward
VII <gwMAC> <devMAC> * * * 17 53 * 20 forward & mirror
VIII <gwMAC> <devMAC> 0x0800 h.canaryis.com * 6 80 * 11 forward
IX <devMAC> <gwMAC> 0x0800 * h.canaryis.com 6 * 80 11 forward
X <gwMAC> <devMAC> 0x0800 h.canaryis.com * 6 443 * 11 forward
XI <devMAC> <gwMAC> 0x0800 * h.canaryis.com 6 * 443 11 forward
XII <gwMAC> <devMAC> 0x0800 o.canaryis.com * 6 443 * 11 forward
XIII <devMAC> <gwMAC> 0x0800 * o.canaryis.com 6 * 443 11 forward
XIV <gwMAC> <devMAC> 0x0800 b.canaryis.com * 6 443 * 11 forward
XV <devMAC> <gwMAC> 0x0800 * b.canaryis.com 6 * 443 11 forward
XVI <gwMAC> <devMAC> 0x0800 i.canaryis.com * 6 443 * 11 forward
XVII <devMAC> <gwMAC> 0x0800 * i.canaryis.com 6 * 443 11 forward
XVIII <gwMAC> <devMAC> 0x0800 m.canaryis.com * 6 443 * 11 forward
XIX <devMAC> <gwMAC> 0x0800 * m.canaryis.com 6 * 443 11 forward
XX <devMAC> <gwMAC> 0x0800 * * * * * 10 forward & mirror
XXI <gwMAC> <devMAC> 0x0800 * * * * * 10 forward & mirror
XXII * <devMAC> 0x0806 * * * * * 7 forward
XXIII <devMAC> * 0x0806 * * * * * 7 forward
XXIV * * * * * * * * 1 forward & mirror

It is important to note that IoT local communications are limited
to a handful of standard flows which are typically fairly static (e.g.,
ARP and DHCP), whereas Internet communications are carried by a
larger number of flows (e.g., up to 50 for some IoTs) whose endpoints
are dynamic (e.g., HTTPS to h.canaryis.com). We, therefore, per-
manently keep flow rules corresponding to local communications,
and set a idle-timeout for reactive flow rules of Internet communi-
cations, for efficient use of limited-capacity TCAM inside the SDN
switch.

As an example, in Table 1 we show flow rules translated from
the MUD profile of Canary camera. Highlighted rows correspond
to a snapshot of reactive flow rules since they vary over time.
We show domain-names for Internet-based source/ destination
to make it easier to visualize (in actual flow-table, IP addresses
are used). It is seen that the camera communicates with five sub-
domains of canaryis.com – one is HTTP, and five are HTTPS.
Non-highlighted rows correspond to proactive rules, and the de-
fault rule (at the very bottom of Table 1). As discussed earlier,
proactive rules IV, XX, and XXI respectively mirror DNS replies
as well as outgoing/incoming Internet traffic for each IoT device.
Note that reactive rules would have a priority slightly higher than
of flows mirroring Internet traffic, but lower than of the DNS reply
flow. This way, we stop mirroring packets of Internet flows that are
correctly captured by the inspection engine.

Lastly, we see essential rules for basic operations over the net-
work such as: rules I, II and III respectively correspond to EAPoL
(Extensible Authentication Protocol over LAN) packets, DHCP re-
quests, and ICMP replies from default gateway; rules V and VI
relate to direct communication between the device and the default
gateway for NTP communications; rules XXII and XXIII specifically
match on ARP packets from/to the device.

3.2 System Implementation and Performance
Evaluation

We have implemented our proposed system that uses our generated
MUD profiles (according to the syntax of current MUD specifica-
tions [12]), replays our IoT traffic traces [16] into an SDN simulator,
and performs packet inspection for a fraction of total traffic using
Snort [3], a widely deployed, open-source, signature based IDS.

MUD Profiles: We collected benign traffic traces of 28 con-
sumer IoT devices over an 18-week period, and used our open
source tool called MUDgee [7] to automatically generate MUD
profile of these individual IoT devices – these profiles are avail-
able at: http://iotanalytics.unsw.edu.au/mud/ [9]. Note that
current IoT manufacturers do not yet support MUD specifications
and mechanism. We therefore use the MAC address of IoT devices
mapping them to their MUD profile in our repository/cite.

SDN Simulator and IDS:We wrote a native SDN simulator [8]
that translates MUD policies into flow rules inside the SDN switch.
Our simulator also takes an input PCAP trace, performs packet-by-
packet service inside the switch with an inspection engine attached
to it. The simulator also dumps a small fraction of packets (only
those that are not matched to expected flows and need inspection)
into an output PCAP file. We utilized tcpreplay tool to replay this
output PCAP into Snort [15].

Performance Metric and Evaluation: As discussed earlier,
inspection of certain packets is inevitable to capture a tight rule
associated with each of TCP, UDP, or ICMP communications. But
these inspections impose compute cost to our system. Another
consideration is the dynamic management of flow-table for effi-
cient usage of static resource in the switch. Therefore, we track
the number of packets inspected, and the total number of flow
rules at run time. The key tuning parameter is the idle-timeout



IoT S&P’18, August 20, 2018, Budapest, Hungary A. Hamza, H. Habibi Gharakheili, and V. Sivaraman

0 200 400 600 800 1000

Time (min)

0

20

40

60

80

100

Fl
ow

 c
ou

nt

Awair air quality

Blipcare BP meter

Canary camera

Netatmo weather

(a) Number of flows.

0 200 400 600 800 1000

Time (min)

0

1

0

1

0

1

0

1

In
sp

ec
te

d 
pa

ck
et

s

Awair air quality

Blipcare BP meter

Canary camera

Netatmo weather

(b) Inspected packets.

Figure 2: Dynamics of (a) flow count, and (b) inspected packets, when idle-timeout equals to two hours (7200s).

120 1200 3600 7200
idle-timeout (sec)

0

10

20

30

40

50

60

Av
g 

nu
m

 o
f f

lo
w

s

Canary camera
Netatmo weather
Awair air quality
Blipcare BP meter
All 28 devices

(a) Average number of flows .

120 1200 3600 7200
idle-timeout (sec)

0

1

2

3

4

5

6

7

To
ta

l f
ra

ct
io

n 
of

 in
sp

ec
te

d 
pa

ck
et

s 
(%

)

Blipcare BP meter (1.77%)
Netatmo weather (1.95%)
Awair air quality (0.31%)
Canary camera (0.27%)
All 28 devices (0.98%)

(b) Total fraction of inspected packets.

Figure 3: Performance metrics: (a) average flow count, and (b) fraction of inspected packets.

chosen for reactive flow rules. In our experiments, we vary the idle-
timeout ranging from fairly short duration 2min to longer durations
20min, 60min, and 120min. We experimented with traffic traces of
28 devices collected over 4.5 months. To make it easier we plot our
results for selected IoT devices including Awair air quality, Blipcare
blood-pressure meter, Canary camera, and Netamo weather station.

Fig. 2 shows the dynamics of flow count and inspected packets
over an experiment duration of 1000 minutes when we set the
idle-timeout to 120min. It can be seen in Fig. 2(a) that we have on
average 55 rules for canary camera (shown by solid black lines),
followed by Netatmo weather and Awiar air quality with 27 and
22 average number of flows (shown by blue and cyan lines in the
middle of the plot). However, for Blipcare (shown by dashed red
lines), we initially see a total of 13 flow rules, then comes to 11
and stays at that level. This is because Blipcare generates traffic
when only it is used by the user, and over the Internet it talks to
one cloud-server tech.carematix.com using TCP 8777 (i.e., two
reactive flow rules) – thus no significant dynamics is intended for
the Blipcare blood pressure(BP) meter.

Focusing on inspected packets in Fig. 2(b), we see that Canary
has the highest rate of inspected packets (i.e., 1.46 packet-per-min),
followed by Netatmo weather station and Awair air quality with
the rate of 1.05 and 0.16 inspected packets per minute respectively.
Unsurprisingly, Blipcare BP monitor has only 3 initial packets in-
spected (i.e., a DNS reply, and two packets to/from the remote TCP
8777).

We expect that choosing a low value for the idle-timeout would
reduce the average flow count. But, such reduction comes at a cost of
more inspected packets. This trade-off is shown in Fig. 3. In this set
of experiments, we played the whole traffic captures (for duration
of 4.5 months) of all IoT devices, and varied the idle-timeout for
each run. Looking into the average flow count in Fig. 3(a), reducing
the the idle-time-out from 2hr to 2min monotonically reduces the
average number of flows by 60% for Canary camera, as shown by
solid black lines and circle markers. A slightly lower reduction (i.e.,
52% and 41%) is observed for Netatmo weather station and Awair
air quality monitor respectively. Considering all 28 devices (shown
by dashed pink lines and cross markers), the average number of
flows is about 33 when idle-timeout is set to 2hr, and is reduced to
25 when idle-timeout equals to 2min. We note that in real practice
the idle-timeout should be tuned based on the TCAM capacity of
the SDN switch and total number of IoT devices in the network.

Lastly, Fig. 3(b) shows the total fraction of packets inspected
for each device. It is seen that the fraction of inspected packets
initially falls when increasing the idle-timeout from 2min to 20
min and persists afterwards, except for Netatmo weather station.
Considering all devices, in worst case (i.e., idle-timeout = 2min)
1.99% of packets are inspected. We note that 0.98% (as mentioned
in the legend) of total packets are DNS replies that are always
inspected – half of inspected packets are DNS replies. Overall,
results confirm that with our system the cost of packet inspection
is kept at a minimum.



Combining MUD Policies with SDN for IoT Intrusion Detection IoT S&P’18, August 20, 2018, Budapest, Hungary

4 SECURITY ANALYSIS OF MUD
In this section, we start analyzing the MUD profile of real consumer
IoT devices that we have generated, and highlight attack types that
can be prevented. Then, we will use traces collected in our lab,
when we launched a number of volumetric attacks to four of IoT
devices, to show how our system can detect these attacks using
off-the-shelf IDS in an operational environment.

Table 2: Resistance of IoT devices against various categories
of attacks.

IoT Device To
In
te
rn

et

Fr
om

In
te
rn

et

Fr
om

/T
o
Lo

ca
l

U
D
P

TC
P

IC
M
P

U
D
P

TC
P

IC
M
P

A
RP

U
D
P

TC
P

IC
M
P

Amazon Echo
August doorbell camera
Awair air monitor
Belkin NetCam
Blipcare BP monitor
Canary camera
Chromecast
Dropcam
Hello Barbie
HP Envy printer
Hue lightbulb
iHome power plug
LiFX bulb
Nest smoke sensor
Netatmo welcome
Netatmo weather station
Pixstar Photoframe
Ring doorbell
Samsung SmartCam
SmartThings
TP-Link Day-Night
TP-Link plug
Triby Speaker
Wemo Motion Sensor
WeMo power switch
Withings Baby Monitor
Withings scale
Withings sleep sensor

4.1 Resistance Against Attacks
We analyze the efficacy of MUD profiles considering four categories
of attacks: To/From Internet, and To/From local network. Details
of our analysis are shown in Table 2. For ease of visualization, we
use color codes to indicate the device resistance: green for being
secure, yellow for moderately-secure, and red for being insecure.

To Internet: Many IoT devices have been compromised due to
insufficient (or even lack of) authentication enforcement, and have
been employed in large scale botnet attacks to popular Internet
servers [5]. Mirai, Brickerbot and Hajime are examples of major IoT-
botnet-based attacks that were launched [10]. MUD helps isolate
exception packets related to any attempts for botnet injection only
if the device access controls are tightly defined, or the device does

not expose telnet or ssh services. In case of already compromised
devices, MUD is again able to isolate exception packets related to
attack flows that are not specified by the device profile.

We observe that the MUD policy for five devices (i.e., August
doorbell camera, Belkin netcam, Ring doorbell, Samsung smart
camera, and TPLink camera) cannot be tightly defined [9]. These
devices allow peer-to-peer communications for streaming video to
their corresponding mobile App (by using STUN or a stream server
to initiate the handshake). These types of Internet communications
necessitate the device to access an arbitrary range of IP addresses
and port numbers, thus making the device vulnerable. Therefore,
we mark these devices by red cells (in Table 2 under To-Internet
heading) for their insecurity against either TCP- or UDP-based
attacks.

IoT devices have been used as reflector to amplify TCP, UDP or
ICMP floods to Internet-based victims [11, 14]. Another observa-
tion is that all of our IoT devices are vulnerable to DNS spoofing,
since they don’t implement DNSSEC, thus not able to verify the
integrity of reply packets. However, enforcing devices to use local
DNS servers (e.g., in enterprise networks) can reduce the possi-
bility of DNS spoofing attack. Yellow cells in Table 2 indicate the
DNS-related vulnerability. Overall, 23 out of 28 IoT devices are mod-
erately secure against reflection attacks on Internet-based victims.

From Internet: Attacks from the Internet are typically success-
ful if a perimeter security by NAT/firewall is not present, or a
malware exposes the local network to the Internet via port for-
warding [17]. Shodan [2] runs frequent scanning to identify devices
publicly accessible, and publishes their IP address and open ports.
Furthermore, Insecam [1] lists publicly available video camera feeds
from various countries. If proper policy has been applied then these
unintended video feeds would have been blocked. Attackers, there-
fore, would be able to lookup these public repositories to hunt
vulnerable IoT devices.

MUD specifications require manufacturers to separately define
local and Internet communications for their device. This helps
protect devices against port forwarding exposure – if the device
offers a service to the local network, unintended remote access from
the Internet can be prevented to some extent (excluding the spoofing
of device server’s IP address). Moreover, unintended endpoints from
Internet can be limited if the MUD policies specify the intended
endpoints tightly (i.e., by a domain-name).

We see that three devices including August doorbell, Belkin
camera, and Samsung smart camera are vulnerable to intrusions
from Internet, as marked by red cells in Table 2. This is because, for
example, August doorbell camera is allowing Internet traffic from
TCP 443 (with no specific domain-name or IP address). This device
serves the local network on TCP 80. This enables the attacker (with
help of port forwarding) to access TCP 80 on the device by having
the source TCP port equals to 443. We note that if the local or
Internet service was on UDP (i.e., mismatched transport protocols
like in Ring doorbell and TP-Link camera), this type of attack can
not succeed. We note that spoofing of IP for device’s server is
still possible, therefore all devices become somewhat vulnerable to
attacks from Internet if they talk same protocol (UDP or TCP) on
both local and Internet channels, as shown by yellow cells.

From/To Local: It has been shown [6, 13] that communication
between an IoT device and its corresponding mobile App over the



IoT S&P’18, August 20, 2018, Budapest, Hungary A. Hamza, H. Habibi Gharakheili, and V. Sivaraman

local network is typically unauthenticated and/or unencrypted. Ad-
ditionally, consumer IoT devices expose themselves to the local
network using SSDP and/or mDNS protocols that are typically used
for local discovery. This feature enables attackers (or their malware
hosted on a local device) to get in the middle of communication
to eavesdrop or impersonate (i.e., man-in-the-middle can take full
control over the device). These devices, with exposed local services,
do not have any protection against flooding /denial-of-service at-
tacks. We, therefore, deem devices that communicate over the local
network to be at risk for this category of attacks, even though their
MUD policies are well defined. This is because intended endpoints
for local communications are not tightly defined. Moreover, all de-
vices are vulnerable to ARP spoofing attack, as marked by red cells
in Table 2. We note that MUD specifications allow a local controller
to restrict the local communications to a limited group – this is
more conducive for enterprise networks.

Lastly, we see IoT devices that have large number of open ports
which are not used (e.g., Telnet for HP Envy printer) [13], thus not
specified in the MUD profile. These open ports make the device
vulnerable, but having MUD policies in place would protect devices
from being compromised by botnets such as Mirai, Bricker Bot, or
Hajime that actively scan for open telnet ports and launch brute-
force attack [10].

4.2 Detection of Volumetric Attacks using
Snort IDS

We now show the efficacy of our system when real attacks are
launched on IoT devices. We use traffic traces that we collected in
November 2017, comprising a number volumetric attacks including
reflection/amplification (SNMP, SSDP, TCP SYN, and Smurf), flood-
ing (TCP SYN, Fraggle, and Ping of death), ARP spoofing, and port
scanning that were launched on four IoT devices including Belkin
Netcam, Wemo motion sensor, Samsung smart-cam and Wemo
switch (listed in Table 3). These attacks were sourced from within
the local network as well as from the Internet. For Internet sourced
attacks, we had enabled port forwarding (emulating a malware
behavior) on the gateway.

We found that a majority of attacks didn’t match on any of in-
tended flow rules translated fromMUD policies, thus were mirrored
for inspection. For example, out of 14 attacks on Samsung camera,
traffic of 9 attack types were mirrored for inspection – the rate of
mirrored packets rises significantly, proportional to the rate of at-
tack traffic. This measure was 13 out of 14 for Wemo motion sensor.
For Samsung camera, attacks including direct TCP flooding, ARP
spoofing, Ping of Death, and reflective TCP and ICMP from within
local network were successful to pass undetected (i.e., get matched
to intended flow rules). However, in case of Wemo motion, only
ARP spoofing was successful. This is because our TCP related at-
tacks targeted port numbers that are not defined in the MUD profile
of Wemo motion, the same for ICMP. Whereas for Samsung camera,
target port numbers were defined as intended service, allowing
attacks to pass. We can enhance our system by monitoring the be-
havior of intended flows using flow-level telemetry – this is planned
for future work. Visibility into activity of flows, for example on/off
pattern or volume/rate, would reveal malicious traffic covered by
intended rules. Furthermore, our observation for Wemo switch and
Belkin Netcam was similar to Samsung smart camera. Interestingly,

Table 3: List of attacks launched against our IoT devices.(L:
local, D: device, I: Internet)

Device Category

Attacks W
em

o
m
ot
io
n

W
em

o
sw

itc
h

Be
lk
in

N
et
ca
m

Sa
m
su
ng

sm
ar
t-
ca
m

L→
D

L→
D
→
L

L→
D
→
I

I→
D
→
I

I→
D
→
L

I→
D

Re
fle
ct
io
n SNMP ✓ ✓ ✓ ✓

SSDP ✓ ✓ ✓ ✓ ✓

TCP SYN ✓ ✓ ✓ ✓ ✓ ✓

Smurf ✓ ✓ ✓ ✓ ✓ ✓

D
ire

ct TCP SYN ✓ ✓ ✓ ✓ ✓ ✓

Fraggle ✓ ✓ ✓ ✓ ✓ ✓

ICMP ✓ ✓ ✓ ✓ ✓

ARP spoof ✓ ✓ ✓ ✓ ✓

Port Scan ✓ ✓ ✓ ✓ ✓

MUD profile was able to protect all four devices against attacks
traversing the gateway (i.e., to/from Internet).

We then fed the mirrored packets to Snort IDS to see how unsuc-
cessful attack traffic can be detected. Snort was only able to detect
SSDP/SNMP reflection attacks from Internet as well as a few port
scanning instances. However, port scanning attacks were flagged
by incorrect alarms, e.g., suspicious inbound traffic for mssql port
3306. This is because existing signatures of Snort primarily relate
to generic servers, not specific to IoT devices.

Interestingly, we discovered from Snort output that there were
other attacks from the Internet (not from our source). These attacks
detected by the Snort include an attack from blacklisted remote
IP address 66.240.192.138, DNS amplification attack on Wemo
motion, and nmap port scanning. This was essentially because we
had enabled port forwarding for local services offered by each IoT
device. For example, TCP port 554, 81, 53, and 49153 for Samsung
camera, Belkin Netcam, Wemo motion, and Wemo switch respec-
tively. The detailed outputs from IDS inform the network operator
about vulnerable/exposed ports in the network. This also highlights
that the need for further inspection of selected packets instead of
blocking them.

5 CONCLUSION
In this paper, we have combined MUD and SDN to make an efficient
and scalable intrusion detection system for IoT devices. We have
implemented a system that translates MUD policies of 28 consumer
IoT devices to flow rules configured into the network switch. Some
of rules are inserted pro-actively while others are configured re-
actively based on run-time DNS bindings. We have evaluated the
performance of our system in terms of flow-table size and fraction of
traffic misses using real traffic traces collected over several months.
Lastly, we have highlighted the benefits and limitations of MUD in
limiting attack surface to various IoT devices, and demonstrated
that how our system can detect volumetric attacks by inspecting
a very small fraction of exception packets using off-the-shelf IDS.
We have shown that with MUD in place, compromising IoT devices
becomes non-trivial for attackers. In future, MUD can be used as a
baseline to build sophisticated anomaly-/signature-based IDSs.



Combining MUD Policies with SDN for IoT Intrusion Detection IoT S&P’18, August 20, 2018, Budapest, Hungary

REFERENCES
[1] 2018. Insecam. http://www.insecam.org/
[2] 2018. Shodan. https://www.shodan.io/.
[3] 2018. Snort. https://snort.org/
[4] J. P. Amaral, L. M. Oliveira, J. J. Rodrigues, G. Han, and L. Shu. 2014. Policy

and network-based intrusion detection system for IPv6-enabled wireless sensor
networks. In Proc. IEEE International Conference on Communications (ICC). Sydney,
NSW, Australia, 1796–1801.

[5] S. Boddy and J. Shattuck. 2017. The Hunt for IoT: The Rise of Thingbots. Technical
Report. F5 Labs.

[6] S. Demetriou, N. Zhang, Y. Lee, X.Wang, C. A. Gunter, X. Zhou, andM. Grace. 2017.
HanGuard: SDN-driven protection of smart home WiFi devices from malicious
mobile apps. In Proc. ACM Conference on Security and Privacy in Wireless and
Mobile Networks. Boston, Massachusetts.

[7] A. Hamza. 2018. MUDgee. https://github.com/ayyoob/mudgee
[8] A. Hamza. 2018. SDN pcap simulator. https://github.com/ayyoob/

sdn-pcap-simulator
[9] A. Hamza, D. Ranathunga, H. Habibi Gharkheili, M. Roughan, and V. Sivaraman.

2018. Clear asMUD: Generating, Validating and Applying IoT Behaviorial Profiles.
In Proc. ACM workshop on IoT S&P. Budapest, Hungary.

[10] Cisco Systems Inc. 2017. Midyear Cybersecurity Report. Technical Report.
[11] Cisco Systems Inc. 2018. Annual Cybersecurity Report. Technical Report.

[12] E. Lear, R. Droms, and D. Romascanu. 2018. Manufacturer Usage Description
Specification (work in progress). Internet-Draft draft-ietf-opsawg-mud-18. IETF
Secretariat. http://www.ietf.org/internet-drafts/draft-ietf-opsawg-mud-18.txt

[13] F. Loi, A. Sivanathan, H. Habibi Gharakheili, A. Radford, and V. Sivaraman. 2017.
Systematically Evaluating Security and Privacy for Consumer IoT Devices. In
Proc. ACM workshop on IoT S&P. Dallas, Texas, USA.

[14] M. Lyu, D. Sherratt, A. Sivanathan, H. Habibi Gharakheili, A. Radford, and V.
Sivaraman. 2017. Quantifying the Reflective DDoS Attack Capability of House-
hold IoT Devices. In Proc. ACM WiSec. Boston, Massachusetts.

[15] M. Roesch. 1999. Snort - Lightweight Intrusion Detection for Networks. In Proc
USENIX Conference on System Administration. Seattle, Washington.

[16] A. Sivanathan, D. Sherratt, H. Habibi Gharakheili, Adam Radford, C. Wijenayake,
A. Vishwanath, and V. Sivaraman. 2017. Characterizing and classifying IoT traffic
in smart cities and campuses. In Proc. IEEE INFOCOM workshop on SmartCity.
Atlanta, Georgia, USA.

[17] V. Sivaraman, D. Chan, D. Earl, and R. Boreli. 2016. Smart-phones attacking
smart-homes. In Proceedings of the 9th ACM Conference on Security & Privacy in
Wireless and Mobile Networks. ACM, 195–200.

[18] R. Sommer and V. Paxson. 2010. Outside the closed world: On using machine
learning for network intrusion detection. In Proc. IEEE Security and Privacy (SP).
Berkeley, CA, USA.

[19] T. Yu, V. Sekar, S. Seshan, Y. Agarwal, and C. Xu. 2015. Handling a trillion
(unfixable) flaws on a billion devices: Rethinking network security for the Internet-
of-Things. In Proc ACM Workshop on HotNets. Philadelphia, PA, USA.

http://www.insecam.org/
https://www.shodan.io/
https://snort.org/
https://github.com/ayyoob/mudgee
https://github.com/ayyoob/sdn-pcap-simulator
https://github.com/ayyoob/sdn-pcap-simulator
http://www.ietf.org/internet-drafts/draft-ietf-opsawg-mud-18.txt

	Abstract
	1 Introduction
	2 Related Work
	3 Translating MUD Profile to Dynamic Flow Rules
	3.1 System Architecture
	3.2 System Implementation and Performance Evaluation

	4 Security Analysis of MUD 
	4.1 Resistance Against Attacks
	4.2 Detection of Volumetric Attacks using Snort IDS

	5 Conclusion
	References

