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Abstract—Enterprise networks constantly face the threat of
valuable and sensitive data being stolen by cyber-attackers.
Sophisticated attackers are increasingly exploiting the Domain
Name System (DNS) channel for exfiltrating data as well as
maintaining tunneled command and control communications for
malware. This is because DNS traffic is usually allowed to pass
through enterprise firewalls without deep inspection or state
maintenance, thereby providing a covert channel for attackers
to encode low volumes of data without fear of detection.

This paper develops and evaluates a real-time mechanism for
detecting exfiltration and tunneling of data over DNS. Unlike
prior solutions that operate off-line or in the network core, ours
works in real-time at the enterprise edge. Our first contribution
is to develop, tune, and train a machine learning algorithm to
detect anomalies in DNS queries using a benign dataset of top
rank primary domains from two enterprise networks. Our second
contribution is to implement our scheme on live 10 Gbps traffic
streams from the network borders of the two organizations,
inject more than a million malicious DNS queries generated
via an exfiltration tool, and show that our solution is able to
identify them with high accuracy. Our tools and datasets are
made available to the public for validation and further research.

I. INTRODUCTION

The Domain Name System (DNS) is used for converting
domain names (e.g., google.com) into IP addresses and as
such constitutes a mission-critical service. However, DNS
communication is relatively poorly policed by organizations
(compared to services like email, FTP, and HTTP) and has
been exploited by cyber-criminals to maintain covert com-
munication channels with compromised hosts. The resulting
damages can be huge, amounting to several million dollars
in a single attack [1]. Several high-profile data exfiltration
breaches have been reported recently: the Sally Beauty breach
(a theft of 25K credit cards) [2] and FrameworkPOS malware
(a theft of 56M credit cards from Home Depot) [3] in 2014,
BernhardPOS malware [4] in 2015, MULTIGRAIN malware
[5] in 2016, Win32.Backdoor.Denis [6] in 2017, and UDPoS
Malware [7] in 2018. In addition, there have been a number of
DNS tunneling incidents in which malware actors used their
DNS servers to send and receive the command and control
commands to and from compromised hosts; examples include
Feederbot [8] and botmaster [9], Morto worm [10], and Wekby
pisloader [11].

One way for the attacker to exploit DNS is to regis-
ter a domain (e.g., foo.com) so that the attacker’s mal-
ware in a host victim can then encode valuable private
information (such as credit card numbers, login passwords
or intellectual property) into a DNS request of the form
arbitrary-string.foo.com. This DNS request gets for-
warded by resolvers in the global domain name system to
the authoritative server for the foo.com domain (under the
attacker’s control), which in turn sends a response to the host
victim. This provides the attacker with a low-rate but covert
two-way communication channel between a host victim and
their command-and-control center.

Interestingly, enterprise firewalls are typically configured to
allow all packets on UDP port 53 (used by DNS) since DNS
is such a crucial service for virtually all applications. Some
firewalls do offer enhanced DNS protection but these require
deep packet inspection of DNS messages to identify the covert
channel and then isolate domains that contain encoded data.
The significant resources required for this capability [12],
and the resulting impact on firewall forwarding performance,
usually results in enterprise network operators disabling such
features. This ability to transit firewalls gives attackers a
covert channel, albeit a low-rate one, by which to exfiltrate
private data and to maintain communication with malware
by tunneling other protocols (e.g., SSH, FTP) to command-
and-control centers. As one example, the remote access trojan
DNSMessenger [13] discovered in 2017 used DNS queries
and responses to execute malicious powerShell commands on
compromised hosts.

In this paper we develop and validate a mechanism for
real-time detection of DNS exfiltration and tunneling in two
operational networks – a large University and a mid-sized
Government Research Institute. Our first contribution is to
develop, tune, and train a machine learning algorithm to detect
anomalous DNS queries using a known dataset of benign
domains as ground truth. For our second contribution we
implement our scheme on live 10 Gbps traffic streams from
borders of the two organizations, inject more than a million
malicious DNS queries generated using an exfiltration tool and
show that our scheme is able to identify such malicious activity
with high accuracy. We make our tools and datasets available
to the public to facilitate further research into this area.
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II. RELATED WORK

DNS traffic has been analyzed to identify malicious network
activities [14]. Work in [15] proposed a method to find the
maximum information that can be encoded in a sub-domain
portion of a DNS query name to detect whether the query
contains encoded data or not. Authors used an information
theoretic approach, namely the use of Kolmogorov complex-
ity. The authors established an upper bound on the volume
of surreptitious communication by investigating inter-query
time and query record type. In [16] Das et al. employed
supervised learning based models with logistic regression to
classify queries into normal and exfiltration. We believe that
classification (signature-based) approach is not sufficient for
addressing the new and growing security issues, and specifi-
cally obtaining “ground truth” on malicious queries in order
to train the classifier is difficult. Similar to our approach, Asaf
et al. [17] proposed an anomaly-based solution to detect low
throughput data exfiltration over DNS. The authors maintain
states of several attributes for each primary domain over last
n hours (e.g., rate of A and AAAA records, average length of
query name). In [18]–[20], authors have proposed DNS tunnel
detection using character frequency analysis. However, the
detection criteria is based on the threshold value and attackers
may trick these systems easily.

Our focus is on attributes of fully qualified domain names
that can be extracted in “real-time”, without a need for
states (i.e., “stateless”) – we assume that DNS traffic in not
encrypted over TLS. In our scheme, we look for anomalies
of query names indicative of deviation from normal behavior,
since anomaly detection holds promise as a way of detect-
ing new and unknown threats pattern. Our scheme can be
extended by collecting states only for those hosts that generate
anomalous queries, and ultimately mitigate malicious DNS
tunneling/exfiltration – such mitigation is beyond the scope
of this paper.

III. DETECTION OF ANOMALOUS DNS QUERIES

In this section we first briefly look at characteristics of DNS
query names, and then develop a machine learning technique
to determine if a DNS query of an enterprise host is normal or
not (i.e., “anomaly detection”). Our objective is to achieve a
real-time detection of anomalous query names with accuracy
comparable to or better than techniques that require temporal
states related to characteristics of queried domains or DNS
activity of hosts.
A. DNS Queries and Attributes

We have collected DNS traffic from the border of two
enterprise networks, a medium-size research institute and a
large University campus. In both instances, the IT department
of the enterprise provisioned a full mirror (both inbound and
outbound) of their Internet traffic (each on a 10 Gbps interface)
to our data collection system from their border routers (outside
of the firewall), and we obtained appropriate ethics clearances
for this study (UNSW Human Research Ethics Advisory
Panel approval number HC17499, and CSIRO Data61 Ethics
approval number 115/17). We extracted DNS packets from
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Fig. 1. Real-time number of queries.

each of the enterprise Internet traffic streams in real-time by
configuring rules to match incoming/outgoing IPv4 and IPv6
UDP packets on port 53 in an OpenFlow switch. The study
here considers data collected over a one-week period from
30-Jul-2018 to 5-Aug-2018.

Considering the load of DNS queries generated by enter-
prise hosts, shown in Fig. 1, we see that the number of packets-
per-second in the research network varies between 50 to 400
depending on the day of the week and peak/off-peak hours. For
the University network, on the other hand, a larger variation
is observed – i.e., 150 to more than 800 pps.

We now identify attributes for the query name (i.e. FQDN:
Fully Qualified Domain Name) generated by enterprise hosts
that are relevant to differentiating benign and malicious DNS
queries. Our aim is to use only “Stateless” attributes which can
be derived from individual DNS query packets, independent
of time-series characteristics of queried domains or hosts
DNS activity – there is no overhead in computing these
attributes in real-time. We define our attributes by three main
categories namely characters count, entropy (an indication of
randomness) of string, and length of discrete labels in the
query name.

Total count of characters in FQDN is an important
attribute since more characters imply that the query name
probably carries embedded information for an outside host.
Since the exfiltrated (or Command & Control) message is
carried by the sub-domain portion of an FQDN, we use the
count of characters in sub-domain as our second attribute.
Additionally, we use the count of uppercase characters
and count of numerical characters in a query name to
determine if it is benign or malicious. This is because the
fraction of uppercase and numerical characters becomes high
in encrypted/ encoded data [16] – however, not all encrypted
data is malicious. Random (“not-readable”) sub-domains are
common in DNS exfiltration/tunneling queries due to use
of encryption and/or encoding [17]. Entropy is a measure
to determine the degree of non-readability (or strength of
encryption) and uncertainty in a string. We use the num-
ber of labels as our sixth attribute. This is because DNS
exfiltration/tunneling traffic tend to use certain patterns of
labels in their query names. For example, in the query name
www.scholar.google.com, there are four labels separated
by dots. Also, maximum label length and average label
length in the FQDN are the last two attributes for the machine
learning model.



B. Machine Training

We train our anomaly detection machine with benign data
from four days of our dataset – we keep the remaining three
days worth of data for testing. Ground truth of benign domains
in the literature is largely drawn from highly ranked popular
domains [21]. For example, Alexa top-ranked domains are
commonly used. Since Alexa no longer publishes free top
one million sites, we use its alternative, Majestic Million [22]
that releases a free dataset of top 1M domains and updates
it on a daily basis. Majestic ranks sites by the number of
subnets linking to that site. However, Alexa ranking is based
on the browsing behavior of Internet users (i.e., estimate of
global traffic to a domain). We note that some malicious
domains may appear among top K Alexa domains due to
a burst of requests from a high number of infected clients
querying them. For the benign training instances, we only
use top 10,000 primary domains. We also include FQDNs
for “sophosxl.net” domain (related to a benign anti-virus
application) which is not among the top 10K Majestic dataset.

C. Algorithms and Tuning Parameters

The objective is to maximize detection of anomalous queries
while reducing the rate of false alarms (i.e., incorrectly detect-
ing a normal query as anomalous, or vice versa). Many of su-
pervised machine-learning algorithms for detecting anomalies
such as one-class SVM and Replicator Neural Network suffer
from high false alarms since they are optimized for profiling
the inlier behavior rather than detecting anomalies. We employ
“Isolation Forest (iForest)” [23] which is an effective algorithm
in detecting anomalous instances in high-dimensional datasets
with minimal memory and time complexities.

The iForest algorithm “isolates” observations by randomly
selecting an attribute and then randomly selecting a split value
in the range of values (i.e., between min and max) for the se-
lected attribute. Since recursive partitioning can be represented
by a tree structure, the number of splittings required to isolate
an instance is equivalent to the path length from the root node
to the terminating node. This path length, averaged over a
forest of such random trees, is a measure of normality and the
decision function (i.e., normal instances are expected to have
a fairly large path length in random partitioning). Therefore,
when a forest of random trees collectively produces shorter
path lengths for a particular instance, it is highly likely to be
an anomaly.

Algorithm Tuning: We used scikit-learn and its APIs,
an open-source machine-learning package written in Python,
to train and test our machine. We have used three tuning
parameters for iForest during training phase namely number
of trees (n estimators), height limit of trees (max samples),
and contamination rate. We tune the value of each parameter
while fixing the other two parameters and validate the accuracy
of our machine for both benign and malicious instances (that
we have the ground truth) in both organizations. The default
value for the number of trees is 100, the height limit of trees
is set to “auto” (implying 8 given the size of our dataset), and
contamination rate is 10%.

TABLE I
DETECTION ACCURACY OF GROUND-TRUTH INSTANCES AFTER TUNING.

Benign Malicious
Research Institute 98.44% 95.07%
University Campus 97.99% 98.49%

TABLE II
PERFORMANCE OF OUR MACHINE FOR TRUSTED DOMAINS.

Research institute University campus

primary domain normal anomalous Avg. query length false-rate (%) normal anomalous Avg. query length false-rate (%)

akadns.net 2.6M 24K 38 0.91 7.6M 191K 38 2.4

googleapis.com 165K 1.6K 76 0.96 526K 15K 76 2.7

gstatic.com 207K 362 69 0.17 835K 986 76 0.11

in-addr.arpa 3.7M 49K 26 1.32 9.2M 1.1M 26 10.7

mcafee.com 1.9M 735 84 0.03 635K 13K 88 2.01

onmicrosoft.com 22K 1.6K 51 6.55 201K 1537 53 0.75

senderbase.org 1.1M 14K 66 1.32 2.2M 2816 66 0.12

sophosxl.net 138K 6.5K 103 4.44 2.5M 394K 119 13.7

spamhaus.org 12K 597 31 4.7 947K 7.7K 32 0.81

spotify.com 579 31 45 5.08 468K 1.2K 168 0.25

Top 100 domains 7.9M 135K 20 1.68 24M 351K 20 1.41
(e.g., google, apple)

For ground-truth malicious instances, we have generated
DNS exfiltration queries by our open source tool, forked
from an open source project called “DNS Exfiltration Toolkit”
(DET) [24]. We ran our tool on a machine inside the University
network that exfiltrates the content of a CSV file containing
1000 samples of random credit card details (obtained from
[25]) to an authoritative name server under our control located
in the Research network. DET employs AES-256 encryption
and uses two tuning parameters namely max length of query
name (i.e., 50 to 218 characters) and max length of labels
(i.e., 30 to 63 characters) to diversify our synthetic malicious
queries. We generated a total of 1.4M exfiltration queries
which are publicly available at [26] in form of a CSV file.

We found that setting the number of trees equal to 2
results in a high accuracy of more than 91% for benign and
63% for malicious instances – increasing this parameter does
not enhance the accuracy but increases the model size and
prediction time. Having fixed the number of trees to 2 and the
contamination rate to 10%, we varied the height of trees from
1 to 20. The detection performance rises by increasing the
height limit of trees and gets stabilized at the value of 18 with
the best accuracy of more than 90% and 98% for ground-truth
benign and malicious instances respectively. We then fixed the
number of trees to 2 and height limit of isolation trees to 18
to quantify the impact of contamination rate. Decreasing the
contamination rate from 10% to 2% improved the performance
of our model for both organizations as shown in Table I, with
the accuracy of more than 97% for benign instances and more
than 95% for malicious instances.

To summarize, we found the optimal value of tuning pa-
rameters equal to 2, 18, and 2% respectively for the number
of trees, the height limit of trees, and the contamination
rate. For optimal tuning parameters the iForest algorithm sets
the threshold value of anomaly score to 0.54, distinguishing
normal and anomalous instances.

Table II shows the performance of our machine (after tun-
ning) for selected benign instances – for cross validation. It can
be seen that the rate of false alarms is mostly less than 5% in
both organizations, though we see a higher false rate (i.e., more
than 10%) for in-addr.arpa and sophosxl.net domains in
the University network. We, therefore, pre-filter instances for



TABLE III
ANOMALY DETECTION FOR RESEARCH INSTITUTE.

Input Output Days 1-4 Days 5-7

Benign domains
normal 98.44% 98.30%

anomalous 1.56% 1.70%

Others
normal 78.43% 77.55%

anomalous 21.57% 22.45%

TABLE IV
ANOMALY DETECTION FOR UNIVERSITY CAMPUS.

Input Output Days 1-4 Days 5-7

Benign domains
normal 97.99% 97.99%

anomalous 2.01% 2.01%

Others
normal 70.57% 70.59%

anomalous 29.43% 29.41%

domains that are highly trusted (i.e., certainly benign) without
passing them to the anomaly detection machine.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the efficacy of our scheme by:
(a) cross-validating and testing the accuracy of the trained
model for benign instances, (b) testing the detection rate for
malicious DNS queries that we generate using our tool, and
(c) quantifying the performance in real-time on live 10 Gbps
traffic streams from the two organizations.

Accuracy: As mentioned in the previous section, we trained
our model with benign instances from 4 days’ worth of
our data (i.e., Days 1-4), and tested with all instances from
Days 5-7 in addition to remaining instances from Days 1-
4 that were not used for training (i.e., “Others”). Tables
III and IV show the rate of detection (i.e., normal versus
anomalous) for the benign and Others instances in the two
networks. It can be seen that 98% of benign instances are
correctly detected as normal during both cross-validation (i.e.,
Days 1-4) and testing (i.e., Days 5-7) phases. We note that
our machine raises a false alarm for about 2% of benign
domains, as highlighted in red texts. To address this, we
populate a whitelist of domains that are highly trusted. Our
whitelist comprises top 100 domains from the Majestic ranking
dataset (e.g., google.com, bbc.com, amazonaws.com) as
well as a number of popular legitimate (e.g., akadns.net,
in-addr.arpa, spotify.com) and security services (e.g.,
spamhaus.org, senderbase.org). Note that these secu-
rity services are using disposable domains (i.e., “single-time
use”) for the purpose of signaling over DNS queries (e.g.,
0.0.0.0.1.0.0.4e.135jg5e1pd7s4735ftrqweufm5.avqs
.mcafee.com [27]). Additionally, the average anomaly score
for instances classified as normal and anomalous is 0.44 and
0.59 respectively in both organizations.

Real-Time Performance: In terms of real-time perfor-
mance, we have quantified the average time for extracting
eight attributes and anomaly detection (via running prediction
against the trained model) by testing more than 300 million
DNS queries in our dataset from the two enterprise networks –
our attributes extraction and anomaly detection engines run on

TABLE V
AVG. TIME COMPLEXITY OF OUR SCHEME.

extracting attributes 54 µsec

detecting anomalies 746 µsec

Total time per each query name 800 µsec
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Fig. 2. Attributes of DNS exfiltration query names: detected vs. undetected

a virtual machine with 4 cores of CPU, 6GB of memory, and
storage of 50GB. As shown in Table V, on average it takes
800 µsec to determine if a DNS query is normal or not. This
mean that our scheme can process about 1250 DNS queries
per second which is well above the actual rate of DNS queries
in both organizations, as shown in Fig. 1.

Known DNS Exfiltration: Lastly, we evaluate the efficacy
of our scheme with known DNS exfiltration queries. As
explained in previous section in Table I, our machines for
the Research Institute and the University Campus respectively
were able to correctly detect 95.07% and 98.49% of exfil-
tration queries (generated by our DET tool) as anomalous
instances.

In Fig. 2, we show the value of attributes for detected
instances (on the left) versus undetected instances (on the
right) using the machine for the Research Institute. Even
though undetected instances were shorter both in total length
and average label length, it is important to note that there is a
fair overlap of value range comparing detected and undetected
instances across all attributes – suggesting that the collection
of attributes would determine the output of our machine.
Additionally, our machine was able to detect 10 samples of
DNS queries from known real malware reported on various
forums [4], [13], [28].

V. CONCLUSION

Enterprise networks are potential targets of cyber-attackers
for stealing valuable and sensitive data over DNS channels.
We have developed and validated a mechanism for real-time
detection of DNS exfiltration and tunneling from enterprise
networks. We have developed, tuned, and trained a machine
learning algorithm to detect anomalies in DNS queries using
a known dataset of benign domains as ground truth. We have
then evaluated the efficacy of our scheme on live 10 Gbps
traffic streams from the borders of the two organizations
networks by injecting more than a million malicious DNS
queries via an exfiltration tool. We have also made our tools
and dataset publicly available.
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