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Abstract—The Internet-of-Things (IoT) is increasingly becom-
ing a major challenge for network administrators to monitor and
manage connected devices and sensors, ranging from smart-lights
to smoke-alarms and security-cameras. In addition to new device
offerings, manufacturers tend to automatically perform firmware
upgrade from their cloud servers to change functionalities of
existing devices that are operational in the field. This makes
it difficult to re-train device classification models in order to
capture legitimate changes dynamically. In this paper, we develop
a modular device classification architecture that allows us to dy-
namically accommodate legitimate changes in network IoT assets,
either addition of a new device type or upgrades of existing types,
without replacing the entire set of models. Our contributions are
twofold: (1) We identify key traffic attributes that can be obtained
from flow-level network telemetry to characterize individual IoT
devices. We develop an unsupervised one-class clustering method
for each device to detect its normal network behavior. (2) We
tune individual device-specific clustering models and use them to
classify IoT devices in real-time. We enhance our classification by
developing methods for automatic conflict resolution and noise
filtering. We evaluate the efficacy of our scheme by applying it to
traffic traces of ten real IoT devices, and demonstrate its ability
to achieve overall accuracy of more than 94%.

I. INTRODUCTION

The Internet-of-Things (IoT) continues to expand its reach
into homes, offices, enterprise campuses, and even cities, as
more devices are rapidly connected to networks for collecting
and sharing data. Network operators today are unable to
identify all IoT devices on their networks, lack real-time
visibility into the network behavior of known IoT assets [1],
and are unsure whether connected devices behave legitimately
or not. As a result, unmonitored IoT devices have already
caused data breaches or been hijacked to carry out large-scale
attacks on the Internet [2].

IoT devices are typically purpose-built with limited func-
tionalities – they communicate with a specific set of endpoints
(i.e., servers) using a small number of TCP/UDP flows.
Therefore, a growing number of traffic classification proposals
are emerging based on supervised machine-learning techniques
(e.g., multi-class decision-trees or neural-networks) that use
packet-level [3], flow-level [4], or a combination of packet-
level and flow-level [5] traffic attributes for monitoring IoTs
behavioral patterns on the network. In our prior work [5] we
showed that generating the model for multi-class classifiers
becomes practically challenging when a new device type is
added to the network or the behavior of existing device types
legitimately changes (due to firmware upgrades by device

manufacturers) – it is needed to re-generate the entire model of
all classes. In order to avoid over-fitting the generated model to
specific classes, we need to carefully balance (i.e., representing
classes equally) the training dataset comprising instances of
all device types. However, certain devices need much more
instances to capture their normal behavior.

In this paper, we employ a set of one-class clustering models
(one per IoT device), each can be independently trained and
updated. Our first contribution identifies IoT traffic attributes
that can be computed from real-time flow-level telemetry.
We show how clusters of attributes can characterize network
behavior of each device. Our second contribution develops a
classification scheme using a set of device-specific clustering
models augmented by refinement and filtering methods. We
apply our classification solution to real traffic of ten IoT
devices and demonstrate its accuracy of more than 94%.

II. RELATED WORK

Automatic detection of IoT devices from the network traffic
has been the subject of research [3]–[8] over the past few
years. Authors of [6] simply use the set of IP addresses
(of servers) that each device communicates with to identify
IoT devices on the network. This method can not be very
reliable since typically an elastic IPv4 address allocation is
employed for dynamic cloud computing (e.g., Amazon AWS).
Work in [7] shows that traffic pattern of encrypted network
flows, measured outside NAT, can reveal the IoT devices used
inside a home network. However, authors do not develop
an automatic method for discovery of IoT devices behind
the NAT. Work in [3] develops a supervised machine learn-
ing model using over 300 attributes (packet-level and flow-
level) of IoT traffic. Authors highlighted the most important
attributes as packets Time-To-Live (minimum, median, and
average), ratio of transmitted-bytes to received-bytes, total
number packets with reset flag, and the Alexa rank of servers
which the device communicates with. Work in [8] employs
16 binary attributes (indicating the use of various protocols
at application, transport, network and link layers) along with
remote IP address/port numbers, and size and raw byte value
of packets from IoT traffic to train a supervised multi-class
classifier. Some researchers [4] argue that traffic attributes
need to be automatically learned (from raw sequence of packet
payloads in TCP flows) instead of being hand-crafted. We
believe that extraction of packet payloads makes it difficult
for this method to scale.



III. CLUSTERING FLOW-LEVEL ATTRIBUTES OF
IOT TRAFFIC

In this section, we first outline our IoT dataset, network
telemetry, and traffic attributes. We, next, show how clusters
of attributes will characterize individual IoT devices.

A. Flow-Level Telemetry and Traffic Attributes
Dataset: We use a publicly available dataset [2] that con-

tains more than 6 weeks worth of packet traces. It consists of
active and idle periods of 10 real IoT devices namely Amazon
Echo, TPlink switch, Belkin motion sensor, Belkin switch,
LiFX Bulb, Netatmo camera, Hue bulbs, iHome switch,
Samsung Smart camera, and Google Chromecast. Note that
the original dataset also contains some attack traffic (clearly
annotated) which we removed for this study.

Flow-Level Telemetry and Attributes: We showed in our
prior work [5] that individual IoT devices exhibit identifiable
patterns in their traffic flows such as activity cycles and volume
patterns, and DNS/NTP/SSDP signaling profiles. Inspired by
recent proposals [9], [10] on network telemetry using SDN, we
identify a consistent set of flow rules for each device that are
inserted into the SDN-enabled switch (to which IoT devices
are connected) for real-time monitoring.

Counters of these flow rules are periodically (i.e., every
minute) measured by the SDN controller that will form traffic
attributes of each device. We use eight flow rules to measure
network traffic of each IoT device with the following order:
(1,2) DNS outgoing queries and incoming responses on UDP
53, (3,4) NTP outgoing queries and incoming responses on
UDP 123, (5) SSDP outgoing queries on UDP 1900, (6,7)
other “remote” traffic (e.g., Internet) outgoing from and in-
coming to the device that passes through the gateway, and (8)
all “local” traffic (i.e., LAN) incoming to the device. Note that
we do not monitor SSDP traffic incoming to IoT devices to
avoid capturing (and mixing) the discovery activities of other
devices on the local network. We have used MAC address
as the identifier of a device – one may use IP address (i.e.,
without NAT), physical port number, or VLAN for a one-to-
one mapping of a physical device to its traffic trace.

We use two key attributes [11] namely average packet size
and average rate for each of eight flows (mentioned above).
We also note that traffic attributes can better characterize
individual devices if they are computed at multiple time-scales.
We, therefore, collect per-flow packet and byte counts every
minute, and compute attributes at time-granularities of 1-, 2-,
4-, and 8-minutes. This way we generate eight attributes for
each flow that means a total of 64 attributes per device.

Extracting Attributes: In order to synthesize the flow
entries and thereby extract attributes from our traffic traces,
we use our native packet-level parsing tool [11]. It takes raw
PCAP files as input, develops a table of flows (like in an
SDN switch) and exports byte/packet counters of each flow
at a configurable resolution (e.g., 60 sec). Lastly, we generate
a stream of instances (i.e., a vector of attributes periodically
generated every one minute) corresponding to each device
separately. We split our instances into 4 weeks for training and

TABLE I: Device instances and clustering parameters.

Instance count
Unsupervised classifier

parameters

Device Training Testing
Principal

components
No. of
clusters

Amazon Echo 27,102 11,677 18 256
TPlink switch 38,210 21,176 10 128
Belkin motion 38,228 21,375 10 128
Belkin switch 21,037 12,613 14 256
LiFX 25,903 10,348 12 256
Netatmo cam 13,528 10,563 14 256
Hue bulb 17,329 10,409 16 256
iHome 37,865 19,924 12 128
Samsung cam 38,226 20,904 14 256
Chromecast 17,395 8,462 15 256

2 weeks for testing. The second column in Table I summarizes
the number of training /testing instances per each device.

B. Attributes Clustering
Our primary objective is to train a number of models (one

per IoT device) where each model recognizes traffic patterns
of a particular device (i.e., class) and rejects data from all other
classes – i.e., one-class classifier generates “positive” outputs
for a known/normal instances, and “negative” otherwise. This
approach enables us to re-train each model independently.
Also, device-specialized models can better distinguish anoma-
lies (outliers) [2] – anomaly detection is beyond the scope
of this paper. There are a number of algorithms for one-class
classification. The most popular and efficient method is K-
means which finds groups (i.e., “clusters”) of instances for
a given class that are similar to one another. Each cluster is
identified by its centroid, and an instance is associated with a
cluster if it is closer to the centroid of that cluster than any
other centroids.

To provide insights into traffic characteristics of IoT devices,
we show in Fig. 1 clusters of instances for Amazon Echo,
Belkin switch, and Chromecast in our dataset. Note that our
instances are multi-dimensional (i.e., 64 attributes), and thus
can not be easily visualized. We, therefore, employ Principal
Component Analysis (PCA) to project data instances to two-
dimensional space just for illustration purpose – data instances
are shown as dots and cluster centroids are shown as crosses.
Only 10% of all instances are shown in each cluster for
better visualization. For example, four dots in cluster A1 (for
Amazon Echo) approximately represent 40 instances. Dashed
circles depict the boundary of clusters. We draw these circles
to include 99% of data points in each cluster (i.e., closer to the
centroid), and thus exclude 1% of farther instances to avoid
impurities in our training dataset – actual clusters are not in the
form of circles. These boundaries will be used to determine if
a test instance belongs to clusters of a class or not.

It is seen that instances of Amazon Echo, Belkin switch, and
Chromecast are respectively grouped into 16, 4, and 8 clusters.
We observe that instance clusters of Amazon Echo are fairly
spread across the 2D space. For Belkin switch, clusters are
mainly spread across the principal-component-1 while their
principal-component-2 is limited between −20 and 20. Lastly,
Chromecast instances are densely concentrated within limited
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Fig. 1: Clusters of data instances in two-dimensional space for representative IoT
devices: (a) Amazon Echo, (b) Belkin switch, and (c) Chromecast.
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Fig. 2: Elbow method for selecting
optimal number of clusters.

regions across both components. Note that each cluster (within
a device class) has a probability of covering instances (of
that device) depending upon device-specific traffic patterns
seen in the dataset. For example, most probable clusters for
Amazon Echo are A2 (25.1%), A3 (22.2%), for Belkin switch
are B1 (77.4%), B2 (19.7%), and for Chromecast are C1
(23.9%), C2 (18.3%). These clusters indicate the dominant
traffic characteristics of their respective devices.

IV. UNSUPERVISED CLASSIFICATION OF IOT DEVICES

In this section, we describe the architecture of our one-
class classifier followed by mechanisms to resolve conflicts
among multiple models and remove noises. We then evaluate
the performance of our proposed scheme.

A. Clustering Models: Generation, Tuning, and Testing
Prior to generating clustering models we need to pre-process

our raw dataset. First, since the scales of various attributes are
widely different (i.e., several orders of magnitude), we nor-
malize each attribute independently to prevent the algorithm
outweighing large-value attributes (e.g., Mbps) over smaller
attributes (e.g., a few bps) [12]. We, therefore, scale individual
attributes using Z-score method. Second, note that our data is
64-dimensional that can be computationally expensive for real-
time prediction and also affect the performance of clustering.
It is common to project data instances into a lower dimen-
sion space via PCA [13] which results linearly uncorrelated
principal components. These orthogonal components enable
K-means to detect clusters more clearly. We choose number
of PCA components to retain optimum “cumulative variance”.

Following dimension reduction, we apply K-means algo-
rithm with varying K values (i.e., 2i where i = 1, ..., 10).
We note that setting K to small values would not generate
an accurate model of network behaviour for IoT devices, and
large values increase the computational cost in both training
and testing phases. Also, a very large K results in smaller-size
clusters (i.e., a rigid classifier) which cannot detect legitimate
instances with small deviations from training data – i.e., over-
fitting. We find the optimal number of clusters using the elbow
method [14]. Fig. 2 shows the average square distance of
instances from the cluster centers (i.e., Inertia per instance)
versus clusters count, for two devices. We choose the optimal

cluster number for each device when the derivative of Inertia
per instance exceeds −0.01 (marked by ‘×’). We observe
that the model for Amazon Echo needs 256 clusters for
optimal performance, and this measure is 128 clusters for
Belkin motion. The last column of Table I shows the model
parameters for individual devices obtained from the methods
mentioned above.

Having clustering models generated, we can test an instance
(of IoT device traffic attributes) against each model by finding
the nearest cluster (in each model) to the test instance, as
shown in Fig. 3. We now demonstrate a sample of test instance
by considering the two-dimensional space of clusters in Fig. 1.
Let’s assume that the test instance has the principal component
1 and 2 respectively equals to 0 and 20. The nearest clusters
to this test instance are A1 of Amazon Echo, B2 of Belkin
switch, and C3 of Chromecast. Since the instance falls outside
the A1 boundary, the Amazon Echo model results a negative
output while the other two models each gives a positive output.

Conflict Resolution: Each model learns the behavior of
one device and multiple devices may have similar traffic
behavior (e.g., DNS, NTP or SSDP) for a short period of
time [4]. This leads to multiple positive outputs generated
from device models for a test instance. We use the probability
of clusters (within each model) to solve the conflict among
multiple models which generate the positive output – higher
probability indicates the “winner” model. For our test example,
the test instance (0, 20) is classified as Belkin switch since the
probability of B2 is 77.4% which is higher than the probability
1.4% of C3 from Chromecast.

Temporal Noise Filtering: We note that our real-time
classification scheme may still mis-classify instances for one
epoch time (i.e., a minute). For example, a MAC address
which is consistently classified as Amazon Echo for hours
(or even days) may suddenly get classified as another device
– this output should be treated as a noise unless it persists for
successive epochs. We, therefore, filter these temporal noises
by applying the majority vote selection over a moving window
of last three decisions generated by our conflict resolver – one
may want to increase this window size depending upon desired
responsiveness to changes in traffic behavior.
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Fig. 4: Confusion matrix of device classification: (a) raw output of clustering models,
(b) refined output after conflict resolution, (c) final output after temporal noise filtering.

B. Performance Evaluation
We now evaluate the performance of our device inference

scheme for test instances of the dataset. Fig. 4 shows the
confusion matrix of the classification for three stages. Each
clustering model (listed by rows) is presented by test instances
of all devices (listed by columns). Starting from raw outputs,
we can see in Fig. 4(a) that 9 out of 10 models correctly detect
95% of instances from their own class, as shown by diagonal
elements of the matrix. However, high rate of false positives
are also observed in non-diagonal elements of Fig. 4(a). For
example, more than 85% of iHome instances are incorrectly
detected by the model of Amazon Echo. Considering the raw
output of models, we observe that 43% of test instances are
detected by more than one model (in addition to their respec-
tive device model), and 3% of test instances are completely
missed by all models (i.e., no positive output from any model).

Fig. 4(b) shows the confusion map after applying the
conflict resolver to the output of the device-specific models.
It clearly shows a significant enhancement in the performance
of classification by selecting only one model with the highest
cluster probability (for a given test instance). Note that the
average false positive rate has reduced to less than 0.5%.
Also, we observe that the conflict resolver slightly reduces
true positives for almost all device models. The most im-
pacted instances correspond to LiFX where true positives have
dropped from 97.5% to 85.9% – the model of TPLink switch
incorrectly detects 8.7% of LiFX instances.

Lastly, the best outcome is obtained in Fig. 4(c) when we
apply the temporal noise filtering to the output of the conflict
resolver. We observe that both true positives and false positives
are improved. Specifically, LiFX instances now experience
a palatable 91.4% true positive while false positive claims
from the model of TPLink switch model is reduced to 2.7%.
Overall, our device classification scheme gives an average true
positive 94.5% and false positive 1%.

V. CONCLUSION

Real-time traffic monitoring is of paramount importance for
network operators who manage a diverse set of IoT devices.

In this paper, we have developed a modular classification to
infer IoT devices from their network behavior using a set of
clustering models. We have identified a set of network flows
for IoT devices that result in attributes computed from real-
time per-flow telemetry, and optimized and trained clustering
models. Lastly, we augmented our machine learning-based
scheme by conflict resolution and noise filtering methods,
applied it to traffic traces of ten real IoT devices, and achieved
more than 94% accuracy.
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