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ABSTRACT This work describes UNSW IoT traffic data (UNSW-IoTraffic), a dataset comprising (a) raw
network packet traces with full headers and payload, (b) flow-level metadata summarizing fine-grained
bidirectional activity behaviors, and (c) protocol parameters describing network protocol characteristics. It
also provides protocol data models for six dominant protocols (TLS, HTTP, DNS, DHCP, SSDP, and
NTP). In addition, the dataset includes scripts for statistical summarization, visualization using state
diagrams, and device fingerprinting using machine learning. The dataset contains 95.5 million packets
of IoT communications captured over 203 days, organized into 27 per-device packet capture (PCAP)
files. Derived flow data, categorized based on the 5-tuple attributes (source IP address, destination IP
address, transport-layer protocol number, source port number, destination port number), are provided as
27 per-device CSV files. Finally, protocol-specific parameters for 70% flows are extracted and written
into 450 CSV files across 27 device types, covering 25 protocols, each with request and response data.
The three-level structure of our dataset, which encompasses packets, flows, and protocols, caters to a
diverse range of users, from students learning data networking concepts to experienced researchers and
industry professionals. It enables the behavioral analysis of consumer IoT devices, the detection of temporal
anomalies, and the validation of protocols.
———————————————————-
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DATA DOI/PID 10.5061/dryad.w0vt4b94b

DATA TYPE/LOCATION PCAP, CSV, and JSON files; Dryad
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BACKGROUND
In recent years, publicly available datasets of IoT network
traffic traces have contributed to research in areas like device
classification, malware and attack detection, and cyber risk
assessment. Although these datasets offer valuable informa-
tion, there remains a gap in “comprehensive” datasets that
cover a wide range of heterogeneous devices over extended
periods, as well as those that provide “multiresolution”
data (e.g., packets, flows, protocols) and are “structured”
in a modular manner (e.g., per-device, per-protocol) with
integrated traffic processing tools. The availability of such
datasets and accompanying software tools is essential for
deepening our understanding of IoT behaviors and advancing
data-driven models in network asset management, traffic
classification, and anomaly detection.

Strengths and Gaps in Existing IoT Traffic Datasets
Several datasets, such as YourThings [1], SHiOT [2], VAR-
IoT [17], and IPFIX-IoT [3] focus on benign IoT traffic cap-
tured under realistic conditions. YourThings provides pub-
licly downloadable and relatively detailed data, but is limited
to a 10-day capture period that primarily includes idle and
interaction phases, omitting the initial device setup phase.
This omission restricts comprehensive behavioral analysis.
IPFIX-IoT provides fine-grained flow records collected over
three months, covering all three operational phases. However,
the YourThings and IPFIX-IoT datasets lack representation
of device-specific or protocol-specific network data. SHiOT
offers statistical summaries and flow-level characterizations
but is not publicly available.

Other datasets, including IoT-23 [4], CIC-IoT-2023 [5],
and ACI-IoT-2023 [6], contain labeled malicious traffic,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 00, 2024 1



S. Wannigama, A. Sivanathan, and H. Habibi Gharakheili: UNSW-IoTraffic

TABLE 1: Summary of public IoT traffic datasets. Fields
marked as “not-reported” indicate that the original sources
did not provide exact values. In some cells, values are
approximated or inferred based on available descriptions.

Dataset # IoT Devices Capture Duration Flow Data # Packets
UNSW-IoTraffic (ours) 27 203 days Yes 95.5M

YourThings [1] 45 13 days No 451.5M

SHiOT [2] 36 144 days No 555.5M

IPFIX [3] 26 3 months Yes not-reported

Benign IoT-23 [4] 3 Few hours Yes 428K

CIC-IoT-2023 [5] 105 not-reported Yes not-reported

ACI-IoT-2023 [6] 30 5 days not-reported 8.0M

Mon(IoT)r [7] 81 1 months No 40.8M

LSIF [8] 22 20 days not-reported 32.4M

IoTFinder [9] 53 2 months No 2.0M

HomeMole-Ind [10] 10 2 days No 7.2M

IoT Sentinel [11] 31 2 mins No 193K

BoT-IoT [12] 5 not-reported Yes not-reported

N-BaIoT [13] 9 not-reported Yes not-reported

ToN IoT [14] 10 not-reported Yes not-reported

Edge-IIoTset [15] >10 51 days Yes not-reported

D-IoT filtered [16] 24 120 days No 110M

including IoT-specific malware, DDoS attacks, and port
scanning activities. Although these datasets are valuable for
security analytics, they exhibit notable limitations. These
include limited device diversity (e.g., IoT-23 contains traffic
from only a very small number of devices), short capture
durations (typically ranging from a few hours to a few days),
or unbalanced representations of benign versus malicious
behaviors. For example, IoT-23 includes more than 320M
malicious flows and fewer than 2,000 benign flows. The
most frequent attack type within the malicious class accounts
for more than 200M flows, whereas the least frequent
occurs only twice. Such synthetic imbalances can lead to
overly simplistic detection scenarios or pose challenges to
developing and evaluating models under realistic conditions.

Previous research utilizing datasets such as Mon(IoT)r [7],
LSIF [8], and IoTFinder [9] has primarily focused on fine-
grained annotations or lightweight fingerprints tailored for
device classification and identification tasks. Although these
datasets are valuable for such targeted applications, they
often lack access to complete raw packet captures. For ex-
ample, Mon(IoT)r provides only packet headers, LSIF offers
filtered PCAPs per day per device, and IoTFinder provides
only DNS-response-filtered PCAPs. This limited visibility at
the protocol level constrains broader analytical opportunities
and restricts deeper insights into the full spectrum of device
communication patterns and protocol usage.

Public availability is another crucial factor that affects
the utility and impact of IoT traffic datasets. Several high-
quality datasets remain partially or entirely inaccessible,
limiting reproducibility and broader community adoption.
For example, SHiOT’s detailed flow statistics and summaries
are not publicly hosted, restricting opportunities for reuse
and validation. Similarly, VARIoT offers only coarse-grained
flow data without raw PCAPs; although parts of the dataset
are accessible, its availability is restricted by amalgamating

Internet

University 
campus 
network

Ethernet 
WAN interface

WiFi 
local 
interface

USB hard drive

Ethernet 
local interfaces

TP-Link Archer C7
with 
OpenWrt firmware

FIGURE 1: Our lab setup for collecting IoT raw traffic.

multiple subdatasets, each with different access conditions.
In contrast, Deakin IoT Traffic (D-IoT) [16] provides pub-
licly available aggregated daily PCAP files covering over
20 devices and, like our dataset, captures network activity
in all three operational phases: setup, idle, and interac-
tion. However, it lacks segmentation per device, flow-level
data, and protocol-level annotations and parameters. Table 1
summarizes public IoT traffic datasets, highlighting their
coverage of devices, capture duration, and data types.

Motivation for a New Dataset
The limitations highlighted above underscore the need for a
unified and publicly accessible dataset that provides:

1) Long-term captures of benign traffic from a diverse set
of IoT devices, spanning all operational phases (setup,
idle, and active interactions),

2) Fine-grained visibility at flow-level and protocol-level,
3) Protocol-specific parameter extraction for deeper se-

mantic analysis,
4) Reusable scripts and analytical models to support

reproducibility and facilitate benchmarking,
5) Enabling various research applications, including se-

curity analytics, traffic classification, and network be-
havior profiling.

Our Contribution: UNSW IoT Traffic Data (UNSW-IoTraffic)
To address these gaps, we introduce the UNSW-IoTraffic
Dataset, a publicly available, unrestricted, and reusable re-
source designed to support various IoT research needs. This
dataset offers several key advantages:

• Device Diversity: Includes traffic from 27 unique
consumer IoT device types, allowing detailed device-
specific analysis.

• Full Operational Coverage: Records device behavior
across setup, idle, and interaction phases over 203 days,
enabling comprehensive behavioral modeling.

• Extensive Protocol Coverage: Features detailed flow-
level data for 25 common IoT protocols, supporting
multiprotocol analysis.

• Multiresolution Data: Provides raw PCAPs, detailed
flow-level data (based on 5-tuple groupings), and
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protocol-specific parameters for both request and re-
sponse traffic directions, enhancing analytical depth.

• Reusable Analytical Resources: Contains reusable
scripts for statistical analysis, state diagram-based vi-
sualization, and machine learning-based device finger-
printing.

• Broad Applicability: Designed to support security re-
searchers (e.g., risk assessment), network analysts (e.g.,
behavior profiling), machine learning practitioners (e.g.,
traffic classification, anomaly detection), and educators
(e.g., computer networking lab exercises and teaching
demonstrations).

UNSW-IoTraffic represents a significant advancement, in-
corporating detailed protocol-specific parameters not present
in earlier datasets. This opens up new opportunities for
research and educational exploration in IoT traffic analysis.

Previous Publications Made Using the Dataset
The UNSW-IoTraffic dataset is an expanded, extended, and
enriched version of the packet traces analyzed earlier by our
seminal work on IoT traffic classification [18]–[20]. Those
earlier studies focused mainly on 20 daily raw PCAP files,
representing a small subset of the current UNSW-IoTraffic
dataset. Our recent work [21] analyzed the UNSW-IoTraffic
dataset by focusing on six common protocols: TLS, HTTP,
DNS, NTP, DHCP, and SSDP. In that study, we developed
protocol-specific models capable of automatically detecting
these protocols in network traffic, thereby enabling analysis
of IoT device behaviors, as well as identification of protocol
vulnerabilities and misconfigurations.

COLLECTION METHODS AND DESIGN
IoT Network Setup
Our lab setup included a standard gateway, model TP-Link
Archer C7 v2, running an instance of OpenWrt firmware
Chaos Calmer (15.05.1, r48532). As shown in Fig. 1,
the gateway connected consumer IoT devices on one side
through WiFi or Ethernet local interfaces (LAN: local area
network) and, on the other side, provided Internet access
through an external Ethernet connection (WAN: wide area
network) via our university’s campus network. We captured
raw packet traces on the LAN side of the gateway using
the tcpdump tool (4.5.1-4) running on OpenWrt. All network
traffic was captured centrally on the OpenWrt gateway, with
packet timestamps based on its clock. This eliminated the
need for cross-device synchronization and ensured consistent
timing for temporal analysis. Recording packets at the local
interface before applying network address translation (NAT)
enables one-to-one mapping between each connected IoT
device and its corresponding MAC or IP address. This
mapping allows us to isolate the traffic of individual devices
from a mix of packets belonging to multiple devices.

The setup connected 27 IoT devices to the LAN or WLAN
interfaces of the TP-Link access point, along with a few non-
IoT devices. We chose specific IoT makes and models based

on their global consumer popularity and market availability
at the time of data collection (2016), to reflect representative
(though not exhaustive) device diversity. The main difference
between IoT and non-IoT devices in this context lies in their
intended functionality: IoT devices are typically designed
for a specific, often single purpose (e.g., smart lightbulb,
smoke detector), while non-IoT devices are general purpose
and capable of performing a wide range of tasks depending
on user needs and interactions (e.g., mobile phone, personal
computer).

The 27 connected IoT devices fall into the categories
of cameras, switches, triggers, hubs, air quality sensors,
electronics, healthcare devices, and light bulbs. All devices
were configured according to the settings recommended by
the respective device manufacturers.

Data collection encompasses periods during which users
were present or absent within the lab environment. The
recorded traffic traces reflect a range of user interactions
(though without ground-truth annotations) with different
devices. Examples include a Belkin Wemo sensor triggering
upon motion detection, an Amazon Echo responding to
voice commands, and a LiFX lightbulb adjusting color or
intensity in response to requests via its companion app.
More complex interactions also occur, such as a Netatmo
Welcome camera detecting an occupant and signaling the
LiFX lightbulb to turn on with a preconfigured color. In
addition to these user-driven events, the dataset contains idle
periods characterized by periodic, autonomously generated
background traffic, such as DNS and NTP communications,
that are unaffected by direct human interaction.

Collected Data
We used a script to automate traffic data collection and
storage, starting capture at midnight local time each day
using a Cron job on OpenWrt, following a scheduled reboot
to ensure a clean state and reliable data capture. Addi-
tionally, we implemented a monitoring script on OpenWrt
to check the data collection process every 5 seconds. If
the logging process was found to be inactive during these
checks, the script would immediately restart it, ensuring
that any possible data loss was limited to a maximum of 5
seconds. That said, data loss could still occur due to power
outage or failures in scheduled daily reboots (the following
subsection discusses capture discontinuity). We installed
additional OpenWrt packages on the gateway; block-mount
package for mounting external USB storage on the gate-
way, kmod-usb-core and kmod-usb-storage (3.18.23-1) for
storing the traffic trace data on the USB storage. The data
traces collected were stored as PCAP files on a 1TB external
USB hard drive attached to the gateway, allowing continuous
traffic tracking for several months. Each daily PCAP file
was filtered by the MAC address of individual IoT devices
connected to the network, generating device-specific PCAP
files that contained only packets sent to and from a given
MAC address.
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FIGURE 2: Temporal activity for each device is shown, with concurrent idle periods of ≥10 min highlighted by gray bands
(all devices are inactive). Times are given in UTC; our lab local time corresponds to AEDT (UTC+11) until 2017-04-02
and AEST (UTC+10) thereafter.
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FIGURE 3: Total flow count (in millions) aggregated across
all devices as a function of the inter-arrival time threshold
(tthresh).

Capture Continuity and Packet Loss Analysis
We evaluated capture continuity over the 203-day period by
calculating inter-packet gaps for each device in our dataset
and identifying concurrent idle windows, periods of at least
10 minutes during which all devices on the network were
inactive. This threshold was selected to reliably capture
genuine packet loss or disruption events. Shorter windows
could introduce false positives, as it is not unusual for IoT
devices to remain inactive and generate no traffic for several
minutes during idle periods. Fig. 2 shows the temporal
activity of each device, with gray bands indicating concurrent
idle periods. In total, we identified 14 such intervals with
durations varying from ≈4 h to ≈20 days, totaling ≈869 h
(≈36.2 days) of concurrent inactivity on all devices.

We experimented with idle periods shorter than 10 min-
utes, but this specific threshold yielded true disruptions
with reasonable explanations. Manual inspection of these
concurrent idle periods revealed that the start and/or end

of almost all gray bands coincided with 00:00 local time
(13:00 or 14:00 UTC), suggesting that they were caused by
failures in reboots scheduled at midnight, which were then
delayed to the following day. Note that the times in Fig. 2
are given in UTC, while our lab’s local time corresponds to
AEDT (UTC+11) until 2017-04-02 and AEST (UTC+10)
thereafter. Finally, the longest gap, from 04-Dec-2016 to
24-Dec-2016, corresponds to our lab’s annual maintenance
shutdown.

Data Processing
1) Raw Network Packet Traces
After collecting the data, we filter the traffic by the MAC
address of the target devices to produce device-specific
PCAP files. Each device PCAP contains all packet traces
associated with a single device throughout the data col-
lection period. These device-specific PCAPs form the first
abstraction level in our dataset: raw network packet traces
including full headers and payloads. Table 2 summarizes
the data collection periods for each device and the total
number of packets from our lab testbed.

2) Flow-Level Metadata
We used an automation script written in Java to process
the raw PCAP files and identify the communication flows
generated by the devices. A communication flow is defined
as a set of network packets grouped based on 5-tuple
attributes (i.e., source IP address, destination IP address,
protocol number, source port number and destination port
number). Note that a full communication session between
a source (e.g., an IoT device) and a destination (e.g., a
cloud server) typically consists of two unidirectional flows,
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TABLE 2: Summary of device-specific PCAP traces: device identity, time period covered,
number of packets, and number of flows.

Device Device MAC First Packet Date Last Packet Date # days # Packets # Flows PCAP size
AmazonEcho 44:65:0d:56:cc:d3 2016-09-30 2017-03-24 175 4,666,750 245,784 990 MB

AugustDoorBell e0:76:d0:3f:00:ae 2016-12-02 2017-04-13 132 20,040,732 1,132,276 5.81 GB

AwairAirQuality 70:88:6b:10:0f:c6 2016-11-10 2017-03-07 117 906,079 4,406 192 MB

BelkinCamera b4:75:0e:ec:e5:a9 2017-02-21 2017-03-16 23 663,382 65,169 150 MB

BelkinWemoMotionSensor ec:1a:59:83:28:11 2016-09-30 2017-03-07 158 5,921,154 680,235 1.61 GB

BelkinWemoSwitch ec:1a:59:79:f4:89 2016-09-30 2017-03-24 175 4,273,643 490,562 1.02 GB

BlipCareBPMeter 74:6a:89:00:2e:25 2016-10-04 2017-04-10 188 620 54 106 KB

CanaryCamera 7c:70:bc:5d:5e:dc 2016-11-22 2017-03-05 103 6,131,096 6,598 5.64 GB

HelloBarbie 28:c2:dd:ff:a5:2d 2017-03-02 2017-04-13 42 5,123 150 1.94 MB

HPPrinter 70:5a:0f:e4:9b:c0 2016-09-30 2017-04-13 195 1,629,171 594,646 277 MB

iHome 74:c6:3b:29:d7:1d 2016-09-30 2017-02-24 147 1,635,400 60,352 409 MB

LiFXBulb d0:73:d5:01:83:08 2016-09-30 2017-04-13 195 1,368,191 102,032 166 MB

NetatmoWeatherStation 70:ee:50:03:b8:ac 2016-09-30 2017-04-13 195 1,542,257 78,879 271 MB

NetatmoWelcome 70:ee:50:18:34:43 2016-09-30 2017-03-26 177 4,967,010 315,974 2.05 GB

NestDropCam 30:8c:fb:2f:e4:b2 2016-09-30 2017-04-13 195 23,497,598 2,108 3.68 GB

NestProtect 18:b4:30:25:be:e4 2016-09-30 2017-04-13 195 702,949 256,956 693 MB

PhilipsHue 00:17:88:2b:9a:25 2016-11-14 2017-04-13 150 3,975,530 302,097 825 MB

PixStarPhotoFrame e0:76:d0:33:bb:85 2016-09-30 2017-04-06 188 83,832 15,358 16.2 MB

RingDoorBell 88:4a:ea:31:66:9d 2017-03-07 2017-04-13 37 39,107 1,105 23.1 MB

SamsungCamera 00:16:6c:ab:6b:88 2016-09-30 2017-04-13 195 5,880,402 379,921 2.00 GB

SamsungSmartThings d0:52:a8:00:67:5e 2016-09-30 2017-04-13 195 3,324,934 42,912 355 MB

TPLinkCamera f4:f2:6d:93:51:f1 2016-09-30 2017-04-13 195 435,198 48,007 49.8 MB

TPLinkSmartPlug 50:c7:bf:00:56:39 2016-09-30 2017-03-07 158 79,773 12,816 12.0 MB

TribySpeaker 18:b7:9e:02:20:44 2016-09-30 2017-04-07 189 685,844 51,650 224 MB

WithingsBabyMonitor 00:24:e4:11:18:a8 2016-09-22 2016-10-07 15 943,513 11,241 71.1 MB

WithingsSleepSensor 00:24:e4:20:28:c6 2016-09-30 2017-03-24 175 2,097,512 41,223 412 MB

WithingsSmartScale 00:24:e4:1b:6f:96 2016-09-30 2017-04-13 195 46,605 1,530 12.6 MB

TOTAL 203 95,543,405 4,944,041 26.9 GB

TABLE 3: Protocol diversity
and prevalence in UNSW-
IoTraffic.

Protocol # Devices # Flows
DNS 27 596,341

DHCP 27 40,719

ICMP 26 476,420

TLS 24 760,434

HTTP 21 818,456

LLDP 21 24,840

SYSLOG 17 173

NTP 16 263,211

SSDP 13 264,128

IGMP 10 1,995

MDNS 9 4,758

ICMPv6 8 11,614

SNMP 7 28

RTMP 5 11

STUN 4 55,170

ISAKMP 3 240

XMPP 3 128

Classic-STUN 2 3,967

NBNS 2 1,529

SIP 2 17,068

SMB 2 2,529

RTSP 2 9

LLMNR 1 10

IPP 1 5

RTP 1 3

Others 24 1,600,255

one in each direction, like those found in a persistent TCP
connection between a client and a server. Therefore, the
flows in our dataset are bidirectional. However, we may
observe partial flow records if a period of inactivity is
detected in either direction. The packets are grouped into the
same flow record as long as the inter-arrival time between
consecutive packets does not exceed 120 seconds in either
direction. The threshold of 120 seconds was selected based
on an empirical analysis of the total number of flows
exported from all 27 devices for tthresh ∈ {30, 60, 120, 300}
seconds. As shown in Fig. 3, the flow count drops sharply
between 30 s and 60 s, indicating that small thresholds cause
excessive fragmentation of sessions. Beyond 60 s, the rate of
decrease slows, with the reduction from 120 s to 300 s being
comparatively modest. Selecting 120 s, therefore, captures
the major reduction in flow count achieved by increasing
the threshold, while avoiding the risk of over-aggregating
distinct sessions that may occur at larger values such as
300 s. Table 4 shows how this choice balances the need
to minimize unnecessary flow fragmentation with the need
to preserve meaningful session boundaries.

Within each flow, the unidirectional flow that sends the
first packet is designated as the initiator, while the other
is considered the responder. Parameters associated with the
initiator are labeled as source parameters (prefixed with
“src”), and those for the responder as destination parameters
(prefixed with “dst”). A complete list of flow parameters is
provided in Table 7 and further discussed in Section B.

The automation script processes each device’s PCAP file
by grouping packets into bidirectional flows and applying
protocol models, as described in [21], to identify the pro-
tocol(s) used within each flow. While a flow may contain
packets from multiple protocols, it is typically dominated by
a single protocol. Using protocol data models for a selected
set of 55 protocols, the script labels each flow with the most
representative protocol based on its packet contents. Table 3
summarizes the most frequently observed protocols in the
UNSW-IoTraffic dataset across all devices.

To determine how the choice of the inter-arrival time
threshold affects the detected mix of protocols, we computed
the total variation distance (TVD) between the protocol dis-
tributions at successive threshold values ∈ {30, 60, 120, 300}
seconds. For each threshold ti, let

Pti(p) =
number of flows per protocol p

total number of flows
.

Then for two successive thresholds ti and tj , the TVD is
computed by:

TVD
(
Pti , Ptj

)
=

1

2

∑
p

∣∣Pti(p)− Ptj (p)
∣∣ ,

which ranges from 0 (identical distributions) to 1 (no over-
lap). Table 4 summarizes the TVD between three pairs of
successive thresholds. It can be seen that TVD first falls
before it rises, experiencing its lowest value (0.071) at the
transition from 60 to 120 s, indicating that the protocol mix
has effectively stabilized by 120 s, while the jump to 300 s
(TVD = 0.354) reflects excessive merging of distinct flows
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TABLE 4: Total variation distance (TVD) between protocol
distributions at successive inter-arrival time thresholds.

Threshold transition TVD
30 → 60 s 0.114

60 → 120 s 0.071

120 → 300 s 0.354

that can obscure protocol detection. This empirical convexity
in TVD further supports our choice of 120 seconds, balanc-
ing over-splitting against over-merging flows.

The collected data are stored as device-specific CSV
files, where each row corresponds to a single bidirectional
flow associated with that device. These CSV files represent
the second level of abstraction in our dataset: flow-level
metadata, which captures the statistical characteristics of
IoT device behavior on the network. Algorithm 1 was used
to transform raw packet traces to flow-level data of 5-
tuple records. Our algorithm applies the same logic of flow
extraction to both TCP and UDP traffic and, as such, does
not examine TCP sequence numbers. Therefore, it does
not attempt to reorder packets or detect duplicates within
TCP flows; instead, it remains agnostic to such variations.
This design choice simplifies packet processing and ensures
consistent handling across transport-layer protocols.

3) Protocol Parameters
We extended the automation script initially used to extract
flow-level metadata from raw packet traces, also to extract
protocol-specific parameters. For each flow associated with
a certain protocol (e.g., TLS), the script extracts relevant
parameter values (e.g., the server-hello-cipher-suite for a
TLS flow) and stores them in a separate set of CSV files.
Since protocols define different parameters for request and
response packets, these parameters are extracted separately
for each direction. For a bidirectional flow, we consider
the unidirectional flow originating from the initiator as the
request flow, and the flow from the responder as the response
flow. This distinction is used to extract and record protocol
parameters for requests and responses systematically.

Similarly, as we use protocol data models to identify the
protocol associated with a flow, we also employ these models
to extract protocol-specific parameters from the flow. Each
protocol model [21] defines a list of request and response
parameters along with the corresponding matching patterns
used to locate these parameters within the flow payload.
During parameter extraction, if multiple matches are found
for a given pattern within the payload, we extract the value
from the first occurrence only.

Similarly to flow-level data, protocol parameters are pre-
sented in CSV files. Each CSV is specific to a device (D),
protocol (P) and communication direction (R) (i.e., request or
response). In this structure, each row in a protocol parameter
CSV represents a flow from device D that uses protocol
P in the direction R. These CSV files of protocol param-
eters constitute the third level of abstraction in our dataset:

Algorithm 1 Extracting flows from a device PCAP file.

1: Input: pcapPath (path to a PCAP file)
2: Load the pcap file from pcapPath as pcapHandler

3: Initialize maps:
4: Map<FlowTuple, List<Byte[]>> ipPacketBuffer
5: Map<FlowTuple, List<FPDPacket>> ipFPDPackets
6: while packet = pcapHandler.getNextPacket() do
7: if packet is NULL then
8: continue
9: end if

10: Extract header and payload from packet
11: if payload is empty then
12: continue
13: end if
14: if header.getType() is not (IPv4, IPv6, TCP, UDP)

then
15: continue
16: end if
17: Extract flow the attributes srcIP, dstIP, ipProto, src-

Port, dstPort from header
18: Construct flowTuple = (srcIP, dstIP, ipProto, srcPort,

dstPort)
19: Construct fpdPacket = store packet information
20: if flowTuple does NOT exist in ipPacketBuffer ipF-

PDPackets then
21: Initialize new entry for flowTuple in ipPacket-

Buffer and ipFPDPackets
22: end if
23: Append payload to corresponding flow
24: end while

25: Initialize maps:
26: Map<FlowTuple, FPDDirectionPayload>

ipFPDDirectionPayload

27: for each flowTuple in ipPacketBuffer.keys() do
28: Initialize: fpdPayload for flowTuple from ipPacket-

Buffer and ipFPDPackets
29: if flowTuple.getReversed() exists in ipFPDDirection-

Payload then
30: Set fpdPayload as reverse direction payload for

the existing flowTuple
31: else
32: Add new flowTuple to ipFPDDirectionPayload
33: Set fpdPayload as forward direction payload for

flowTuple
34: end if
35: end for
36: Return ipFPDDirectionPayload
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TABLE 5: Performance summary of three classifier models.
Metric Precision Recall F1-score

RF
Accuracy 0.68

Macro avg 0.70 0.77 0.68

KNN
Accuracy 0.70

Macro avg 0.81 0.71 0.73

LR
Accuracy 0.36

Macro avg 0.35 0.41 0.27

protocol parameters, which capture detailed protocol-level
characteristics of IoT devices.

VALIDATION AND QUALITY
This section aims to validate the UNSW-IoTraffic dataset
through comprehensive experimental analyses, highlighting
its reliability, completeness, and suitability for various appli-
cations.

Machine Learning-Based Device Traffic Classification
A popular use case in network management is automatically
mapping of network traffic to the corresponding devices. To
this end, we study how an input flow can be classified into its
corresponding IoT type using three algorithms: (1) Random
Forest (RF), (2) k-Nearest Neighbors (KNN), and (3) Multi-
nomial Logistic Regression (LR). We trained these classifiers
and evaluated their predictions in an identical pipeline (i.e.,
same features and train/test sets). This consistency allows
us to attribute differences in inference outcomes to their
structure: nonlinear tree ensembles, instance-based locality,
and linear softmax, respectively.

We aggregate 4.9M flow records from 27 IoT device
classes and assign each row a device label (obtained from
its source filename). All experiments use a stratified 70/30
train–test split to preserve class proportions. To avoid overfit-
ting on trivial identifiers (e.g., device address) and to exclude
less-informative or overlapping attributes (e.g., timestamp,
transport-layer source and destination port numbers), we
omit time stamps, MAC/IP addresses, EtherType, IP protocol
number, transport ports, and flow sequence numbers. The
resulting feature set comprises 67 attributes: 45 categor-
ical and 22 numeric. Categorical features are converted
to indicator (one-of-K) vectors, and numeric features are
standardized to have a scale comparable in dimensions. A
single preprocessor is shared between models.

For RF, we tune the number of trees, the number of
features considered at each split, and the minimum samples
per leaf, selecting 100 trees, log2 features per split, and a
minimum leaf size of 1. For KNN, we search k ∈ {3, 5, 7}
and select k = 5. For LR, we vary the L2 regularization
strength C ∈ {0.1, 1, 10} and select a moderate L2 penalty
of C = 1. Across the three models, the hyperparameters are
selected by grid search with 5-fold cross-validation in the
training split, after which the best configuration is re-fit on
the full training data.
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FIGURE 4: Normalized (row-normalized) confusion matrix
for the Random Forest classifier, showing per-device recall
and misclassification rates across 27 IoT device classes. All
numbers are in percentages.

Results and Analysis
We evaluated the three models on the same held-out test set
(i.e., 30% of the flow records) using four metrics: overall
accuracy together with macro-averaged precision, recall, and
F1-score. Table 5 summarizes the performance of the three
classifiers. It can be seen that the LR model struggles (overall
accuracy of 0.36) due to its reliance on a linear hyperplane
for class separation, where the relationships between traffic
features and IoT classes are fairly non-linear [18]–[20]. Al-
though KNN has slightly higher accuracy, RF provides more
interpretable results [3], making it a preferred deployment
model. We therefore conduct a deeper analysis of the RF
model.

To better examine the performance of the RF classifier,
we show its row-normalized (recall per true class) confusion
matrix in Fig. 4. The overall accuracy is 68%. Despite
this moderate overall accuracy, the model performs well in
many individual classes: it achieves a recall of at least 80%
for 14 out of 27 classes, and eleven are greater than 90%.
These include prominent camera and speaker devices such
as AugustDoorBell (86%), CanaryCamera (99%), iHome
(99%), TPLinkCamera (99%), WithingsBabyMonitor (99%),
and RingDoorBell (95%), highlighting the model’s high
reliability for these IoT classes. It can be seen in Fig. 4
that the classifier is mainly confused with a few pairs:
NetatmoWelcome→HPPrinter (64%), SamsungCamera→
HPPrinter (36%), BelkinWemoSwitch→HPPrinter (33%),
and BelkinWemoMotionSensor→BelkinWemoSwitch
(36%), highlighting where similar traffic patterns contributed
to misclassification.

To interpret the RF model, we extracted feature impor-
tance scores based on the mean decrease in impurity. Fig. 5
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FIGURE 5: Top 20 features identified by the Random Forest
classifier. The blue bars represent each feature’s relative
importance (as a percentage), while the red line (plotted on
the right axis) indicates the cumulative importance.

shows the top 20 most important features. The blue bars
represent the importance of individual features (as a per-
centage). At the same time, the red line (plotted on the right
axis) indicates the cumulative importance, highlighting how
quickly the most important features collectively contribute
to the model’s predictive power.

A couple of observations can be drawn from this analy-
sis. First, statistical measures of payload size, particularly
srcAvgPayloadSize and srcMaxPayloadSize, are key fea-
tures in classifying IoT traffic flows. This suggests that
upstream payload size distributions are among the most
distinctive signatures exhibited by IoT devices in their
flow-level metadata. In addition, count-based and tempo-
ral characteristics of flows, such as srcNumPackets and
avgInterarrivalTime, also play a significant role. These fea-
tures represent the second most influential group of device-
specific class predictors.

Analyzing Service Usage Patterns of IoT Devices

To understand and manage the behavior of IoT devices,
aggregate-level behavioral fingerprints can be constructed
without necessarily relying on machine learning algorithms.
This can be achieved through an aggregate analysis of the
network services each device uses to communicate with
its intended endpoints. An approach to conducting such an
analysis involves processing flow-level data to create a state
machine that represents the network services each IoT device
interacts with over time.

For each IoT device, we sorted its network flows chrono-
logically throughout the data collection period and assigned
a service label to each flow based on its protocol information.
If the flow’s protocol could not be identified (i.e., it did
not match any of our 58 protocol data models during flow
extraction from the raw PCAP files), we assigned a service
label using the transport layer protocol (e.g., TCP or UDP)
combined with the port number (e.g., TCP/8883). Flows
using transport layer protocols other than TCP or UDP were

labeled as OTHER. These service labels serve as the states in
the state machine that represent the behavior of the device.

We then identified and counted the transitions from one
state to another based on the chronologically sorted flow
data. We computed two metrics from transitions across
states: (1) Local Outgoing Transition Probability represents
the fraction of transitions from a given source state that
lead to a specific target state, indicating the likelihood of
that transition given the original state. We use this metric
to color the edges in our state diagram (brighter edge colors
indicate higher transition probabilities). (2) Global Incoming
Transition Count represents the total number of transitions
into each state across all flows of the device. To visualize
these counts, nodes are color-coded based on their position
within three percentile-based groups, using the 33rd (T1) and
66th (T2) percentiles as thresholds: grey for “count ≤ T1”
(lower third), blue for “T1 < count ≤ T2” (middle third),
and red for “count > T2” (upper third). Fig. 6 illustrates an
example state diagram showing service usage patterns for the
AwairAirQuality device. The AwairAirQuality’s behavior is
dominated by four key services (in red): DNS, DHCP, NTP
and TLS, with DNS being the most dominant, receiving the
largest number of incoming transitions. It can be seen that
50% of DNS lookups are followed by another DNS flow,
while the remaining transitions lead to TLS or NTP. The
directed graph representation shown in Fig. 6 can serve as a
behavioral fingerprint for identifying and monitoring device
activity at runtime. This approach is conceptually similar
to the method proposed in [22], where the authors utilized a
tree-based representation of Manufacturer Usage Description
(MUD) data for device profiling.

Protocols for Fingerprinting and Risk Assessment

Protocol parameters offer insights into how specific protocols
are configured and utilized by an IoT device connected to
the network. Standards bodies advocate for visibility into
protocol usage (e.g., TLS [23]), as it can help reveal the
presence of unauthorized or potentially malicious software
on IoT devices. In our recent work [21], we analyzed a
subset of the UNSW-IoTraffic dataset, focusing on protocol
parameters extracted from the network traffic of ten represen-
tative IoT devices. Our analysis centered around six widely
used protocols: TLS, HTTP, DNS, NTP, DHCP, and SSDP.
Together, these six protocols account for 97% of all flows
generated by the ten devices.

By analyzing device-specific PCAP files in conjunction
with the standard protocols documentation, we constructed
machine-readable data models to describe the signatures of
these six protocols and extract their associated parameters.
These data models are released as part of the protocols
section in the UNSW-IoTraffic dataset. We applied protocol
models to raw PCAP files and demonstrated high detection
accuracy with zero false positives.

We extracted key parameters such as cipher suites, pro-
tocol versions, and authentication methods to characterize

8 VOLUME 00, 2024



TABLE 6: Device-specific protocol signatures and vulnerabilities for three representative IoT devices.
Device # Client Cipher Suites Server Cipher Suites # Client Extensions HTTP Methods # NTP Vulns HTTP Basic Auth?
RingDoorBell 10 {0xc027} 1 POST 2 Yes
TribySpeaker 66, 80 {0xc030} 2 GET 0 Yes
AmazonEcho 55, 91 {0x0035, 0x002f, 0xc030, 0xc02f, 0xc013} 8 GET, HEAD, PUT 1 No
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FIGURE 6: Approximate state diagram for AwairAirQuality.
Nodes represent network services, while directed edges show
transitions; edge color indicates local outgoing transition
probability, and node color reflects the global incoming
transition count.

the behavior of the IoT devices. The results revealed distinct
behavioral fingerprints for each device, validating the high-
fidelity, device-specific insights provided by our dataset. We
also leveraged protocol models for risk assessment, using
them to identify misconfigured security parameters, such as
weak cipher suites in TLS flows and improper authentication
mechanisms in HTTP flows.

Let us focus on three representative IoT devices from
our dataset to demonstrate the utility of protocol parameters
in device fingerprinting and security assessment. Table 6
presents some unique attributes with an emphasis on the TLS
and HTTP protocols (columns 2-5), alongside the vulnera-
bilities identified by analyzing the parameters of the NTP
and HTTP protocols (columns 6-7). Starting with unique
signatures, the Ring doorbell consistently offers an ordered
list of 10 cipher suites (in its client-hello messages) to all
cloud servers with which it communicates. However, the
Triby speaker and Amazon Echo use one of two unique
lists specific to these devices at the beginning of their TLS
connections with their intended servers. All lists offered
across these three representative devices are unique. In

addition, the corresponding TLS servers choose one cipher
from the offered list: the server cipher suite of the Ring
doorbell is unique, but this parameter for the Triby speaker
overlaps with that of one of the servers with which the
Amazon Echo communicates. We also note that these three
devices are distinct by the number of client extensions
used for the TLS protocol. Also, these three representative
devices display relatively distinguishing patterns in their
choice of HTTP methods when communicating with their
cloud servers. Moving to vulnerabilities, we discovered the
use of outdated NTP versions (i.e., v3 or less) or insecure
HTTP authentication methods (i.e., Basic [24]), highlighting
the role of protocol-level data in assessing device cyber risks.
Together, these protocol parameters form a strong basis for
building protocol-aware device profiles that can help identify
devices and develop security guidelines to prevent attacks or
compromises arising from protocol misuse.

RECORDS AND STORAGE
As mentioned in previous sections, our dataset is organized
into three abstract levels to support analysis of IoT net-
work behavior at different levels of granularity. The dataset
consists of: (a) raw network packet captures (PCAPs), (b)
network flows with statistical attributes, and (c) protocol
models and parameters. Each representation is stored in a
format that ensures ease of access and usability.

Fig. 7 illustrates the hierarchical structure of our dataset.
The root folder “UNSW-IoTraffic” contains four main
subfolders; (1) pcaps includes 27 device-specific raw
packet capture (PCAP) files; (2) flows contains 27
CSV files, each providing flow-level metadata and statis-
tics for a corresponding device; (3) protocols com-
prises two subfolders: models contains six JSON files,
one per six standard protocols (TLS, HTTP, DNS, DHCP,
SSDP, and NTP), used for protocol-specific parameter
matching and extraction, and parameters structured
into device-specific subfolders, each of which is fur-
ther divided into request and response subfolders.
These contain CSV files listing the extracted attributes
for each of the six protocols; (4) scripts consists
of three subfolders: random-forest-classifier and
state-diagrams include source code for two of the
validation tasks presented in the previous section, and
summaries contains scripts used to extract flow-level
metadata presented in Tables 2 and 3.

For ease of access, we publish five compressed .zip
archives: one for the root folder and one for each of the
four subfolders discussed above. This structure allows users
to download any combination of folders they need.
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TABLE 7: Descriptions of data fields across the flow-level and protocol-parameter CSV files in the UNSW-IoTraffic dataset.
Data Field Description Flow-Level Metadata CSV files Protocol Parameters CSV files
time Timestamp of first packet in the flow. ✓ ✓

srcMac MAC address of the flow initiator. ✓ ✓

dstMac MAC address of the flow responder. ✓ ✓

ethType Ethernet type field (e.g., 0x0800 for IPv4). ✓ ✓

srcIp IP address of the flow initiator. ✓ ✓

dstIp IP address of the flow responder. ✓ ✓

ipProto IP protocol number (e.g., 6 for TCP, 17 for UDP). ✓ ✓

srcPort Transport-layer port number of the flow initiator. ✓ ✓

dstPort Transport-layer port number of the flow responder. ✓ ✓

flowSeqNum Sequential occurrence of the flow within the device packet capture. ✓ ✓

srcNumPackets Number of packets transmitted by the flow initiator. ✓

dstNumPackets Number of packets transmitted by the flow responder. ✓

srcPayloadSize Total payload size (bytes) sent by the initiator. ✓

dstPayloadSize Total payload size (bytes) sent by the responder. ✓

srcAvgPayloadSize Average payload size (bytes) per initiator packet. ✓

dstAvgPayloadSize Average payload size (bytes) per responder packet. ✓

srcMaxPayloadSize Largest payload size (bytes) among initiator packets. ✓

dstMaxPayloadSize Largest payload size (bytes) among responder packets. ✓

srcStdDevPayloadSize Standard deviation of initiator packet payload sizes. ✓

dstStdDevPayloadSize Standard deviation of responder packet payload sizes. ✓

flowDuration Time between arrivals of first and last packets in the flow. ✓

srcAvgInterarrivalTime Average inter-arrival time between initiator packets. ✓

dstAvgInterarrivalTime Average inter-arrival time between responder packets. ✓

avgInterarrivalTime Average inter-arrival time between all packets in the flow. ✓

srcStdDevInterarrivalTime Standard deviation of inter-arrival times between initiator packets. ✓

dstStdDevInterarrivalTime Standard deviation of inter-arrival times between responder packets. ✓

stdDevInterarrivalTime Standard deviation of inter-arrival times between all packets in the flow. ✓

allMatchedProtocols A list of all potential protocols the flow may represent. ✓

protocol Protocol (e.g., HTTP) identified for the content of application layer. ✓

<parameters> One or more protocol specific parameters. ✓

A. Raw Packet Captures
Our dataset provides the raw network packet traces as device-
specific files in the standard .pcap format. Each file records
all packets associated with a single IoT device over the
entire data collection period. The files are named accord-
ing to the pattern “<DeviceName> <DeviceMACaddr>.pcap”,
allowing for unique identification of each device within the
dataset. These capture files include both packet headers and
payloads, and encompass a wide range of communication
protocols, including the 25 protocols listed in Table 3.

These raw PCAPs serve as the foundational layer of our
dataset, providing researchers with complete packet-level
visibility. From these raw PCAPs, higher-level abstractions,
including flow-level metadata and protocol parameters, are
derived.

B. Flow-Level Metadata
For each IoT device, the dataset includes a corresponding
CSV file that contains flow-level data extracted from the
raw packet captures. These CSV files follow the naming
convention “<DeviceName> <DeviceMACaddr> flows.csv”,
as shown in Fig. 7. As discussed earlier in this paper,
each flow in our dataset is bidirectional, composed of two
unidirectional flows exchanged between an initiator and a
responder. Table 7 lists all the attributes included in each
flow record.

The numerical attributes can be categorized into two
groups: (a) amounts of data transferred, namely NumPackets,
PayloadSize, AvgPayloadSize, MaxPayloadSize, and
StdDevPayloadSize, which are calculated separately for
each direction of a flow. This directional distinction enables

a fine-grained analysis of how various IoT devices interact
with their communication endpoints. For example, a camera
device typically transmits significantly more packets and
larger payloads than it receives. Note that aggregate
statistics, such as the total number of packets or the average
payload size for the entire bidirectional flow can be derived
from the corresponding attributes of the two unidirectional
flows; (b) timing metrics, specifically AvgInterarrivalTime
and StdDevInterarrivalTime, are calculated using the
time differences between consecutive packets within a
flow. These timing metrics are calculated independently for
each of the two unidirectional flows and the bidirectional
flow. Note that the timing attributes of the bidirectional
flow cannot be deduced from those of unidirectional flows.
Additionally, each flow record includes two attributes for
protocol identification: a list of all potential matching
protocols (i.e., allMatchedProtocols), and the single best-
matched protocol determined (i.e., protocol). Our protocol
identification was based on protocol data models, which
match the sequence of packets in each flow against a set of
55 protocol models. Using this approach, we identified 25
protocols across the dataset, as listed in Table 3.

This comprehensive set of flow attributes enables re-
searchers to analyze the behavior of an IoT device itself (via
unidirectional flows) and its interactions with other endpoints
(via bidirectional flows). For example, the unidirectional flow
attributes reveal the amount of data the device sends and
how frequently it is sent, while bidirectional flow attributes
capture the nature of the device’s communication with other
endpoints, including the rate at which packets are exchanged.
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FIGURE 7: Structure of the UNSW-IoTraffic dataset.

C. Protocol Parameters
We extracted protocol parameters from the raw packets of
flows listed in the CSV files of flow-level metadata, but only
for those where a specific protocol was identified (i.e., where
the protocol attribute is not set to “none”). Approximately
70% of all flows in the dataset yielded protocol parameters.
As previously described, our protocol data model defines
the parameters to be extracted and the method for extracting
them from flow payloads. The extracted protocol parameters
are stored in a separate set of CSV files, each specific
to a device, direction, and protocol. As a result, the
request and response parameters are stored in separate
CSV files. As shown in Fig. 7, the data for the protocol
parameters is organized in a hierarchical folder structure of
“<DeviceName> <DeviceMACaddr>/<requests|responses>”.
Each of these folders contains protocol-specific CSV
files, one for each protocol used by the corresponding
device. These files follow the naming convention
“<protocol>Attributes.csv”.

The last column in Table 7 indicates the data fields
found in a CSV file containing protocol parameters.
Fields ranging from time to flowSeqNum are unique to
each flow record and are identical to those in flow-level

metadata. Therefore, the combination of fields (srcMac,
dstMac, ethType, srcIp, dstIp, ipProto, srcPort, dstPort,
flowSeqNum) can serve as a primary key to map flow-
level data to the corresponding protocol parameters. The
last field, denoted as <parameters>, contains protocol-
specific values. The number and type of these parameters
vary depending on the protocol. For example, for
TLS, we extract three parameters from request flows:
client-hello-cipher-suites, client-hello-version,
client-hello-extensions, and three from response flows:
server-hello-cipher-suite, server-hello-version,
server-hello-certificates.

INSIGHTS AND NOTES
The UNSW-IoTraffic dataset is designed to support a wide
range of educational and research applications. However,
users should be aware of caveats and special considerations
when working with the dataset.

Imbalanced and Sparse Device Activity: As shown in
Table 2, devices in the dataset exhibit widely varying traffic
volumes and activity levels. High-traffic devices, such as
the Nest DropCam and August Doorbell, generate tens of
millions of packets, while others, like the Blipcare BPMeter
and Hello Barbie, produce minimal traffic over the same
multi-month period. Additionally, specific devices, such as
health sensors or baby monitors, may remain inactive for
extended durations, emitting only intermittent signals. These
natural variations reflect real-world usage patterns but may
present challenges for downstream tasks such as traffic
classification, behavioral modeling, or device fingerprinting.
These imbalances and sparsity patterns should be considered
when developing experiments, particularly those that are
sensitive to class balance or temporal continuity.

No Privacy or Anonymization Constraints: We col-
lected all data in a controlled testbed environment with
minimal human interactions with the devices and their envi-
ronment. Importantly, no personally identifiable information
(PII) was involved in the data collection process. As such, no
anonymization of MAC/IP addresses or payload content has
been applied. This preserves full packet visibility and makes
the dataset especially valuable for research that requires
address-level behavior tracking or detailed payload analysis.

Beyond Flow-Based Analysis: While this paper demon-
strated flow-level behavioral modeling and fingerprinting,
the dataset can support a wide range of additional use
cases. Our full packet captures enable applications such as
time-series analysis, session reconstruction, and per-packet
protocol inspection. The long capture duration and device
diversity make our dataset suitable for longitudinal studies,
including sequence modeling of service usage, temporal
anomaly detection, concept drift, or label shift. Researchers
interested in protocol-level dynamics, intrusion detection, or
service fingerprinting may find the raw traces particularly
valuable for deeper analysis.

VOLUME 00, 2024 11



S. Wannigama, A. Sivanathan, and H. Habibi Gharakheili: UNSW-IoTraffic

SOURCE CODE AND SCRIPTS
The scripts folder in the UNSW-IoTraffic dataset con-
tains a set of tools for analyzing, summarizing, and visualiz-
ing the flow-level metadata of the dataset. There are readme
files inside each subfolder, with detailed explanations of the
content and the usage of these scripts.

As briefly discussed in the “RECORDS AND STORAGE”
section, these scripts are organized into three subfolders; (1)
random-forest-classifier: Implements a machine
learning pipeline to classify IoT devices based on their
network flow statistics using a Random Forest classifier.
This tool is particularly useful for students and educators
in courses related to data analytics for computer networking
or cybersecurity. The script random forest classifier.py
trains and evaluates the model using the flow-level meta-
data, and model analysis.py loads a trained model to
regenerate feature importance visualizations and summaries
of training results. This folder includes a results di-
rectory, which stores model metrics, visualizations, and
summaries. Before running the scripts, the data direc-
tory must be populated with flow-level CSVs from the
dataset. (2) state-diagrams contains a Jupyter notebook
state diagram notebook.ipynb for generating and visual-
izing a state machine for the behavior of a given IoT device
based on its service usage patterns. The network activity of
the target device is captured as a directed graph showing tran-
sitions between different services (e.g., TCP/8443, UDP/553,
or a protocol like HTTP). The script processes per-device
flow CSVs from the data folder. It labels each flow with a
service name, sorts flows chronologically, and counts con-

secutive transitions A → B to compute local and global
metrics. (3) summaries includes two Jupyter notebooks for
generating high-level summaries from the flow-level meta-
data. The notebook device flow counts.ipynb counts the
number of flows per device, while protocol summary.ipynb
computes the number of devices using each protocol and
the total flow count per protocol. Outputs are written to the
results folder and are presented in Tables 2 and 3.
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