Quantum Communications Tutorial for Engineers

Globecom
Washington DC
2016

Rob Malaney
UNSW

Image: Zeilinger 2000
1) Introduction - Why Quantum Communications?

2) Technical Background - Single Photon States (DV States)
   (i) The Photon & The Qubit
   (ii) Quantum Key Distribution (QKD) - The “Killer App”
   (iii) Quantum Entanglement
   (iv) Quantum Teleportation
   (v) Quantum Error Correction

3) Technical Background – Multi-Photon States (CV States)
   (i) The Quantized Electromagnetic Field
   (ii) Coherent and Squeezed States
   (iii) The Entangled Two-mode Squeezed State

4) Some Emerging Quantum-Communication Applications
   (i) QKD (revisited)
   (ii) Satellite Communications
   (iii) The Quantum Internet
   (iv) Orbital Angular Momentum
   (v) Wireless (6G) Communications
   (vi) Links to Quantum Computers

5) Conclusions
Introduction
Why Quantum Communications?

Interesting engineering challenges!

Everyone seems to be doing it!

The ultimate Cyber-Security solutions!

Now Truly Making its Way Into Real World Engineering Solutions
Quantum Communications is emerging as the breakthrough communications technology of the 21st Century

- Major research thrusts globally are underway
- Practical fundamental limits are being explored via extensive deployments
- Research papers are appearing in Major IEEE Conferences (e.g. Globecom!)
- Commercial deployments in quantum cryptography are already being rolled out (e.g. MagiQ: http://www.magiqtech.com)

EU-sponsored quantum-cryptography network unparalleled in size and complexity.

Image: Austrian Research Centers
Quantum Communications over any Distance is Entirely Feasible

Quantum Communications Over 150km Now Established (many times!)

Space Based Quantum Communications?

The Tenerife experiment was first test of a satellite based quantum communication network.

Photo: Aug 2016 – The Chinese quantum satellite blasts off from the Jiuquan Satellite Launch Centre. (AFP)

Quantum Communications is now truly international!
Quantum Communications is Interesting!

Concepts you need to know (as we move along)

What is a Photon?
It is likely more than you thought (prior to 1992)

The Qubit
The Itsybitsy basic resource source of all quantum communications

The No Cloning Theorem
Copying classical information is easy, but try copying quantum information.

Quantum Entanglement
Why Einstein was wrong and right at same time.

Quantum Teleportation
Communication of quantum state information (magically)

The Infinite Qudit
Just when you thought this was all too easy
Quantum Mechanics is True!

(Postulates of Quantum Mechanics) *

1. Associated with any particle moving in a conservative field of force is a wave function which determines everything that can be known about the system.

2. With every physical observable \( q \) there is associated an operator \( Q \), which when operating upon the wavefunction associated with a definite value of that observable will yield that value times the wavefunction.

3. Any operator \( Q \) associated with a physically measurable property \( q \) will be Hermitian.

4. The set of eigenfunctions of operator \( Q \) will form a complete set of linearly independent functions.

5. For a system described by a given wavefunction, the expectation value of any property \( q \) can be found by performing the expectation value integral with respect to that wavefunction.

6. The time evolution of the wavefunction is given by the time dependent Schrodinger equation.

*Actually true – but “formally” unproven statements
Postulates 2 and 3 are building blocks of Quantum Communications!
Quantum Mechanics is True!

Postulates of Quantum Mechanics

1. Associated with any particle moving in a conservative field of force is a wavefunction which determines everything that can be known about the system.

2. With every physical observable $q$ there is associated an operator $Q$, when operating upon the wavefunction associated with a definite value of that observable will yield that value times the wavefunction.

3. Any operator $Q$ associated with a physically measurable property $q$ will be Hermitian.

4. The set of eigenfunctions of operator $Q$ will form a complete set of linearly independent functions.

5. For a system described by a given wavefunction, the expectation value of any property $q$ can be found by performing the expectation value integral with respect to that wavefunction.

6. The time evolution of the wavefunction is given by the time dependent Schrodinger equation.

*Actually true – but “formally” unproven statements
Postulates 2 and 3 are building blocks of Quantum Communications!
Quantum Communications –
Concepts you need to know (as we move along)

What is a Photon?
*It is likely more than you thought (prior to 1992)*

The Qubit
*The Itsybitsy basic resource source of all quantum communications*

The No Cloning Theorem
*Copying classical information is easy, but try copying quantum information.*

Quantum Entanglement
*Why Einstein was wrong and right at same time.*

Quantum Teleportation
*Communication of quantum state information (magically)*

The Infinite Qudit
*Just when you thought this was all too easy*
Technical Background
Single Photons (DV States) & The Qubit

Hologram of a single photon reconstructed from raw measurements (left) and theoretically predicted (right).

Chrapkiewicz et al. 2016
What is a Photon?

A solution of the Quantised Electromagnetic Field -

Four Degrees of Freedom
(helicity and a three dimensional momentum vector)

Image: M. Bellini/National Inst. of Optics
What is a Photon?

Altering the field quantities in Maxwell’s Equations to operators that satisfy quantum commutation relations leads to the Quantized Electromagnetic Field (see later).

A particularly interesting quantum state derived from such machinery is one coherent to all orders - the so-called Coherent State (aka laser output)

\[
\begin{align*}
\nabla \cdot D &= \rho \\
\nabla \cdot B &= 0 \\
\n\nabla \times E &= -\frac{\partial B}{\partial t} \\
\n\nabla \times H &= J + \frac{\partial D}{\partial t}
\end{align*}
\]

\[
|\alpha\rangle = e^{-|\alpha|^2/2} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle = e^{-|\alpha|^2/2} e^{\alpha \hat{a}^\dagger} |0\rangle,
\]

A quantum state containing \(n\) photons (Fock State)
Very Attenuated Laser Pulses Approximate Single Photons

Heavily attenuated weak laser pulses approximate Single Photon sources.
Can use polarization states of such single photons as QUBITS

Experimental deterministic “on demand” single photons is an open research area.

\[ |\alpha\rangle \rightarrow |0\rangle + \gamma |1\rangle + \gamma^2 |2\rangle + \ldots \]

\( \gamma << 1 \)
Quantum Communications –
Concepts you need to know (as we move along)

What is a Photon?
It is likely more than you thought (prior to 1992)

The Qubit
The Itsybitsy basic resource source of all quantum communications

The No Cloning Theorem
Copying classical information is easy, but try copying quantum information.

Quantum Entanglement
Why Einstein was wrong and right at same time.

Quantum Teleportation
Communication of quantum state information (magically)

The Infinite Qudit
Just when you thought this was all too easy
The Qubit

The Schrödinger “Cat State”

“Miniaturize” - e.g. take the “cat” to be a photon. And swap “dead or alive” states with any alternate orthogonal states of the photon  $|0\rangle$ & $|1\rangle$
Discrete-Variable Quantum System

Discrete Variable (DV) systems
A quantum system having a finite-dimensional Hilbert space

Qubits

\[ |\psi\rangle = \alpha |0\rangle + \beta |1\rangle, \quad |\alpha|^2 + |\beta|^2 = 1 \]
A quantum system having a two-dimensional Hilbert space
Spin, polarisation, etc.

Qudits

\[ |\psi\rangle = \sum_{n=0}^{D-1} \alpha_n |n\rangle, \quad \sum_{n=0}^{D-1} |\alpha_n|^2 = 1 \]
A qudit is a generalization of the qubit to a D-dimensional Hilbert space

Later - Continuous variable systems
\[ D \to \infty \quad \text{and} \quad D_{i+1} - D_i \to 0 \]
The Qubit
(Bloch Sphere)

Bloch Sphere representation of a qubit.

\[ |\psi\rangle = \alpha |0\rangle + \beta |1\rangle \]

\[ \alpha = \cos \left( \frac{\theta}{2} \right) \]

\[ \beta = e^{i\phi} \sin \left( \frac{\theta}{2} \right) \]

\[ \alpha^2 + \beta^2 = 1 \]
Quantum Communications –
Concepts you need to know (as we move along)

What is a Photon?
It is likely more than you thought (prior to 1992)

The Qubit
The Itsybitsy basic resource source of all quantum communications

The No Cloning Theorem
Copying classical information is easy, but try copying quantum information.

Quantum Entanglement
Why Einstein was wrong and right at same time.

Quantum Teleportation
Communication of quantum state information (magically)

The Infinite Qudit
Just when you thought this was all too easy
Quantum Key Distribution (QKD)

The No Cloning Theorem

A arbitrary unknown qubit cannot be copied or amplified without disturbing its original state.

This is the statement of the No-Cloning Theorem

Wootters & Zurek (1982)
Quantum Key Distribution

The No Cloning Theorem

Imagine there existed a unitary transformation that could do this (unitary is applied to the product state)

\[ U \left( \left| s_1 \right| 0 \right) \rangle = \left| s_1 \right| s_1 \rangle \]
\[ U \left( \left| s_2 \right| 0 \right) \rangle = \left| s_2 \right| s_2 \rangle \]

Note shorthand notation

\[ \left| s_1 \right| \left| s_1 \right| \equiv \left| s_1 \right| \otimes \left| s_1 \right| \]

Consider applying our device also to

\[ |\Psi\rangle = \frac{1}{\sqrt{2}} \left( |s\rangle + |s_\perp\rangle \right) \]

\[ U \left( |\Psi\rangle 0 \right) \rangle = U \left\{ \frac{1}{\sqrt{2}} \left( |s\rangle + |s_\perp\rangle \right) |0\rangle \right\} \]

\[ = \frac{1}{\sqrt{2}} \left[ \left( |s\rangle |s\rangle \right) + \left( |s_\perp\rangle |s_\perp\rangle \right) \right] \neq |\Psi\rangle |\Psi\rangle \]

But we wanted

\[ |\Psi\rangle |\Psi\rangle = \frac{1}{2} \left( |s\rangle + |s_\perp\rangle \right) \left( |s\rangle + |s_\perp\rangle \right) \]

so \(|s\rangle, |s_\perp\rangle \) and \(|\Psi\rangle\) cannot be copied simultaneously.

Quantum Mechanics is Linear
Quantum Key Distribution

The No Cloning Theorem

Alternate Proof: Let's take the inner product of both first equation using 2\textsuperscript{nd} equation (e.g. LHS of both equations form an inner product)

\[
(U^\dagger \langle s_2 | 0 \rangle)(U | s_1 \rangle | 0 \rangle) = (\langle s_2 | s_2 \rangle)(| s_1 \rangle | s_1 \rangle)
\]

\[
U^\dagger U \langle s_2 | s_1 \rangle \langle 0 | 0 \rangle = \langle s_2 | s_1 \rangle \langle s_2 | s_1 \rangle
\]

2) Tech. Background – QKD (Malaney, Globecom 2016)
Quantum Key Distribution

The No Cloning Theorem

But

\[ U^\dagger U = I \quad \langle 0 | 0 \rangle = 1 \]

Thus

\[ \langle s_2 | s_1 \rangle = \langle s_2 | s_1 \rangle \langle s_2 | s_1 \rangle \]

Thus

\[ \langle s_2 | s_1 \rangle = \langle s_2 | s_1 \rangle^2 \]

Thus, only possible if

\[ \langle s_2 | s_1 \rangle = 0 \quad \langle s_2 | s_1 \rangle = 1 \]
Quantum Key Distribution

The No Cloning Theorem

\[ \langle s_2 \mid s_1 \rangle = \langle s_2 \mid s_1 \rangle^2 \]

This means that you can copy a state if you know already that it is identical to all the other states available to you.

This means the distinct states available to you can be copied only if they are mutually orthogonal.

Q) What is the difference between above and classical information?
A) None.
Quantum Key Distribution
The BB84 Protocol

• The BB84 protocol (Bennett and Brassard 1984) was the first quantum cryptography protocol introduced – let us discuss this now.

• As you will see it is a good use of our knowledge of polarization states, and implicitly uses the No Cloning Theorem to avoid attacks.
Quantum Key Distribution
The BB84 Protocol

- Let us use **two** basis as a means of doing a measurement. Use

\[
M = \left( |m^{(1)}_\theta\rangle, |m^{(2)}_\theta\rangle \right) = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}, \begin{pmatrix} -\sin \theta \\ \cos \theta \end{pmatrix}
\]

1) The rectilinear basis (our horizontal-vertical basis)
Refer to this basis as “+”

\[
\theta = 0^\circ
\]

\[
M = \left( |m^{(1)}_\theta\rangle, |m^{(2)}_\theta\rangle \right) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}
\]
Quantum Key Distribution
The BB84 Protocol

Let us use two basis as a means of doing a measurement. Use again

\[
M = \left( |m_\theta^{(1)}\rangle, |m_\theta^{(2)}\rangle \right) = \begin{pmatrix} \cos \theta \\ -\sin \theta \\ \sin \theta \\ \cos \theta \end{pmatrix}
\]

2) The diagonal basis (rotate horizontal-vertical basis) \( \theta = 45^\circ \)
Refer to this basis as “x”.

\[
M = \left( |m_\theta^{(1)}\rangle, |m_\theta^{(2)}\rangle \right) = \begin{pmatrix} 1 \\ \sqrt{2} \\ 1 \\ \sqrt{2} \\ -1 \\ \sqrt{2} \\ -1 \\ \sqrt{2} \end{pmatrix}
\]
Quantum Key Distribution
The BB84 Protocol

We can prepare states referenced to a state in a particular basis e.g.

$$|0\rangle_+$$

means the zero state referenced to the “+” basis

We have four possible states referenced this way

$$|0\rangle_+, |0\rangle_x |1\rangle_+, |1\rangle_x$$
Quantum Key Distribution

The BB84 Protocol

This table summarizes the BB4 protocol

<table>
<thead>
<tr>
<th>Alice's string</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice's basis</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>x</td>
<td>x</td>
<td>+</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Bob's basis</td>
<td>+</td>
<td>x</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>x</td>
<td>+</td>
<td>x</td>
<td>x</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Bob's string</td>
<td>1</td>
<td>R</td>
<td>0</td>
<td>R</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>R</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Same basis?</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Bits to keep</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Test</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Key</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table I. The BB84 Key Distribution Protocol. Here, “Y” and “N” stand for “yes” and “no,” respectively, and “R” means that Bob obtains a random result.

Image: Bruss et al 2007
Quantum Key Distribution

The BB84 Protocol

Step 1: Alice prepares a series of qubits in each of the four possible states

\[ |0\rangle_x, |0\rangle_x, |1\rangle_x, |1\rangle_x \]

Table I. The BB84 Key Distribution Protocol. Here, “Y” and “N” stand for “yes” and “no,” respectively, and “R” means that Bob obtains a random result.
Quantum Key Distribution

The BB84 Protocol

Step 2: Bob measures the qubit in a randomly chosen “x” or “+” basis

In noiseless channel – If Bob chooses same basis as Alice the result is same

If Bob chooses different basis from Alice the result is random

<table>
<thead>
<tr>
<th>Alice's string</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice's basis</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>x</td>
<td>x</td>
<td>+</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Bob's basis</td>
<td>+</td>
<td>x</td>
<td>+</td>
<td>+</td>
<td>x</td>
<td>+</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Bob's string</td>
<td>1</td>
<td>R</td>
<td>0</td>
<td>R</td>
<td>0</td>
<td>1</td>
<td>R</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Same basis?</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Bits to keep</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Test</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Key</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Step 3: Using a classical channel Bob tells Alice which basis he used for each measurement – Alice tells Bob which measurement to keep (i.e. what measurements correspond to same basis she used). Using this they form the sifted key (the “bits to keep” in table below)

<table>
<thead>
<tr>
<th>Alice's string</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice's basis</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>×</td>
<td>×</td>
<td>+</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Bob's basis</td>
<td>+</td>
<td>×</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>×</td>
<td>+</td>
<td>×</td>
<td>×</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Bob's string</td>
<td>1</td>
<td>R</td>
<td>0</td>
<td>R</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>R</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Same basis?</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Bits to keep</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Test</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Quantum Key Distribution
The BB84 Protocol

Step 4: Alice tells Bob via classical channel a small subset of the bits which she uses as a test. If Bob agrees that he measured the same 0s and 1s in his measurements (some small error tolerance is allowed in practice) they assume all is well and use remaining unannounced bits as the initial key.

<table>
<thead>
<tr>
<th>Alice’s string</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bob’s basis</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>x</td>
<td>x</td>
<td>+</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Same basis?</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Bits to keep</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1. The BB84 Key Distribution Protocol. Here, “Y” and “N” stand for “yes” and “no,” respectively, and ‘R’ means that Bob obtains a random result.
Quantum Key Distribution

The BB84 Protocol (summary)

Step 1: Alice creates string 0's and 1's

Step 2: Alice polarizes photons with different basis and mapping

0 -> first element of basis
1 -> second element of basis

Step 3: Bob chooses a random basis from x and + and measures and stores result

Step 4: Alice calls Bob on classical channel and discusses basis each used to find where basis agreed (the blue boxes)

Step 5: Alice and Bob use this initial key to generate a new key using error correction

Step 6: Based on number of errors they estimate how much information an eavesdropper 'Eve' may have obtained – they then create a shorter string of which they are sure Eve has no knowledge of (privacy amplification)
Quantum Key Distribution
The BB84 Protocol

But Eve can guess-estimate?

“Formal” Proof of Security for QKD took 12 years!

Step 1: Alice creates string 0’s and 1’s

Step 2: Alice polarizes photons with different basis and mapping
0 -> first element of basis
1 -> second element of basis

Step 3: Bob chooses a random basis from x and + and measures and stores result

Step 4: Alice calls Bob on classical channel and discusses basis each used to find where basis agree (the blue boxes)

1 0 1 0 0 1 0 0 becomes the secret key.
Quantum Communications
Concepts you need to know (as we move along)

What is a Photon?
It is likely more than you thought (prior to 1992)

The Qubit
The Itsybitsy basic resource source of all quantum communications

Quantum Entanglement
Why Einstein was wrong and right at same time.

The No Cloning Theorem
Copying classical information is easy, but try copying quantum information.

Quantum Teleportation
Communication of quantum state information (magically)

The Infinite Qudit
Just when you thought this was all too easy
Quantum Communications

Quantum Entanglement

“Bizarre science: Particles TALK to each other over huge distances breaking laws of physics”
UK Daily Express Oct. 2015

Quantum entanglement allows you to send information faster than light, which upset Einstein. But Einstein has the last laugh. The information you send on quantum entanglement is random, useless information. So Einsein still has the last laugh.

--- Michio Kaku ---

Azquotes.com
Quantum Communications

Quantum Entanglement

The Bell States

\begin{align*}
|0\rangle \otimes |0\rangle &= \frac{1}{\sqrt{2}} (|\Phi^+\rangle + |\Phi^-\rangle), \\
|0\rangle \otimes |1\rangle &= \frac{1}{\sqrt{2}} (|\Psi^+\rangle + |\Psi^-\rangle), \\
|1\rangle \otimes |0\rangle &= \frac{1}{\sqrt{2}} (|\Psi^+\rangle - |\Psi^-\rangle), \\
\text{and} \\
|1\rangle \otimes |1\rangle &= \frac{1}{\sqrt{2}} (|\Phi^+\rangle - |\Phi^-\rangle).
\end{align*}
Quantum Communications

Creating Quantum Entanglement

**UNPOLARIZED LIGHT** consists of photons polarized in all directions \( a \). In polarized light the photons’ electric-field oscillations (arrows) are all aligned. A calcite crystal \( b \) splits a light beam, sending photons that are polarized parallel with its axis into one beam and those that are perpendicular into the other. Intermediate angles go into a quantum superposition of both beams. Each such photon can be detected in one beam or the other, with probability depending on the angle. Because probabilities are involved, we cannot measure the polarization of a single photon with certainty.

Image. Zeilinger, 2000
Quantum Communications

Creating Quantum Entanglement

Entanglement leads to many strange outcomes!

Quantum blindsight. “You appear to be blind in your left eye and blind in your right eye. Why you can see with both eyes is beyond me...”

Smith & Yard 2008
Quantum Communications –
Concepts you need to know (as we move along)

What is a Photon?
*It is likely more than you thought (prior to 1992)*

The Qubit
*The Itsybitsy basic resource source of all quantum communications*

The No Cloning Theorem
*Copying classical information is easy, but try copying quantum information.*

Quantum Entanglement
*Why Einstein was wrong and right at same time.*

Quantum Teleportation
*Communication of quantum state information (magically)*

The Infinite Qudit
*Just when you thought this was all too easy*
QUANTUM TELEPORTATION

or: WHAT HAPPENS TO "A" WILL AFFECT "B"

ALICE HAS A YELLOW PHOTON.

CHARLIE HAS A PAIR OF BLUE PHOTONS...

...THAT ARE ENTANGLED!

CHARLIE SENDS ONE TO ALICE...

AND ONE TO BOB, WHO STORES IT IN HIS CRYSTAL "MEMORY BANK."

ALICE AND BOB'S RELATIONSHIP IS CORDIAL, BUT SOMewhat DISTANT.

AS THE BLUE PHOTON ALICE RECEIVED COLLIDES WITH HER YELLOW PHOTON, SHE MEASURES THE EVENT AND LEARNS THAT THE STATE OF HER PHOTON HAS BEEN TELEPORTED TO BOB'S.

ALICE'S MEASURING OF THE EVENT AFFECTS BOB'S FAR-AWAY PHOTON, CHANGING ITS STATE!

HOWEVER, BOB CAN'T DETERMINE THAT HIS PHOTON HAS CHANGED.

...UNTIL ALICE SENDS HIM TWO BITS OF INFORMATION OVER AN OPTICAL FIBER.

AND BOB LEARNS HIS PHOTON HAS CHANGED FROM BLUE TO YELLOW, TOO!

THE END
Quantum Communications – Quantum Teleportation (Star Trek Version)

Image. Zeilinger, 2000
Quantum Communications –

Quantum Teleportation – has been done for real – many times!

Image: Zeilinger, 2006

University of Calgary

La Palma

143 km

Tenerife
Quantum Teleportation
(technically speaking)

Suppose Alice has a qubit that she wants to teleport to Bob. This qubit can be written generally as:
\[ |\psi\rangle = \alpha |0\rangle + \beta |1\rangle. \]

We want to teleport this state \( C \)

Our quantum teleportation scheme requires Alice and Bob to share a maximally entangled state beforehand, for instance one of the four Bell states:

\[
\begin{align*}
|\Phi^+\rangle &= \frac{1}{\sqrt{2}} \left( |0\rangle_A \otimes |0\rangle_B + |1\rangle_A \otimes |1\rangle_B \right) \\
|\Phi^-\rangle &= \frac{1}{\sqrt{2}} \left( |0\rangle_A \otimes |0\rangle_B - |1\rangle_A \otimes |1\rangle_B \right) \\
|\Psi^+\rangle &= \frac{1}{\sqrt{2}} \left( |0\rangle_A \otimes |1\rangle_B + |1\rangle_A \otimes |0\rangle_B \right) \\
|\Psi^-\rangle &= \frac{1}{\sqrt{2}} \left( |0\rangle_A \otimes |1\rangle_B - |1\rangle_A \otimes |0\rangle_B \right)
\end{align*}
\]

2 particle entangled state – but 1 particle (A) held by Alice and another (B) held by Bob
Quantum Teleportation

So, Alice has two particles (C, the one she wants to teleport, and A, one of the entangled pair), and Bob has one particle, B. In the total system, the state of these three particles is given by

$$|\psi\rangle \otimes |\Phi^+\rangle = \left(\alpha |0\rangle + \beta |1\rangle\right) \frac{1}{\sqrt{2}} \left(|0\rangle \otimes |0\rangle + |1\rangle \otimes |1\rangle\right)$$

Step 2: Alice makes measurement in Bell basis of her two qubits (A and C)

- $$|0\rangle \otimes |0\rangle = \frac{1}{\sqrt{2}} \left(|\Phi^+\rangle + |\Phi^-\rangle\right)$$
- $$|0\rangle \otimes |1\rangle = \frac{1}{\sqrt{2}} \left(|\Psi^+\rangle - |\Psi^-\rangle\right)$$
- $$|1\rangle \otimes |0\rangle = \frac{1}{\sqrt{2}} \left(|\Psi^+\rangle + |\Psi^-\rangle\right)$$
- $$|1\rangle \otimes |1\rangle = \frac{1}{\sqrt{2}} \left(|\Phi^+\rangle - |\Phi^-\rangle\right)$$

Before looking at Alice’s measurement result
- note the following identities which simplify our algebra

Tensor product used again — to get 3 particle state
Quantum Teleportation

The three particle state shown above thus becomes the following four-term superposition:

\[
\frac{1}{2}\left(\left|\Phi^+\right\rangle \otimes (\alpha |0\rangle + \beta |1\rangle) + \left|\Phi^-\right\rangle \otimes (\alpha |0\rangle - \beta |1\rangle) + \left|\Psi^+\right\rangle \otimes (\beta |0\rangle + \alpha |1\rangle) + \left|\Psi^-\right\rangle \otimes (\beta |0\rangle - \alpha |1\rangle)\right)
\]

No operation yet performed – all 3 particles still in same state

\[
\left|\Phi^+\right\rangle \otimes (\alpha |0\rangle + \beta |1\rangle)
\]
\[
\left|\Phi^-\right\rangle \otimes (\alpha |0\rangle - \beta |1\rangle)
\]
\[
\left|\Psi^+\right\rangle \otimes (\beta |0\rangle + \alpha |1\rangle)
\]
\[
\left|\Psi^-\right\rangle \otimes (\beta |0\rangle - \alpha |1\rangle)
\]

Step 2: Alice makes a measurement on Her two qubits (A and C) – which forces the complete system into one of these states
Quantum Teleportation

Three Consequences of Alice’s measurement

1. Alice and Bobs original entanglement no longer exists

2. Alice’ two qubits are now entangled in one of the Bell states

3. Bob’s qubit B is now in ‘form’ of original C qubit

“teleportation of C almost complete”

\[
\begin{align*}
|\Phi^+\rangle & \otimes (\alpha |0\rangle + \beta |1\rangle) \\
|\Phi^-\rangle & \otimes (\alpha |0\rangle - \beta |1\rangle) \\
|\Psi^+\rangle & \otimes (\beta |0\rangle + \alpha |1\rangle) \\
|\Psi^-\rangle & \otimes (\beta |0\rangle - \alpha |1\rangle)
\end{align*}
\]
Quantum Teleportation

**Step 3:** Alice informs Bob **Classically** (send 2 bits) what one of the 4 possible state her two particles are in

**Step 4:** Bob uses this information to transform via a unitarily (Postulate 3) his qubit into same form as original C particle

Eg. if first state needed use the Identity matrix!
or
e.g if 2nd state chosen use Pauli matrix to transform into required state C

\[
\sigma_3 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}
\]

Teleportation of C Completed!
Quantum Teleportation
(Experimentally Speaking)

HOW TO TELEPORT QUANTUM INFORMATION OVER 100 KM OF FIBER

CREATING THE QUANTUM STATES

The NIST experiment adds quantum information to a photon in its position in a very small slice of time.

The photon can take a short path, or a long path, with a 50/50 chance...

If the photon is in a superposition of two states, they can be "in phase"—the peaks of their waves lining up with each other...

OR

"out of phase", with their waves cancelling each other out.

So it can be either "early" or "late" in the time bin.

If we don't know which, then it's both—a quantum "superposition" in time.
Quantum Teleportation
(Experimentally Speaking)

The Experiment

1. Generate a photon in superposition of possible states.

2. A special crystal splits it into two identical photons, a helper photon and an output photon. They are "entangled"—the state of one is duplicated in the state of the other.

3. Generate an input photon in the state to be teleported. We pick its state: early, late or a superposition of both.

4. The input photon and the helper photon meet at a beam-splitter. Each has a 50/50 chance of going straight through or reflecting off at an angle.

5. A detector clicks when a photon arrives. When one detector clicks early and the other clicks late, this means the helper and input photons are in opposite states:
   - early vs. late
   - or
   - in-phase vs. out-of-phase superposition

   Because of the photons' random paths, this happens at best only 25% of the time. The other 75% are discarded.

6. Because the output photon is entangled with the helper photon, we know it is in the same state—which is also (from Step 5) the opposite state of the input photon. In effect we've "teleported" the evil twin of the input photon. Detectors 3 and 4 measure the state of output photons to confirm.

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>early</td>
<td>late</td>
</tr>
<tr>
<td>in-phase superposition</td>
<td>out-of-phase superposition</td>
</tr>
</tbody>
</table>
Quantum Error Correction

Already a well-developed field even though study just commenced mid-90’s

We focus on ideas of protecting the quantum state using the machinery of projection operators

Illustration: European Space Agency (ESA)
Where do Quantum Errors Arise?

Our unitary transforms (or quantum gates) are not just matrices on a board – they need to be physically implemented (using laser pulses, field rotations etc) – if not perfectly implemented an error in the quantum state can occur.

Traversal through a medium e.g. Fiber or Air causes a quantum error.

\[
\begin{align*}
|\Phi^+\rangle &= 00 & I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \\
|\Phi^-\rangle &= 01 & Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \\
|\Psi^+\rangle &= 10 & X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \\
|\Psi^-\rangle &= 11 & XZ = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}
\end{align*}
\]
(Quantum) Error Correction is easy – right (wrong)?

Basic Problem.

We are given a state $|s\rangle$ which we want to protect – i.e. identify any error and correct for it.

All we need to do is a repetition code such as

$$|s\rangle \rightarrow |s\rangle |s\rangle |s\rangle$$

Too easy? Yes - for classical error correction

But in quantum world - No. Our old friend the “No cloning theorem” says “no way”.

This is what makes quantum communications a lot more interesting than classical communications!
Basic Problem.

We are given a state $|s\rangle$ which we want to protect – i.e. identify any error and correct for it.

We can add other qubits to the state $|s\rangle$, such as two qubits in state $|0\rangle$.

We can find a unitary transform that operates on this three particle composite system with mapping:

$$|s\rangle = a |0\rangle + b |1\rangle$$

$$|s, 00\rangle = a |000\rangle + b |100\rangle$$

$$|000\rangle \rightarrow |000\rangle$$

$$|100\rangle \rightarrow |111\rangle$$
Quantum Error Correction

Our initial state

\[ |s\rangle = a |0\rangle + b |1\rangle \]

Is now **encoded** as

\[ |s\rangle_C = a |000\rangle + b |111\rangle \]

We have encoded a single qubit into three qubits

Seem like a good idea?
Quantum Error Correction

X Correcting Codes

Let us assume

1) noise affects at most one of our three qubits

2) Error flips a $|0\rangle$ to a $|1\rangle$ and vice versa

3) That is we assume that possibly the noise changes one of the qubits via the action of the $X$ matrix

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

[Yes, there are other errors!]
Let’s first do a special form of incomplete measurement. Which will

1) Have four outcomes
2) Which is not associated with a specific vector in the state space
3) But rather with a 2 dimensional subspace of the state space
4) And where the subspaces are mutually orthogonal

NB. state space for 3 qubits has four mutually orthogonal 2D subspaces
Quantum Error Correction

X Correcting Codes

Consider the four projection operators

\[ P_1 = |100\rangle\langle 100| + |011\rangle\langle 011| \]
\[ P_2 = |010\rangle\langle 010| + |101\rangle\langle 101| \]
\[ P_3 = |001\rangle\langle 001| + |110\rangle\langle 110| \]
\[ P_4 = |000\rangle\langle 000| + |111\rangle\langle 111| \]

If measurement leads to subspace \( P_4 \) – what/where is the error?

If measurement leads to subspace \( P_1 \) – what/where is the error?

Acting on

\[ |s\rangle_C = a|000\rangle + b|111\rangle \]
How do we correct an X error at a qubit?

\[
X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}
\]

Tells us – Apply the inverse of \( X \) to the qubit identified.

What is inverse of \( X \)? (Hint – it looks awfully like \( X \))

We have completed your first quantum error correction.
Real quantum error correction is just as simple as this (well……, kind-of, sort-of)

We have defeated Entanglement (with environment) using Entanglement (with an ancilla)
Quantum Error Correction

X Correcting Codes

Other Correcting Codes using same technique?

Assume again noise affects only one qubit but affect is

\[ U = \begin{pmatrix} \cos \theta & i \sin \theta \\ i \sin \theta & \cos \theta \end{pmatrix} \]

For focus assume second qubit is only affected – then

\[ |s\rangle_C = a |000\rangle + b |111\rangle \]

becomes

\[ |s\rangle_C^2 = U_2 |s\rangle_C = a \left( \cos \theta |000\rangle + i \sin \theta |010\rangle \right) + b \left( i \sin \theta |101\rangle + \cos \theta |111\rangle \right) \]

Note subscript 2 means apply only to 2nd qubit
Aside. Checking previous result

\[ |s\rangle_C = a |000\rangle + b |111\rangle \]

\[
\begin{pmatrix}
\cos \theta & i \sin \theta \\
i \sin \theta & \cos \theta 
\end{pmatrix}
\begin{pmatrix}
|0\rangle \\
|1\rangle 
\end{pmatrix} =
\begin{pmatrix}
\cos \theta |0\rangle + i \sin \theta |1\rangle \\
i \sin \theta |0\rangle + \cos \theta |1\rangle 
\end{pmatrix}
\]

\[ |s\rangle_C^\# = U_2 |s\rangle_C = a \left( \cos \theta |000\rangle + i \sin \theta |010\rangle \right) + b \left( i \sin \theta |101\rangle + \cos \theta |111\rangle \right) \]

E.g. the second |0\rangle in first term of |s\rangle_C transforms to

\[ \cos \theta |0\rangle + i \sin \theta |1\rangle \]
Quantum Error Correction

X Correcting Codes

Measuring the encoded state

But when we do a measure

\[ P_1 = |100\rangle\langle 100| + |011\rangle\langle 011| \]
\[ P_2 = |010\rangle\langle 010| + |101\rangle\langle 101| \]
\[ P_3 = |001\rangle\langle 001| + |110\rangle\langle 110| \]
\[ P_4 = |000\rangle\langle 000| + |111\rangle\langle 111| \]

on

\[ |s\rangle^#_C = U_2 |s\rangle_C = a \left( \cos \theta |000\rangle + i \sin \theta |010\rangle \right) + b \left( i \sin \theta |101\rangle + \cos \theta |111\rangle \right) \]

Only two outcomes have a non-zero probability!

\[ p_2 = \langle s |^#_C P_2 |s\rangle^#_C = \sin^2 \theta \]
\[ p_4 = \langle s |^#_C P_4 |s\rangle^#_C = \cos^2 \theta \]

Final States

\[ \frac{P_2 |s\rangle^#_C}{\sqrt{\langle s |^#_C P_2 |s\rangle^#_C}} = a |010\rangle + b |101\rangle \]
\[ \frac{P_4 |s\rangle^#_C}{\sqrt{\langle s |^#_C P_4 |s\rangle^#_C}} = a |000\rangle + b |111\rangle \]
Quantum Error Correction

X Correcting Codes

Error Correction?

Note that the projection onto this final state

$$\frac{P_4 |s\rangle^\#_C}{\sqrt{\langle s |_C P_4 |s\rangle^\#_C}} = a |000\rangle + b |111\rangle$$

Has automatically corrected the error (caused by $U$ on the 2nd qubit) –

Therefore no need to do anything further if we get this outcome -

The measurement has corrected the error!
Quantum Error Correction

X Correcting Codes

Error Correction?

Note that the projection onto other final state

$$P_2 |s\rangle_C^\# \over \sqrt{\langle s |_C P_2 |s\rangle_C^\#} = a |010\rangle + b |101\rangle$$

Has *not* automatically corrected the error (caused by $U$ on the 2\textsuperscript{nd} qubit) –

Therefore as this projection outcome this is mapped to a flip error in the second qubit – we need to correct this by applying the $X$ operator

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
Quantum Error Correction

Z Correcting Codes

Are we there yet?

Almost:
As real quantum engineers – we have a feeling we need to do just one more type of error correction.

Alright then - how about a Z correcting error code?

A combination of $X$ and $Z$ correcting error codes leads to a very effective strategy!
Quantum Error Correction

Z Correcting Codes

Consider the operator

\[
Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}
\]

Acting on any of our three qubits from the state

\[
|s\rangle_C = a |000\rangle + b |111\rangle
\]

Leads to

\[
|s\rangle_C^\# = a |000\rangle - b |111\rangle
\]
Quantum Error Correction

Z Correcting Codes

We need a scheme that corrects Z errors but does not correct X errors.

To do this let us define

\[ Z |+\rangle = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) \]

\[ = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \]

\[ = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ -1 \end{pmatrix} = \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle) = |\rangle \]

We see

\[ Z |+\rangle = |\rangle \]

\[ Z |\rangle = |+\rangle \]
Quantum Error Correction

Z Correcting Codes

We can protect any single qubit Z-type error by encoding \(|+\rangle\) and \(|-\rangle\) states as

\[
|+\rangle_c = |++\rangle_c = \frac{1}{2\sqrt{2}}((|0\rangle+|1\rangle) \otimes (|0\rangle+|1\rangle) \otimes (|0\rangle+|1\rangle))
\]

\[
|-\rangle_c = |--\rangle_c = \frac{1}{2\sqrt{2}}((|0\rangle-|1\rangle) \otimes (|0\rangle-|1\rangle) \otimes (|0\rangle-|1\rangle))
\]

Again we have appended two additional qubits, just as before.
Quantum Error Correction

Z Correcting Codes

We can now correct any Z-type error by projecting into subspaces similar to the X case where we used:

\[ P_1 = |100\rangle\langle 100| + |011\rangle\langle 011| \]
\[ P_2 = |010\rangle\langle 010| + |101\rangle\langle 101| \]
\[ P_3 = |001\rangle\langle 001| + |110\rangle\langle 110| \]
\[ P_4 = |000\rangle\langle 000| + |111\rangle\langle 111| \]

What are the new projection operators will be for Z errors?

(hint)

\[ X|1\rangle = |0\rangle \quad Z|+\rangle = |-\rangle \]
\[ X|0\rangle = |1\rangle \quad Z|-\rangle = |+\rangle \]
Quantum Error Correction

Z Correcting Codes

Yep, you got it

\[ Q_1 = |-++\rangle\langle-++| + |+--\rangle\langle+--| \]
\[ Q_2 = |+--\rangle\langle++-| + |-+-\rangle\langle-+-| \]
\[ Q_3 = |++-\rangle\langle+++| + |-+-\rangle\langle-+-| \]
\[ Q_4 = |+++\rangle\langle+++| + |-+-\rangle\langle-+-| \]

Just as before an error correction (Z-matrix) multiplies a qubit depending where the subspace measurement found (which Q found)

One can show that not only does this scheme protect against error of form

\[ Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \]

...but also of form

\[ V = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\varphi} \end{pmatrix} \]

PS. This is the real addition symbol in the middle – not a state!
Quantum Error Correction

The Shor Code

The Shor Code (1995) combines $X$ and $Z$ error correction techniques that protects against all single bit errors. We only briefly outline main points of this code.

It appends **eight** additional qubits to a standard state

$$\left| s \right\rangle = a \left| 0 \right\rangle + b \left| 1 \right\rangle$$

A composite nine particle system results in a state vectors of length $2^9$
Quantum Error Correction

The Shor Code

In the Shor Code single qubit states end up being encoded as

\[ |0\rangle_c = \frac{1}{2\sqrt{2}} ((|000\rangle + |111\rangle) \otimes (|000\rangle + |111\rangle) \otimes (|000\rangle + |111\rangle)) \]

\[ |1\rangle_c = \frac{1}{2\sqrt{2}} ((|000\rangle - |111\rangle) \otimes (|000\rangle - |111\rangle) \otimes (|000\rangle - |111\rangle)) \]

By looking back you can see that the form of the Z-error correcting scheme has been used here except that the X-error mapping below has been used

\[ |0\rangle \rightarrow |000\rangle \]

\[ |1\rangle \rightarrow |111\rangle \]
Consider the 27 possible single qubit errors

\[ X_1 \ldots X_9 \]
\[ Z_1 \ldots Z_9 \]
\[ X_1Z_1 \ldots X_9Z_9 \]

It turns out that some of the \( Z \) error cannot be distinguished (only 3 independent but have same error correction) –

We end up having have 22 (9X’s, 9XZ’s, 3Z’s, one I) unique error corrections (including I matrix = no error)

Also every single qubit error can be written as some linear superposition of the 22 matrices

(most important is the need for an extra subspace than contains \( 2^9 - 44 = 468 \) dimensions associated with multiple qubit error errors)

(Shor 1995)
Quantum Communications –
Concepts you need to know (as we move along)

What is a Photon?
It is likely more than you thought (prior to 1992)

The Qubit
The Itsybitsy basic resource source of all quantum communications

The No Cloning Theorem
Copying classical information is easy, but try copying quantum information.

Quantum Entanglement
Why Einstein was wrong and right at same time.

Quantum Teleportation
Communication of quantum state information (magically)

The Infinite Qudit
Just when you thought this was all too easy…….
Discrete vs. Continuous Quantum Systems

- **Discrete**
  - The standard unit of information is the qubit
  - Qubits are typically associated with single photon states
  - Information coding by using properties, e.g. the polarization of the photon
  - **Drawback (?)** single photon production (on demand) and detection is somewhat difficult.

- **Continuous**
  - Laser beams easy to produce
  - Amplitude and phase properties of the light easy to measure
  - Measurements: yields information about the field quadratures of a quantum state
  - All done using standard “off-the-shelf” optical equipment
  - **Drawback (?)** Theoretical issues not as well developed e.g. formal proofs of security for wide range of operating conditions.
CV Systems

- Continuous-variable (CV) quantum systems
- Quantized electromagnetic field
- Quantum harmonic oscillator
- Heisenberg uncertainty principle
- Fock states
- Coherent states
- Squeezed states
- Continuous variable quantum key distribution (CV QKD)
Alternate Quantum Systems

- Discrete variable systems
  - A quantum system having a finite-dimensional Hilbert space

- Qubits
  - A quantum system having a two-dimensional Hilbert space
  - Spin, polarisation, etc.

- Qudits
  - A qudit is a generalization of the qubit to a D-dimensional Hilbert space

- Now, assume $D \to \infty$ → Continuous variable systems
Continuous Variable (CV) Quantum System

A quantum system is called a CV system when it has an infinite-dimensional Hilbert space described by observables with continuous eigenspectra.

- For instance amplitude & phase quadratures of light (polar)
- Or its quadratures $\hat{X}$ & $\hat{P}$ (Cartesian)
- $\hat{X}$ ~ electric field, $\hat{P}$ ~ magnetic field
- Or position $\hat{X}$ and momentum $\hat{P}$ of a free particle
Quantized Electromagnetic Field

The classical \( \mathbf{E} \) field is the expectation value of the quantum operator \( \hat{\mathbf{E}} \)

\[
\text{E}(r,t) = \sum_{k,s} E_k e_k^{(s)} \left[ \alpha_{k,s} e^{i(kr - \omega_k t)} + \alpha_{k,s}^* e^{-i(kr - \omega_k t)} \right]
\]

\[
E_k = \left( \frac{\hbar \omega_k}{4\pi \varepsilon_0} \right)^{1/2}
\]

Promote Fourier components \( \alpha_{k,s} \) to operators \( \hat{a}_{k,s} \)

\[
\left[ \hat{a}_{k,s}, \hat{a}^\dagger_{k',s'} \right] = \delta_{kk'} \delta_{ss'}
\]

\[
\left[ \hat{a}_{k,s}, \hat{a}_{k',s'} \right] = 0
\]

\[
\left[ \hat{a}^\dagger_{k,s}, \hat{a}^\dagger_{k',s'} \right] = 0
\]

\[
\hat{\mathbf{E}}(r,t) = E_0 e \left[ \hat{X} \cos(kr - \omega t) + \hat{P} \sin(kr - \omega t) \right]
\]

\[
\hat{X} = \frac{1}{\sqrt{2}} (\hat{a} + \hat{a}^\dagger)
\]

\[
\hat{P} = \frac{1}{\sqrt{2}} (\hat{a} - \hat{a}^\dagger)
\]
The prototype of a CV system is represented by N modes, corresponding to N quantized modes of the electromagnetic field.

A mode refers to a single degree of freedom of the electromagnetic field, e.g. polarization, frequency.

A system of N modes can be modeled as a collection of N quantum harmonic oscillators with different frequencies.
A single-mode field is equivalent to a harmonic oscillator; the electric and magnetic fields play the roles of position and momentum.

The quadrature field operators $\hat{X}$ and $\hat{P}$ act similar to the position and momentum operators of the quantum harmonic oscillator.
Quantum harmonic oscillator of unit mass, is described by the Hamiltonian (energy)

\[ \hat{H} = \frac{\hbar}{2} \left( \omega^2 \hat{X}^2 + \hat{P}^2 \right) \]

Canonical commutation relation (\( \hbar = 1 \))

\[ [\hat{X}, \hat{P}] = i \]

The operators \( \hat{X} \) and \( \hat{P} \) are Hermitian and therefore correspond to observable quantities.
Quantum Harmonic Oscillator

It is convenient, to introduce the non-Hermitian (and therefore non-observable) annihilation (\( \hat{a} \)) and creation (\( \hat{a}^\dagger \)) operators (or Ladder operators)

- Annihilation (lowering ) operator

\[
\hat{a} = \frac{1}{\sqrt{2}} \left( \hat{X} + i\hat{P} \right)
\]

- Creation (raising) operator

\[
\hat{a}^\dagger = \frac{1}{\sqrt{2}} \left( \hat{X} - i\hat{P} \right)
\]

\[
\left[ \hat{a}, \hat{a}^\dagger \right] = 1
\]

\[
H = \hbar \omega \left( \hat{a}^\dagger \hat{a} + \frac{1}{2} \right)
\]
Fock States

Number operator
\[ \hat{n} = \hat{a}^{\dagger} \hat{a} \]

Fock states \( \{ | n \rangle \}_{n=0}^{\infty} \): eigenstates of the number operator
\[ \hat{n} | n \rangle = n | n \rangle \]

or Fock states \( \{ | n \rangle \}_{n=0}^{\infty} \): energy eigenstate of the single mode field with the energy eigenvalue
\[ \hat{H} | n \rangle = E_n | n \rangle, \quad E_n = \hbar \omega \left( n + \frac{1}{2} \right) \]

Fock states are orthonormal, and form a basis for single-mode Hilbert space
\[ \langle n | m \rangle = \delta_{nm} \]
Fock States

When the harmonic oscillator describes an electromagnetic (light) field, $|n\rangle$ represents a state of the field with exactly $n$ photons.

The creation and annihilation operators create and destroy photons, respectively

$$\hat{a}^\dagger |n\rangle = \sqrt{n + 1} |n+1\rangle$$

$$\hat{a} |n\rangle = \sqrt{n} |n-1\rangle$$

Vacuum state $|0\rangle$ - State containing no photons
(State of minimal energy)

$$|n\rangle = \frac{1}{\sqrt{n!}} (\hat{a}^\dagger)^n |0\rangle$$
In contrast to the classical case, a state of the quantum harmonic oscillator can never be a simple point in phase space. It always acquires some spread, to fulfil the uncertainty principle.

\[ \sigma_X \sigma_P \geq \frac{\hbar}{2} \]

\[ \sigma_X = \sqrt{\langle \hat{X}^2 \rangle - \langle \hat{X} \rangle^2}, \quad \sigma_P = \sqrt{\langle \hat{P}^2 \rangle - \langle \hat{P} \rangle^2} \]

\[ \langle \hat{X} \rangle = \langle \psi | \hat{X} | \psi \rangle, \quad \langle \hat{P} \rangle = \langle \psi | \hat{P} | \psi \rangle \]

Heisenberg Uncertainty Principle
Heisenberg Uncertainty Principle

If we set $h = 1$

$$\sigma_X \sigma_P \geq \frac{1}{2}$$

For vacuum state $|0\rangle$

$$\sigma_X^2 = \frac{1}{2} = \sigma_P^2$$

$|0\rangle$: State of minimal uncertainty with equal uncertainties in position and momentum
Coherent States

Coherent state $|\alpha\rangle$ : labelled by a complex number $\alpha$ and are the right eigenstates of the annihilation operator:

$$\hat{a}|\alpha\rangle = \alpha |\alpha\rangle$$

and can be expanded in the basis of Fock states as

$$|\alpha\rangle = \exp\left(-\frac{1}{2}|\alpha|^2\right)\sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle$$

Unlike the Fock states, the coherent states are not orthogonal
Coherent States

Coherent state $|\alpha\rangle$: can be described as vacuum states displaced from the origin of phase space

$$|\alpha\rangle = \hat{D}(\alpha)|0\rangle$$

$$\hat{D}(\alpha) = \exp(-\alpha^* \hat{a} + \alpha \hat{a}^+)$$

$|\alpha\rangle$: State of minimal uncertainty with equal uncertainties in position and momentum

$$\sigma^2_X = \frac{1}{2} = \sigma^2_P$$
Coherent States

Expectation value of the number operator\[ \hat{n} = \hat{a}^\dagger \hat{a} \]

\[ \langle \alpha | \hat{n} | \alpha \rangle = |\alpha|^2 \]

For an electromagnetic field,\( |\alpha|^2 \) is the mean photon number in the coherent state. When the mean photon number becomes very large, the fixed uncertainties\[ \sigma_X^2 = 1/2 = \sigma_P^2 \]

become negligible compared to the displacement from the origin of phase space, and the coherent state behaves like a classical phase space point.
Squeezed States

squeezed vacuum state

\[ S(\xi)|0\rangle \]

\[
\hat{S}(\xi) = \exp\left(\frac{1}{2}\left(\xi^* \hat{a}^2 - \xi \hat{a}^* \hat{a}^2\right)\right)
\]

Uncertainty in one of quadratures is below that of the vacuum state

\[
\sigma_X \neq \sigma_P
\]

\[
\sigma_X^2 < \frac{1}{2}, \quad \sigma_P^2 > \frac{1}{2}, \quad \sigma_X \sigma_P \geq \frac{1}{2}
\]
Two-Mode Squeezed States

Two-mode squeezed vacuum state

\[ \hat{S}_{12} (\xi) |0\rangle |0\rangle : \]

\[ \hat{S}_{12} (\xi) = \exp(\xi^* \hat{a}_1 \hat{a}_2 - \xi \hat{a}_1^* \hat{a}_2^*) \]

\( S_{12} (r) \) does not factor as a product of two single-mode squeeze operators

Two-mode squeezed vacuum state is not a product of two single-mode squeezed vacuum states

It is an entangled state containing strong correlations between the two modes.
Two-Mode Squeezed States

squeezed state:
\[
\hat{X}_+ = \frac{\hat{X}_1 + \hat{X}_2}{\sqrt{2}}, \quad \hat{P}_- = \frac{\hat{P}_1 - \hat{P}_2}{\sqrt{2}}
\]

anti-squeezed
\[
\hat{X}_- = \frac{\hat{X}_1 - \hat{X}_2}{\sqrt{2}}, \quad \hat{P}_+ = \frac{\hat{P}_1 + \hat{P}_2}{\sqrt{2}}
\]

\[
\sigma^2_{\hat{X}_+} = \sigma^2_{\hat{P}_-} = \frac{1}{2} e^{-2\xi}, \quad \sigma^2_{\hat{X}_-} = \sigma^2_{\hat{P}_+} = \frac{1}{2} e^{2\xi}
\]

For \( \xi = 0 \), the state corresponds to two vacuum states

For \( \xi > 0 \), \( \sigma^2_{\hat{X}_+} = \sigma^2_{\hat{P}_-} < \frac{1}{2} \)

For \( \xi \to \infty \), \( \hat{P}_1 - \hat{P}_2 = p_0 \), \( \hat{X}_1 + \hat{X}_2 = x_0 \) perfect (anti) correlation
(maximal entanglement)

Achieving strong squeezing is experimentally challenging and an infinite level of squeezing is not physically possible
There are many ways two produce two-mode squeezed beams.

Now easy and standard work-horse of CV quantum communications.
Two-mode squeezed vacuum state can also be expanded in the basis of Fock states as:

\[ |\psi\rangle_{TMSV} = \sqrt{1 - \lambda^2} \sum_{n=0}^{\infty} (-\lambda)^n |n\rangle_1 |n\rangle_2 \]

\[ \lambda = \tanh(\xi) \]

This description represents the correlation between photon numbers (entanglement).

If I measure the photon numbers of beam 1, and obtain the eigenstate \( |m\rangle \), which means there are \( m \) photons, I know for sure that there are \( m \) photons in beam 2. This works even if the two beams are far apart.
CV Quantum Key Distribution (CV QKD)

Sort of similar to DV QKD!

CV Quantum Key Distribution (coherent state protocol)

The security is based on the fact that coherent states are non-orthogonal (no-cloning theorem applies)

1. Alice generates two classical random variables each drawn from a Gaussian distribution $a_x, a_p$. Alice prepares a coherent state, displaced by (these variables are encoded onto a coherent state).

2. For each incoming state, Bob draws a random bit $u_0$ and measures either the $\hat{X}$ or $\hat{P}$ quadrature based on $u_0$, obtaining $a_x$ or $a_p$.

3. Bob reveals his string of random bits $u_0$ and Alice keeping as the final string of data the values $(a_x, a_p)$ matching Bob’s quadrature.

4. Alice informs Bob of which values she keeps.

5. Error correction and

6. Privacy amplification proceeds - both similar to DV protocol.
Emerging Quantum Applications
Quantum Communications

University of Vienna

Physics World

UQCC-Tokyo

swissquantum.idquantique.com

4) Emerging Applications
(Malaney, Globecom 2016)
QKD (revisited) – Product Status

IDQuantique, Toshiba, MagiQ, SeQureNet, QinetiQ, Quintessence (CV states)

- Provide secured quantum keys for any encryption device
- Scalable: one quantum key server can distribute keys for up to 100Gbps of data
- Fully automated key exchange with continuous key renewal
- Integrated entropy source based on a Quantum Random Number Generator
- Adaptable: Works on dark fibre and WDM networks

~100km in Fibre

Quantum Key Rate 1MB/s at 50km (Fibre)

“Decoy” rate
QKD (revisited) Status - Free Space

**a.** First free-space demonstration of QKD\(^\text{19}\) realized two decades ago over a distance of 32 cm. The system uses a light-emitting diode (LED) in combination with Pockels cells to prepare and measure the different signal states.

**b.** Entanglement-based QKD set-up connecting the two Canary Islands La Palma and Tenerife\(^\text{6}\). The optical link is 144 km long. OGS, optical ground station; GPS, Global Positioning System; PBS, polarizing beamsplitter; BS, beamsplitter; HWP, half-wave plate.

**c.** Schematic of a decoy-state BB84 QKD experiment between ground and a hot-air balloon\(^\text{20}\).
"Our hack gave 100% knowledge of the key, with zero disturbance to the system,"

Google protects Chrome against quantum hacking before it can even happen!

Current internet encryption methods would have no way to stand up to quantum computers. Luckily, Google's working on it.

Cnet.com 2016
“Theoretical” unconditional security approaches perfection in infinite limit
(see also “Device Independent” QKD - later)
Satellite Communications - Status

Every “prepare and measure” (PM) QKD has a corresponding “entanglement based” (EB) version.

As an example, based on EB analysis it can be shown how of positive key rates can be obtained from sending coherent pulses to a satellite even if adversary controls the satellite.
Large Scale Systems – Towards the Quantum Internet

Operational performance of long-distance quantum key distribution over a field-installed 90-km fiber-optic loop.
Large Scale Systems – Towards the Quantum Internet

Two Recent Important Network Results

Hefei, China

Calgary, Canada

However, in the past not a single quantum-teleportation experiment has been realized with independent quantum sources, entanglement distribution prior to the Bell-state measurement (BSM) and feedforward operation simultaneously, even in the laboratory environment. We take the challenge and report the construction of a 30 km optical-fibre-based quantum network distributed over a 12.5 km area.

Here, using the Calgary fibre network, we report quantum teleportation from a telecom photon at 1,532 nm wavelength, interacting with another telecom photon after both have travelled several kilometres and over a combined beeline distance of 8.2 km, onto a photon at 795 nm wavelength. This improves the distance over which teleportation takes place to 6.2 km. Our demonstration establishes an important requirement for quantum repeater-based communications and constitutes a milestone towards a global quantum internet.
Large Scale Systems – Towards the Quantum Internet

Enabling Technologies

Distillation

Entanglement Swapping

Network Control

Large Scale Systems – Towards the Quantum Internet

Large Scale Networks – The Ultimate Goal?

Figure 1. Multipartite quantum network based on graphs. Network nodes together with links between them constitute a graph. Both network nodes and repeater stations receive and send quantum particles. They prepare qubits (in the $|+\rangle$ state), perform entangling quantum gates ($C_2$-gates) and measurements (in the $X$-basis). The number of such actions for a given node depends on its number of neighbours. Arrows indicate the transmission direction. Some examples are illustrated. Note that repeater stations have exactly two neighbours, while network nodes may have more than two neighbours.
Orbital Angular Momentum (OAM)

Twisted Light Could Dramatically Boost Data Rates
Orbital angular momentum could take optical and radio communication to new heights

IEEE Spectrum 2016
Orbital Angular Momentum (OAM)

- Spin angular momentum
  - Circular polarisation
  - $\sigma h$ per photon
- Orbital angular momentum
  - Helical phasefronts
  - $\ell h$ per photon

$\sigma = +1$

$\sigma = -1$

$\ell = 0$

$\ell = 1$

$\ell = 2$

$\ell = 3$

etc
Orbital Angular Momentum (OAM)

Cylindrically symmetric solutions to the EM wave equation

\[ u_p^\ell (r, \phi) \propto r^\ell L_p^\ell \left( \frac{2r^2}{\omega^2} \right) e^{-r^2/\omega^2} e^{-i\ell \phi} \]

Laguerre-Gaussian modes

Gaussian with beam waist

Laguerre polynomial with \( p + 1 \) radial nodes

Vortex with topological charge \( \ell \)

Orbital angular momentum \( \ell \hbar \) per photon

Emerging Apps – Orbital Angular Momentum
(Malaney, Globecom 2016)
Orbital Angular Momentum (OAM)

143km through air – Krenn et al, 2016

3km through air – Krenn et al, 2014 (16 Multiplexed)

13km through fibre - Gregg et al, 2016
Orbital Angular Momentum (OAM) Radio

Towards infinite-capacity wireless networks, with twisted vortex radio waves
ExtremeTech.com Sept. 2014

But where is the Far Field?

MIMO-Radio Based OAM,
Bai et al 2014

Figure 1. Outline of the gedanken experiment.
Kish, Nevels
Orbital Angular Momentum (OAM) - Radio

But where is the Far Field?
A) Sort of far..........

<table>
<thead>
<tr>
<th>TABLE 1—DEFINITIONS OF THE NEAR-FIELD/FAR-FIELD BOUNDARY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition for shielding</td>
</tr>
<tr>
<td>---------------------------</td>
</tr>
<tr>
<td>(\lambda/2\pi)</td>
</tr>
<tr>
<td>(5\lambda/2\pi)</td>
</tr>
<tr>
<td>For antennas</td>
</tr>
<tr>
<td>(\lambda/2\pi)</td>
</tr>
<tr>
<td>(3\lambda)</td>
</tr>
<tr>
<td>(\lambda/16)</td>
</tr>
<tr>
<td>(\lambda/8)</td>
</tr>
<tr>
<td>(\lambda/4)</td>
</tr>
<tr>
<td>(\lambda/2\pi)</td>
</tr>
<tr>
<td>(\lambda/2\pi)</td>
</tr>
<tr>
<td>(2D^2/\lambda)</td>
</tr>
<tr>
<td>(2D^2/\lambda)</td>
</tr>
<tr>
<td>((d+D)^2/\lambda)</td>
</tr>
<tr>
<td>(4D^2/\lambda)</td>
</tr>
<tr>
<td>(50D^2/\lambda)</td>
</tr>
<tr>
<td>(3\lambda/16)</td>
</tr>
<tr>
<td>((D^2+d^2)/\lambda)</td>
</tr>
</tbody>
</table>
FIG. 1 (color online). Radiation patterns for radio beams generated by one circle of 8 antennas and radius $\lambda$ plus a concentric circle with 16 antennas and radius $2\lambda$; all antennas are $0.25\lambda$ over the ground. Notice the influence of $l$ on the radiation pattern. Here $l = 0$ (upper left), $l = 1$ (upper right), $l = 2$ (lower left), and $l = 4$ (lower right).

Fig. 6. Capacity gain over single antenna (SISO) system at UCA sizes 4×4, 8×8, and 16×16, at an SNR of 30 dB. Curves are calculated for array radii 100$\lambda$ and array separation distances from 10 times below to 1000 times above the Rayleigh distance (20.0000$\lambda$).
6G
Combined Quantum-Wireless Networks

Modified from Forbes.com

On Board Quantum Memory

e.g. Malaney 2016a
Communications for Quantum Computers

Barzanjeh et al. 2015

Optical Link (300K)

Microwave Link (50mK)

Superconducting Qubits (50mK)

Cluster States?
Some of my own work at this meeting

Generating quantum keys from Earth-to-Space with **laser pulses** (CV QKD)

I will be presenting a technical paper on “CV-QKD with Gaussian and non-Gaussian Entangled States over Satellite-based Channels” during the meeting

**SAC-SSC.2: System  Tuesday 11am**

Hosseinidehaj & Malaney 2016b

Use quantum states to ensure data can **only** be decrypted at a **specific location** and time

I will be presenting a technical paper on “Quantum geo-encryption” during the meeting

**CISS.9: Cryptography and Network Security, Wednesday 11am**

Malaney 2016b
6G is coming....

THE q-PHONE

Quantum Neural Network Processor
Embedded Quantum Memory
Massive MIMO Millimetre Beamforming Reception
Location-Based Quantum Encryption
"Un-hackable" Communications

“Un-hackable” Communications

Classical/Quantum Interface
Quantum Bitcoin
Location Verification

Driverless Car Collision Avoidance
1TB Data Transfer
Entanglement On Demand
Teleportation On Demand
General Relativistic Corrections to Quantum Satellites
Conclusions

Quantum Communications is an exciting new area for engineers – it is here to stay. It will deliver the ultimate cyber-security solutions to next-generation networks.

There are many real-world problems looking for real-world engineering solutions. Specific engineering challenges highlighted here include -

Large-scale City-wide Networks
Space-based Communications
The Global Quantum Internet
New Multiplexing Schemes (OAM)
Next-Generation (6G) Wireless Communications
Quantum Computer Communications
Malaney, DOI: 10.1109/LWC.2016.2607740 (2016a).
van Meter & Touch, IEEE Communications Magazine, August (2013).
References (Cont.)

Yin et al, Optics Express 21 (17), 20032 (2013).

General Reading (from which I have borrowed in some slides)
A useful beginners guide to Quantum Information is
“Protecting Information: From Classical Error Correction to Quantum Cryptography”,
The classic reference text of the field is
"Quantum Computation and Quantum Information", Michael A. Nielsen and Isaac L. Chuang,
A good introduction to CV states and quantum optics is

*My thanks to N. Hosseinidehaj for assisting with some of these slides.