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ABSTRACT

Variations in the acoustic space due to changes in speaker mental
state are potentially overshadowed by variability due to speaker
identity and phonetic content. Using the Audio/Visual Emotion
Challenge and Workshop 2013 Depression Dataset we explore the
suitability of i-vectors for reducing these latter sources of
variability for distinguishing between low or high levels of speaker
depression. In addition we investigate whether supervised
variability compensation methods such as Linear Discriminant
Analysis (LDA), and Within Class Covariance Normalisation
(WCCN), applied in the i-vector domain, could be used to
compensate for speaker and phonetic variability. Classification
results show that i-vectors formed using an over-sampling
methodology outperform a baseline set by KL-means supervectors.
However the effect of these two compensation methods does not
appear to improve system accuracy. Visualisations afforded by the
t-Distributed Stochastic Neighbour Embedding (t-SNE) technique
suggest that despite the application of these techniques, speaker
variability is still a strong confounding effect.

Index Terms— Depression, Acoustic Variability, I-vectors,
Linear Discriminant Analysis, Within Class Covariance
Normalisation, t-Distributed Stochastic Neighbour Embedding

1. INTRODUCTION

A wide range of acoustic information is modulated onto speech
signals; this potentially places an upper-bound on the accuracy of a
speech based depression classification system. Acoustic variability
that arises due to speaker characteristics, channel effects and
phonetic content has been shown to have detrimental effects on the
accuracy of recognition of a range of paralinguistic information
such as long-term speaker traits including age and gender [1],
temporary speaker traits such as intoxication [2] and sleepiness [3],
as well as transient speaker states such as emotion [4]. In emotion
recognition, in particular, it has been shown that speaker variability
affects the feature space distribution of emotional data [4]. Both
automatic emotion and depression recognition systems share
common traits; a continuous negative affect is a key symptom of
depression [5]. However depression is more steady-state compared
with the transient nature of emotions, with individuals inflicted for
weeks or months rather than seconds or minutes [6].

In speaker recognition, i-vectors, together with a range of
complementary transforms designed to further reduce errors arising
from intersession variability, have become a pseudo standard due
to their ability to compress both speaker and channel variability
into a low-dimensional feature space [7], [8]. However little work
has been done exploring the suitability of this paradigm for
modelling paralinguistic tasks which often have substantially (both
in terms of number of speakers and duration) smaller amounts of

training data when compared with those used in speaker
recognition.

Motivated by results showing that both speaker variability and
phonetic variability have negative effects on depression
classification [9], [10], we investigate the suitability of i-vectors
for modelling depressed speech as well as the ability of the
paradigm to reduce the effects of variability not related to
depression.

2. RELATION TO PRIOR WORK

Whilst a range of prosodic [11], [12], voice quality [13], spectral
features [9], [14] and Gaussian Mixture Model (GMM) based
supervectors [10] have been established for use in an automatic
speech based depression classifier, there are only a small number
of papers which have investigated the effects of unwanted acoustic
variability on depressed speech classification.

Results presented in [9] show that per-speaker normalisation
offers no improvement for a depression classifier indicating that, as
in emotion recognition, speaker variability has stronger effects than
variability due to depression. Work in [15] shows that depression
classification is susceptible to both speaker and channel effects.

Recent results, found using the Audio/Visual Emotion
Challenge (AVEC) and Workshop 2013 Depression Dataset, show
that Nuisance Attribute Projection (NAP) applied to Kullback-
Leibler (KL-means) supervectors may be able to help reduce
effects due to phonetic variability in a depression regression
system [10]. Whilst this paper focuses on i-vectors for depressed
speech classification, we also apply our final i-vector system
configuration to the depression scale prediction challenge (Section
5.4) to allow comparison with results presented in [10].

The application of i-vectors to paralinguistic speech
classification problems may be complicated by more than just the
lack of previous investigation on comparatively small databases.
Speaker traits like depression often only have examples of one
class (i.e. low or high depression but not both) from a single
speaker among the training/development data [14]. Compared with
emotion or speaker recognition, in which training databases exist
with examples of many emotions or channels per speaker [4], a
different approach will be required.

Whilst i-vectors, and the related techniques of Joint Factor
Analysis and Latent Factor Analysis, have been used in other
paralinguistic classification tasks such as age and gender analysis
[1], [16] and emotion classification [4], [17], to the best of the
authors’ knowledge this paper is the first paper to explore the
suitability of i-vectors for the classification of speech affected by
depression. Further, depression data, including AVEC, often pose
the additional challenge that speech utterances from only a single
level of depression per speaker are available.



3.I-VECTOR PARADIGM

Given a Universal Background Gaussian mixture Model (UBM) to
represent the feature distribution of the acoustic space, individual
speech utterances can be used to adapt this UBM and the resulting
GMM represented as supervectors. This allows for the application
of a number of linear vector space operations but is held back by
the inherent high dimensionality of supervectors. The i-vector
space is a low dimensional subspace onto which supervectors are
mapped via a linear transformation while retaining most of the
variability (useful information) present in the supervector space
and has been used extensively in speaker recognition [7], [8]. In
the context of depression classification, it is expected that the
UBM approximately models the phonetic structure of the acoustic
space and hence the supervectors and consequently the i-vectors
capture variations in this structure due to other factors including
level of depression, speaker identity, channel effects, etc. The i-
vector model is given by:

O, =0+ TY €y
where @ is the supervector corresponding to the UBM, @, is the

supervector corresponding to a particular utterance,  is the i-
vectors, and T is the projection matrix [7], [8].

3.1. Estimation of T Matrix

Mathematically, the i-vector model is a factor analysis method and
the T matrix is estimated from training data. In general, results
from speaker recognition show that the more training data used in
the training of the T space, the more accurate the final system [18].
Typically of paralinguistic speech systems, as the database we are
using has a limited training set (50 files, Section 4.1), to provide
more supervector instances for the estimation of T we used an
oversampling technique wherein multiple overlapping segments of
speech (subfiles) were extracted from each file (Figure 1) [10].
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Figure 1: Example of creating different speech segments (subfiles) or
‘channels’ from a single sufficiently long audio file for extracting
supervectors used to estimate T. Figure reproduced from [10].

3.2 Variability Compensation
To attempt to mitigate the effects of speaker and channel
variability while retaining variability due to depression in the i-
vector space, two forms of compensation were applied to the
oversampled extracted i-vectors. The first, Linear Discriminant
Analysis (LDA), attempts to find the linear projection from the i-
vector space that maximises separation between classes (levels of
depression in this case), while the second, Within Class Covariance
Normalisation (WCCN), attempts to minimise variations within a
class [7], [8].

Both LDA and WCCN were applied on a per class basis;
using subfiles labelled with a class (low or high levels of

depression) basis. WCCN was also trialled on a per-file basis; the
transform matrix was trained using subfiles labelled on a per-file
basis.

4. EXPERIMENTAL SET-UP

4.1. Corpora

All experiments presented used a subset of the Audio/Visual
Emotion Challenge and Workshop (AVEC) 2013 dataset [19]. The
full data set comprises 150 recordings, divided into training,
development and testing partitions each of 50 files (recordings).
Each recording has an associated Beck Depression Inventory
(BDI) score, a self-reported measure of depression, with clinical
validity, which rates the severity of cognitive, affective and
somatic symptoms, to give a patient a score which reflects their
level of depression [20]. For an in-depth description of the corpus,
the reader is referred to [10], [19].

The make-up of this corpus provides some unique challenges.
One is large variety in terms of both file length (ranging from 5 to
27 minutes in length) and speech tasks (vocal exercises, free and
read speech tasks, noting that not all files include all tasks)
contained within each file. This introduces a large degree of
phonetic variability within each file [10]. Specifically induced
changes in speaker affect are also present throughout each file
[19]; this could potentially introduce another source of unwanted
variation into our system.

To form a suitable two-class classification data set for
preliminary experiments (i.e. one in which differences in acoustic
variability between each class are most clearly due to the effects of
depression), herein referred to as the development classification
(DVC) partition, all files (twenty files from twenty distinct
speakers) from the development set, with BDI scores between 0-9
(indicating mild to non-existent levels of depression), were
selected to form the ‘low’ class. A further twenty files from twenty
other speakers (out of 21 such files available in the development
set - the longest one was left out to balance the two classes as best
as possible), with BDI greater than 19 (severe depression), were
selected from the development partition to form the high class.

4.2. Experimental Settings

The experimental settings (unless otherwise stated) of the
classification system were as follows: the frame level features were
MFCCs extracted as per [10]. A baseline classification accuracy
was found using KL-means supervectors; the reader is referred to
[21] for the extraction methodology. All UBMs were trained with
10 iterations of the EM algorithm from the entire training partition.
The entire AVEC training set was also used to train the T matrix; i-
vectors were then extracted for the two-class DVC partition
described in Section 4.1. The number of UBM mixtures, MAP-
adaptation iterations, T matrix dimensionality and LDA
dimensionality were set empirically using the training partition and
cross-fold validation on DVC partition.

LIBSVM with a linear kernel [22], and default user settings
were used for all Support Vector Machine (SVM) testing and
training. All training vectors were normalized to a range of [0, 1],
and test vectors were normalized by the same factors as the
training vectors. The choice of MFCCs as features was made for
two reasons; firstly MFCCs, in combination with GMMSs, have
proved successful for low/high levels of depression [14], [15].
Secondly the use of MFCCs ensures that the feature space
dimensionality is low enough to allow UBMs to be trained such
that these UBMs are representative of the acoustic/phonetic
structure of speech.



4.3. Evaluation Method

A similar cross fold validation scheme to that presented in [10] was
used to generate the classification accuracy results. In this method
100 trials of 5-fold cross-validation are employed, where in each
trial the DVC partition was randomly split into the 5 folds, which
were then used as the SVM training and test permutations. Results
are reported in terms of average accuracy across all trials (where
each trial is the average of the 5 folds of cross-validation),
minimum and maximum accuracy from each set of trials as well as
the standard deviation in each trial set. Classification systems are
referred to either as ‘standard’, where a single supervector / i-
vector is extracted per file or ‘oversampled’. When using the
oversampling technique multiple scores were generated per file
(one per each supervector/i-vector) and the median score was used
to generate one prediction per file.

5. RESULTS

5.1 Baseline System Accuracy

As in [10], an initial series of comprehensive tests were run on the
DVC partition using an uncompensated, KL-means supervector
system. This system was chosen as our baseline as it was the most
consistent performing system in [10]. Results confirmed that KL-
means extracted from a 128 mixture GMM using 5 iterations of
MAP also gave the best standard system (one supervector per file)
result (70.30%) (Table 1). An oversampled uncompensated KL-
means system (multiple supervectors per file) gave an accuracy of
67.85%, with the subfiles extracted from 60 second segments with
a 10 second overlap (Table 1).

5.2 i-vector Classification

To determine the suitability of the i-vector paradigm for modelling
depression, an exhaustive series of tests was run on a standard i-
vector system (only one i-vector per file) to determine the ideal
dimensionality of T. None of these classification accuracies were
able to better either KL-means baselines (standard or oversampled)
and the best accuracy (58.88%) was found for a T matrix
dimensionality of 100 (Table 1).

For the oversampled system, we ran an exhaustive series of
tests to determine the optimal parameters in terms of window size,
overlap and T matrix dimensionality. Results indicated that the
best setting was a 60 second window with a 10 second overlap. A
sample of these results is shown in Figure 2. The best accuracy
(74.85%) was achieved with a T dimensionality of 200; this is a
relative improvement of 6.5% and 10.3% over the single and
oversampled KL-means baselines respectively (Table 1). Perhaps
more importantly, oversampling seems to allow relatively
competitive i-vector systems to be developed where a ‘standard’ i-
vector implementation provides close to chance-level accuracy.

Table 1: Standard and oversampled classification accuracies
generated using uncompensated KL-means and i-vectors found
using the DVC partition of the AVEC 2013 corpus.

Vector System mean | min max st.dev.
KL- Standard 70.30 | 57.50 | 80.00 | 4.01
means Oversampled 67.85 | 55.00 | 77.50 | 4.61
i-vectors Standard 58.45 | 45.00 | 72.50 | 6.06
Oversampled 74.85 | 60.00 | 85.00 | 5.41

We speculate that the improvement when using the

oversampled i-vectors compared with the standard system is due to
the increase in training samples (despite some redundancy) used to
estimate the T matrix. 50 files were used to train the standard
system whilst 1505 subfiles were used for the T matrix in the
oversampled system. Further, the superior performance of the i-

vector system when compared with the supervector system
suggests that variations in the i-vector space may be more robust to
phonetic content and speaker characteristics compared with those
in the supervector space. Also, given that this system makes no
attempt at speaker normalisation and given that i-vectors feature
heavily in state-of-the-art speaker recognition systems, it is
reasonable to infer from Table 1 that the use of the oversampled i-
vector paradigm makes the depression classification system more
robust to phonetic variability.
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Figure 2: Classification accuracy for different dimensions of T,
estimated using the oversampled technique, subfiles extracted from 60
second segments with a 10 second overlap, on the DVC partition of the
AVEC 2013 corpus.

5.3 Effect of Variability Compensation

While the i-vector representation offers some inherent robustness
to undesired variability, further variability compensation may be
carried out in the i-vector space, and the application of two
methods to the best performing system from section 5.2 (200
dimensional oversampled i-vector system with an estimated
classification accuracy of 74.85%) was comprehensively
evaluated. Specifically, the use of LDA and WCCN individually
and LDA in combination with WCCN in the i-vector space were
explored. Further, WCCN was applied on a per-depression class
basis as well as a per-speaker basis (i.e., within speaker covariance
normalisation). All results from these analyses (Table 2), however,
indicate that these methods have a negative impact on system
accuracy. Moreover, their performance was also lower than that of
the KL-means baselines from Section 5.1. Section 5.4 attempts to
shed some light on the reasons behind this drop in performance.

Table 2: Classification accuracy for a range of different
variability compensation techniques, using 200-dimension i-
vectors extracted via oversampling, found on the DVC
partition of the AVEC 2013 corpus.

. LDA+ LDA+
LDA dim | LDA only WCCN(class) | WCCN(speaker)
No LDA 64.53 66.13
190 62.83 66.18 64.05
120 63.43 65.45 64.13
40 63.20 64.05 63.18

5.4 Visualisation of the i-vector space

In addition to classification experiments, the t-Distributed
Stochastic Neighbour Embedding (t-SNE) technique [23] was
employed to visualise the i-vector space before and after the
application of LDA and WCCN. The t-SNE technique allows
visualization of high dimensional data in 2 or 3 dimensions by
attempting to preserve local structure of the high dimensional
space in the low dimensional space [23].

The t-SNE plots shown in Figure 3, help us gain an
understanding of why LDA and WCCN have such a negative
impact on i-vector system accuracy. Figure 3a shows an
uncompensated i-vector space taken from one fold of a cross fold
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Figures 3: (a) t-SNE plot of uncompensated i-vector system, (b) LDA compensated i-vector system, and (c¢) WCCN (per speaker) compensated
i-vector system. Black points represent low class, grey high class. Test samples are circled.

validation test (test partitions for all folds were chosen randomly
and of equal size). We speculate that as the number of distinct
clusters approximately equals the number of speakers in the DVC
partition, that each individual cluster in the visualisation represents
the oversampled i-vectors from a single speaker.

LDA has the effect of separating the training samples into two
distinct class groups very well (Figure 3b). However this
separation does not appear to generalise to unseen speakers
(clusters corresponding to test samples depicted in the plots within
circles) and consequently classification accuracy on these samples
suffers. Further, the test samples still appear to be organised in
speaker clusters and are well separated from the two training
classes. We speculate this could be due to effects of the speaker
identity that are not successfully mitigated by the transform.
Similar results were seen for WCCN applied on a per-class basis
(not shown here).

The effects of WCCN applied on a per-speaker basis (Figure
3c) are a reduction in the ‘length’ of each speaker cluster when
compared with Figure 3a but do not alter the global structure of the
i-vector space and consequently do not achieve any ‘useful
normalisation’. We speculate that WCCN on a per-speaker basis is
reducing phonetic variability within each file. However, as the i-
vector representation itself appears to do this to a large extent and
as within-speaker covariance normalisation does not actually
improve results we speculate that speaker identify is the major
confounding factor.

5.5 Depression Scale Prediction using i-vectors

Finally, for transparency, we compare the proposed systems with
those presented in [10] and baseline corpus results [19], we tested
both an oversampled uncompensated i-vector system as well as an
oversampled i-vector WCCN (per speaker) system for their ability
to estimate depression scale (i.e. regression as opposed to 2-class
classification) on two sets, the AVEC development and test
partitions. All system accuracies are reported in terms of Root
Mean Square Error (RMSE).The reader is referred to [10] for the
setup of these tests.

Table 3: RMSE’s generated using the oversampling method
compared with system accuracies from [10].

System RMSE
Devel. | Test
Baseline [19] 10.75 | 14.12
KL-means (standard) [10] 9.00 10.17
KL-means (oversampled+ NAP) [10] 8.94 13.34
i-vectors (oversampled) 10.34 | 11.37
i-vectors (oversampled WCCN speaker) | 10.13 | 11.58

On the development set, both i-vector systems beat the
challenge baselines, but were unable to beat the KL-means
supervector system. On the test set, the proposed i-vector systems
outperformed the challenge baseline and the oversampled KL
means, NAP compensated, supervector system but not the standard
KL-means supervector system. Interestingly, WCCN applied on a
per-speaker basis lowers the RMSE as evaluated on the
development set but not on the test set. It should be noted that the
i-vector systems were set up and optimised for a classification task
rather than a regression task.

6. CONCLUSION

Speaker variability, phonetic content and intersession (recording
setup) variability have all previously been shown to introduce
unwanted variability, to both depression classification and
prediction systems [9], [10], [15]. This paper presents an
oversampled extraction technique for the i-vector systems in
smaller datasets. Apart from permitting the development of useful
i-vector systems in this context, this technique was found to be
better suited to classifying high and low levels of depression than
both an uncompensated KL-means supervector system and the
standard i-vector (one i-vector per file) extraction techniques. We
speculate that this is due to both the suitability of i-vectors for
minimizing the effects of unwanted variability in a classification
context given the possibility of estimating reasonable i-vector
parameters via oversampling.

Further attempts to minimize unwanted variability through
LDA and WCCN were unsuccessful. We speculate that as in [9]
this is due to the speaker variability being stronger than the
variability due to the effects of depression. Visualisations based on
t-SNE support this speculation. In addition to classification
systems, results from the regression analysis show that i-vector
systems could outperform the challenge baseline and provide
performance close to that of a competitive system operating on the
entire AVEC data [10].

Future work includes testing the effects of a less naive
oversampling method. Given the result shown in the t-SNE plots in
section 5.3, cluster-based classification techniques will also be
trialled.
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