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ABSTRACT 

To enhance current diagnostic methods used when assessing a 

depressed individual, an objective screening mechanism, ideally 

based on non-intrusive behavioral signals, is needed. Given the 

clinical description of depression speech as ‘dull, monotonous and 

flat’ and promising previous results from spectral features, we 

hypothesize that the effects of depression on speech are embedded 

in spectro-temporal events. To test this hypothesis we explore 

different methodologies, based on the modulation spectrum, for 

extracting long-term spectro-temporal information from speech 

and assess their suitability as a clinical marker of depression. 

Results indicate that: depressive speech information is captured in 

the modulation spectrum, long-term spectro-temporal information 

is important in depressed speech identification and there are 

potential differences in the effects that depression and 
psychomotor retardation have on speech production mechanisms. 

Index Terms – Depression, Psychomotor Retardation, 

Spectro-Temporal, Modulation Spectrum, Energy variability 

1. INTRODUCTION 

Depression is an affective disorder that has a wide ranging clinical 

profile, symptoms include; cognitive impairments, feelings of 

worthlessness, diminished interest and a sustained depressed mood 

lasting for weeks [1]. Another key symptom of depression is 

psychomotor retardation (PMR) which is the slowing of thought 

and reduction of physical movements. Speech as a complex 

cognitive and muscular action is considered a key objective 

measure of both depression and PMR [2]. Clinically depressed and 

PMR-affected speech has been described as sounding dull, 

monotonous and flat  [2]. 

Clinicians often use rating scales such as the Hamilton Rating 

Scale for Depression (HAMD) [3], to diagnose depression. These 

tests require clinical training, practice, and certification to produce 

acceptable results [4], however they are subjective and often 

require face-to-face interaction with a psychiatrist. To enhance 

current diagnostic methods an objective screening mechanism, 

based on physiological and behavioral signals such as speech and 

PMR, is needed. 

Several papers have found significant correlations between a 

person’s clinical level of depression and prosodic speech features. 

Whilst inconsistent results have been reported for pitch based 

measures [4-7], more consistent results have been reported for 

speech timing measures [4, 5, 8]. Results in these papers indicate 

an increase in both speech timing and pause duration measures 

with depression severity. Significant correlations have also been 

reported between clinical PMR scores and articulation rate, 

phoneme rate and total vocalization time [9]. 

Spectral and energy based features have been shown to have 

strong discriminatory properties when automatically classifying 

depressed speech [10-12]. The default standard in speech 

recognition systems, when using spectral based measures, is to 

incorporate temporal based information through the use of either 

short-term 1st and 2nd order time derivatives (Δ, ΔΔ) or the 

medium-term Shifted Delta Coefficients (SDC). Several papers 

show that the addition of these features offers little improvement 

when classifying depressed speech [10, 13, 14]. Time derivatives 

and SDC are designed to capture rapid temporal information, but 

depression is a more long term condition whose effects potentially 

vary across longer time scales than those used when extracting 

these delta features. SDC’s are defined by four  parameters; N-d-P-

k, where N denotes the number of coefficients and d the number of 

frames the SDC’s are calculated over, whilst P denotes the frame 

shift between blocks and k the number of coefficients used to form 

final SDC representation. Using the default SDC setting of 7-1-3-7 

with a frame shift of 10ms, 190ms of temporal information is 

incorporated into the overall SDC feature vector, but the individual 

contributing delta coefficients are computed over just 30ms. Using 

such a short time window makes it impossible to differentiate 

between slow and fast rates of spectral change [15]. 

One method proposed to capture long-term information in a 

speech signal is the Modulation Spectrogram. The modulation 

spectrogram comprises the frequency components of sub-band 

frequencies of a spectrogram representation of speech, and is 

extracted using temporal frames up to 300ms in length. The 

modulation spectrogram offers an approach for characterizing both 

slow and fast rates of spectral change, capturing information 

relating to speech intelligibility by quantifying the power of 

temporal events relating to articulatory movements in the speech 

signal [16]. 

Motivated by recent results published in [7], where significant 

correlations (p<0.05) between an increase in variability associated 

with energy dynamics and increasing levels of either depression or 

PMR were reported, this paper explores the benefits of 

incorporating longer term spectro-temporal information in the 

identification of both PMR and depressive speech. This is achieved 

by testing SDC’s and two different methodologies based on the 

modulation spectrum for extracting long-term spectro-temporal 

information from speech. 

2. DEPRESSION DATABASE 

The database used in this paper contains voice samples from 35 

patients undergoing depression treatment over a 6 week period, 

originally collected for a depression severity study by Mundt et al. 

[4]. At weeks 0, 2, 4, and 6 of the study, the participants undertook 

clinical sessions in which their depression severity was measured 

using the HAMD assessment. The HAMD assessment rates the 

severity of symptoms observed in depression, to give a patient a 

score which relates to their level of depression (HAMDtotal). The 

scores are arranged into 5 categories; ‘Normal’ (0-7), ‘Mild’ (8-

13), ‘Moderate’ (14-18), ‘Severe’ (19-22) and ‘Very Severe’ (≥23). 



Due to differences in how individuals responded to treatment over 

the course of the trial no individual speaker has data in all five 

classes, but all speakers have data in two or more classes. One of 

the subtopics in the HAMD is PMR; individuals are given a 

ranking between 0-4 (HAMDpmr), based on their level of 

observable PMR. 

As part of these clinical sessions, repetitions of the tri-syllabic 

sequence ‘PATAKA’, used to test diadochokinetic rate [17], were 

recorded as well as samples of four held vowels sounds; /a/, /i/, /o/ 

and /u/ (sampling rate 8kHz). To minimise phonetic content whilst 

still allowing analysis of articulatory movements and speech 

intelligibility all results reported and figures plotted unless 

otherwise stated are taken from the ‘PATAKA’ sound.  

3. SPECTRO-TEMPORAL CHARACTERIZATION OF 

DEPRESSIVE SPEECH 

Given that depression and PMR potentially cause prosodic, 

articulatory and phonetic errors in speech [4, 8, 9] as well as 

altering spectral properties [7, 10], to objectively assess depression 

and PMR affected speech, a feature or group of features that 

capture these properties is needed. This information is present in 

the spectrogram (Figure 1), but this is a high dimensional 

representation of a speech signal with substantial redundancy, 

unsuitable for statistical learning algorithms.  

 
Figure 1: Spectrograms of four repetitions of the ‘PATAKA’ sound 

for an individual in a normal state (top) and very severe depressed 

state (bottom). Low energy regions are darker, high energy regions 

are lighter. Notice the lack of sustained energy in the 1 kHz and 3 

kHz regions in the very severe example. 

3.1 Modulation Spectrum 

The Modulation Spectrum (MS) is defined as the frequency 

composition of the temporal-trajectory of each acoustic frequency 

channel in a spectrogram [18]. The MS provides information on 

the dynamic characteristics of a speech signal extracted over longer 

time scales (typically 200-300ms) [16]. The MS is given by 

calculating the Fourier Transform of each frequency bin along the 

time axis of the spectrogram; 
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where  [   ] is a short term speech segment, n is the frame index 

and m is the time index,   is the acoustic frequency and   is the 

modulation frequency. By transforming the spectrogram into the 

MS, using longer-term temporal windows, 200-500ms in length, 

we can reveal the slowly varying temporal envelope components at 

different acoustic frequencies in the speech signal [16]. 

In Figure 2 the two dimensional representation of the MS is 

shown; the y-axis represents the acoustic frequencies (AF) present 

in the signal whilst the x-axis is the modulation frequency (MF), so 

that the intensity of each pixel represents the amount of temporal 

change present in each acoustic frequency. The MS is low-pass in 

shape, with most of the modulation energy located below 25Hz: 

these low modulation frequencies relate to speech rhythm and are 

the relevant range of modulation frequencies for speech 

intelligibility [16]. 

 
Figure 2: Modulation Spectra extracted over 250ms, for the same 

normal state (top) and very severe state (bottom) utterances as Fig. 

1. Low energy regions are blue, high energy regions are red. 

Notice the difference in magnitudes between the two figures across 

all MF’s between approximately 1 kHz to 3 kHz AF.  

3.2. Modulation Spectrum and Log Mean Subtraction 

In [19], log mean subtraction (LMS) was proposed to help 

minimize the effects of source excitation in the MS. By first 

computing the log of the spectrogram, it is possible to emphasize 

the dynamic properties of the speech production apparatus, then 

perform mean subtraction along each acoustic frequency of the 

log-spectrogram, minimizing the effect of the excitation source 

component of the speech signal [19]. In the MS-LMS 

representation, most of the energy is located below 12 Hz (Figure 

3); this modulation frequency range relates to the articulator 

movement rate [20]. 

 
Figure 3: Modulation Spectra extracted over 250ms, after LMS for 

the same normal state (top) and very severe state (bottom) 

utterances as Fig. 1. Low energy regions are blue, high energy 

regions are red. Note that the difference in magnitudes between the 

two figures, in the 1 kHz (AF) / 5 Hz (MF) region, has been 

retained and the steeper low-pass shape of the transformed MS 

when compared with Figure 2. 



3.3. Dimensionality Reduction of Modulation Spectrum 

The MS transform results in a three dimensional feature space; 

acoustic frequency, modulation frequency and time. In Figures 2 

and 3 the modulation spectra were extracted using an acoustic 

frequency FFT size of 256 and a modulation frequency FFT size of 

128, resulting in 8192 features per frame. We now consider 

possible techniques to reduce the dimensionality of the extract 

Modulation Spectrum. 

The first technique, MS-DCT, was used in [16] to extract MS 

for text independent speaker recognition (Figure 4(a)). It uses a 

filterbank to reduce the dimensionality of the acoustic frequency 

dimension; for this paper we used an auditory-motivated 

Gammatone filterbank. The dimensionality of the modulation 

frequency bank is reduced by applying a DCT to each of the 

temporal trajectories and retaining the first D coefficients. 

In the ST-REP technique, used in [21] for emotion recognition 

(Figure 4(b)), all filtering is done in the time domain to allow 

higher modulation frequencies to be extracted than possible via the 

MS-DCT. A Gammatone filterbank and Hilbert Transform are 

applied to extract a temporal envelope for each frequency channel 

in a long-term window. Each temporal envelope is then filtered 

with a modulation filterbank and an energy coefficient of each 

acoustic / modulation frequency pair is calculated. 

4. EXPERIMENTAL SETTINGS 

The experimental settings (unless otherwise stated) were as 

follows: short-term frames were 25ms in length and extracted 

every 10ms, long-term frames were 250ms in length and extracted 

every 10ms. Energy coefficients (STFT magnitudes) were 

extracted using a 24-channel Gammatone filterbank; linearly 

spaced at Equivalent Rectangular Bandwidth between 100 Hz - 4 

kHz, operating on short-term frames and the SDC’s were extracted 

with parameters N-d-p-k equal to 24-1-3-7.  

In the MS-DCT representation the coefficients were extracted 

using the long-term frames, all acoustic frequencies were extracted 

using a 256 point FFT, all modulation frequencies were extracted 

using a 128 point FFT and 10 DCT coefficients retained. For the 

ST-REP the coefficients were extracted using the long-term 

frames, and the modulation filterbank was constructed from five 

second-order band-pass filters each with a quality factor of two. 

The centre frequency spacing was evenly spread on a log2 scale 

from 4 to 64Hz.  

Features were tested for their suitability as an objective 

measure of clinical depression severity in a SVM classifier, both in 

a 2-class system (HAMDtotal < 17, HAMDtotal ≥ 17) and a 5-

class system, as explained in Section 2. As further information 

reduction, the following statistical functionals were extracted per 

coefficient, per utterance and used as a single, per-utterance input 

to the SVM: variance, standard deviation, skewness, kurtosis, 

mean, max, min, median, 1st quartile, 3rd quartile, median-1st 

quartile, 3rd quartile – median, 3rd-1st quartile, 1st percentile, 99th 

percentile and 99th-1st percentile. To avoid variability due to 

accents, the evaluation dataset was composed of the PAKATA 

recordings taken from patients of Caucasian ethnicity; this resulted 

in 132 recordings spread over 32 speakers. The average time of 

each recording is 7.8s. All classification accuracies were obtained 

using WEKA’s inbuilt SVM with a RGF kernel [22] with ten-fold 

cross validation used to verify all results. 

5. RESULTS 

5.1 Classifying Clinical Level of Depression 

The results in Table 1 show the benefit of including spectro-

temporal information when using speech to classify clinical 

depression. In the 2-class system there is a further benefit gained 

when applying LMS, with the best feature being the MS-DCT with 

LMS. In the 5-class system LMS does not appear to aid 

classification as consistently. The best 5-class classification 

accuracy is given again by the MS-DCT feature, this time without 

LMS. Interestingly given the results in [10, 13, 14], the SDCs give 

reasonable classification accuracy in both systems, indicating the 

importance of including longer-term temporal information. Due to 

the small range and uneven distribution of the HAMDpmr scores 

we did not test the features in a PMR-based classifier. 

Table 1: Classification accuracies for identifying HAMDtotal 

Feature 
Average Weighted Accuracy (%) 

2-Class 2-Class (LMS) 5-Class 5-Class (LMS) 

Energy 55.1 55.9 28.8 27.1 

SDC 61.9 63.6 30.5 33.9 

MS-DCT 55.1 66.9 36.4 31.4 

ST-REP 57.6 N.A 33.1 N.A 

5.2 Effect of Applying LMS 

To test the effect of LMS on the features used in section 5.1, we 

investigated the correlations between the variance of the extracted 

features with HAMDtotal and HAMDpmr scores. We use feature 

variance, calculated over an entire utterance, to represent feature 

variability in order to compare with results in [7, 11, 12]. 

Correlations in this section are reported in terms of no significance 

(p≥0.05), mild significance (p<0.05) and strong significance 

(p<0.01). Due to the quantized nature of the clinical scores, 

Spearman’s correlation coefficient was used [7, 9].  

Figure 5(a) shows the correlations between the variance of the 

24 short-term energy coefficients and HAMDtotal. The strongly 

significant negative correlations seen in channels 13-14 (Approx. 

900 Hz – 1.1 kHz) indicate a decrease in the variability of these 

coefficients with increasing depression severity. This roughly 

agrees with what we see in Figure 1. For the spectro-temporal 

features, no significant correlations were found for SDC whilst for 

both the MS-DCT and ST-REP features a mix of mild and strongly 

significant negative correlations were found between the variability 

of the extracted feature coefficients in channels 10-14 (Approx. 

600 Hz – 1.1 kHz). No strong significant correlations were found 
between HAMDpmr and any of the extracted features (Figure 5b). 

Figure 4: Outline of extraction methods used to reduce the dimensionality of the Modulation Spectrum:  

(a) Steps in extracting MS-DCT [16] (b) Steps in extracting ST-REP [20] 

 

 

 

 

 

 



 
Figure 5: Channel dependent correlations, calculated using all 

PATAKA samples, of energy variance, extracted using a 24 

channel Gammatone filterbank, with HAMDtotal scores (a) and 

HAMDpmr scores (b). Gray indicates a mild significance (p<0.05) 
and black indicates a strong significance (p<0.01) 

 
Figure 6: Channel dependent correlations, calculated using all 

available PATAKA samples, of energy variance, extracted with a 

24 channel Gammatone filterbank and applying LMS, with 

HAMDtotal scores (a) and HAMDpmr scores (b). Gray indicates a 

mild significant (p<0.05) and black indicates a strong significance 

(p<0.01) 

The effect of applying LMS can be seen in Figure 6, where results 

suggest that there are differences in the effects that depression and 

PMR have on speech production mechanisms, and that these are 

consistent across all frequency bands. The negative correlations 

with HAMDtotal (Figure 6(a)) show a decrease in the variability of 

energy associated with the dynamical properties of speech 

production mechanisms as depression severity increases. The 

opposite effect is seen for PMR (Figure 6(b)), where the positive 

correlations infer an increase in this variability with increasing 

PMR. No strongly significant correlations were found between 

either HAMDtotal or HAMDpmr and SDC’s extracted after LMS. 

For the MS-DCT LMS coefficients a mix of mild and strongly 

significant negative correlations with HAMDtotal were observed in 

all modulation frequencies across channels 10-24 (Approx. 600 Hz 

– 4 kHz).  

For HAMDpmr mildly significant positive correlations were 

observed across all MS-DCT coefficients in channels 1-8 (Approx. 

100 Hz –500 Hz). Similar results were also seen for MS-DCT 

LMS coefficients across the held vowel sounds with the strongest 

effects being on /a/ and /u/.  

The negative correlations seen in channels 23-24 (Approx. 2.3 

kHz – 4 kHz)  in Figure 6(a) go against the trend of an increase in 

high frequency energy with increasing depression severity [11], 

[12]. Further work was done to explore this phenomenon. When 

dividing the data samples into the 5 classes (Section 2), the general 

trend seen across the significant energy coefficients was variability 

increasing in the moderate and mild classes when compared with 

the normal class. But in the severe and very severe groupings, the 

energy variability was less than the normal grouping. This result 

could in part explain the mixed results seen for the 5-class LMS 

features in Section 5.1. 

6. CONCLUSIONS 

In this paper we investigated modulation spectrum based speech 

features as a way of objectively measuring clinical depression 

severity. MS-based features were found to capture depression 

based information as well as or better than SDCs. These results 

show that medium to long term spectro-temporal information has 

discriminatory properties when identifying an individual’s level of 

clinical depression from their speech. Further research will be done 

to explore the performance of MS features on a phonetically varied 

dataset, although it should be noted that it is realistic to use the tri-

syllabic ‘PAKATA’ sequence in a clinical depression test. The 

sequence is used to test for motor speech disorders in conditions 

such as ataxic dysarthria  and Parkinson’s disease [17]. 

A key result is the effect of applying LMS; the mostly 

negative correlations, seen across all sounds tested, between 

HAMDtotal and energy variability, indicate that as depression 

severity increases there is a decrease in the energy variability 

associated with speech production mechanism. This is consistent 

with results seen in [6, 7]. The positive correlations seen across all 

sounds tested, between HAMDpmr and energy variability, indicate 

that as PMR severity increases there is an increase in the energy 

variability associated with speech production mechanism. We 

could hypothesize that this indicates that more effort might be 

required to produce and sustain PMR-affected speech. This could 

be due to a lack of motor coordination which improves as the 

effects of PMR decreases [7]. Further work will be done to explore 

these results and this hypothesis in more detail. 
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8. RELATION TO PRIOR WORK 

Work presented here has explored the potential of modulation 

spectrum based features for extracting longer-term spectro-

temporal information from a speech signal for use as an objective 

measure of depression or psychomotor retardation. Motivated by 

the recent results published in [7], where significant correlations 

(p<0.05) between energy dynamics and increasing levels of either 

depression or PMR were reported, this paper showed that there is 

benefit in including medium / longer term spectro-temporal 

information when using speech to classify clinical depression, with 

both the modulation spectrum based features and shifted delta 

coefficients being shown to have discriminatory characteristics. 

Previous results in the literature have shown that including either 

short-term spectro-temporal information in the form of RDC’s and 

medium term spectro-temporal information in the form of SDC’s 

did not aid classification accuracy [10, 13, 14]. Further results, 

previously not seen in depression classification literature, show 

that by using log mean subtraction, as a means to isolate speech 

production dynamics [19], depression and PMR have potentially 

conflicting effects on the speech production mechanism. 
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