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Abstract 

In recent years, the problem of automatic detection of mental 

illness from the speech signal has gained some initial interest, 

however questions remaining include how speech segments 
should be selected, what features provide good discrimination, 

and what benefits feature normalization might bring given the 

speaker-specific nature of mental disorders. In this paper, 

these questions are addressed empirically using classifier 
configurations employed in emotion recognition from speech, 

evaluated on a 47-speaker depressed/neutral read sentence 

speech database. Results demonstrate that (1) detailed spectral 

features are well suited to the task, (2) speaker normalization 
provides benefits mainly for less detailed features, and (3) 

dynamic information appears to provide little benefit. 

Classification accuracy using a combination of MFCC and 

formant based features approached 80% for this database. 

Index Terms: mental state recognition, depressed speech, 

feature comparison, MFCC, Gaussian mixture models 

1. Introduction 

Depression is a common mental disorder that presents 

persistent feelings of sadness, intrusive negative thoughts and, 
cognitive difficulties such as poor concentration, leading to 

functional impairment. Despite its high prevalence and 

enormous socio-economic burden, clinical practice remains 

rooted almost exclusively on the opinion of individual 
clinicians, risking a range of subjective biases. As a first step 

towards developing objective depression severity scales with 

clinical utility, the characterisation of depression using 

physiological and behavioural signals is needed. Speech is 
attractive since it can be measured cheaply, remotely, non-

invasively and non-intrusively. However, it is also richly 

communicative and contains many sources of variability. 

Early investigations of depressed speech found that 
depressed patients consistently demonstrated prosodic speech 

abnormalities, such as reduced variation in loudness, 

repetitious pitch inflections and stress patterns, and 

monotonous pitch and loudness [1]. A later study of 28 
sufferers of depressive illness found similar evidence for a 

reduced variability in fundamental frequency and prosody [2]. 

In experiments by Stassen [3], speech features such as 

fundamental frequency and speech pause duration were found 
to be sufficiently highly correlated with the HAMD-17 

depression score that simple speech analysis methods were 

trialled as an objective measure of patient recovery during a 
course of antidepressants. Flint [4] studied the effect of 

psychomotor retardation in depressed people and found that 

patients with a major depressive disorder had decreased 

second formant (F2) measurements when compared with a 
control group. 

More recent work has seen the first steps towards 

automatic analysis of speech [5].  A range of acoustic features 

have already been identified for suitability in the classification 
of depression. Speech production cues such as pitch and 

formant measures are useful due in part to the effects of 

increased tension in the vocal tract associated with depression 

[4,5].  Spectral and energy based measures are also useful in 
classifiers, as depressive speech can contain more information 

in the higher energy bands when compared with neutral speech 

[5, 6]. Spectral centroid based methods including the sub-band 

spectral centroid features have recently shown promise in 
other applications [7], and other work [8] shows that these 

newer measures potentially include information useful in the 

classification of depression. Although systems for the 

classification of depressed speech have been proposed [9, 10], 
there is considerable further research to be conducted, 

particularly in light of the extensive speech-based emotion 

recognition literature, from which insight can be gained 

towards the classification of depressed speech.  
In this paper, we examine the effect of segment selection 

and the choice of different speech characterization methods on 

the automatic classification of depressed and neutral speech. 

2. Acoustic Characterization of Depression 

in Speech 

2.1. Segment Selection 

Beyond the usual isolation of speech-active regions in the 

signal using a voice activity detector (VAD), a question of 

interest is the accurate selection of speech segments that 
provide maximal depressed/neutral speech discrimination. To 

our knowledge, the decision between voiced-only, unvoiced-

only or mixed-voicing speech is without empirical support. In 

this paper, we employ an energy-based VAD and confine 
ourselves to investigating the relative merits of voiced and 

unvoiced segments, using short term energy and F0 

information to estimate the degree of voicing. Based on 

emotion recognition results and [8, 10], we expect to find that 

voiced segments provide the most effective discrimination. 

2.2. Feature Extraction 

Our framework for investigating acoustic features for 
characterising depressed speech is based on that adopted by 

[11]. The motivation is similar, namely to understand the 

relative contribution of speech production cues, detailed 
spectral information and broad spectral information to 

depressed/neutral speech discrimination. 

Among speech production cues, pitch, energy and 

formants are obvious feature choices, for which insights into 
depressed speech exist already [5, 6, 8, 10]. In this work, we 

use the RAPT Algorithm to estimate F0 and Linear Prediction 

Analysis using VOICEBOX to estimate and track the first 

three formant frequencies. 
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Detailed spectral information can be represented by a variety 

of different features, including the widely used mel frequency 
cepstral coefficients (MFCCs), linear predictive group delay 

and the spectral centroid frequencies and amplitudes (SCF / 

SCA). SCF is a measure of the average weighted frequency for 

the kth sub-band, where the weights are the normalized energy 
of each frequency component S[f] in that sub-band:  
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where  fk  represents the sub-band filter. SCA are simply 

the average magnitude of a given sub-band weighted on a 

component-wise basis by the frequency of each magnitude 

component in the kth sub-band: 
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Both SCF and SCA were extracted using a mel scale Gabor 

filterbank, and calculated as described in [7]. 

Broad spectral information is of interest since detailed 
spectral information can be expected to contain substantial 

variability due to the phonetic composition of an utterance and 

the speaker identity. Typically, the former source of variability 
is accounted for by employing a Gaussian mixture model with 

many mixtures, which represent different acoustic regions 

within which depressed/neutral speech discrimination can be 

more effectively characterized. The latter source of variability 
can be mitigated using feature normalization methods. In this 

work, we investigate energy slope (ES – extracted by using 

least squares analysis of the magnitude spectrum to calculate 

the linear slope coefficient for a given frame), zero-crossing 
rate (ZC), and spectral centroid (SC – extracted across the full 

speech bandwidth). 

2.3. Feature Normalization 

As explained above, feature normalization can be applied to 

reduce the mismatch in feature distributions between different 

speakers. Research has shown that speaker variability is a 

stronger confounder for emotion recognition than phonetic 
variability [11], and we adopt a similar hypothesis for 

depressed/neutral speech classification. 

An important distinction between emotion recognition and 

depressed/neutral speech classification must be made: unlike 
emotion, which can be transient and hence easily elicited from 

a single speaker in a variety of forms, depression is a condition 

that is sustained for weeks to months. Finding speakers able to 

produce both depressed and neutral speech, even over a long 
period of time, is very challenging. Hence, the depressed and 

neutral speaker utterances might often be mutually exclusive 

with respect to speaker identity. Normalizing on a per-speaker 

basis for depressed/neutral speech will prove beneficial if the 
speaker variability is substantially larger than the 

depressed/neutral speech variability (this seems likely [11]). 

On the other hand, if the depressed/neutral speech variability 

is larger than the speaker variability, then per-speaker 
normalization might prove detrimental to depressed/neutral 

classification. 

2.4. Modeling of Depressed Speech 

Following the approach of many paralinguistic speech 

classification systems based on acoustic features, including 

some focused on depressed speech recognition, we employ 

Gaussian mixture models (GMMs) to model depressed and 
neutral speech. In contemporary systems, researchers often 

make use of multiple subsystems and score-level fusion, to 

combine the benefits of individual systems and advance the 

state of the art. The overall system described in Section 2 is 
summarised in Fig. 1. 
 

 
Figure 1: Depression detection system configuration 

3. Experimental Configuration 

3.1. Database 

The database of 23 depressed and 24 control subjects 

(approximately 50%/50% male and female) was obtained from 
audio-video data collected during an ongoing study into 

measuring the facial activity in depressed patients [12] at the 

Black Dog Institute. No formal measure was used to 

differentiate between the depressed and control groups. 
Subjects were excluded from the control group if they had any 

personal or family history of mental illness. All subjects gave 

informed consent and the study was conducted in accordance 

with local institutional ethics committee approval. 
As part of the experimental setup, participants were asked 

to read sentences containing affective content. In the readings 

two sets of sentences, as used in [13] to examine the effects of 

emotional content and context on verbal memory, were read 
aloud. The first set contained emotionally arousing „target‟ 

words. The second set replaced the target word with a well 

matched neutral word. 

3.2. System Configuration 

The experimental settings (unless otherwise stated) of the 

depression detection system were as follows: the VAD 

employed was energy based, retaining the 80% highest energy 
frames from each utterance. Thirteen MFCC coefficients were 

extracted, and the delta and delta-delta coefficients (,) 
were extracted by the standard regression equation over seven 

consecutive frames. The shifted delta coefficients (SDC) were 

extracted with parameters N –d –p – k equal to 7-1-3-7. For the 

spectral measures of SCF/SCA 20 coefficients were extracted. 

For normalization, feature warping (cumulative distribution 

mapping) was used. This technique maps each feature to a pre- 

determined (normal) distribution. HTK was used to train the 
GMMs using 16 mixtures and 10 iterations of the EM 

algorithm, with a variance flooring threshold set to 0.01. The 

choice of the number of mixtures (fixed to ensure consistent 

comparison) is a difficult one since detailed spectral measures 
benefit more from more detailed modeling (assuming 

sufficient data are available) than lower dimension features. 

3.3. Evaluation Methods 

Each of the 47 speakers‟ recordings contained 20 individual 

sentences (referred to herein as utterances), of approximately 

40-60s total duration, per speaker. All identified acoustic 

parameters were tested for their effectiveness in both speaker 
dependent and speaker independent systems. In the speaker 

dependent tests, utterances were allocated to training and test 

databases by randomly selecting 14 utterances for training and 

6 for test per speaker. For speaker independent tests, 
utterances from 20 random speakers for the depressed group 

and 21 random speakers from the control group were 

aggregated for training, and the remaining set of utterances 

from the unused 6 speakers was used for testing. Different 
features may have different levels of speaker dependent and 

depression dependent characteristics, therefore testing both 

segment 
selection 

speech feature 
extraction 

feature 
normalization 

mental state 
modeling 

 

classification 
depressed/ 

neutral decision 



dependent and independent systems will allow us to further 

compare the speaker variability of these features. Ten-fold 
cross-validation was applied to the test database, and the 

average accuracy was reported. To calculate the overall 

accuracy results reported, the log-likelihood of each test 

utterance was calculated with respect to both a depressed and 
control (neutral) GMM, followed by a maximum-likelihood 

decision. Unless otherwise stated the reported accuracies are 

for the speaker independent system.  

4. Results 

4.1. Feature Variation for Depressed and Control 

Patients 

The discriminative capabilities of one-dimensional features 
can be directly visualized. Here we show as an example the 

distribution of F1 for depressed and neutral speech (Fig. 2). 

Formant features have already been shown to capture 

information useful in distinguishing between the two classes 
[4,5]. Here, the difference between the two classes for the F1 

measure is also reflected by the depressed class having 5% 

greater standard deviation than the neutral class. 

 
Figure 2: Distributions of feature F1 for depressed and neutral 

speakers (both equally gender balanced). 

4.2. Segment Selection 

The speech database employed was annotated carefully to 

minimize the amount of silence/background noise. Hence, as 

seen in Table 1, accuracy was high across a range of threshold 

values, and using either energy-based or F0-based criteria.  For 
this database, providing the lowest energy frames are 

discarded, the choice of criterion and threshold is not critical, 

although voiced frames seem to be preferable to unvoiced. 
 

Table 1. Classification accuracy for different segment 

selection approaches 

Segment selection Frames retained (%) 

20 40 60 80 100 

High energy frames ret. 73 76 78 77 
 

78 

 

Low energy frames ret. 51 69 75 77 

Voiced frames retained 77 76 77 - 

Unvoiced frames ret. 69 74 - - 

4.3. Feature Extraction 

Results from the feature comparison, seen in Table 2, broadly 

agree with those in [11]. Specifically, detailed spectral 

measures performed best for the speaker dependent case, 
capturing depression related information effectively. Their 

performance in the speaker independent case was slightly less 

convincing, however, suggesting that depression is manifested 

somewhat differently in different speakers for those features. 
Single-dimension features on the whole seemed less affected 

by the speaker independent conditions, as might be expected 

(they carry less speaker-specific information). The linguistic 

constraints on the database may have been an influence on 
these results. 

Interestingly the best performing single dimensional 

feature was the first formant. It has been previously reported in 

the literature that the second formant location is most affected 
by depressive speech [4]. F2 has also been linked with 

emotional and cognitive information. The performance of 

speech production cues F0 and energy was lower than 

expected, in agreement with findings in [10], where it is 
suggested that whilst F0 and energy offer a high level view of 

vocal tract dynamics they do not provide true information on 

vocal tract tension. 

 
Table 2. Comparison of feature types using two-class 

depressed/neutral speech classification accuracy, evaluated 

on a 47-speaker database. 

 

Features 

Classification Accuracy 

Spk 

Dep. 

Spk Indep. 

No Warp Warp 

Single Dimensional Features 

F0 53 48 64 
Short Term Energy (E) 58 58 60 

Energy Slope (ES) 51 50 70 

Zero Crossing Rate (Z) 58 57 59 

F1 64 60 72 

F2 56 50 70 

F3 60 58 79 

Spectral Centroid (SC) 60 58  52 

Multidimensional Features 

F0 + Energy (F0E) 54 42 56 
Energy Slope + ZCR(SZ) 61 56 61 

MFCC 80 77 65 

SCF 69 51 58 

SCA 80 76 51 

Group Delay (GD) 76 73 72 

Formants 
(F1,F2,F3,A1,A2,A3) 

79 74 70 

 

When normalization was introduced, the accuracies of single 

dimensional features nearly all increased, many substantially. 

By contrast, there was little improvement (and even a drop in 
performance from MFCC) in the detailed spectral measures 

when normalization was introduced, broadly in line with [11]. 

This result may be consistent with prior research in that 

depression manifests differently in different speakers for 
detailed spectral measures. As in [11], whilst detailed spectral 

measures are able to distinguish emotions and in our case 

depression, they are also very characteristic of their speaker. 

Feature warping attempts to reduce the variation in data due to 
differences in speaker variability. But if a proportion of the 

between-speaker variability removed in warping is due to the 

effects of depression, the ability to distinguish between the 

two classes will also be reduced. The improvement seen in 
some of the single-dimension features could be explained by 

their lack of speaker specific information. Mean and mean-

variance normalization results (not shown) were substantially 

poorer than for warping. 

4.4. Dynamic Information 

To test whether temporal information provides benefit to 

depressed/neutral speech classification, three separate speaker 
independent experiments were conducted, as seen in Table 3. 

From this preliminary result, it appears that including dynamic 

information provides no classification benefit. This result is 

consistent with the results reported in [8], where inclusion of 



the first and second order derivatives increased classification 

accuracy by just 3%. 
 

Table 3. Classification accuracy for dynamic information 

features included in a MFCC based system 

Features MFCC+ MFCC++ MFCC+ SDC 

Accuracy (%) 78 78 77 

4.5. Comparison of Fused Systems 

The foregoing results indicate that the detailed spectral feature 
of MFCCs can be taken as a baseline system. To attempt to 

improve on this performance, various pairs of features were 

combined using score level fusion. The logistic regression 

method employed for this was trained on the evaluation data, 
so results should be interpreted as upper bound rather than 

typical. It can be seen from results in Table 4 that combining 

different features with broad spectral measures does not 

significantly improve classification accuracy. For example, the 
combination of F0 and energy measures with other features 

does not improve accuracy beyond the classification of 

formants on their own. This may reflect the earlier observation 

that these measures don‟t provided detailed information on 
vocal tract tension. 
 

Table 4. Comparison of two class classifier accuracies for 
various feature-pair combinations, evaluated on the 

47-speaker database 

 

Features 

Classification Accuracy (%) 

Spk 

Dep. 

Spk Indep. 

No Warp Warp 

MFCC + SC 82 80 64 

MFCC + F0E + SZ 81 79 67 

MFCC + Formants 81 79 70 

GD + Formants 81 78 72 

Formants + F0E + SZ 77 74 70 

Formant + SC 76 72 70 
 

Combining with detailed spectral measures with formant 

information seems a useful approach. This makes sense as 

detailed spectral features are complemented by the vocal tract 
information contained in the formant feature. If amplitude 

information is omitted from the formant feature vector, 

classification accuracy drops by approximately 10%, so that 

both the frequency and amplitude of the formants are needed. 

4.6. Detection Error Curves 

The results reported to this point are accuracies based on 

maximum likelihood classification, however the classification 
threshold is a design choice, and it is instructive to consider 

different error trade-offs at different system operating points. 

The DET curve in Figure 4 shows the improved classification 

performance when combining MFCC and formant 

information. It also shows the negative effect of warping on 

MFCCs. 

5. Conclusion 

Several insights have been gained from this study of 

depressed/neutral classification. Voiced speech segments 
appear to be mildly preferable for the purpose, however 

segment selection is not critical. Detailed spectral features are 

very well suited to the speaker-dependent problem, but are 

also the feature of choice for the speaker-independent case. 

Feature warping needs to be used with care, however its 

behaviour in this investigation is similar to that for emotion 

recognition, despite the differences in the structure of the 

respective recognition problems. Temporal feature evolution 

appears not to provide any benefit for depressed/neutral 

discrimination. Future work will consider glottal features and 
improved normalization methods. 
 

 
Figure 4. Comparison of DET curves showing the optimum 

detection cost points for system configurations based on 

MFCC and formant features 
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